
1 GARCH models

GARCH(1, 1) is a popular time series model for weakly stationary financial data. It can be
specified by

Xt = σtZt, (1)

where {Xt} is the observed financial data, {σt} is a volatility process specified by

σ2
i = ω + α1X

2
i−1 + β1σ

2
i−1

and {Zt} is an innovation process.

We consider eight different distributions for Zt: the Gaussian distribution due to de
Moivre (1738) and Gauss (1809); the skewed Gaussian distribution due to Azzalini (1985);
the Student’s t distribution due to Gosset (1908); the skewed Student’s t distribution due to
Fernandez and Steel (1998); the generalized error distribution due to Subbotin (1923); the
skewed generalized error distribution due to Theodossiou (1998); the standardized normal
inverse Gaussian distribution due to Barndorff-Nielsen (1977); the asymmetric exponen-
tial power distribution due to Zhu and Zinde-Walsh (2009); the asymmetric Student’s t
distribution due to Zhu and Galbraith (2010).

The first six distributions are commonly used models for the innovation process. They
are implemented in standard computer packages for GARCH modeling. See, for example,
the R (R Development Core Team, 2013) contributed package fGarch due to Wuertz and
Chalabi (2013). The last two distributions are relatively new. We are not aware of any
computer package that has implemented these distributions as possible innovation models.

For each distribution for Zt, we give explicit expressions for E (Zt), E
(
Z2
t

)
, E

(
Z3
t

)
,

E
(
Z4
t

)
, VaRp (Zt) and ESp (Zt).

1.1 Gaussian distribution

If Zt are independent and identical Gaussian random variables with mean µ and unit vari-
ance then

E (Zt) = µ,

E
(
Z2
t

)
= µ2 + 1,

E
(
Z3
t

)
= µ3 + 3µ,

E
(
Z4
t

)
= µ4 + 6µ2 + 3,

VaRp (Zt) = µ+Φ−1(p),

ESp (Zt) = µp+ φ
(
Φ−1(p)

)
,

where φ(·) is the probability density function of a standard Gaussian random variable
and Φ(·) is the cumulative distribution function of a standard Gaussian random variable.
Gaussian distribution is due to de Moivre (1738) and Gauss (1809).
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1.2 Skewed Gaussian distribution

If Zt are independent and identical skewed Gaussian random variables with location pa-
rameter µ and skewness parameter λ then

E (Zt) = µ+

√
2

π

λ√
1 + λ2

,

E
(
Z2
t

)
= 1 + µ2 + 2µ

√
2

π

λ√
1 + λ2

,

E
(
Z3
t

)
= µ3 + 3µ2 λ√

1 + λ2
+ 3µ+

√
2

π

λ
(
3 + 2λ2

)

(1 + λ2)3/2
,

E
(
Z4
t

)
= µ4 + 6µ3 λ√

1 + λ2
+ 6µ2 + 4µ

√
2

π

λ
(
3 + 2λ2

)

(1 + λ2)3/2
+ 3,

ESp (Zt) = 2

∫ VaR

−∞

xφ(x− µ)Φ (λ(x− µ)) dx,

where VaRp (Zt) is the root of

Φ(x− µ)− 2T (x− µ, λ) = p,

where T (h, a) is Owen’s function defined in Owen (1980). The skewed Gaussian distribution
is due to Azzalini (1985). We shall abbreviate this distribution by SNORM.

1.3 Student’s t distribution

If Zt are independent and identical Student’s t random variables with location parameter
µ and degrees of freedom ν then

E (Zt) = µ,

E
(
Z2
t

)
= µ2 +

ν

ν − 2
,

E
(
Z3
t

)
= µ3 +

3µν

ν − 2
,

E
(
Z4
t

)
= µ4 +

6µ2ν

ν − 2
+

3ν2

(ν − 2)(ν − 4)
,

VaRp (Zt) = µ+
√
νsign

(
p− 1

2

)√
1

I−1
a

(
ν
2 ,

1
2

) − 1,

ESp (Zt) = µp+

√
νΓ ((ν + 1)/2)

(1− ν)
√
πΓ(ν/2)

[
1 +

(VaR− µ)2

ν

] 1−ν

2

,

where a = 2p if p < 1/2, a = 2(1− p) if p ≥ 1/2, and Ix(a, b) =
∫ x
0 ta−1(1− t)b−1dt/B(a, b)

is the incomplete beta function ratio and B(a, b) =
∫ 1
0 ta−1(1− t)b−1dt is the beta function.

The Student’s t distribution is due to Gosset (1908).
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1.4 Skewed Student’s t distribution

If Zt are independent and identical skewed Student’s t random variables with location
parameter µ, skewness parameter λ and degrees of freedom ν then

E (Zt) = µ+
Γ ((ν − 1)/2)

[
γ2 − γ−2

]

Γ (ν/2) [γ + γ−1]
,

E
(
Z2
t

)
= µ2 +

2µΓ ((ν − 1)/2)
[
γ2 − γ−2

]

Γ (ν/2) [γ + γ−1]
+

√
πνΓ ((ν − 2)/2)

[
γ3 + γ−3

]

2Γ (ν/2) [γ + γ−1]
,

E
(
Z3
t

)
= µ3 +

3µ2Γ ((ν − 1)/2)
[
γ2 − γ−2

]

Γ (ν/2) [γ + γ−1]
+

3µ
√
πνΓ ((ν − 2)/2)

[
γ3 + γ−3

]

2Γ (ν/2) [γ + γ−1]

+
νΓ ((ν − 3)/2)

[
γ4 − γ−4

]

Γ (ν/2) [γ + γ−1]
,

E
(
Z4
t

)
= µ4 +

4µ3Γ ((ν − 1)/2)
[
γ2 − γ−2

]

Γ (ν/2) [γ + γ−1]
+

6µ2√πνΓ ((ν − 2)/2)
[
γ3 + γ−3

]

2Γ (ν/2) [γ + γ−1]

+
6µνΓ ((ν − 3)/2)

[
γ4 − γ−4

]

Γ (ν/2) [γ + γ−1]
+

3ν3/2
√
πΓ ((ν − 4)/2)

[
γ5 + γ−5

]

4Γ (ν/2) [γ + γ−1]
,

VaRp (Zt) =





µ+

√√√√γ−2ν

[{
I−1
2γp

(
ν

2
,
1

2

)}
−1

− 1

]
, if p ≤ 1/(2γ),

µ+

√√√√γ2ν

[{
I−1
1+γ−2

−2γ−1p

(
ν

2
,
1

2

)}
−1

− 1

]
, if p > 1/(2γ),

ESp (Zt) =





µp+

√
νΓ ((ν + 1)/2)

γ2(1− ν)
√
πΓ (ν/2)

(
1 +

γ2VaR2

ν

) 1−ν

2

, if VaR ≤ µ,

µp+

√
νΓ ((ν + 1)/2)

(1− ν)
√
πΓ (ν/2)

[
γ2
(
1 +

VaR2

γ2ν

)1−ν

2

− γ2 + γ−2

]
, if VaR > µ,

where Ix(a, b) =
∫ x
0 ta−1(1 − t)b−1dt/B(a, b) is the incomplete beta function ratio and

B(a, b) =
∫ 1
0 ta−1(1 − t)b−1dt is the beta function. The skewed Student’s t distribution

is due to Fernandez and Steel (1998). We shall abbreviate this distribution by SSTD0.

