
MATH10282 Introduction to Statistics

Mark scheme for main exam

2015/16

A1. (a) (i) First identify any outliers. xi is classified as an outlier if

xi ≥ Q̂(0.75) + 1.5× IQR or

xi ≤ Q̂(0.25)− 1.5× IQR

The IQR is 42.4075− 7.81 = 34.5975. The thresholds are

42.4075 + 1.5× 34.5975 = 94.30375

7.81− 1.5× 34.5975 = −44.08625 ,

Thus there are 2 outliers: 113.32, 111.62. Thus the upper adjacent value is therefore
92.17, and the lower adjacent value is 1.49. (3 marks)

The box plot is as follows: (3 marks)
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(ii) The distribution is skewed to the right, indicated by the fact that the upper whisker is
longer than the lower whisker. (1 mark)

(iii) A normal distribution is unlikely to be a good fit. Applying a log transformation may
enable a normal model to be fitted. (1 mark)

(b) The bin containing x = 9 is (0, 20). The height of the histogram is given by

Hist(x) = νk/(nh) ,

where νk is the number of data points in the corresponding bin. Here νk = 10 and so
Hist(9) = 10/(20× 20) = 0.025.

(2 marks)

ALL BOOKWORK. Boxplots/histograms covered in Chapter 2. Goodness of fit/transformations
in Chapter 3. Fairly similar to Example Sheet 4, Qs 2,3,5.

TOTAL FOR A1, 10 MARKS
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A2. (i) The likelihood is the joint probability of the data, considered as a function of the parameter
λ. By independence,

L(λ) = P(X1, . . . , Xn|λ) =

n∏
i=1

e−λλXi

Xi!
=
e−nλλ

∑n
i=1Xi∏n

i=1Xi!
.

(1 mark) BOOKWORK. This example is given in lectures, Chapter 6.

(ii) The log-likelihood is

l(λ) = −nλ+

(
n∑
i=1

Xi

)
log λ− log

(
n∏
i=1

Xi!

)
.

Solving dl(λ)
dλ = 0, we obtain

dl

dλ

∣∣∣∣
λ=λ̂

= −n+

∑n
i=1Xi

λ̂
= 0 , which implies that λ̂ = X̄ .

Checking the second derivatives, we see that

d2l

dλ2

∣∣∣∣
λ=λ̂

=
−
∑n
i=1Xi

λ̂2
=
−n
X̄

< 0 .

Therefore, λ̂ = X̄ is indeed the maximum likelihood estimator of λ.

(4 marks) BOOKWORK. This example is given in the lectures, Chapter 6.

(iii) Note that E(λ̂) = E(X̄) = 1
n

∑n
i=1 E(Xi) = E(X1) = λ. Hence bias(λ̂) = E(λ̂)− λ = 0. Also,

Var(X̄) = 1
n2

∑n
i=1 Var(Xi), by independence. However, Var(Xi) = λ and so Var λ̂ = λ/n.

(2 marks) UNSEEN example of variance and bias, but similar to those in Chapter 5.

(iv) For large n, X̄ has approximately a N(λ, λ/n) distribution, by the Central Limit Theorem.

P(9.9 < X̄ < 10.1) = P

(
9.9− 10√

10/100
<
X̄ − λ√
λ/n

<
10.1− 10√

10/100

)
= P(−0.316 < Z < 0.316)

≈ Φ(0.32)− Φ(−0.32)

= 0.6255− (1− 0.6255) = 0.25 .

(3 marks) UNSEEN example of normal approximation, though similar uses of the CLT are
numerous in Chapters 3,7,9.

TOTAL FOR A2, 10 MARKS
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A3. (i) An appropriate unbiased estimator is

σ̂2 =
(n− 1)S2

1 + (m− 1)S2
2

n+m− 2

A suitably scaled version of σ̂2 has a χ2 distribution, namely:

(n+m− 2)σ̂2

σ2
∼ χ2(n+m− 2) .

(1 mark for correct estimator; 1 mark for correct distributional statement including correct
scaling and d.f.)

