
Extremal Limit Laws for Discrete Random Variables

If X1,X2, . . . ,Xn are independent and identically distributed discrete random variables and
Mn = max(X1, . . . ,Xn) we examine the limiting behavior of (Mn− b(n))/a(n) as n → ∞. It is well
known that for discrete distributions such as Poisson and geometric the limiting distribution is not
non-degenerate. However, by tuning the parameters of the discrete distribution to vary as n → ∞,
it is possible to obtain non-degenerate limits for (Mn − b(n))/a(n). We consider five families of
discrete distributions and show how this can be done.

1 Introduction

Let X be a discrete random variable taking the non-negative integers with probability mass function
(pmf) Pr(X = k) = pk and cumulative distribution function (cdf) F . Let X1,X2, . . . ,Xn be
independent and identically distributed (iid) copies of X and let us denote the maximum by Mn =
max(X1, . . . ,Xn). Consider the limiting distribution of (Mn − b(n))/a(n) as n → ∞ for some
real numbers a(n) > 0 and b(n). It is known for distributions such as Poisson and geometric
the limiting distribution is not non-degenerate. This fact follows by checking the condition in the
following result due to Galambos (1987).

Lemma 1 (Corollary 2.4.1, Galambos, 1987) With the notation set as above, if

Pr(X = k)

1− F (k − 1)
= pk

/

∞
∑

j=k

pj (1)

fails to converge to 0 as k → ∞, then there are no sequences a(n) > 0 and b(n) such that (Mn −
b(n))/a(n) would have a non-degenerate limiting distribution.

For the Poisson distribution with

pk =
λk exp(−λ)

k!
, k = 0, 1, . . . ,

(1) takes the form

λk/k!
∑∞

j=k λ
j/j!

=
1

1 +
∑∞

j=k+1 k!λ
j−k/j!

.

The term in the denominator can be rewritten as

∞
∑

j=1

λj

(k + 1)(k + 2) · · · (k + j)
≤

∞
∑

j=1

(

λ

k

)j

=
λ/k

1− λ/k

(when k > λ) and the bound tends to 0 as k → ∞ and so it follows that pk/(1−F (k−1)) → 1. Hence
by the lemma above there can be no non-degenerate limit for (Mn−b(n))/a(n). However, in a recent
development Anderson et al. (1997) showed that a non-degenerate limit for (Mn − b(n))/a(n) can
be obtained if λ = λ(n) is allowed to vary with respect to n in a suitable manner. More specifically,
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Theorem 1 (Proposition 1, Anderson et al., 1997) Let X1,X2, . . . ,Xn be iid Poisson random
variables with parameter λ = λ(n). If λ(n) grows with n according to

log n = o
(

λ1/3(n)
)

then there are sequences

a(n) =
1√

2 log n
, b(n) =

√

2 log n− log log n+ log 4π

2
√
2 log n

such that

Pr

{

Mn ≤
√

λ(n)a(n)x+
√

λ(n)b(n) + λ(n)

}

→ exp {− exp(−x)}

as n → ∞.

Actually, the result of this theorem had been proved much earlier by the distinguished Russian
mathematician Kolchin (1969), see also Kolchin et al. (1978). It is unfortunate that Anderson
et al. make no mention of this development. In anycase, the aim here is to show how the above
development could be emulated for other well known discrete distributions, including the Uniform,
Binomial, Geometric, Negative Binomial and the generalized Power Series. The practical motivation
for this work comes from the need to model the extremal behavior of processes such as the counts
of gamma radiation emission over a fixed period (which can be assumed to follow the Poisson
distribution – see Anderson et al. (1997)) or the number of failed components at a nuclear site at
any given time (which can be assumed to follow the Binomial distribution – see Kvam (1998)) or
the counts of new enhancing lesions in untreated multiple sclerosis patients (which can be assumed
to follow the Negative Binomial distribution – see Sormani et al. (1999)).