1.5 Generalized error distribution

If Zt are independent and identical generalized error random variables with location param-
eter µ and shape parameter a then

E (Zt) = µ,

E
(
Z2
t

)
= µ2 +

a2/a−1Γ (3/a)

Γ (1 + 1/a)
,

E
(
Z3
t

)
= µ3 +

3µa2/a−1Γ (3/a)

Γ (1 + 1/a)
,
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E
(
Z4
t

)
= µ4 +

6µ2a2/a−1Γ (3/a)

Γ (1 + 1/a)
+

a4/a−1Γ (5/a)

Γ (1 + 1/a)
,

VaRp (Zt) =





µ− a1/a
[
Q−1

(
1

a
, 2p

)]1/a
, if p ≤ 1/2,

µ+ a1/a
[
Q−1

(
1

a
, 2(1 − p)

)]1/a
, if p > 1/2,

ESp (Zt) =





µp− a1/a

2Γ(1/a)
Γ

(
1

a
,
(µ −VaR)a

a

)
, if VaR ≤ µ,

µp− a1/a

2
+

a1/a

2Γ(1/a)
γ

(
1

a
,
(VaR − µ)a

a

)
, if VaR > µ,

where Q(a, x) =
∫
∞

x ta−1 exp (−t) dt/Γ(a) is the regularized complementary incomplete
gamma function, γ(a, x) =

∫ x
0 ta−1 exp (−t) dt is the incomplete gamma function, and

Γ(a, x) =
∫
∞

x ta−1 exp (−t) dt is the complementary incomplete gamma function. The gen-
eralized error distribution is due to Subbotin (1923). We shall abbreviate this distribution
by GED.

1.6 Skewed generalized error distribution

If Zt are independent and identical generalized error random variables with location param-
eter µ and shape parameter a then

E (Zt) = µ− δ +
Cθ2

k

[
−(1− λ)2 + (1 + λ)2

]
Γ

(
2

k

)
,

E
(
Z2
t

)
= (µ− δ)2 +

2C(µ− δ)θ2

k

[
−(1− λ)2 + (1 + λ)2

]
Γ

(
2

k

)

+
Cθ3

k

[
(1− λ)3 + (1 + λ)3

]
Γ

(
3

k

)
,

E
(
Z3
t

)
= (µ− δ)3 +

3C(µ− δ)2θ2

k

[
−(1− λ)2 + (1 + λ)2

]
Γ

(
2

k

)

+
3C(µ− δ)θ3

k

[
(1− λ)3 + (1 + λ)3

]
Γ

(
3

k

)

+
Cθ4

k

[
−(1− λ)4 + (1 + λ)4

]
Γ

(
4

k

)
,

E
(
Z4
t

)
= (µ− δ)4 +

4C(µ− δ)3θ2

k

[
−(1− λ)2 + (1 + λ)2

]
Γ

(
2

k

)

+
6C(µ− δ)2θ3

k

[
(1− λ)3 + (1 + λ)3

]
Γ

(
3

k

)

+
C(µ− δ)θ4

k

[
−(1− λ)4 + (1 + λ)4

]
Γ

(
4

k

)

+
Cθ5

k

[
(1− λ)5 + (1 + λ)5

]
Γ

(
5

k

)
,
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VaRp (Zt) =





µ− δ − (1 + λ)θ

[
Q−1

(
1

k
,

2p

1 + λ

)]1/k
, if p ≤ 1+λ

2 ,

µ− δ + (1− λ)θ

[
Q−1

(
1

k
,
2(1− p)

1− λ

)]1/k
, if p > 1+λ

2 ,

ESp (Zt) =





−C(1 + λ)2θ2

k
Γ

(
2

k
,
(µ−VaR − δ)2

(1 + λ)kθk

)
,

if VaR ≤ µ− δ,

−C(1 + λ)2θ2

k
Γ

(
2

k

)
+

C(1− λ)2θ2

k
γ

(
2

k
,
(VaR− µ+ δ)2

(1− λ)kθk

)
,

if VaR > µ− δ,

where C = k/ {2θΓ(1/k)}, θ =
√

Γ(1/k)/Γ(3/k)/S(λ), δ = 2λA/S(λ), S(λ) =
√
1 + 3λ2 − 4A2λ2,

and A = Γ(2/k)/
√

Γ(1/k)Γ(3/k). The skewed generalized error distribution is due to Theo-
dossiou (1998). We shall abbreviate this distribution by SGED.

1.7 Standardized normal inverse Gaussian distribution

If Zt are independent and identical standardized normal inverse Gaussian random variables
then

E (Zt) = µ+
β

γ
,

E
(
Z2
t

)
=

(
µ+

β

γ

)2

+
α2

γ2
,

E
(
Z3
t

)
=

(
µ+

β

γ

)3

+ 3

(
µ+

β

γ

)
α2

γ2
+

3α2β

γ7/2
,

E
(
Z4
t

)
=

3α4

γ5

(
γ + 1 +

4β2

α2

)
+ 4µ

(
µ2 +

3α2

γ2

)(
µ+

β

γ

)
+

12α2βµ

γ7/2
+ 4µ

(
µ+

β

γ

)3

−6α2µ2

γ2
− 6µ2

(
µ+

β

γ

)2

,

ESp (Zt) =
α

π

∫ VaR

−∞

K1

(
α
√

1 + (x− µ)2
)

√
1 + (x− µ)2

exp (βx+ γ) dx,

where γ =
√

α2 − β2, K1(·) is the modified Bessel function of the second kind of order one
and VaRp (Zt) is the root of

∫ x

−∞

K1

(
α
√

1 + (y − µ)2
)

√
1 + (y − µ)2

exp (βy + γ) dy = p.

