
Estimation methods for expected shortfall

1 Introduction

Value at Risk, the most popular measure for financial risk, has been widely used by financial
institutes around the world since it was proposed. However, value at risk has several shortcomings.
For instance, Artzner et al. (1997,1999) have shown that value at risk not only ignores any loss
beyond the value at risk level and also can not satisfy one of the axioms of coherence as it is not
sub-additive. Furthermore, Yamai and Yoshiba (2002) have stated another two disadvantages. One
is that rational investors wishing to maximize expected utility may be misled by the information
offered by value at risk. The other one is that value at risk is hard to use when investors want to
optimize their portfolios. In order to deal with the conceptual problems caused by value at risk,
Artzner et al. (1999) introduced a new measure of financial risk referred to as the expected shortfall.
It is defined as follows.

Let {Xt, t = 1, 2, . . . , n} denote a stationary financial series with marginal distribution function
F and marginal density function f . The Value at Risk (abbreviated as VaR) for a given probability
p is defined as

VaRp(X) = inf {u : F (u) ≥ p} .

The expected shortfall (abbreviated as ES) for a given probability p is defined as

ESp(X) = (1/p)

[
E (XI {X ≤ VaRp(X)}) + pVaRp(X)

−VaRp(X) Pr (X ≤ VaRp(X))

]
, (1)

where I{·} denotes the indicator function. As we can see, both measures are closely related to each
other.

Applications of expected shortfall have been extensive. Some recent applications and applica-
tion areas include: repowering of existing coastal stations to augment water supplies in Southern
California (Sims and Kamal, 1996); risk management of basic social security fund in China (An et
al., 2005); futures clearinghouse margin requirements (Cotter and Dowd, 2006); reward-risk stock
selection criteria (Rachev et al., 2007); Shanghai stock exchange (Li and Li, 2006, Fan et al., 2008);
extreme daily changes in US Dollar London inter-bank offer rates (Krehbiel and Adkins, 2008); ex-
change rate risk of CNY (Wang and Wu, 2008); financial risk associated with US movie box office
earnings (Bi and Giles, 2007, Bi and Giles, 2009); operational risk of Chinese commercial banks
(Gao and Li, 2009, Song et al., 2009); cash flow risk measurement for Chinese non-life insurance
industry (Teng and Zhang, 2009); risk contribution of different industries in China’s stock market
(Liu et al., 2008; Yu and Tao, 2008, Fan et al., 2010); operational risk in Taiwanese commercial
banks (Lee and Fang, 2010); the exchange rate risk of Chinese Yuan (Wang et al., 2010); extreme
dependence between European electricity markets (Lindstrom and Regland, 2012).
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The aim of this thesis is to review known methods for estimating (1). The review of methods is
divided as follows: general properties (Chapter 2), parametric methods (Chapter 3), nonparametric
methods (Chapter 4), semiparametric methods (Chapter 5), and computer software (Chapter 6).
A paper based on this material has been submitted to the journal, Econometric Reviews.

The review of value of risk presented here is by no means comprehensive. For a fuller account
of the theory and applications of value risk, we refer the readers to the following books: Hafner
(2004, Chapter 7), Ardia (2008, Chapter 6), Wüthrich et al. (2010, Chapter 3), and Ruppert (2011,
Chapter 19).

2 General properties

2.1 Basic properties

Let X and Y denote real random variables. Let

x+ =

{
x, if x > 0,
0, if x ≤ 0

, x− = (−x)+.

Also let

x(p) = inf {x ∈ R : Pr(X ≤ x) ≥ p} ,

x(p) = inf {x ∈ R : Pr(X ≤ x) > p} .