Propositions 2, 3 and 4 in Anderson et al. (1997) generalize Theorem 1 above under the main
assumption that each Xi can be represented as a sum, scaled to zero mean and unit variance,
of k(n) iid random variables where k(n) → ∞ in a certain manner. For the four distributions
considered, this assumption is valid for the binomial distribution but not for any of the other three
(Uniform, Geometric and the Negative Binomial); hence, we also have a theoretical motivation for
our work. Although our result for the binomial distribution (Theorem 3) can be derived from the
general results of Anderson et al. (1997), we prove it directly using the theorem for large deviations
for the binomial distribution.

2 Results

In this section we derive non-degenerate limit laws for the Uniform, Binomial, Geometric, Negative
Binomial and the generalized Power Series distributions (by letting their parameters vary as n →
∞). We also present plots that provide a numerical assessment of the corresponding rates of
convergence. The proofs of all the theorems in this section are presented in Section 3.

The pmf of the uniform distribution is:

pk =
1

N
, k = 1, 2, . . . , N
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and the corresponding cdf is:

F (x) =
[x]

N
, x ≥ 1, (2)

where [x] is the greatest integer less or equal to x. Since

Pr(X = k)

1− F (k − 1)
=

1/N

1− (k − 1)/N
=

1

N − k + 1
→ 1

as k → N , it follows by Lemma 1 that there can be no sequences a(n) > 0 and b(n) such that
(Mn − b(n))/a(n) has a non-degenerate limiting distribution. The following theorem establishes a
non-degenerate limit for (Mn − b(n))/a(n) by letting N = N(n) → ∞ in a certain manner.

Theorem 2 Let X1,X2, . . . ,Xn be iid Uniform random variables with parameter N = N(n). If
N(n) grows with n according to

n = o (N(n))

then there are sequences

a(n) = α
N(n)

n
, b(n) = N(n)− β

N(n)

n
(3)

(where α > 0 and β ≥ 0) such that

Pr {Mn ≤ a(n)x+ b(n)} → exp (αx− β) (4)

as n → ∞.

Figure 1 provides an assessment of the rate of convergence in (4) by comparing the distribution
function of (Mn−b(n))/a(n) (the stair-case line) with its limiting distribution (the continuous line),
for n = 10, 100, 1, 000 and 10, 000.
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Figure 1: Distribution function of (Mn− b(n))/a(n) for iid Uniform random variables with N(n) =
n2, α = 1 and β = 0. Log vertical scale used.

The pmf of the binomial distribution is:

pk =

(

N

k

)

pk(1− p)N−k, k = 0, 1, . . . , N.

It is well known (see, for example, equation (62) in Johnson and Kotz (1969)) that

Pr(X ≥ k)
(N
k

)

pk(1− p)N−k
≤ (1− p)(k + 1)

(k + 1)− (N + 1)p
.

Using this inequality, we have

pk
/

∞
∑

j=k

pj ≥ (k + 1)− (N + 1)p

(1− p)(k + 1)

and the lower bound approaches 1 as k → N . So by Lemma 1 there can be no sequences a(n) > 0
and b(n) such that (Mn − b(n))/a(n) has a non-degenerate limiting distribution. The following
theorem establishes a non-degenerate limit for (Mn − b(n))/a(n) by letting N = N(n) → ∞ but
keeping the parameter p fixed.

Theorem 3 Let X1,X2, . . . ,Xn be iid Binomial random variables with parameter N = N(n) → ∞
but parameter p fixed. If N(n) grows with n according to

(log n)3 = o (N(n))

then there are sequences

a(n) =
1√

2 log n
, b(n) =

√

2 log n− log log n+ log 4π

2
√
2 log n

(5)

such that

Pr

{

Mn ≤
√

p(1− p)N(n)a(n)x+ pN(n) +
√

p(1− p)N(n)b(n)

}

→ exp {− exp(−x)}

(6)

as n → ∞.

Figure 2 provides an assessment of the rate of convergence in (6) by comparing the distribution
function of (Mn−b(n))/a(n) (the stair-case line) with its limiting distribution (the continuous line),
for n = 10, 100, 1, 000 and 10, 000.
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Figure 2: Distribution function of (Mn−b(n))/a(n) for iid Binomial random variables with N(n) =
n2 and p = 1/2. Double log vertical scale used.