The normal inverse Gaussian distribution is due to Barndorff-Nielsen (1977). We shall
abbreviate this distribution by SNIG.
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1.8 Asymmetric exponential power distribution

If Zt are independent and identical asymmetric exponential power random variables then

E (Zt) = µ+
(1− α)2H1 (p2)

B
− α2H1 (p1)

B
,

E
(
Z2
t

)
= µ2 +

2µ(1− α)2H1 (p2)

B
− 2µα2H1 (p1)

B
+

(1− α)3H2 (p2)

B2
+

α3H2 (p1)

B2
,

E
(
Z3
t

)
= µ3 +

3µ2(1− α)2H1 (p2)

B
− 3µ2α2H1 (p1)

B
+

3µ(1− α)3H2 (p2)

B2

+
3µα3H2 (p1)

B2
+

(1− α)4H3 (p2)

B3
− α4H3 (p1)

B3
,

E
(
Z4
t

)
= µ4 +

4µ3(1− α)2H1 (p2)

B
− 4µ3α2H1 (p1)

B
+

6µ2(1− α)3H2 (p2)

B2

+
6µ2α3H2 (p1)

B2
+

4µ(1− α)4H3 (p2)

B3
− 4µα4H3 (p1)

B3

+
(1− α)5H4 (p2)

B4
+

α5H4 (p1)

B4
,

VaRp (Zt) =





µ− 2α∗

[
p1R

−1

(
1

p1
, 1− p

α

)]1/p1
, if p ≤ α,

µ− 2 (1− α∗)

[
p2R

−1

(
1

p2
, 1− 1− p

1− α

)]1/p2
, if p > α,

ESp (Zt) =





µp− 2α∗C (p1)
1−R

(
2
p1
, 1
p1

∣∣∣VaR−µ
2α∗

∣∣∣
p1)

1−R
(

1
p1
, 1
p1

∣∣∣VaR−µ
2α∗

∣∣∣
p1) ,

if VaR ≤ µ,

µp−
2αα∗C (p1)− 2(1 − α) (1− α∗)C (p2)R

(
2
p2
, 1
p2

∣∣∣ VaR−µ
2(1−α∗)

∣∣∣
p2)

α+ (1− α)R
(

1
p2
, 1
p2

∣∣∣ VaR−µ
2(1−α∗)

∣∣∣
p2) ,

if VaR > µ,

where R(a, x) =
∫ x
0 ta−1 exp (−t) dt/Γ(a) is the regularized incomplete gamma function,

K(p) = 1/
{
2p1/pΓ(1 + 1/p)

}
, α∗ = αK (p1) / {αK (p1) + (1− α)K (p2)}, B = αK (p1) +

(1 − α)K (p2), Hr(p) = prΓ ((r + 1)/p) /Γr+1(1/p) and C(p) = p1/pΓ(2/p)/Γ(1/p). The
asymmetric exponential power distribution is due to Zhu and Zinde-Walsh (2009). We shall
abbreviate this distribution by AEPD.

1.9 Skewed exponential power distribution

If Zt are independent and identical skewed exponential power random variables then

E (Zt) = µ+
(1− 2α)H1 (p)

B
,

E
(
Z2
t

)
= µ2 +

2µ(1− 2α)H1 (p)

B
+

[
(1− α)3 + α3

]
H2 (p)

B2
,
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E
(
Z3
t

)
= µ3 +

3µ2(1− 2α)H1 (p)

B
+

3µ
[
(1− α)3 + α3

]
H2 (p)

B2

+

(
1− 4α+ 6α2 − 4α3

)
H3 (p)

B3
,

E
(
Z4
t

)
= µ4 +

4µ3(1− 2α)H1 (p)

B
+

6µ2
[
(1− α)3 + α3

]
H2 (p)

B2

+
4µ
(
1− 4α+ 6α2 − 4α3

)
H3 (p)

B3
+

[
(1− α)5 + α5

]
H4 (p)

B4
,

VaRp (Zt) =





µ− 2α

[
pR−1

(
1

p
, 1− p

α

)]1/p
, if p ≤ α,

µ− 2 (1− α)

[
pR−1

(
1

p
, 1− 1− p

1− α

)]1/p
, if p > α,

ESp (Zt) =





µp− 2αC (p)
1−R

(
2
p ,

1
p

∣∣∣VaR−µ
2α

∣∣∣
p)

1−R
(
1
p ,

1
p

∣∣∣VaR−µ
2α

∣∣∣
p) ,

if VaR ≤ µ,

µp−
2α2C (p)− 2(1− α)2C (p)R

(
2
p ,

1
p

∣∣∣VaR−µ
2(1−α)

∣∣∣
p)

α+ (1− α)R
(
1
p ,

1
p

∣∣∣VaR−µ
2(1−α)

∣∣∣
p) ,

if VaR > µ.

The skewed exponential power distribution is due to Zhu and Zinde-Walsh (2009). We shall
abbreviate this distribution by SEPD.

1.10 Asymmetric Student’s t distribution

If Zt are independent and identical asymmetric Student’s t random variables then

E (Zt) = µ− 2αα∗H1 (ν1) + 2(1 − α) (1− α∗)H1 (ν2) ,

E
(
Z2
t

)
= µ2 − 4µαα∗H1 (ν1) + 4µ(1− α) (1− α∗)H1 (ν2) + 4α (α∗)2H2 (ν1)

+4(1 − α) (1− α∗)2H2 (ν2) ,

E
(
Z3
t

)
= µ3 − 6µ2αα∗H1 (ν1) + 6µ2(1− α) (1− α∗)H1 (ν2) + 12µα (α∗)2H2 (ν1)

+12µ(1 − α) (1− α∗)2H2 (ν2)− 8α (α∗)3 H3 (ν1)

+8(1 − α) (1− α∗)3H3 (ν2) ,

E
(
Z4
t

)
= µ4 − 8µ3αα∗H1 (ν1) + 8µ3(1− α) (1− α∗)H1 (ν2)

+24µ2α (α∗)2 H2 (ν1) + 24µ2(1− α) (1− α∗)2H2 (ν2)

−24µα (α∗)3 H3 (ν1) + 24µ(1 − α) (1− α∗)3H3 (ν2)

+16α (α∗)4 H4 (ν1) + 16(1 − α) (1− α∗)4 H4 (ν2) ,

VaRp (Zt) = µ+ 2α∗S−1
ν1

(
min(p, α)

2α

)
+ 2 (1− α∗)S−1

ν2

(
max(p, α) + 1− 2α

2(1− α)

)
,

ESp (Zt) = µp− 4B

p

{
(α∗)2 ν1
ν1 − 1

{
1 +

1

ν1

[
min (VaR− µ, 0)

2α∗

]2} 1−ν1

2

− (1− α∗)2 ν2
ν2 − 1
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+
(1− α∗)2 ν2

ν2 − 1

{
1 +

1

ν2

[
max (VaR− µ, 0)

2 (1− α∗)

]2} 1−ν2

2

}
,

where Sν(·) is the cumulative distribution function of a Student’s t random variable with ν
degrees of freedom, K(ν) = Γ ((ν + 1)/2) / {√πνΓ(ν/2)}, α∗ = αK (ν1) / {αK (ν1) + (1− α)K (ν2)},
B = αK (ν1) + (1− α)K (ν2), and Hr(ν) =

√
νr/πΓ ((r + 1)/2) Γ ((ν − r)/2) /Γ(ν/2). The

asymmetric Student’s t distribution is due to Zhu and Galbraith (2010). We shall abbreviate
this distribution by AST.

