Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

Examiner:

Answer QUESTION 1, QUESTION 2 and any FOUR of the remaining questions.

Electronic calculators are permitted provided that cannot store text.

1. Let $e_{t}=\sigma_{t} Z_{t}$ denote a financial time series, where $\left\{\sigma_{t}\right\}$ denotes a volatility process and $\left\{Z_{t}\right\}$ denotes an innovation process. Define each of the following models fully:
(a) e_{t} follows the $\mathrm{ARCH}(q)$ model;
(b) e_{t} follows the GARCH (p, q) model;
(c) e_{t} follows the the NGARCH model.
d) Suppose now that $\left\{Z_{t}\right\}$ are independent standard normal random variables. Then show that

$$
E\left(e_{t}\right)=0
$$

and

$$
\operatorname{Var}\left(e_{t}\right)=E\left[\sigma_{t}^{2}\right]
$$

for each of the models in (a)-(c).
Suppose now $\left\{e_{t}\right\}$ are stationary with $E\left[\sigma_{t}^{2}\right]=\sigma^{2}$ for all t. Find explicit expressions for σ^{2} if
(e) e_{t} follows the ARCH (q) model;
(f) e_{t} follows the GARCH (p, q) model;
(g) e_{t} follows the the NGARCH model.
2. State the conditions in full for $C\left(u_{1}, u_{2}\right), 0 \leq u_{1}, u_{2} \leq 1$ to be a copula.

Show each of the following is a copula.
(a) the copula defined by $C\left(u_{1}, u_{2}\right)=\min \left(u_{1}, u_{2}\right)$.
(b) the copula defined by

$$
C\left(u_{1}, u_{2}\right)=u_{1} u_{2} \exp \left[-\theta \log u_{1} \log u_{2}\right]
$$

for $0<\theta \leq 1$.
(c) the Farlie-Gumbel-Morgenstern copula defined by

$$
C\left(u_{1}, u_{2}\right)=u_{1} u_{2}\left[1+\phi\left(1-u_{1}\right)\left(1-u_{2}\right)\right]
$$

for $-1 \leq \phi \leq 1$.
(d) the Burr copula defined by

$$
C\left(u_{1}, u_{2}\right)=u_{1}+u_{2}-1+\left[\left(1-u_{1}\right)^{-1 / \alpha}+\left(1-u_{2}\right)^{-1 / \alpha}-1\right]^{-\alpha}
$$

for $\alpha>0$.
3. Consider a bivariate distribution specified by the joint survival function

$$
\bar{F}(x, y)=\exp \left[-\left(x^{a}+y^{a}\right)^{1 / a}\right]
$$

for $x>0, y>0$ and $a \geq 1$.
(a) show that the distribution is a bivariate extreme value distribution;
(b) derive the joint cumulative distribution function;
(c) derive the conditional cumulative distribution function of Y given $X=x$;
(d) derive the conditional cumulative distribution function of X given $Y=y$;
(e) derive the joint probability density function.
4. Suppose that the stock returns of a company have an exponential distribution with random rate parameter λ.
(a) determine the actual distribution of the stock returns if λ has a uniform distribution on $[a, b]$, where both a and b are unknown parameters;
(b) find the mean of the distribution in part (a);
(c) find the variance of the distribution in part (a);
(d) if $x_{1}, x_{2}, \ldots, x_{n}$ is a random sample from the actual distribution in part (a), derive the equations for the maximum likelihood estimates of the parameters a and b.
5. (a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with $\operatorname{cdf} F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cdfs of each of the three extreme value distributions.
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
(6 marks)
(c) Consider a class of distributions defined by the cdf

$$
F(x)=K \int_{0}^{G(x)} t^{a-1}(1-t)^{b-1} \exp (-c t) d t
$$

and the pdf

$$
f(x)=K g(x) G(x)^{a-1}\{1-G(x)\}^{b-1} \exp \{-c G(x)\}
$$

where $a>0, K$ is a constant, $G(\cdot)$ is a cdf and $g(x)=d G(x) / d x$. Show that F belongs to the same max domain of attraction as G.
6. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) the exponentiated extension distribution given by the cdf

$$
F(x)=1-\exp \left[1-(1+\lambda x)^{\alpha}\right], x>0, \alpha>0, \lambda>0
$$

(b) the inverse exponentiated exponential distribution given by the cdf

$$
F(x)=1-\left[1-\exp \left(-\frac{\lambda}{x}\right)\right]^{\alpha}, x>0, \alpha>0, \lambda>0
$$

(c) the Poisson distribution given by the pmf

$$
p(k)=\frac{\lambda^{k} \exp (-\lambda)}{k!}, \lambda>0, k=0,1, \ldots ;
$$

(d) the Bernoulli distribution given by the pmf

$$
p(k)= \begin{cases}1-p, & \text { if } k=0 \\ p, & \text { if } k=1\end{cases}
$$

(e) the discrete Weibull distribution given by the cdf

$$
F(x)=1-q^{(x+1)^{a}}, 0<q<1, a>1, x=0,1,2, \ldots .
$$

7. If X is an absolutely continuous random variable with $\operatorname{cdf} F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
(3 marks)
If X is a normal random variable with mean μ and standard deviation σ, derive explicit expressions for $\operatorname{VaR}_{p}(X)$ and $\mathrm{ES}_{p}(X)$.

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a normal distribution with unknown mean μ and unknown standard deviation σ.
(a) Write down the joint likelihood function of μ and σ;
(b) Show that the maximum likelihood estimator (mle) of μ is the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$;
(c) Show that the mle of σ is $S=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}$;
(d) Deduce the mles of $\operatorname{VaR}_{p}(X)$ and $\operatorname{ES}_{p}(X)$;
(e) Show that the mle of $\operatorname{VaR}_{p}(X)$ is biased;
(f) Show that the mle of $\mathrm{ES}_{p}(X)$ is also biased.
8. Suppose a portfolio is made up of α assets where α is unknown. Suppose also that the price of each asset, say $X_{i}, i=1,2, \ldots, \alpha$, is an exponential random variable with an unknown parameter λ. Then $Y=\min \left(X_{1}, \ldots, X_{\alpha}\right)$ will be the price of the least expensive asset. Do the following:
(a) find the cdf of Y;
(b) find the pdf of Y;
(c) find the mean and variance of Y;
(d) find the value at risk of Y;
(e) find the expected shortfall of Y;
(f) if $y_{1}, y_{2}, \ldots, y_{n}$ is a random sample on Y derive the set of all possible maximum likelihood estimates of α and λ.