(ii) Under H0,

X̄1 − X̄2 ∼ N
(

0,
σ2

n
+
σ2

m

)
,

independently of (n+m− 2)σ̂2/σ2 ∼ χ2(n+m− 2). Thus, the test statistic

T =
X̄1 − X̄2

σ̂
√

1
n + 1

m

∼ t(n+m− 2) .

(1 mark for correct test statistic, 1 mark for correct distribution including d.f.)

(iii) For a two-tailed test with significance level 100α%, we reject if

T ≥ tα/2 or T ≤ −tα/2 ,

where tα/2 is the upper α/2 point of a t(n+m− 2) distribution, i.e. P(T > tα/2) = α/2.

(1 mark for a symmetric test; 1 mark for correct critical values, must state number of d.f.)

(iv) In this case, σ̂2 = 2.042/2 + 1.922/2 = 3.924. Thus,

t =
46.0− 48.1

√
3.924

√
1
10 + 1

10

= −2.37 .

For α = 0.05, we have tα/2 = 2.101 on 18 d.f., and for α = 0.01 we have tα/2 = 2.878 on 18
d.f.. Therefore we reject at the 5% significance level but not at the 1% significance level.

(1 mark for value of σ̂2; 1 mark for correct value of test statistic; 1 mark for correct critical
values; 1 mark for correct interpretation)

ALL BOOKWORK. This test is illustrated in the course notes, Chapter 10 on two sample
hypothesis tests, where a numerical example is given.

TOTAL FOR A3, 10 MARKS
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A4. (i) LetX1, . . . , Xn ∼ Bi(n, p) and let p̂ be the sample proportion of successes, i.e. p̂ = (1/n)
∑n
i=1Xi.

Asymptotic results show that

p̂− p√
p̂(1− p̂)/n

∼ N(0, 1) approximately for large n .

This is the standardized version of p̂ with the standard deviation in the denominator replaced
by a sample estimate.

Thus [
p̂− zα/2

√
p̂(1− p̂)/n , p̂+ zα/2

√
p̂(1− p̂)/n

]
is an approximate 100(1−α)% confidence interval for p (for large n), where zα/2 is the upper
α/2 point of a N(0, 1) distribution, i.e. P(Z > zα/2) = α/2.

• 1 mark for correct approximate pivot

• 1 mark for a confidence interval of the correct confidence level - still award if α/2 not
specified explicitly, but not if incorrect

• 1 mark if p̂ and zα/2 defined

(ii) In this case p̂ = 0.3 and so the 95% confidence interval is

(0.3− 1.96
√

0.3× 0.7/1000, 0.3 + 1.96×
√

0.3× 0.7/1000) = (0.272, 0.328) .

(1 mark for correct z-value; 1 mark for correct interval)

PARTS (i) AND (ii) - BOOKWORK. This asymptotic method of constructing confidence
intervals for a binary proportion is covered in lectures (Chapter 7 Part I). Theory and a nu-
merical example were given.

(iii) Let X ∼ Bi(n, p) be the number of individuals in the sample supporting Labour. By the
normal approximation to the binomial,

X ∼ N [np, np(1− p)] approximately ,

Here, np = 500× 0.28 = 140 and np(1− p) = 140× (1− 0.28) = 100.8.

This approximation is valid provided n ≥ 9 max{p/(1 − p), (1 − p)/p} = 23.1. Here n = 500
and so the normal approximation is valid.

Thus,

P(X ≥ 150) = P

(
X − 140√

100.8
≥ 150− 140√

100.8

)
≈ P

(
Z ≥ 149.5− 140√

100.8

)
using continuity correction

= 1− Φ(0.9462) = 0.1720

[alternatively 1− Φ(0.95) = 0.17 , if rounding ]

• 2 marks for approximating with the correct normal distribution

• 1 mark for correct check of validity

• 1 mark for correct normal probability calculations

• 1 mark for correct use of continuity correction

BOOKWORK. The normal approximation to the binomial, including continuity correction
was covered in Chapter 4 of the lecture notes. A similar example for an opinion poll was given
(with different numbers).