1.11 Skewed Student’s t distribution

If Zt are independent and identical skewed Student’s t random variables then

E (Zt) = µ+ 2(1− 2α)H1 (ν) ,

E
(
Z2
t

)
= µ2 + 4µ(1− 2α)H1 (ν) + 4

[
α3 + (1− α)3

]
H2 (ν) ,

E
(
Z3
t

)
= µ3 + 6µ2(1− 2α)H1 (ν) + 12µ

[
α3 + (1− α)3

]
H2 (ν)

+8
(
1− 4α+ 6α2 − 4α3

)
H3 (ν) ,

E
(
Z4
t

)
= µ4 + 8µ3(1− 2α)H1 (ν) + 24µ2

[
α3 + (1− α)3

]
H2 (ν)

+24µ
(
1− 4α+ 6α2 − 4α3

)
H3 (ν)

+16
[
α5 + (1− α)5

]
H4 (ν) ,

VaRp (Zt) = µ+ 2αS−1
ν

(
min(p, α)

2α

)
+ 2 (1− α)S−1

ν

(
max(p, α) + 1− 2α

2(1 − α)

)
,

ESp (Zt) = µp− 4B

p

{
α2ν

ν − 1

{
1 +

1

ν

[
min (VaR− µ, 0)

2α

]2} 1−ν

2

− (1− α)2 ν

ν − 1

+
(1− α)2 ν

ν − 1

{
1 +

1

ν

[
max (VaR− µ, 0)

2 (1− α)

]2} 1−ν

2

}
.

The skewed Student’s t distribution is due to Zhu and Galbraith (2010). We shall abbreviate
this distribution by SSTD.

2 Data application

2.1 The data

The data we consider are daily stock market prices of five popular commodities: Cocoa
bean, Brent crude oil, West Texas intermediate crude oil, Gold and Silver. The data cover
the period from 12th of March 1993 to 13th of March 2013. The data were obtained from
the database Datastream.

According to Wikipedia, Cocoa bean is “the dried and fully fermented fatty bean of
Theobroma cacao, from which cocoa solids and cocoa butter are extracted. They are the
basis of chocolate, as well as many Mesoamerican foods such as mole sauce and tejate”.

According to Wikipedia, Brent crude oil is a “major trading classification of sweet light
crude oil comprising Brent Blend, Forties Blend, Oseberg and Ekofisk crudes (also known
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as the BFOE Quotation). Brent Crude is sourced from the North Sea. The Brent Crude
oil marker is also known as Brent Blend, London Brent and Brent petroleum”.

According to Wikipedia, West Texas intermediate crude oil is a “ grade of crude oil
used as a benchmark in oil pricing. This grade is described as light because of its relatively
low density, and sweet because of its low sulfur content. It is the underlying commodity of
Chicago Mercantile Exchange’s oil futures contracts. The price of WTI is often referenced
in news reports on oil prices, alongside the price of Brent crude from the North Sea. Other
important oil markers include the Dubai Crude, Oman Crude, and the OPEC Reference
Basket. WTI is lighter and sweeter than Brent, and considerably lighter and sweeter than
Dubai or Oman”.

According to Wikipedia, Gold is a “chemical element with the symbol Au and atomic
number 79. It is a dense, soft, malleable, and ductile metal with a bright yellow color and
luster that is considered attractive, which is maintained without tarnishing in air or water.
Chemically, gold is a transition metal and a group 11 element. It is one of the least reactive
chemical elements, solid under standard conditions. The metal therefore occurs often in
free elemental (native) form, as nuggets or grains in rocks, in veins and in alluvial deposits.
Less commonly, it occurs in minerals as gold compounds, usually with tellurium”.

According to Wikipedia, Silver is a “chemical element with the chemical symbol Ag
and atomic number 47. A soft, white, lustrous transition metal, it possesses the highest
electrical conductivity of any element and the highest thermal conductivity of any metal.
The metal occurs naturally in its pure, free form (native silver), as an alloy with gold and
other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced
as a byproduct of copper, gold, lead, and zinc refining”.

Following common practice, the data were transformed by taking logarithms and then
first order differences. The histograms of the five transformed data sets are shown in Figure
1. Each histogram appears more or less symmetric about zero.

[Figure 1 about here.]

Some basic statistics of the transformed data sets are summarized in Table 1. The basic
statistics summarized are minimum, first quartile, median, mean, third quartile, maximum,
standard deviation, coefficient of variation, skewness, kurtosis, inter quartile range and
range.

[Table 1 about here.]

The minimum value for each data set is negative. It is smallest for Cocoa bean and
largest for Gold. The first quartile value for each data set is also negative. It is smallest
West Texas intermediate crude oil and largest for Gold. The median is exactly zero for
Cocoa bean, Gold and Silver. The median is largest for West Texas intermediate crude oil.
The mean is smallest for Cocoa bean and largest for Silver. The third quartile is smallest
for Gold and largest for West Texas intermediate crude oil. The maximum is smallest for
Gold and largest for West Texas intermediate crude oil. The standard deviation is smallest
for Gold and largest for West Texas intermediate crude oil. The coefficient of variation is
smallest for Gold and largest for Cocoa bean.

The Cocoa bean data are positively skewed. The remaining data (Brent crude oil, West
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Texas intermediate crude oil, Gold and Silver) are negatively skewed. The smallest of the
negative skewness is for West Texas intermediate crude oil. The largest is for Silver.

Each kurtosis value is significantly greater than three, the kurtosis value corresponding
to the normal distribution. The smallest kurtosis is for Brent crude oil. The largest is for
Cocoa bean.

The inter quartile range is smallest for Gold and largest for West Texas intermediate
crude oil. The range is smallest for Gold and largest for Cocoa bean.

[Table 2 about here.]

We now test for normality of each data set. Table 2 gives the p-values from the Anderson-
Darling test (Anderson and Darling, 1954), the Cramer-von Mises test, the Kolmogorov-
Smirnov test, the Pearson chi-square test, the Jarque-Bera test (Jarque and Bera, 1980),
the Geary test (Geary, 1947) and the data driven smooth test. We can see that none of the
data sets follow the normal distribution. If the p-values are taken to measure of the degree
of non-normality then we can see that the degree of non-normality is largest for Cocoa bean,
second largest for Silver, third largest for Gold, fourth largest for West Texas intermediate
crude oil and the smallest for Brent crude oil.

2.2 Results

All of the distributions in Section 1 were fitted to each of the data sets discussed. The
method of maximum likelihood was used for parameter estimation. The function optimize

in R (R Development Core Team, 2013) was used for maximizing the likelihood function.

[Tables 3, 4, 5, 6 and 7 about here.]

Table 3 gives parameter estimates, log-likelihood values and Akaike information criterion
(AIC) values for models fitted to Cocoa bean data. Table 4 gives parameter estimates, log-
likelihood values and AIC values for models fitted to Brent crude oil data. Table 5 gives
parameter estimates, log-likelihood values and AIC values for models fitted to West Texas
intermediate crude oil data. Table 6 gives parameter estimates, log-likelihood values and
AIC values for models fitted to Gold data. Table 7 gives parameter estimates, log-likelihood
values and AIC values for models fitted to Silver data.

