MATH48181/68181: EXTREME VALUES FIRST SEMESTER ANSWERS TO IN CLASS TEST

ANSWER TO QUESTION 1 If there are norming constants $a_{n}>0, b_{n}$ and a nondegenerate G such that the cumulative distribution function of a normalized version of M_{n} converges to G, i.e.

$$
\begin{equation*}
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=F^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x) \tag{1}
\end{equation*}
$$

as $n \rightarrow \infty$ then G must be of the same type as (cumulative distribution functions G and G^{*} are of the same type if $G^{*}(x)=G(a x+b)$ for some $a>0, b$ and all $\left.x\right)$ as one of the following three classes:

$$
\begin{aligned}
I: & \Lambda(x)=\exp \{-\exp (-x)\}, \\
I I: & \quad \Phi_{\alpha}(x)= \begin{cases}0 & \text { if } x<0 \\
\exp \left\{-x^{-\alpha}\right\} & \text { if } x \geq 0\end{cases} \\
& \text { for some } \alpha>0 ; \\
I I I: & \Psi_{\alpha}(x)= \begin{cases}\exp \left\{-(-x)^{\alpha}\right\} & \text { if } x<0 \\
1 & \text { if } x \geq 0\end{cases} \\
& \text { for some } \alpha>0 .
\end{aligned}
$$

The necessary and sufficient conditions for the three extreme value distributions are:

$$
\begin{aligned}
I & : \exists \gamma(t)>0 \text { s.t. } \lim _{t \uparrow w(F)} \frac{1-F(t+x \gamma(t))}{1-F(t)}=\exp (-x), \quad x>0, \\
I I & : \quad w(F)=\infty \text { and } \lim _{t \uparrow \infty} \frac{1-F(t x)}{1-F(t)}=x^{-\alpha}, \quad x>0, \\
I I I & : \quad w(F)<\infty \text { and } \lim _{t \downarrow 0} \frac{1-F(w(F)-t x)}{1-F(w(F)-t)}=x^{\alpha}, \quad x>0 .
\end{aligned}
$$

Firstly, suppose that G belongs to the max domain of attraction of the Gumbel extreme value distribution. Then, there must exist a strictly positive function, say $h(t)$, such that

$$
\lim _{t \rightarrow w(G)} \frac{1-G(t+x h(t))}{1-G(t)}=\exp (-x)
$$

for every $x>0$. But,

$$
\lim _{t \rightarrow w(F)} \frac{1-F(t+x h(t))}{1-F(t)}=\lim _{t \rightarrow w(F)} \frac{[1-G(t+x h(t))]^{G(t+x h(t))}}{[1-G(t)]^{G(t)}}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow w(G)} \frac{[1-G(t+x h(t))]^{G(t+x h(t))}}{[1-G(t)]^{G(t)}} \\
& =\lim _{t \rightarrow w(G)} \frac{1-G(t+x h(t))}{1-G(t)} \\
& =\exp (-x)
\end{aligned}
$$

for every $x>0$. So, it follows that F also belongs to the max domain of attraction of the Gumbel extreme value distribution with

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\}=\exp \{-\exp (-x)\}
$$

for some suitable norming constants $a_{n}>0$ and b_{n}.

Secondly, suppose that G belongs to the max domain of attraction of the Fréchet extreme value distribution. Then, there must exist a $\beta<0$ such that

$$
\lim _{t \rightarrow \infty} \frac{1-G(t x)}{1-G(t)}=x^{\beta}
$$

for every $x>0$. But,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{1-F(t x)}{1-F(t)} & =\lim _{t \rightarrow \infty} \frac{[1-G(t x)]^{G(t x)}}{[1-G(t)]^{G(t)}} \\
& =\lim _{t \rightarrow \infty} \frac{1-G(t x)}{1-G(t)} \\
& =x^{\beta}
\end{aligned}
$$

for every $x>0$. So, it follows that F also belongs to the max domain of attraction of the Fréchet extreme value distribution with

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\}=\exp \left(-x^{\beta}\right)
$$

for some suitable norming constants $a_{n}>0$ and b_{n}.

Thirdly, suppose that G belongs to the max domain of attraction of the Weibull extreme value distribution. Then, there must exist a $\alpha>0$ such that

$$
\lim _{t \rightarrow 0} \frac{1-G(w(G)-t x)}{1-G(w(G)-t)}=x^{\alpha}
$$

for every $x>0$. But,

$$
\lim _{t \rightarrow 0} \frac{1-F(w(F)-t x)}{1-F(w(F)-t)}=\lim _{t \rightarrow 0} \frac{[1-G(w(F)-t x)]^{G(w(F)-t x)}}{[1-G(w(F)-t)]^{G(w(F)-t)}}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{[1-G(w(G)-t x)]^{G(w(G)-t x)}}{[1-G(w(G)-t)]^{G(w(G)-t)}} \\
& =\lim _{t \rightarrow 0} \frac{1-G(w(G)-t x)}{1-G(w(G)-t)} \\
& =x^{\alpha}
\end{aligned}
$$

for every $x>0$. So, it follows that F also belongs to the max domain of attraction of the Weibull extreme value distribution with

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\}=\exp \left\{-(-x)^{\alpha}\right\}
$$

for some suitable norming constants $a_{n}>0$ and b_{n}.

