The Extremal types theorem

Lemma 1. If G is maz-stable, then there exist real-valued functions a(s) > 0 and
b(s), defined for s > 0, such that

G"(als)z + b(s)) = G(a).

Proof. Since G is max-stable, there exist a,, > 0 and b, such that
G*(anz +by) = G(z) = G(x).

Thus G (A|ns)® + bjps)) = G(x), and we deduce that

n n d s
G (a'Lnst + bLnsJ) == eXP{w |_7’LSJ log G(amst + bL"SJ)} — Gl/ (3?)

Since G/* is non-degenerate, the lemma from lectures gives that there exist a(s) > 0
and b(s) such that G(a(s)x + b(s)) = GY/*(z), so G*(a(s)x + b(s)) = G(x). O

Theorem 2 (Extremal types theorem). Let (X,,) be independent with distribution
function F' and let X,y = maxi<j<, X(;). If there exist constants a, > 0 and b, and
a non-degenerate distribution function G such that

P(m < g;) < Gla),

Qp
then G must be of the same type as one of the three extreme value classes below:

0 if x <0

exp(—) ifz >0 for some ac > 0

Type I (Fréchet): G .(x) = {

Type II (Negative Weibull): Gy o(z) = { ixp{—(—x) } Zpi i 8 for some o > 0

Type III (Gumbel): G3(x) = exp(—e™ ") for x € R.

Conwversely, any distribution function of the same type as one of these extreme value
classes can appear as such a limit.

Proof. 1t suffices to show that the class of max-stable distribution functions coincides
with the set of distribution functions of the same type as the three given extreme value



classes. To check that the given distribution functions are max-stable, it suffices to
observe that if a, = n*/*, b, = 0, then

0 if £ <0

exp{—n(a,z +b,)"*} ifz>0 — Gra(7).

GYo(anT +by) = {

Similarly, if a,, = n~"*, b, = 0, then

Gg,a(anx +by,)

exp{—n(—a,z —b,)*} ifx <0
{ 1 ifr>0 — C2al@)

Finally, if a, = 1, b, = logn, then
Gs(anx + by) = exp{ —ne” =)} — exp(—e™).

Conversely, suppose G is max-stable, so by Lemma 1 we can write G*(a(s)z +b(s)) =
G(z). It follows that for 0 < G(x) < 1,

—log{—log G(a(s)x + b(s))} —log s = log{—log G(z)}.

The max-stability property with n = 2 gives that G*(ax + b) = G(x) for some
a > 0 and b € R, which means G cannot have a jump at z_ = sup{z : G(z) = 0}
or zy = inf{zx : G(x) = 1} if these are finite. Thus the non-decreasing function
Y(x) = —log{—log G(x)} is such that

lim ¢(x) = —o0, lim ¥(z) = oco.

T—T — T—T 4

Therefore 1 has an inverse function U(y) = inf{z € R : ¢(z) > y}, defined for all
y € R, and since ¥ (a(s)z + b(s)) — logs = ¢(x), it follows that

U(y) = inf{z : Y(a(s)z + b(s)) — logs > y}
= %{inf{x’ cp(a’) >y +logs}t —b(s)}
Uy +logs) — b(s).

a(s)

Subtracting this equation for y = 0,

Uy +logs) — U(log s)
a(s)

and writing z = log s, a(z) = a(e?) and U(y) = U(y) — U(0),

Uy +2) = U(z) = Uly)a(z) (1)
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for all y, z € R. Interchanging y and z and subtracting,

Uy){1 - a(2)} = U(=){1 - a(y)}- (2)

Two cases are possible:

i) a(20) # 1 for some 2y > 0. Then a(z) # 1 for all z > 0, because otherwise there
exists z > 0 such that U(z) = 0. But this would mean that U(y + z) = U(y) for all
y, by (1), s0 U(y + 2) = U(y) for all y € R, a contradiction. Fixing z > 0, writing

c=U(z)/{1—a(z)} and noting from (2) that this is constant, we have from (1) that
c(l—ay+2)) —c(l —a(z)) = (1 = afy))a(z),
so that
a(y + z) = ay)a(2)
for all y € R. But @ is monotone, since U(y) = ¢{1 — a(y)} from (2), and the only

non-zero solutions that are monotone and not identically equal to 1 are a(y) = eV
for some p # 0 (check). But then

YY) =Uly) =v+c(l—e™)

where v = U(0). Since 1! is non-decreasing, we must have ¢ < 0 if p > 0 and ¢ > 0
if p < 0, so in fact ¢»~! is continuous and strictly increasing. Hence

z=19 (@) =v+c(l — e D) =v 4 [l — {-logG(x)} 7],

G(z) = exp{—(l _I- V>_1/p}

c
for 0 < G(x) < 1. From the continuity of G at any finite endpoints, we see that G is
of Type I, with o = 1/p, if p > 0, and of Type II, with a = —1/p, if p < 0.

SO

ii) a(z) =1 for all z > 0. But then, from (1),
Uy +2) = Uly) + U(2),

for which the only non-constant non-decreasing solutions are U (y) = py for some
p > 0. Thus

v y) =Uly) =v+py.
where v = U(0), and since this is continuous and strictly increasing,

x =97 (Y(r) = pY(x) + v = —plog{—log G(z)} + v.

Hence G(x) = exp{—e~@)/P} for 0 < G(z) < 1, and since G has no jump at any
finite endpoint, G is of Type III. O