According to the AIC values in Table 3, the best fitting model for Cocoa bean data is
the asymmetric Student’s t distribution. By comparing the likelihood values of the AST
distribution (logL = 15479.6) and the SSTD (logL = 15148.2) by the likelihood ratio test,
we see that the degree of freedom parameters, ν1 and ν2, are significantly different. The
right tail of the returns is heavier. The left tail of the returns is lighter.

According to the AIC values in Table 4, the best fitting model for Brent crude oil data
is the asymmetric exponential power distribution. By comparing the likelihood values of
the AEPD (logL = 13110.5) and the SEPD (logL = 13095.5) by the likelihood ratio test,
we see that the shape parameters, p1 and p2, are significantly different. The left tail of the
returns is heavier. The right tail of the returns is lighter.

According to the AIC values in Table 5, the best fitting model for West Texas interme-
diate crude oil data is the asymmetric exponential power distribution. By comparing the
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likelihood values of the AEPD (logL = 12755.1) and the SEPD (logL = 12736.8) by the
likelihood ratio test, we see that the shape parameters, p1 and p2, are significantly different.
The left tail of the returns is heavier. The right tail of the returns is lighter.

According to the AIC values in Table 6, the best fitting model for Gold data is the
asymmetric exponential power distribution. By comparing the likelihood values of the
AEPD (logL = 17787.7) and the SEPD (logL = 17785.2) by the likelihood ratio test, we
see that the shape parameters, p1 and p2, are significantly different. The left tail of the
returns is heavier. The right tail of the returns is lighter.

According to the AIC values in Table 7, the best fitting model for Silver data is the
skewed exponential power distribution, the particular of the asymmetric exponential power
distribution for p1 = p2. By comparing the likelihood values of the AEPD (logL = 14027.8)
and the SEPD (logL = 14027.4) by the likelihood ratio test, we see no evidence to suggest
that the shape parameters, p1 and p2, are significantly different. So, the left and right tails
of the returns behave similarly.

We see that the best fitting model for each of the five data sets is one of the two
recently introduced distributions, the asymmetric Student’s t distribution or the asymmetric
exponential power distribution. None of the existing or commonly used models for Zt

provide the best fits. Furthermore, for four of the five data sets, the tails of the returns are
asymmetric. The tails are symmetric only for Silver.

[Table 8 about here.]

The best fitting models are summarized in Table 8. Also given in this table are p-
values for the best fitting models based on the Cramer-von Mises statistic, the Kolmogorov-
Smirnov statistic and the Pearson chi-square statistic. These p-values suggest that each best
fitting model provides an adequate description of the data. The p-values appear largest for
Gold data. They appear second largest for Brent crude oil data. They appear smallest for
Cocoa bean data, West Texas intermediate crude oil data and Silver data.

[Tables 9 and 10 about here.]

We now give some measures of goodness of the best fitted models. These measures are
obtained by comparing the observed values of mean, standard deviation and value at risk
over windows of length w with fitted values. We use two criteria for comparison: mean
absolute deviation and mean squared error. Table 9 gives the mean absolute deviations for
mean, standard deviation, VaR0.9 and VaR0.99 for w = 10, 50, 100 days. Table 10 gives the
mean squared errors for mean, standard deviation, VaR0.9 and VaR0.99 for w = 10, 50, 100
days. The standard deviation for Cocoa bean does not exist since its best fitting model is
the asymmetric Student’s t distribution with ν̂2 = 1.827 < 2.

The mean absolute deviations and the mean squared errors appear small enough to
suggest that the best fitting models are reasonable. The mean absolute deviations and the
mean squared errors appear smallest for Gold data. They appear largest for Cocoa bean
data, West Texas intermediate crude oil data and Silver data. However, there is no evidence
to suggest that the mean absolute deviations or the mean squared errors vary significantly
with respect to w.

[Figure 2 about here.]
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Boxplots of the fitted values of VaRp, p = 0.9, 0.95, 0.975, 0.99 for the five commodities
are shown in Figure 2. We can observe the following: the median of value at risk is largest
for West Texas intermediate crude oil and smallest for Gold when p = 0.9 or p = 0.95; the
median of value at risk is largest for Cocoa bean and smallest for Gold when p = 0.975 or
p = 0.99; the variability of value at risk is largest for Cocoa bean and smallest for Gold for
every p; the variability of value at risk decreases with p for each commodity.

[Figure 3 about here.]

Boxplots of the fitted values of ESp, p = 0.9, 0.95, 0.975, 0.99 for the five commodities are
shown in Figure 3. We can observe the following: the median of expected shortfall is largest
for Cocoa bean and smallest for Gold for every p; the variability of expected shortfall is
largest for Cocoa bean and smallest for Gold for every p; the variability of expected shortfall
decreases with p for each commodity.

[Figure 4 about here.]

Figure 4 shows how the estimates of the expected volatility, ω̂ + α̂1Ê
(
X2

i−1

)
+ β̂1σ

2
i−1,

vary with respect to time for the best fitting models. We can observe the following: the
expected volatility for Brent crude oil and West Texas intermediate crude oil increases
monotonically and sharply with respect to time; the expected volatility for Gold and Silver
increases monotonically before approaching an asymptote; the expected volatility for all t
is largest for Brent crude oil; the expected volatility for small t is second largest for West
Texas intermediate crude oil; the expected volatility for all sufficiently large t is second
largest for Gold; the expected volatility for small t is third largest for Gold; the expected
volatility for all sufficiently large t is third largest for West Texas intermediate crude oil; the
expected volatility for small t is smallest for Gold; the expected volatility for all sufficiently
large t is smallest for Silver. The expected volatility for Cocoa bean does not exist since its
best fitting model is the asymmetric Student’s t distribution with ν̂2 = 1.827 < 2.

[Figure 5 about here.]

Finally, Figure 5 gives forecasts of VaRp, p = 0.9, 0.95, 0.975, 0.99 by one hundred ad-
ditional days. We can observe the following: the forecasts for each commodity increase
monotonically with respect to time; the forecasts for each commodity increase monoton-
ically with respect to p; the forecasts are largest for Silver for every p; the forecasts are
second largest for West Texas intermediate crude oil for every p; the forecasts are third
largest for Brent crude oil for every p; the forecasts are smallest for Gold for every p.
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Cocoa Brent West Gold Silver
bean crude Texas