The pmf of the geometric distribution is:

pk = p(1− p)k−1, k = 1, 2, . . .

and the corresponding cdf is

F (x) = 1− (1− p)[x], x ≥ 1. (7)

Since

pk
1− F (k − 1)

=
p(1− p)k−1

(1− p)k−1
= p,

it follows by Lemma 1 that there can be no sequences a(n) > 0 and b(n) such that (Mn−b(n))/a(n)
has a non-degenerate limiting distribution. The following theorem establishes a non-degenerate
limit for (Mn − b(n))/a(n) by letting p = p(n) → 0.

Theorem 4 Let X1,X2, . . . ,Xn be iid Geometric random variables with parameter p = p(n). If
p(n) → 0 as n → ∞ then there are sequences

a(n) =
α

p(n)
, b(n) =

log (n/β)

p(n)
(8)

(where α > 0 and β > 0) such that

Pr {Mn ≤ a(n)x+ b(n)} → exp {−β exp (−αx)} (9)

as n → ∞.
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Figure 3 provides an assessment of the rate of convergence in (9) by comparing the distribution
function of (Mn−b(n))/a(n) (the stair-case line) with its limiting distribution (the continuous line),
for n = 10, 100, 1, 000 and 10, 000.
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Figure 3: Distribution function of (Mn − b(n))/a(n) for iid Geometric random variables with
p(n) = 1/n, α = 1 and β = 1. Double log vertical scale used.

The pmf of the negative binomial distribution is:

pk =

(

k − 1

r − 1

)

pr(1− p)k−r, k = r, r + 1, . . . .

It is well known that if X is a negative binomial random variable with parameters r and p and if
Y is a binomial random variable with parameters N and p then Pr(X > N) = Pr(Y < r). Using
this result, we have for x ≥ r

F (x) = Pr (X ≤ [x])

= 1− Pr (X > [x])

= 1− Pr(Y < r)

= 1−
r−1
∑

k=0

(

[x]

k

)

pk(1− p)[x]−k

= 1− pr−1(1− p)[x]−r+1
r−1
∑

l=0

(

[x]

r − l − 1

)

(

1− p

p

)l

. (10)
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It is easily seen that

pk
1− F (k − 1)

=

(k−1
r−1

)

pr(1− p)k−r

pr−1(1− p)k−r
∑r−1

l=0

( k−1
r−l−1

)

(

1−p
p

)l
→ p

as k → ∞. So by Lemma 1 there can be no sequences a(n) > 0 and b(n) such that (Mn−b(n))/a(n)
has a non-degenerate limiting distribution. The following theorem establishes a non-degenerate
limit for (Mn − b(n))/a(n) by letting p = p(n) → 0 in a certain manner, but keeping r fixed.

Theorem 5 Let X1,X2, . . . ,Xn be iid Negative Binomial random variables with parameter r ≥ 2
(fixed) and parameter p = p(n). If p(n) → 0 according to

p(n) = o

(

1

log n

)

then there are sequences

a(n) =
α

p(n)
, b(n) =

log n+ (r − 1) log log n− log(r − 1)!

p(n)
(11)

(where α > 0) such that

Pr {Mn ≤ a(n)x+ b(n)} → exp {− exp (−αx)} (12)

as n → ∞.

Figure 4 provides an assessment of the rate of convergence in (12) by comparing the distribution
function of (Mn−b(n))/a(n) (the stair-case line) with its limiting distribution (the continuous line),
for n = 10, 100, 1, 000 and 10, 000.

−2 0 2 4 6 8 10

−2
2

6
10

n = 10

x

−lo
g(

−lo
g(

P)
)

−2 0 2 4 6 8 10

−2
2

6
10

−2 0 2 4 6 8 10

−2
2

6
10

n = 100

x

−lo
g(

−lo
g(

P)
)

−2 0 2 4 6 8 10

−2
2

6
10

−2 0 2 4 6 8 10

−2
2

6
10

n = 1000

x

−lo
g(

−lo
g(

P)
)

−2 0 2 4 6 8 10

−2
2

6
10

−2 0 2 4 6 8 10

−2
2

6
10

n = 10000

x

−lo
g(

−lo
g(

P)
)

−2 0 2 4 6 8 10

−2
2

6
10

7



Figure 4: Distribution function of (Mn − b(n))/a(n) for iid Negative Binomial random variables
with r = 2, p(n) = 1/n and α = 1. Double log vertical scale used.