Some basic properties of expected shortfall are:

1. if E[X−] <∞ and X is stochastically greater than Y then ESp(X) > ESp(Y );

2. if E[X−] < ∞ then X ≥ 0 then ESp(X) ≥ 0 for all p (Proposition 3.1, Acerbi and Tasche,
2002);

3. if E[X−] < ∞ then ESp(λX) = λESp(X) for all λ > 0 (Proposition 3.1, Acerbi and Tasche,
2002);

4. if E[X−] <∞ then ESp(X+k) = λESp(X)−k for all −∞ < k <∞ (Proposition 3.1, Acerbi
and Tasche, 2002);

5. if E[X−] <∞ then ESp(X) is convex, that is ESp(λX+(1−λ)Y ) ≤ λESp(X)+(1−λ)ESp(Y ).

6. for E[X−] < ∞, any α ∈ (0, 1) and any e > 0 with α + e < 1, ESα+e(X) ≥ ESα(X)
(Proposition 3.4, Acerbi and Tasche, 2002);

7. if E[X−] < ∞ and E[Y −] < ∞ then ESp(X + Y ) ≤ ESp(X) + ESp(Y ) for any p ∈ (0, 1)
(Proposition A.1, Acerbi and Tasche, 2002);

8. if X is integrable and if p ∈ (0, 1) then

ESp(X) = (1/p) [E (XI{X ≤ s}) + sp− sPr(X ≤ s)]

for s ∈ [x(p), x
(p)] (Corollary 4.3, Acerbi and Tasche, 2002);
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9. if X is integrable and if p ∈ (0, 1) then

ESp(X) = (1/p) [E (XI{X < s}) + sp− sPr(X < s)]

for s ∈ [x(p), x
(p)] (equation (4.12), Acerbi and Tasche, 2002);

10. if E[X−] < ∞ then ESp(X) ≥ E
[
X | | ≤ x(p)

]
≥ E

[
X | | ≤ x(p)

]
(Corollary 5.2, Acerbi and

Tasche, 2002);

11. if E[X−] < ∞ then ESp(X) ≥ inf {E[X|A] : Pr(A) > p} ≥ E
[
X | | ≤ x(p)

]
(Corollary 5.2,

Acerbi and Tasche, 2002);

12. if E[X−] <∞ then ESp(X) = p
∫ p
0 x(u)du (equation (3.3), Acerbi and Tasche, 2002).

2.2 Upper comonotonicity

Let Xi denote the loss of the ith asset. Let X = (X1, . . . , Xn) with joint cdf F (x1, . . . , xn). Let
T = X1 + · · ·+Xn. Suppose all random variables are defined on the probability space (Ω,F ,Pr).
Then a simple formula for the expected shortfall of T in terms of expected shortfalls of Xi can be
established if X is upper comonotonic (Cheung, 2009).

We now define what is meant by upper comonotonicity. A subset C ⊂ Rn is said to be comono-
tonic if (ti − si)(tj − sj) ≥ 0 for all i and j whenever (t1, . . . , tn) and (s1, . . . , sn) belong to C. The
random vector is said to be comonotonic if it has a comonotonic support.

Let N the collection of all zero probability sets in the probability space. Let Rn = Rn ∪
(−∞, . . . ,−∞). For a given (a1, . . . , an) ∈ Rn, let U(a) denote the upper quadrant of (a1,∞) ×
· · · × (an,∞) and let L(a) denote the lower quadrant of (−∞, a1] × · · · × (−∞, an]. Let R(a) =
Rn\(U(a) ∪ L(a)).

Then the random vector X is said to be upper comonotonic if there exist a ∈ Rn and a zero
probability set N(a) ∈ N such that

(a) {X(w) | w ∈ Ω\N(a)} ∩ U(a) is a comonotonic subset of Rn;

(b) Pr(X ∈ U(a)) > 0;

(c) {X(w) | w ∈ Ω\N(a)} ∩R(a) is an empty set.