oil intermediate
crude
oil

Min −1.928 × 10−1 −1.363 × 10−1 −1.722 × 10−1 −7.143 × 10−2 −1.869 × 10−1

Q1 −6.094 × 10−3 −1.097 × 10−2 −1.147 × 10−2 −3.856 × 10−3 −8.609 × 10−3

Median 0 3.335 × 10−4 5.863 × 10−4 0 0

Mean 1.528 × 10−4 3.352 × 10−4 2.897 × 10−4 3.023 × 10−4 3.985 × 10−4

Q3 6.431 × 10−3 1.245 × 10−2 1.264 × 10−2 4.791 × 10−3 9.989 × 10−3

Max 1.938 × 10−1 1.35 × 10−1 2.128 × 10−1 7.382 × 10−2 1.828 × 10−1

SD 1.787 × 10−2 2.154 × 10−2 2.379 × 10−2 1.008 × 10−2 2.017 × 10−2

CV 117.007 64.280 41.632 33.346 50.610

Skewness 4.248 × 10−2 −9.604 × 10−2 −4.463 × 10−2 −1.485 × 10−1 −3.669 × 10−1

Kurtosis 19.949 6.019 8.411 9.277 12.352

IQR 1.253 × 10−2 2.342 × 10−2 2.411 × 10−2 8.647 × 10−3 1.860 × 10−2

Range 3.866 × 10−1 2.713 × 10−1 3.85 × 10−1 1.453 × 10−1 3.697 × 10−1

Table 1: Summary statistics of the data on the five commodities.
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Cocoa Brent West Gold Silver
bean crude Texas

oil intermediate
crude
oil

AD test 0 5.708 × 10−69 0 1.480 × 10−167 0

CVM test 0 2.690 × 10−87 7.37 × 10−10 0 0

KS test 1.070 × 10−245 1.874 × 10−36 1.110 × 10−53 3.436 × 10−119 1.475 × 10−94

Pearson test 0 5.603 × 10−82 3.805 × 10−285 4.182 × 10−283 0

JB test 0 0 0 0 0

G test 0 3.770 × 10−138 8.817 × 10−247 0 0

DDS test 0 0 0 0 0

Table 2: Tests for normality of the data on the five commodities.
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Model Parameter estimates − logL AIC

Gaussian α̂1 = 2.364 × 10−2, β̂1 = 9.590 × 10−1, -13924.5 -27841.0
ω̂ = 5.154 × 10−6, µ̂ = 1.396 × 10−2

Student’s t α̂1 = 1.782 × 10−1, β̂1 = 7.246 × 10−1, -15133.3 -30256.7
ω̂ = 5.888 × 10−17, µ̂ = −6.272 × 10−3,
ν̂ = 5.656

SSTD α̂1 = 1.782 × 10−1, β̂1 = 7.246 × 10−1, -15148.2 -30284.3
ω̂ = 1.998 × 10−18, µ̂ = 5.145 × 10−3,
ν̂ = 5.622, α̂ = 4.949 × 10−1

AST α̂1 = 1.782 × 10−1, β̂1 = 7.246 × 10−1, -15479.6 -30945.2
ω̂ = 1.998 × 10−18, µ̂ = 5.145 × 10−3,
ν̂1 = 5.622, ν̂2 = 1.827,
α̂ = 4.949 × 10−1

GED – – –

SEPD – – –

AEPD – – –

SNORM α̂1 = 2.528 × 10−2, β̂1 = 9.572 × 10−1, -13929.8 -27849.6
ω̂ = 5.266 × 10−6, µ̂ = 2.793 × 10−2,

λ̂ = 1.039

SGED – – –

SSTD0 – – –

SNIG – – –

Table 3: Fitted models and estimates for Cocoa bean data.
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Model Parameter estimates − logL AIC

Gaussian α̂1 = 4.807 × 10−2, β̂1 = 9.461 × 10−1, -13004.1 -26000.2
ω̂ = 2.693 × 10−6, µ̂ = 2.004 × 10−2

Student’s t α̂1 = 4.808 × 10−2, β̂1 = 9.461 × 10−1, -13077.7 -26145.5
ω̂ = 3.793 × 10−7, µ̂ = 3.211 × 10−2,
ν̂ = 1.024 × 101

SSTD α̂1 = 4.808 × 10−2, β̂1 = 9.461 × 10−1, -13082.2 -26152.5
ω̂ = 3.757 × 10−7, µ̂ = 1.128 × 10−1,
ν̂ = 1.036 × 101, α̂ = 5.277 × 10−1

AST α̂1 = 4.808 × 10−2, β̂1 = 9.461 × 10−1, -13082.6 -26151.1
ω̂ = 3.736 × 10−7, µ̂ = 8.857 × 10−2,
ν̂1 = 9.181, ν̂2 = 1.197 × 101,
α̂ = 5.187 × 10−1

GED α̂1 = 4.491 × 10−2, β̂1 = 9.501 × 10−1, -13088.4 -26166.7
ω̂ = 2.747 × 10−7, µ̂ = 2.909 × 10−2,
â = 1.501

SEPD α̂1 = 3.546 × 10−2, β̂1 = 9.560 × 10−1, -13095.5 -26178.9
ω̂ = 3.777 × 10−7, µ̂ = 8.507 × 10−2,
p̂ = 1.542, α̂ = 5.085 × 10−1

AEPD α̂1 = 3.546 × 10−2, β̂1 == 9.560 × 10−1, -13110.5 -26206.9
ω̂ = 4.726 × 10−7, µ̂ = 3.349 × 10−4,
p̂1 = 1.319, p̂2 = 1.562,
α̂ = 4.817 × 10−1

SNORM α̂1 = 4.652 × 10−2, β̂1 = 9.483 × 10−1, -13010.1 -26010.2
ω̂ = 2.370 × 10−6, µ̂ = 1.581 × 10−2,

λ̂ = 9.449 × 10−1

SGED α̂1 = 4.407 × 10−2, β̂1 = 9.511 × 10−1, -13108.1 -26204.2
ω̂ = 2.094 × 10−6, µ̂ = 1.668 × 10−2,

λ̂ = 9.696 × 10−1, k̂ = 1.364

SSTD0 α̂1 = 4.182 × 10−2, β̂1 = 9.542 × 10−1, -13097.2 -26182.5
ω̂ = 1.684 × 10−6, µ̂ = 2.170 × 10−2,
γ̂ = 9.492 × 10−1, ν̂ = 7.461

SNIG α̂1 = 4.241 × 10−2, β̂1 = 9.535 × 10−1, -13101.5 -26191.0
ω̂ = 1.726 × 10−6, µ̂ = 2.095 × 10−2,

α̂ = 2.182, β̂ = −8.861 × 10−2

Table 4: Fitted models and estimates for Brent crude oil data.
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Model Parameter estimates − logL AIC

Gaussian α̂1 = 5.952 × 10−2, β̂1 = 9.267 × 10−1, -12545.8 -25083.5
ω̂ = 7.877 × 10−6, µ̂ = 1.331 × 10−2

Student’s t α̂1 = 5.952 × 10−2, β̂1 = 9.266 × 10−1, -12691.0 -25372.1
ω̂ = 9.503 × 10−7, µ̂ = 3.176 × 10−2

ν̂ = 7.051

SSTD α̂1 = 5.952 × 10−2, β̂1 = 9.266 × 10−1, -12694.9 -25377.8
ω̂ = 9.881 × 10−7, µ̂ = 1.020 × 10−1,
ν̂ = 7.138, α̂ = 5.250 × 10−1

