Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK
Examiner:
Answer QUESTION 1, QUESTION 2 and any FOUR of the remaining questions.

University-approved calculators may be used

1. Consider a bivariate distribution specified by the joint survival function

$$\overline{F}(x,y) = \Pr(X > x, Y > y) = \exp\left[-\frac{\theta y^2}{x+y} + \theta y - x - y\right]$$

for x > 0 and y > 0.

- (a) Show that the distribution is a bivariate extreme value distribution. (6 marks)
- (b) Derive the joint cdf. (2 marks)
- (c) Derive the conditional cdf of Y given X = x. (4 marks)
- (d) Derive the conditional cdf of X given Y = y. (4 marks)
- (e) Derive the joint pdf. (4 marks)

- 2. Suppose that stock returns of a company can be modeled by an exponential distribution with random rate parameter λ .
 - (a) Determine the actual distribution of stock returns if λ has an exponential distribution with rate parameter a, where a is an unknown parameter. (5 marks)
 - (b) Find the mean of the distribution in part (a). (5 marks)
 - (c) Find the variance of the distribution in part (a). (5 marks)
 - (b) If $x_1, x_2, ..., x_n$ is a random sample from the actual distribution in part (a), derive the equation for the maximum likelihood estimate of the parameter a. (5 marks)

3. Suppose X_1, X_2, \ldots, X_n is a random sample with cdf $F(\cdot)$. State the Extremal Types Theorem for $M_n = \max(X_1, X_2, \ldots, X_n)$. You must clearly specify the cdfs of each of the three extreme value distributions. (6 marks)

State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions. (6 marks)

Consider a class of distributions defined by the cdf

$$F(x) = \frac{1}{\Gamma(a)} \int_{-\infty}^{x} \left\{ -\log[1 - G(y)] \right\}^{a-1} g(y) dy$$

and the pdf

$$f(x) = \frac{1}{\Gamma(a)} \left\{ -\log[1 - G(x)] \right\}^{a-1} g(x)$$

where a > 0, $G(\cdot)$ is a valid cdf, and g(x) = dG(x)/dx. Show that F belongs to the same max domain of attraction as G. (8 marks)

4. Suppose a portfolio is made up of three assets with X, Y and Z denoting the corresponding prices. Suppose also that the joint distribution of X, Y and Z is specified by the survival function

$$\overline{F}(x, y, z) = \left[1 + \frac{x}{a} + \frac{y}{b} + \frac{z}{c}\right]^{-d}$$

for x > 0, y > 0, z > 0, a > 0, b > 0, c > 0, and d > 0. Find the following:

- (a) The cdf of $M = \max(X, Y, Z)$. (4 marks)
- (b) The pdf of M. (2 marks)
- (c) The nth moment of M. (4 marks)
- (d) The cdf of $L = \min(X, Y, Z)$. (4 marks)
- (e) The pdf of L. (2 marks)
- (f) The nth moment of L. (4 marks)

- **5.** State the domain of attraction (if there is one) for each of the following distributions:
 - (i) The exponentiated exponential distribution given by the cdf

$$F(x) = \left[1 - \exp(-x)\right]^{\alpha},$$

for x > 0 and $\alpha > 0$. (4 marks)

(ii) The exponentiated exponential geometric distribution given by the cdf

$$F(x) = \frac{\{1 - \exp(-\beta x)\}^{\alpha}}{1 - p + p\{1 - \exp(-\beta x)\}^{\alpha}},$$

for x > 0, $\alpha > 0$, $\beta > 0$ and 0 . (4 marks)

(iii) The exponential-negative binomial distribution given by the cdf

$$F(x) = 1 - \frac{(1-p)^k \exp(-k\beta x)}{[1-p\exp(-\beta x)]^k},$$

for x > 0, k > 0, $0 and <math>\beta > 0$. (4 marks)

(iv) The degenerate distribution given by the pmf

$$p(x) = \begin{cases} 1, & \text{if } x = x_0, \\ 0, & \text{if } x \neq x_0. \end{cases}$$

(4 marks)

(v) The Poisson distribution given by the pmf

$$p(x) = \frac{\lambda^x \exp(-\lambda)}{x!},$$

for $\lambda > 0$ and $x = 0, 1, \dots$ (4 marks)

- **6.** If X is an absolutely continuous random variable with cdf $F(\cdot)$, then define $\operatorname{VaR}_p(X)$ and $\operatorname{ES}_p(X)$ explicitly.
 - If X is a uniform [a, b] random variable derive explicit expressions for $VaR_p(X)$ and $ES_p(X)$.

 (3 marks)

Suppose X_1, X_2, \dots, X_n is a random sample from uniform [a, b], where both a and b are unknown.

- (i) Write down the joint likelihood function of a and b. (1 marks)
- (ii) Show that the maximum likelihood estimator (mle) of a is $\hat{a} = \min(X_1, X_2, \dots, X_n)$. (1 marks)
- (iii) Show that the mle of b is $\hat{b} = \max(X_1, X_2, \dots, X_n)$. (1 marks)
- (iv) Deduce the mles of $VaR_p(X)$ and $ES_p(X)$. (2 marks)
- (v) Show that the mle of $VaR_p(X)$ is biased. (5 marks)
- (vi) Show that the mle of $\mathrm{ES}_p(X)$ is also biased. (4 marks)

7. Suppose a portfolio is made up of α assets where α is unknown. Suppose also that the price of each asset, say X_i , $i=1,2,\ldots,\alpha$, is an exponential random variable with an unknown parameter λ . Then $Y=\max{(X_1,\ldots,X_\alpha)}$ will be the price of the most expensive asset.

- (i) Find the cdf of Y. (4 marks)
- (ii) Find the pdf of Y. (2 marks)
- (iii) Find the nth moment of Y. (4 marks)
- (iv) Find the value at risk of Y. (2 marks)
- (v) Find the expected shortfall of Y. (4 marks)
- (vi) If y_1, y_2, \ldots, y_n is a random sample on Y derive the equations for the maximum likelihood estimates of α and λ . (4 marks)

8. Let X_i denote the stock price of a product at day i. Suppose X_i are independent exponential random variables with parameters λ_i . Find explicit expressions for the following:

(a)
$$\Pr(X_1 < X_2)$$
. (4 marks)

(b)
$$\Pr(X_1 < X_2 < X_3)$$
. (4 marks)

(c)
$$\Pr(X_1 < X_2 < X_3 < X_4)$$
. (4 marks)

You must show full working for each probability.

Now deduce the expression for the general probability $\Pr(X_1 < X_2 < \dots < X_k)$. (4 marks)

Calculate the values of $\Pr(X_1 < X_2)$, $\Pr(X_1 < X_2 < X_3)$, $\Pr(X_1 < X_2 < X_3 < X_4)$, and $\Pr(X_1 < X_2 < \dots < X_k)$ for the particular case $\lambda_i = \lambda$ for all i. (4 marks)