The pmf of the generalized power series distribution is:

pk =
kβ(1− p)k

C(p)
, k = 0, 1, . . .

where 0 < p < 1, β > 0 and

C(p) =
∞
∑

k=0

kβ(1− p)k,

a normalizing constant that depends on p. The corresponding cdf is:

F (x) = 1− 1

C(p)

∞
∑

j=[x]+1

jβ(1− p)j

= 1− 1

C(p)

∞
∑

j=1

(j + [x])β (1− p)j+[x]. (13)

This family of distributions was introduced by Noack (1950). It contains as special cases the
Uniform, Binomial, Geometric and the Negative Binomial distributions. To determine whether or
not (Mn − b(n))/a(n) can have a non-degenerate limit, note that we can write

pk
1− F (k − 1)

=
kβ

∑∞
j=0(j + k)β(1− p)j

=
1

∑∞
j=0 (1 + j/k)β (1 − p)j

=
1

∑k−1
j=0 (1 + j/k)β (1− p)j +

∑∞
j=k (1 + j/k)β (1− p)j

. (14)

Since the series
∞
∑

j=0

(1 + j/k)β (1− p)j

is convergent uniformly on k, we have

∞
∑

j=k

(1 + j/k)β (1− p)j → 0 (15)

as k → ∞. For the first sum in the denominator of (14), since 0 ≤ j/k < 1, we can apply the
Taylor’s expansion to write

k−1
∑

j=0

(1 + j/k)β (1− p)j =
k−1
∑

j=0

(1− p)j +O





β

k

k−1
∑

j=0

j(1 − p)j



 .

Now note that

k−1
∑

j=0

(1− p)j =
1− (1− p)k

p
→ 1

p
, (16)
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and

β

k

k−1
∑

j=0

j(1 − p)j → 0 (17)

as k → ∞, the latter follows because the series

∞
∑

j=0

j(1− p)j

is convergent. Combining (15), (16) and (17), we get the limit of (14) as k → ∞ as p. So by Lemma
1 there can be no sequences a(n) > 0 and b(n) such that (Mn − b(n))/a(n) has a non-degenerate
limiting distribution. The following theorem establishes a non-degenerate limit for (Mn−b(n))/a(n)
by letting p = p(n) → 0, but keeping the parameter β fixed.

Theorem 6 Let X1,X2, . . . ,Xn be iid generalized Power Series random variables with parameter
β fixed and parameter p = p(n). If p(n) → 0 according to

p(n) = o

(

1

log n

)

then there are sequences

a(n) =
α

p(n)
, b(n) =

log n+ β log log n− log Γ (β + 1)

p(n)
(18)

(where α > 0 and β > 0) such that

Pr {Mn ≤ a(n)x+ b(n)} → exp {− exp (−αx)} (19)

as n → ∞.

3 Proofs

We need a lemma to help us find the non-degenerate limiting distribution of (Mn − b(n))/a(n).

Lemma 2 (Theorem 1.5.1, Leadbetter et al., 1987) With the notation set as above, if a(n) > 0
and b(n) are sequences of real numbers such that

n {1− F (a(n)x+ b(n))} → − logH(x), n → ∞ (20)

then

Pr {Mn ≤ a(n)x+ b(n)} → H(x), n → ∞.
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Proof of Theorem 2. For the cdf (2), using x− 1 ≤ [x] ≤ x, we can write

n

(

1− a(n)x+ b(n)

N(n)

)

≤ n {1− F (a(n)x+ b(n))} ≤ n

(

1− a(n)x+ b(n)− 1

N(n)

)

. (21)

If we choose a(n) > 0 and b(n) as given in (3) then we have

n

(

1− a(n)x+ b(n)

N(n)

)

= n

(

1− b(n)

N(n)

)

− na(n)

N(n)
x → β − αx

as n → ∞. The right hand side of (21)

n

(

1− a(n)x+ b(n)− 1

N(n)

)

= −n
a(n)

N(n)
x+ n

(

1− b(n)

N(n)

)

+
n

N(n)
,

approaches the same limit since n = o(N(n)). So for the sequences a(n) and b(n) given by (3) we
have

n {1− F (a(n)x+ b(n))} → β − αx

as n → ∞. Hence (4) follows by Lemma 2.