AST α̂1 = 5.952 × 10−2, β̂1 = 9.266 × 10−1, -12696.0 -25377.9
ω̂ = 9.666 × 10−7, µ̂ = 6.449 × 10−2,
ν̂1 = 6.152, ν̂2 = 8.502,
α̂ = 5.111 × 10−1

GED α̂1 = 4.488 × 10−2, β̂1 = 9.469 × 10−1, -12709.2 -25408.4
ω̂ = 3.221 × 10−7, µ̂ = 1.521 × 10−2,
â = 1.334

SEPD α̂1 = 1.784 × 10−2, β̂1 = 9.695 × 10−1, -12736.8 -25461.6
ω̂ = 1.434 × 10−6, µ̂ = 1.856 × 10−2,
p̂ = 1.313, α̂ = 5.018550 × 10−1

AEPD α̂1 = 1.784 × 10−2, β̂1 = 9.695 × 10−1, -12755.1 -25496.2
ω̂ = 7.956 × 10−7, µ̂ = −1.933 × 10−5,
p̂1 = 1.076, p̂2 = 1.249,
α̂ = 4.801 × 10−1

SNORM α̂1 = 5.895 × 10−2, β̂1 = 9.279 × 10−1, -12553.0 -25096.0
ω̂ = 7.503 × 10−6, µ̂ = 6.610 × 10−3,

λ̂ = 9.435 × 10−1

SGED α̂1 = 4.488 × 10−2, β̂1 = 9.468 × 10−1, -12747.0 -25482
ω̂ = 4.655 × 10−6, µ̂ = 8.583 × 10−3,

λ̂ = 1.005, k̂ = 1.155

SSTD0 α̂1 = 3.961 × 10−2, β̂1 = 9.541 × 10−1, -12728.2 -25444.3
ω̂ = 3.451 × 10−6, µ̂ = 1.650 × 10−2,
γ̂ == 9.569 × 10−1, ν̂ = 5.427

SNIG – – –

Table 5: Fitted models and estimates for West Texas intermediate crude oil data.
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Model Parameter estimates − logL AIC

Gaussian α̂1 = 4.525 × 10−2, β̂1 = 9.539 × 10−1, -17431.9 -34855.7
ω̂ = 2.788 × 10−7, µ̂ = 3.686 × 10−2

Student’s t α̂1 = 2.442 × 10−2, β̂1 = 9.539 × 10−1, -17745.3 -35480.6
ω̂ = 8.334 × 10−8, µ̂ = 5.885 × 10−2,
ν̂ = 3.821

SSTD α̂1 = 3.563 × 10−2, β̂1 = 9.343 × 10−1, -17745.8 -35479.6
ω̂ = 1.382 × 10−7, µ̂ = 5.479 × 10−2,
ν̂ = 3.939, α̂ = 4.990 × 10−1

AST α̂1 = 3.516 × 10−2, β̂1 = 9.343 × 10−1, -17746.3 -35478.7
ω̂ = 1.345 × 10−7, µ̂ = 5.527 × 10−2,
ν̂1 = 3.636, ν̂2 = 3.969,
α̂ = 4.986 × 10−1

GED α̂1 = 2.730 × 10−2, β̂1 = 9.477 × 10−1, -17781.6 -35553.2
ω̂ = 1.135 × 10−7, µ̂ = 1.652 × 10−6,
â = 1.006

SEPD α̂1 = 2.723 × 10−2, β̂1 = 9.477 × 10−1, -17785.2 -35558.3
ω̂ = 1.132 × 10−7, µ̂ = −6.267 × 10−8,
p̂ = 1.005, α̂ = 4.869 × 10−1

AEPD α̂1 = 2.714 × 10−2, β̂1 = 9.477 × 10−1, -17787.7 -35561.4
ω̂ = 1.179 × 10−7, µ̂ = −9.930 × 10−8,
p̂1 = 9.672 × 10−1, p̂2 = 1.042,
α̂ = 4.777 × 10−1

SNORM α̂1 = 4.526 × 10−2, β̂1 = 9.539 × 10−1, -17431.9 -34853.8
ω̂ = 2.766 × 10−7, µ̂ = 3.761 × 10−2,

λ̂ = 1.004

SGED α̂1 = 5.412 × 10−2, β̂1 = 9.478 × 10−1, -17785.1 -35558.3
ω̂ = 2.252 × 10−7, µ̂ = 3.687 × 10−2,

λ̂ = 1.026, k̂ = 1.005

SSTD0 α̂1 = 5.929 × 10−2, β̂1 = 9.469 × 10−1, -17747.2 -35482.4
ω̂ = 2.091 × 10−7, µ̂ = 3.636 × 10−2,
γ̂ = 9.904 × 10−1, ν̂ = 3.829

SNIG – – –

Table 6: Fitted models and estimates for Gold data.
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Model Parameter estimates − logL AIC

Gaussian α̂1 = 6.133 × 10−2, β̂1 = 9.369 × 10−1, -13751.4 -27494.8
ω̂ = 1.670 × 10−6, µ̂ = 2.694 × 10−2

Student’s t α̂1 = 6.133 × 10−2, β̂1 = 9.369 × 10−1, -13912.2 -27814.3
ω̂ = 8.497 × 10−8, µ̂ = 2.800 × 10−2,
ν̂ = 8.413

SSTD α̂1 = 6.133 × 10−2, β̂1 = 9.369 × 10−1, -13912.2
ω̂ = 8.527 × 10−8, µ̂ = 2.745 × 10−2,
ν̂ = 8.417, α̂ = 4.998 × 10−1

AST α̂1 = 6.133 × 10−2, β̂1 = 9.369 × 10−1, -13912.5 -27811
ω̂ = 8.454 × 10−8, µ̂ = 4.933 × 10−2,
ν̂1 = 9.416, ν̂2 = 7.644,
α̂ = 5.083 × 10−1

GED α̂1 = 2.809 × 10−2, β̂1 = 9.469 × 10−1, -14025.5 -28041
ω̂ = 8.624 × 10−7, µ̂ = 7.075 × 10−7,
â = 1.065

SEPD α̂1 = 2.806 × 10−2, β̂1 = 9.469 × 10−1, -14027.4 -28042.8
ω̂ = 8.588 × 10−7, µ̂ = −4.391 × 10−7,
p̂ = 1.065, α̂ = 4.905 × 10−1

AEPD α̂1 = 2.796 × 10−2, β̂1 = 9.469 × 10−1, -14027.8 -28041.7
ω̂ = 8.743 × 10−7, µ̂ = 5.434 × 10−9,
p̂1 = 1.046, p̂2 = 1.079,
α̂ = 4.866 × 10−1

SNORM α̂1 = 1.004, β̂1 = 6.139 × 10−2, -13751.4 -27492.8
ω̂ = 9.369 × 10−1, µ̂ = 1.664 × 10−6,