If these three conditions are satisfied then the expected shortfall of T can be expressed as

ESp(T ) =

n∑
i=1

ESp (Xi) (2)

for p ∈ (F (a∗1, . . . , a
∗
n), 1) and a∗ = (a∗1, . . . , a

∗
n) a comonotonic threshold as constructed in Lemma

2 of Cheung (2009).
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2.3 Risk decomposition

Suppose a portfolio is made up of n assets. Then portfolio loss, say X, can be written as X =
w1X1 + · · · + wnXn, where Xi denotes the loss for asset i and wi denotes the weight for asset i.
Then it can be shown (Fan et al., 2012)

ESp(X) =
n∑
i=1

∂ESp(X)

∂wi
wi. (3)

This is known as risk decomposition.

2.4 Hürlimann’s inequalities

Let X denote a random variable defined over [A,B], −∞ ≤ A < B ≤ ∞ with mean µ, and variance
σ. Hürlimann (2002) provides various upper bounds for ESp(X): for p ≤ σ2/{σ2 + (B − µ)2} then

ESp(X) ≤ B;

for σ2/{σ2 + (B − µ)2} ≤ p ≤ (µ−A)2/{σ2 + (µ−A)2} then

ESp(X) ≤ µ+

√
1− p
p

σ;

for p ≥ (µ−A)2/{σ2 + (µ−A)2} then

ESp(X) ≤ µ+ (µ−A)
1− p
p

.

Now suppose X is a random variable defined over [A,B], −∞ ≤ A < B ≤ ∞ with mean µ,
variance σ, skewness γ and kurtosis γ2. In this case, Hürlimann (2002) provides the following upper
bound for ESp(X):

ESp(X) ≤ µ+ xpσ,

where xp is the 100(1− p) percentile of the standardized Chebyshev-Markov maximal distribution.
The latter is defined as the root of

p (xp) = p

if p ≤ (1/2){1− γ/
√

4 + γ2} and as the root of

p (ψ (xp)) = 1− p

if p > (1/2){1− γ/
√

4 + γ2}, where

p(u) =
∆

q2(u) + ∆ (1 + u2)
,

ψ(u) =
1

2

[
A(u)−

√
A2(u) + 4q(u)B(u)

q(u)

]
,
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where ∆ = γ2 − γ2 + 2, A(u) = γq(u) + ∆u, B(u) = q(u) + ∆ and q(u) = 1 + γu− u2.

Hürlimann (2003) provided further inequalities for expected shortfall based on stop-loss order-
ing: a random variable X is said to be less than or equal to another random variable Y with respect
to stop-loss order if

∫∞
x [1− FX(t)]dt ≤

∫∞
x [1− FY (t)]dt for all x. Given this ordering, Hürlimann

(2003) showed that ESp(X) ≤ ESp(Y ) for all p. Similarly, if Xmin is less than or equal to X and if
X is less than or equal to Xmax with respect to stop-loss ordering then Hürlimann (2003) showed
that ESp (Xmin) ≤ ESp(X) ≤ ESp (Xmax) for all p.

3 Parametric methods

3.1 Gaussian distribution

If X1, X2, . . . , Xn are observations from a Gaussian distribution with mean µ and variance σ2 then
ES can be estimated by

ÊSα = E
[
X | X > sΦ−1(α)

]
where s denotes the sample standard deviation

s =

√√√√ 1

n

n∑
i=1

(
Xi −X

)2
and X is the sample mean.

3.2 Johnson family method

An approximation for expected shortfall suggested by Simonato (2011) is based on the Johnson
family of distributions due to Johnson (1949).

Let Y denote a standard normal random variable. A Johnson random variable can be expressed
as

Z = c+ dg−1
(
Y − a
b

)
,

where

g−1 (u) =


exp(u), for the lognormal family,
[exp(u)− exp(−u)] /2, for the unbounded family,
1/ [1 + exp(−u)] , for the bounded family,
u, for the normal family.

Here, a, b, c and d are unknown parameters can be determined, for example, by the method of
moments, see Hill et al. (1976).

