Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK
Examiner:
Answer any FOUR questions.
Electronic calculators are permitted provided that cannot store text.

1. Consider a bivariate distribution specified by the joint survival function

$$\overline{F}(x,y) = \exp\left[-\left(x^a + y^a\right)^{1/a}\right]$$

for x > 0, y > 0 and $a \ge 1$.

- (a) show that the distribution is a bivariate extreme value distribution; (6 marks)
- (b) derive the joint cumulative distribution function; (2 marks)
- (c) derive the conditional cumulative distribution function of Y given X=x; (4 marks)
- (d) derive the conditional cumulative distribution function of X given Y = y; (4 marks)
- (e) derive the joint probability density function. (4 marks)

- **2.** Suppose that the stock returns of a company have an exponential distribution with random rate parameter λ .
 - (a) determine the actual distribution of the stock returns if λ has a uniform distribution on [a, b], where both a and b are unknown parameters; (5 marks)
 - (b) find the mean of the distribution in part (a); (5 marks)
 - (c) find the variance of the distribution in part (a); (5 marks)
 - (d) if $x_1, x_2, ..., x_n$ is a random sample from the actual distribution in part (a), derive the equations for the maximum likelihood estimates of the parameters a and b. (5 marks)

- **3.** (a) Suppose X_1, X_2, \ldots, X_n is a random sample with cdf $F(\cdot)$. State the Extremal Types Theorem for $M_n = \max(X_1, X_2, \ldots, X_n)$. You must clearly specify the cdfs of each of the three extreme value distributions. (6 marks)
- (b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions. (6 marks)
- (c) Consider a class of distributions defined by the cdf

$$F(x) = K \int_0^{G(x)} t^{a-1} (1-t)^{b-1} \exp(-ct) dt,$$

and the pdf

$$f(x) = Kg(x)G(x)^{a-1} \left\{ 1 - G(x) \right\}^{b-1} \exp \left\{ -c \ G(x) \right\},\,$$

where a > 0, K is a constant, $G(\cdot)$ is a cdf and g(x) = dG(x)/dx. Show that F belongs to the same max domain of attraction as G.

- 4. Determine the domain of attraction (if there is one) for each of the following distributions:
 - (a) the exponentiated extension distribution given by the cdf

$$F(x)=1-\exp\left[1-(1+\lambda x)^{\alpha}\right], x>0, \alpha>0, \lambda>0;$$

(4 marks)

(b) the inverse exponentiated exponential distribution given by the cdf

$$F(x) = 1 - \left[1 - \exp\left(-\frac{\lambda}{x}\right)\right]^{\alpha}, x > 0, \alpha > 0, \lambda > 0;$$

(4 marks)

(c) the Poisson distribution given by the pmf

$$p(k) = \frac{\lambda^k \exp(-\lambda)}{k!}, \lambda > 0, k = 0, 1, \dots;$$

(4 marks)

(d) the Bernoulli distribution given by the pmf

$$p(k) = \begin{cases} 1 - p, & \text{if } k = 0, \\ p, & \text{if } k = 1; \end{cases}$$

(4 marks)

(e) the discrete Weibull distribution given by the cdf

$$F(x) = 1 - q^{(x+1)^a}, 0 < q < 1, a > 1, x = 0, 1, 2, \dots$$

(4 marks)

5. If X is an absolutely continuous random variable with cdf $F(\cdot)$, then define $\operatorname{VaR}_p(X)$, the Value at Risk of X, and $\operatorname{ES}_p(X)$, the Expected Shortfall of X, explicitly. (3 marks)

If X is a normal random variable with mean μ and standard deviation σ , derive explicit expressions for $\operatorname{VaR}_p(X)$ and $\operatorname{ES}_p(X)$.

Suppose X_1, X_2, \ldots, X_n is a random sample from a normal distribution with unknown mean μ and unknown standard deviation σ .

- (a) Write down the joint likelihood function of μ and σ ; (1 marks)
- (b) Show that the maximum likelihood estimator (mle) of μ is the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$; (1 marks)
- (c) Show that the mle of σ is $S = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2}$; (1 marks)
- (d) Deduce the mles of $VaR_p(X)$ and $ES_p(X)$; (2 marks)
- (e) Show that the mle of $VaR_p(X)$ is biased; (5 marks)
- (f) Show that the mle of $\mathrm{ES}_p(X)$ is also biased. (4 marks)

6. Suppose a portfolio is made up of α assets where α is unknown. Suppose also that the price of each asset, say X_i , $i=1,2,\ldots,\alpha$, is an exponential random variable with an unknown parameter λ . Then $Y=\min{(X_1,\ldots,X_\alpha)}$ will be the price of the least expensive asset. Do the following:

(a) find the cdf of Y;	(4 marks)
------------------------	-----------

- (b) find the pdf of Y; (2 marks)
- (c) find the mean and variance of Y; (4 marks)
- (d) find the value at risk of Y; (2 marks)
- (e) find the expected shortfall of Y; (4 marks)
- (f) if y_1, y_2, \dots, y_n is a random sample on Y derive the set of all possible maximum likelihood estimates of α and λ . (4 marks)