Proof of Theorem 3. We follow the method used by Anderson et al. (1997) for Poisson distribu-
tion. By the theorem for large deviations for Binomial random variables (see the theorem on page
178 of Feller (1966, volume 1)) we have

1− F

(

pN(n) +
√

p(1− p)N(n)x

)

∼ 1− Φ(x), n → ∞ (22)

if N(n) → ∞ and x = x(n) → ∞ in such way that

x3/
√

p(1− p)N(n) → 0, i.e. x = o
(

N1/6(n)
)

as n → ∞. On the other hand for the standard normal distribution function Φ(x) we have (see
Leadbetter et al. (1983), Theorem 1.5.3)

n {1− Φ (a(n)x+ b(n))} → exp(−x), n → ∞ (23)

for all x, where the sequences a(n) and b(n) are given by (5). Since (log n)3 = o(N(n)) we get by
combining (22) and (23) that

n

{

1− F

(

N(n)p+
√

p(1− p)N(n)x

)}

∼ n {1− Φ (a(n)x+ b(n))} → exp(−x)

as n → ∞. Hence by Lemma 2 the sequences a(n) and b(n) given by (5) will yield (6).

Proof of Theorem 4. For the cdf (7), using x− 1 ≤ [x] ≤ x, we can write

n {1− p(n)}a(n)x+b(n) ≤ n {1− F (a(n)x+ b(n))} ≤ n {1− p(n)}a(n)x+b(n)−1 . (24)

For the a(n) and b(n) given by (8)

{1− p(n)}a(n)x → exp(−αx)

10



and

n {1− p(n)}b(n) → β

as n → ∞. So the lower bound in (24) approaches β exp(−αx) as n → ∞. The upper bound in
(24) has the same limit since

n {1− p(n)}a(n)x+b(n)−1 = n {1− p(n)}a(n)x {1− p(n)}b(n)−1

and p(n) → 0. Hence by Lemma 2, we have (9).

Proof of Theorem 5. For the cdf (10), using x− 1 ≤ [x] ≤ x, we can write

n {1− F (a(n)x+ b(n))}

≤ n
{p(n)}r−1

(r − 1)!
{1− p(n)}a(n)x+b(n)−r

×
[

{a(n)x+ b(n)} {a(n)x+ b(n)− 1} · · · {a(n)x+ b(n)− r + 2}

+(r − 1)
1− p(n)

p(n)

×{a(n)x+ b(n)} {a(n)x+ b(n)− 1} · · · {a(n)x+ b(n)− r + 3}
...

+(r − 1)(r − 2) · · · (r − k)

{

1− p(n)

p(n)

}k

×{a(n)x+ b(n)} {a(n)x+ b(n)− 1} · · · {a(n)x+ b(n)− r + k + 2}
...

+(r − 1)(r − 2) · · · 1
{

1− p(n)

p(n)

}r−1
]

(25)

and

n {1− F (a(n)x+ b(n))}

≥ n
{p(n)}r−1

(r − 1)!
{1− p(n)}a(n)x+b(n)−r+1

×
[

{a(n)x+ b(n)− 1} {a(n)x+ b(n)− 2} · · · {a(n)x+ b(n)− r + 1}

+(r − 1)
1− p(n)

p(n)

×{a(n)x+ b(n)− 1} {a(n)x+ b(n)− 2} · · · {a(n)x+ b(n)− r + 2}
...

+(r − 1)(r − 2) · · · (r − k)

{

1− p(n)

p(n)

}k

×{a(n)x+ b(n)− 1} {a(n)x+ b(n)− 2} · · · {a(n)x+ b(n)− r + k + 1}
...

+(r − 1)(r − 2) · · · 1
{

1− p(n)

p(n)

}r−1
]

. (26)
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The upper bound (25) can be rewritten as:

1

(r − 1)!
{1− p(n)}a(n)x n {p(n)b(n)}r−1 {1− p(n)}b(n) {1− p(n)}−r

×
[

(

a(n)x

b(n)
+ 1

)(

a(n)x

b(n)
+ 1− 1

b(n)

)

· · ·
(

a(n)x

b(n)
+ 1− r − 2

b(n)

)

+(r − 1)
1 − p(n)

p(n)b(n)

×
(

a(n)x

b(n)
+ 1

)(

a(n)x

b(n)
+ 1− 1

b(n)

)

· · ·
(

a(n)x

b(n)
+ 1− r − 3

b(n)

)

...