TOTAL MARKS FOR A4, 10 marks
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B5. (a) (i)

E(S2) =
1

(n− 1)
E

[
n∑
i=1

(Xi − X̄)2

]

=
1

(n− 1)
E

[
n∑
i=1

[(Xi − µ)− (X̄ − µ)]2

]

=
1

(n− 1)
E

[
n∑
i=1

[(Xi − µ)2 − 2(Xi − µ)(X̄ − µ) + (X̄ − µ)2]

]

=
1

(n− 1)
E

[
n∑
i=1

(Xi − µ)2 − 2n(X̄ − µ)(X̄ − µ) + n(X̄ − µ)2

]

=
1

(n− 1)

[
n∑
i=1

E
[
(Xi − µ)2

]
− 2nE[(X̄ − µ)2] + nE[(X̄ − µ)2]

]

=
1

(n− 1)

[
nσ2 − 2n

σ2

n
+ n

σ2

n

]
since E[(X̄ − µ)2] = Var(X̄) =

σ2

n

=
1

(n− 1)

[
(n− 1)σ2

]
= σ2 .

(7 marks) BOOKWORK - this derivation appears in Chapter 4.

(ii) (n− 1)S2/σ2 ∼ χ2(n− 1). (1 mark) BOOKWORK - Chapter 4

(b) (i) Firstly, the point estimate is as follows:

s2 =
1

n− 1

(
n∑
i=1

x2i − nx̄2
)

=
1

9

(
1474.5− 10× 11.322

)
= 21.453

(2 marks) BOOKWORK - formula given in Chapter 2

In general, a 100(1− α)% confidence interval for σ2 is given by[
(n− 1)S2

χ2
α/2

,
(n− 1)S2

χ2
1−α/2

]
,

where χ2
α is the upper α point of a χ2(n − 1) distribution. In this case, α = 0.01,

χ2
0.005 = 23.59, χ2

0.995 = 1.735, and so the confidence interval is[
9× 21.453

23.59
,

9× 21.453

1.735

]
= [8.184, 111.287] .

(3 marks) BOOKWORK - similar to example in Chapter 7, Part I

(ii) In general, with σ2 unknown, a 100(1− α)% confidence interval is given by[
X̄ −

tα/2s√
n
, X̄ +

tα/2s√
n

]
,
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where tα is the upper α point of a t(n − 1) distribution. In this case, α = 0.01 and
t0.005 = 3.250. Thus the 99% confidence interval is

(11.32− 3.250×
√

21.453/10 , 11.32 + 3.250×
√

21.453/10) = (6.56, 16.08) .

(4 marks) BOOKWORK - similar to example in Chapter 7, Part I

(iii) From the data the fitted model isXi ∼ N(11.32, 21.453), from which X̄ ∼ N(11.32, 2.1453).
Using this fitted model, we estimate the probability

P(X̄ > 11.0) = P

(
X̄ − 11.32√

2.1453
>

11− 11.32√
2.1453

)
= P(Z > −0.218)

≈ Φ(0.22) = 0.59

(3 marks) BOOKWORK. Similar example given in Chapter 4.

TOTAL FOR B5, 20 MARKS
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B6. (i)

p0 = P(N(6, 22) ≤ 7) = Φ

(
7− 6

2

)
= Φ(1/2) = 0.6915

(2 marks for showing p0 = 1/2; 1 mark for numerical value)

UNSEEN - the calculation is bookwork similar to examples in Chapter 3, but the application
in this context is unfamiliar.

(ii) Let p̂ denote the sample proportion of patients who recover within 7 days. We use a suitably
scaled version of p̂, namely

Z =
p̂− p0√

p0(1− p0)/n
.

(2 marks) BOOKWORK. This test has been seen in Chapter 9 of the lectures with an example.

(iii) Under the null hypothesis, the distribution of this test statistic is approximately N(0, 1) for
large n. This approximation is reasonably accurate since 60 = n ≥ 9 max{p0/(1 − p0), (1 −
p0)/p0} = 20.17.

(1 mark for correct null distribution; 1 mark for checking accuracy of normal approximation)

BOOKWORK. Chapter 9.