λ̂ = 2.746 × 10−2

SGED α̂1 = 5.170 × 10−2, β̂1 = 9.469 × 10−1, -14027.4 -28042.8
ω̂ = 1.581 × 10−6, µ̂ = 2.718 × 10−2,

λ̂ = 1.019, k̂ = 1.065

SSTD0 α̂1 = 4.927 × 10−2, β̂1 = 9.497 × 10−1, -14002.6 -27993.3
ω̂ = 1.708 × 10−6, µ̂ = 2.801 × 10−2,
γ̂ == 1.002, ν̂ = 4.372

SNIG α̂1 = 5.041 × 10−2, β̂1 = 9.486 × 10−1, -14005.9 -27999.9
ω̂ = 8.784 × 10−7, µ̂ = 2.633 × 10−2,

α̂ = 1.042, β̂ = −4.255 × 10−3

Table 7: Fitted models and estimates for Silver data.
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Cocoa Brent West Gold Silver
bean crude Texas

oil intermediate
crude
oil

Best AST AEPD AEPD AEPDSEPD
model

CVM test 0.061 0.094 0.064 0.134 0.060
p-value

KS test 0.059 0.089 0.061 0.223 0.051
p-value

Pearson test 0.052 0.088 0.066 0.185 0.063
p-value

Table 8: Best fitting models.
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Cocoa Brent West Gold Silver
bean crude Texas

oil intermediate
crude
oil

Mean (w = 10) 4.938 × 10−3 5.301 × 10−3 5.453 × 10−3 2.263 × 10−3 4.192 × 10−3

SD (w = 10) – 2.148 × 10−4 2.998 × 10−4 4.842 × 10−5 2.249 × 10−4

VaR0.9 (w = 10) 1.107 × 10−2 8.582 × 10−3 9.510 × 10−3 4.030 × 10−3 8.240 × 10−3

VaR0.99 (w = 10) 6.960 × 10−2 2.221 × 10−2 2.757 × 10−2 1.323 × 10−2 2.659 × 10−2

Mean (w = 50) 3.578 × 10−3 2.350 × 10−3 2.264 × 10−3 9.679 × 10−4 1.758 × 10−3

SD (w = 50) – 1.168 × 10−4 1.558 × 10−4 2.664 × 10−5 1.520 × 10−4

VaR0.9 (w = 50) 9.125 × 10−3 4.239 × 10−3 4.636 × 10−3 2.162 × 10−3 4.804 × 10−3

VaR0.99 (w = 50) 5.701 × 10−2 1.011 × 10−2 1.436 × 10−2 7.968 × 10−3 1.647 × 10−2

Mean (w = 100) 3.450 × 10−3 1.566 × 10−3 1.620 × 10−3 7.047 × 10−4 1.156 × 10−3

SD (w = 100) – 1.276 × 10−4 1.408 × 10−4 3.206 × 10−5 1.465 × 10−4

VaR0.9 (w = 100) 8.968 × 10−3 4.072 × 10−3 4.309 × 10−3 1.993 × 10−3 4.397 × 10−3

VaR0.99 (w = 100) 5.439 × 10−2 9.738 × 10−3 1.278 × 10−2 7.253 × 10−3 1.374 × 10−2

Table 9: Mean absolution deviations as measures of goodness of the best fitting models.
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Cocoa Brent West Gold Silver
bean crude Texas

oil intermediate
crude
oil

Mean (w = 10) 4.431 × 10−5 4.759 × 10−5 5.172 × 10−5 9.232 × 10−6 3.393 × 10−5

SD (w = 10) – 1.119 × 10−7 2.909 × 10−7 8.670 × 10−9 3.513 × 10−7

VaR0.9 (w = 10) 2.711 × 10−4 1.278 × 10−4 1.573 × 10−4 2.957 × 10−5 1.309 × 10−4

VaR0.99 (w = 10) 7.435 × 10−3 6.723 × 10−4 9.940 × 10−4 2.456 × 10−4 1.001 × 10−3

Mean (w = 50) 2.027 × 10−5 1.041 × 10−5 9.818 × 10−6 1.552 × 10−6 5.380 × 10−6

SD (w = 50) – 3.127 × 10−8 6.773 × 10−8 2.226 × 10−9 1.104 × 10−7

VaR0.9 (w = 50) 4.239 × 10−3 3.409 × 10−5 3.855 × 10−5 8.698 × 10−6 5.053 × 10−5

VaR0.99 (w = 50) 1.011 × 10−2 1.572 × 10−4 3.233 × 10−4 1.011 × 10−4 4.454 × 10−4

Mean (w = 100) 1.875 × 10−5 5.754 × 10−6 5.493 × 10−6 7.764 × 10−7 2.875 × 10−6

SD (w = 100) – 4.214 × 10−8 6.420 × 10−8 3.385 × 10−9 8.256 × 10−8

VaR0.9 (w = 100) 2.229 × 10−4 3.356 × 10−5 3.386 × 10−5 8.056 × 10−6 4.515 × 10−5

VaR0.99 (w = 100) 5.409 × 10−3 1.478 × 10−4 2.679 × 10−4 8.758 × 10−5 3.261 × 10−4

Table 10: Mean squared errors as measures of goodness of the best fitting models.
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Figure 1: Histogram of the five data sets.
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Figure 2: Boxplots of VaR0.9, VaR0.95, VaR0.975 and VaR0.99 for Cocoa bean, Brent crude
oil, West Texas intermediate crude oil, Gold and Silver.

26



C
ocoa

C
rude B

C
rude W

G
old

S
ilver

−0.020 −0.015 −0.010 −0.005 0.000

Expected shortfall (p=0.9)

C
ocoa

C
rude B

C
rude W

G
old

S
ilver

−0.020 −0.015 −0.010 −0.005 0.000

Expected shortfall (p=0.95)

C
ocoa

C
rude B

C
rude W

G
old

S
ilver

−0.020 −0.015 −0.010 −0.005 0.000

Expected shortfall (p=0.975)

C
ocoa

C
rude B

C
rude W

G
old

S
ilver

−0.020 −0.015 −0.010 −0.005 0.000

Expected shortfall (p=0.99)

F
igu

re
3:

B
ox
p
lots

of
E
S
0
.9 ,

E
S
0
.9
5 ,

E
S
0
.9
7
5
an

d
E
S
0
.9
9
for

C
o
coa

b
ean

,
B
ren

t
cru

d
e
oil,

W
est

T
ex
as

in
term

ed
iate

cru
d
e
oil,

G
old

an
d
S
ilver.

27



0 1000 2000 3000 4000 5000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

Day

E
xp

ec
te

d 
vo

la
til

ity

0 1000 2000 3000 4000 5000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

0 1000 2000 3000 4000 5000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

0 1000 2000 3000 4000 5000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

Crude B
Crude W
Gold
Silver

Figure 4: Expected volatility versus time for Brent crude oil, West Texas intermediate crude
oil, Gold and Silver.
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