+(r − 1)(r − 2) · · · (r − k)

{

1− p(n)

p(n)b(n)

}k

×
(

a(n)x

b(n)
+ 1

)(

a(n)x

b(n)
+ 1− 1

b(n)

)

· · ·
(

a(n)x

b(n)
+ 1− r − k − 2

b(n)

)

...

+(r − 1)(r − 2) · · · 1
{

1− p(n)

p(n)b(n)

}r−1
]

. (27)

For the choice of a(n) and b(n) given by (11),

{1− p(n)}a(n)x → exp {−αx}

and

1

(r − 1)!
n {p(n)b(n)}r−1 {1− p(n)}b(n) → 1

as n → ∞. Since p(n) → 0, we have {1−p(n)}−r → 1. Furthermore, since b(n) → ∞, p(n)b(n) → ∞
and a(n)/b(n) → 0, we have

(

a(n)x

b(n)
+ 1

)(

a(n)x

b(n)
+ 1− 1

b(n)

)

· · ·
(

a(n)x

b(n)
+ 1− r − 2

b(n)

)

→ 1

and

{

1− p(n)

p(n)b(n)

}k (a(n)x

b(n)
+ 1

)(

a(n)x

b(n)
+ 1− 1

b(n)

)

· · ·
(

a(n)x

b(n)
+ 1− r − k − 2

b(n)

)

→ 0

for k = 1, 2, . . . , r − 1. Substituting these limiting relations into (27), we get

lim sup
n→∞

n {1− F (a(n)x+ b(n))} ≤ exp {−αx} .

Manipulating the lower bound (26), we can similarly establish that

lim inf
n→∞

n {1− F (a(n)x+ b(n))} ≥ exp {−αx} .

Hence (12) follows by Lemma 2.
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Proof of Theorem 6. For the cdf (13), using x− 1 ≤ [x] ≤ x, we can write

n

C(p(n))

∞
∑

k=1

{k + a(n)x+ b(n)− 1}β {1− p(n)}k+a(n)x+b(n)

≤ n {1− F (a(n)x+ b(n))} (28)

≤ n

C(p(n))

∞
∑

k=1

{k + a(n)x+ b(n)}β {1− p(n)}k+a(n)x+b(n)−1 .

The upper bound of (28) can be rewritten as

n

C(p(n))
{b(n)}β {1− p(n)}a(n)x+b(n)−1

{

∑

1≤k≤[a(n)x+b(n)]

(

1 +
k + a(n)x

b(n)

)β

{1− p(n)}k

+
∑

k>[a(n)x+b(n)]

(

1 +
k + a(n)x

b(n)

)β

{1− p(n)}k
}

= Π(n) {S1(n) + S2(n)} , (29)

say. In the sequel we shall show that

Π(n)

p(n)
→ exp (−αx) , (30)

p(n)S1(n) → 1 (31)

and

p(n)S2(n) → 0 (32)

as n → ∞. First, consider Π(n). By Theorem 5 in Feller (1966, volume 2, page 423), we have

C(p(n)) =
∞
∑

k=0

kβ {1− p(n)}k =
Γ(β + 1)

p(n)β+1
(1 + o(1))

as n → ∞. Substituting this into the form for Π(n), we get

Π(n) =
np(n)

Γ(β + 1)
{p(n)b(n)}β {1− p(n)}b(n) {1− p(n)}a(n)x (1 + o(1)) (33)

as n → ∞. Under the assumed forms for a(n), b(n) and p(n), it is easily seen that

{1− p(n)}a(n)x → exp (−αx) (34)

and

n {p(n)b(n)}β {1− p(n)}b(n) → Γ (β + 1) (35)

as n → ∞. Substituting these into (33), we have (30). Next, consider p(n)S1(n). Since a(n) =
o(b(n)) note that 0 ≤ {k + a(n)x}/b(n) ≤ 3 holds for k ≤ a(n)x + b(n) for all sufficiently large n,
so we can apply the Taylor’s formula (1 + x)β = 1 +O(x) to the terms of S1(n). We get

p(n)S1(n)

