Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

Examiner:
19 January 2015
9:45am-12:45pm

Answer QUESTION 1, QUESTION 2 and any FOUR of the remaining questions.

Electronic calculators are permitted provided that cannot store text.

1. Let X_{i} denote a normal random variable with zero mean and variance σ^{2}, representing the change in stock value from day i to the next.
(a) Show that the moment generating function of X_{i} is

$$
M_{X_{i}}(t)=E\left[\exp \left(t X_{i}\right)\right]=\exp \left(\frac{\sigma^{2} t^{2}}{2}\right)
$$

(b) If $X_{i}, i=1,2, \ldots, n$ are independent normal random variables with zero means and common variance σ^{2} calculate the moment generating function of $Y=X_{1}+\cdots+X_{n}$.
(c) Determine the first four moments of Y.
(d) What is the distribution of Y ?
(e) Determine $\operatorname{VaR}_{p}(Y)$ and $\mathrm{ES}_{p}(Y)$.
2. State the conditions in full for $C\left(u_{1}, u_{2}\right), 0 \leq u_{1}, u_{2} \leq 1$ to be a copula.

Show each of the following is a copula.
(a) The copula defined by $C\left(u_{1}, u_{2}\right)=\left[u_{1}^{-\alpha}+u_{2}^{-\alpha}-1\right]^{-1 / \alpha}$ for $\alpha \geq 0$.
(b) The copula defined by $C\left(u_{1}, u_{2}\right)=\left[\min \left(u_{1}, u_{2}\right)\right]^{\theta}\left(u_{1} u_{2}\right)^{1-\theta}$ for $0 \leq \theta \leq 1$.
(c) The copula defined by $C\left(u_{1}, u_{2}\right)=\frac{u_{1} u_{2}}{1-\theta\left(1-u_{1}\right)\left(1-u_{2}\right)}$ for $-1 \leq \theta<1$.
(d) The copula defined by $(1-\rho) u_{1} u_{2}+\rho \min \left(u_{1}, u_{2}\right)$ for $0<\rho<1$.
3. Consider a bivariate distribution specified by the joint survival function

$$
\bar{F}(x, y)=\exp \left\{-x-\frac{y}{3}-\frac{y^{2}}{3(x+y)}-\frac{y^{3}}{3(x+y)^{2}}\right\}
$$

for $x>0$ and $y>0$.
(a) Show that the distribution is a bivariate extreme value distribution;
(b) Derive the joint cumulative distribution function;
(c) Derive the conditional cumulative distribution function of Y given $X=x$;
(d) Derive the conditional cumulative distribution function of X given $Y=y$;
(e) Derive the joint probability density function.
4. Let X denote a random variable representing the stock return of a company. Suppose X has the uniform $[-\theta, \theta]$ distribution with random θ.
(a) Suppose θ follows the Fréchet distribution specified by the $\operatorname{pdf} \lambda \theta^{-2} \exp (-\lambda / \theta), \theta>0$, where λ is an unknown parameter. Show that the unconditional cdf of X in this case is

$$
F_{X}(x)=\frac{x+\lambda}{2 \lambda}
$$

for $-\lambda<x<\lambda$;
(b) Determine the corresponding pdf of X;
(c) Derive the mean of X;
(d) Derive the variance of X;
(e) If $x_{1}, x_{2}, \ldots, x_{n}$ is a random sample on X find the maximum likelihood estimate of λ. (6 marks)
5. (a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with $\operatorname{cdf} F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cdfs of each of the three extreme value distributions.
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
(6 marks)
(c) Consider a class of distributions defined by the cdf

$$
F(x)=\left\{1-\left[1-(G(x))^{\theta}\right]^{2}\right\}^{\alpha}
$$

where $\alpha>0, \theta>0, G(\cdot)$ is a cdf and $g(x)=d G(x) / d x$. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points.
6. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) The Burr distribution given by the cdf

$$
F(x)=1-\left(1+x^{c}\right)^{-k}, x>0, c>0, k>0 ;
$$

(b) The Kumaraswamy distribution given by the cdf

$$
F(x)=1-\left(1-x^{b}\right)^{a}, 0<x<1, a>0, b>0
$$

(c) The Poisson distribution given by the pmf

$$
p(k)=\frac{\lambda^{k} \exp (-\lambda)}{k!}, \lambda>0, k=0,1, \ldots ;
$$

(d) The distribution given by the cdf

$$
F(x)=\Phi(x),-\infty<x<\infty,
$$

where $\Phi(\cdot)$ denotes the cdf of a standard normal random variable;
(e) The Gumbel distribution given by the cdf

$$
F(x)=\exp \{-\exp (-x)\},-\infty<x<\infty
$$

7. (a) If X is an absolutely continuous random variable with cdf $F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
(b) Suppose X is a Laplace random variable with pdf given by

$$
f(x)=1 /(2 \lambda) \exp (-|x| / \lambda)
$$

for $\lambda>0$ and $-\infty<x<\infty$.
(i) Show that the corresponding cdf is

$$
F(x)= \begin{cases}1-\frac{1}{2} \exp \left(-\frac{x}{\lambda}\right), & \text { if } x>0 \\ \frac{1}{2} \exp \left(\frac{x}{\lambda}\right), & \text { if } x \leq 0\end{cases}
$$

(ii) Derive the corresponding $\operatorname{VaR}_{p}(X)$;
(iii) Derive the corresponding $\mathrm{ES}_{p}(X)$.
(c) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample on X.
(i) Write down the likelihood function of λ;
(ii) Show that the maximum likelihood estimator (mle) of λ is $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}\right|$;
(iii) Deduce the mles of $\operatorname{VaR}_{p}(X)$ and $\mathrm{ES}_{p}(X)$;
(iv) Show that the mles in part iii) are unbiased.
8. Suppose a portfolio is made up of α investments where α is known. Suppose also that the losses on the investments say $X_{i}, i=1,2, \ldots, \alpha$ are independent and identical Pareto random variables specified by the cdf $F(x)=1-(K / x)^{a}, x \geq K$, where both $a>0$ and $K>0$ are unknown parameters. Let $Y=\min \left(X_{1}, \ldots, X_{\alpha}\right)$. Do the following:
(a) Show that the cdf of Y is

$$
F_{Y}(y)=1-\left(\frac{K}{y}\right)^{a \alpha} ;
$$

(b) Find the pdf of Y;
(c) Find the mean and variance of Y;
(d) Find the value at risk of Y;
(e) Find the expected shortfall of Y;
(f) If $y_{1}, y_{2}, \ldots, y_{n}$ is a random sample on Y derive the set of all possible maximum likelihood estimates of a and K.