(iv) The significance level is α if P(reject H0 |H0) = α. This is achieved by the one-tailed rejection
region

Z ≥ zα
where zα is the upper α point of the N(0, 1) distribution, i.e. 1 − Φ(zα) = α. For α = 0.05,
we have zα = 1.645. Thus we reject H0 if

p̂ ≥ p0 + 1.645
√
p0(1− p0)/n = 0.7896 .

If 52 out of 60 patients were to recover, then p̂ would be equal to 52/60 = 0.8667 and so H0

would be rejected.

(4 marks).

BOOKWORK. Chapter 9.

(v) Note that here, since Xi ∼ N(5, 22) the probability that a treated patient recovers within 7
days is

p = P(Xi ≤ 7) = Φ

(
7− 5

2

)
= 0.8413.

(3 marks)

The probability of rejecting the null hypothesis under this test is

P (p̂ ≥ 0.7896) = P

(
p̂− p√

p(1− p)/n
≥ 0.7896− 0.8413√

0.8413× 0.1587/60

)
≈ 1− Φ (−1.10) = 0.86 (to 2 d.p.) ,

since under the alternative hypothesis p̂−p√
p(1−p)/n

∼ N(0, 1) approximately for large n.

(6 marks)

UNSEEN, but fairly similar to Example Sheet 10, Q7.
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B7. (a) (i) E(µ̂) = µ and so bias(µ̂) = 0. Var(µ̂) = σ2/n. (1 mark for bias, 1 mark for variance)

BOOKWORK - example given in Chapter 5.

(ii) For the bias, note that

E(µ̃) = E

(
1

2n
(X1 + . . .+Xn)

)
=

1

2n

n∑
i=1

E(Xi) =
nµ

2n
= µ/2.

and so bias(µ̃) = µ/2− µ = −µ/2. For the variance

Var(µ̃) = Var

(
1

2n

n∑
i=1

Xi

)
=

1

4n2

n∑
i=1

Var(Xi) , by independence.

=
σ2

4n
.

(2 marks for bias, 2 marks for variance)

UNSEEN example - technique is in Chapter 5.

(b) (i)

P(−ε < µ̂− µ < ε) = P

(
− ε

σ/
√
n
<
µ̂− µ
σ/
√
n
<

ε

σ/
√
n

)
= P

(
−0.1

√
n < Z < 0.1

√
n
)

= Φ
(
0.1
√
n
)
− Φ

(
−0.1

√
n
)

= 2Φ(0.1
√
n)− 1 , by symmetry of N(0, 1)

(4 marks)

(ii)

P (µ− ε < µ̃ < µ+ ε) = P

(
µ/2− ε
σ/
√

4n
<
µ̃− µ/2
σ/
√

4n
<
µ/2 + ε

σ/
√

4n

)
= P

(
0 < Z <

√
4n(0.1σ + 0.1σ)

σ

)
= Φ(0.4

√
n)− Φ(0) = Φ(0.4

√
n)− 0.5.

(5 marks) UNSEEN example. Techniques for calculations are in Chapter 4.

(iii) p1(10) = 2×Φ(0.316)− 1 = 0.25 to 2 d.p., and p2(10) = Φ(1.265)− 0.5 = 0.40 to 2 d.p..
Thus, µ̃ has the greatest probability of being within ε of µ when n = 10. (3 marks)

(iv) For small n (< 45), p2(n) ≥ p1(n) and so the experiment has a higher probability of
success if µ̃ is used. Thus, for small n, µ̃ is preferable. For large n (≥ 45), p1(n) ≥ p2(n)
and so the experiment has a higher probability of success if µ̂ is used. Thus for large n,
µ̂ is preferable.

However, the experimenter does not know which estimator is best, as they do not know
the values of µ and σ. (1 mark for each point up to a max of 2 marks)

UNSEEN. The idea that there are certain circumstances under which biased estimators
may be preferred was alluded to in lectures (Chapter 5), but not discussed in detail.

TOTAL FOR B7, 20 MARKS
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