= p(n)
∑

1≤k≤[a(n)x+b(n)]

{1− p(n)}k +O



p(n)
∑

1≤k≤[a(n)x+b(n)]

k + a(n)x

b(n)
{1− p(n)}k





= S11(n) + S12(n),

13



say. Note that we can rewrite

S11(n) = {1− p(n)}
[

1− {1− p(n)}[a(n)x+b(n)]
]

(36)

and

S12(n) ≤ Kp(n)
∑

1≤k≤[a(n)x+b(n)]

k + a(n)x

b(n)
{1− p(n)}k

≤ K
p(n)

b(n)

∑

1≤k≤[a(n)x+b(n)]

k {1− p(n)}k

+K
p(n)a(n)x

b(n)

∑

1≤k≤[a(n)x+b(n)]

{1− p(n)}k

=
K

p(n)b(n)
{1− p(n)}

[

1− {[a(n)x+ b(n)] + 1} {1− p(n)}a(n)x+b(n)

+ [a(n)x+ b(n)] {1− p(n)}[a(n)x+b(n)]+1

]

+K
a(n)x

b(n)
{1− p(n)}

[

1− {1− p(n)}[a(n)x+b(n)]

]

, (37)

for some K > 0. Using x− 1 ≤ [x] ≤ x to bound (36) and then applying the limiting relations (34)
and (35), we see that S11(n) → 1 as n → ∞. Similarly, the terms in (37) approach 0 as n → ∞.
Hence we have established (31). Finally, consider p(n)S2(n). For all sufficiently large n, we can
rewrite

p(n)S2(n) = p(n)
∑

k>[a(n)x+b(n)]

(

1 +
k + a(n)x

b(n)

)β

{1− p(n)}k

= p(n)
∞
∑

k=0

(

1 +
k + a(n)x+ [a(n)x+ b(n)] + 1

b(n)

)β

{1− p(n)}k+[a(n)x+b(n)]+1

≤ p(n) {1− p(n)}a(n)x+b(n)
∞
∑

k=0

(

2 +
k + 2a(n)x+ 1

b(n)

)β

{1− p(n)}k

(using x− 1 ≤ [x] ≤ x)

≤ Kp(n)

n

∞
∑

k=0

(

3 +
k

b(n)

)β

{1− p(n)}k

(using (34) and (35) and since a(n) = o(b(n)))

≤ Kp(n)

n

∞
∑

k=0

(

3 +
k

b(n)

)m

{1− p(n)}k

(putting m = [β] + 1)

=
Kp(n)

n

∞
∑

k=0

[

m
∑

l=0

(

m

l

)

3m−l
(

k

b(n)

)l

{1− p(n)}k
]

=
Kp(n)

n

m
∑

l=0

(

m

l

)

3m−l

{b(n)}l

[

∞
∑

k=0

kl {1− p(n)}k
]

≤ Kp(n)

n

m
∑

l=0

(

m

l

)

3m−l

{b(n)}l

[

∞
∑

k=0

(k + l)(k + l − 1) · · · (k + 1) {1− p(n)}k
]

14



=
Kp(n)

n

m
∑

l=0

(

m

l

)

3m−l

{b(n)}l

[

l!
∞
∑

k=0

(l + 1 + k − 1)(l + 1 + k − 2) · · · (l + 1)

k!
{1− p(n)}k

]

=
K

n

m
∑

l=0

(

m

l

)

3m−ll!

{p(n)b(n)}l
, (38)

the last step follows from equation (10.4.6) in Hansen (1975). The limit of (38) as n → ∞ is 0
because b(n)p(n) → ∞. Hence we have proved (32). Substituting (30), (31) and (32) into (29), we
get

lim sup
n→∞

n {1− F (a(n)x+ b(n))} ≤ exp {−αx} .

Manipulating the lower bound of (28), we can similarly establish that

lim inf
n→∞

n {1− F (a(n)x+ b(n))} ≥ exp {−αx} .

Hence (19) follows by Lemma 2.
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