With the notation as above, the approximation for expected shortfall is

ESp =
1

p

∫ K

−∞

[
c+ dg−1

(
y − a
b

)]
φ(y)dy,
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where

K = a+ bg

(
kJ − c
d

)
,

and

kJ = c+ dg−1
(

Φ−1(p)− a
b

)
,

where φ(·) denotes the standard normal pdf and Φ−1(·) denotes the standard normal quantile
function.

3.3 Azzalini’s skewed normal distribution

The major weakness of the normal distribution is its inability to model skewed data. Several skewed
extensions of the normal distribution have been proposed in the literature. The most popular and
the most widely used of these is the skew-normal distribution due to Azzalini (1985). The pdf of
this distribution is given by

fX(x) =
2

σ
φ

(
x− µ
σ

)
Φ

(
λ
x− µ
σ

)
(4)

for x ∈ R, λ ∈ R, µ ∈ R and σ > 0, where φ(x) is the standard normal pdf and Φ(x) is the standard
normal cdf. The cdf corresponding to (4) is

FX(x) = Φ

(
x− µ
σ

)
− 2T

(
x− µ
σ

, λ

)
,

where

T (h, a) =
1

2π

∫ a

0

exp
{
−h2

(
1 + x2

)
/2
}

1 + x2
dx

is Owen’s T function (Owen, 1956). Bernardi (2012) has shown that the expected shortfall of a
skew normal random variable X is

ESp(X) = µ+
σ
√

2

p
√
π

[
λΦ (zp)−

√
2πφ (yp) Φ (λyp)

]
,

where δ = λ/
√

1 + λ2, zp =
√

1 + λ2yp, yp = (xp − µ) /σ and xp satisfies FX (xp) = p.

3.4 Azzalini’s skewed normal mixture distribution

Bernardi (2012) has also considered a mixture of skew normal distribution. Let X be a random
variable with the pdf

fX(x) =
2

σ

L∑
i=1

ηiφ

(
x− µi
σi

)
Φ

(
λi
x− µi
σi

)
, (5)
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where the weights ηi are non-negative and sum to one. Bernardi (2012) shows that the expected
shortfall of X can be expressed as

ESp(X) =

L∑
i=1

πi

{
µi +

σi
√

2

p
√
π

[
λiΦ (zp,i)−

√
2πφ (yp,i) Φ (λiyp,i)

]}
,

where δi = λi/
√

1 + λ2i , zp,i =
√

1 + λ2i yp,i, yp,i = (xp,i − µi) /σi and xp,i is the root of

Φ

(
x− µi
σi

)
− 2T

(
x− µi
σi

, λi

)
= p.

Furthermore,

πi =
ηi
p

[
Φ

(
xp − µi
σi

)
− 2T

(
xp − µi
σi

, λi

)]
,

where xp is the root of FX (xp) = p.

3.5 Student’s t distribution

Let X denote a Student’s t random variable with location parameter −∞ < µ <∞, scale parameter
c > 0 and degrees of freedom n > 0; that is, X has the pdf

fX(x) =
n−1/2

σB (n/2, 1/2)

(
1 +

(x− µ)2

n

)−(n+1)/2

.

Let qp denote the pth quantile of the standard Student’s t distribution; that is, qp is the root
Pr(X ≤ qp) = p when µ = 0 and σ = 1. Broda and Paolella (2011, Section 2.2.2) show the
expected shortfall for X can be expressed as

ESp(X) =
1

p
Ttail (qp, n) ,

where

Ttail (c, n) = − n−1/2

σB (n/2, 1/2)

(
1 +

c2

n

)−(n+1)/2
n+ c2

n− 1
.

3.6 Azzalini’s skewed t distribution

Let a random variable X follow Azzalini and Capitanio (2003)’s skewed t distribution given by the
pdf

fX(x) = 2ψm(x)Ψm+1

(
λx

√
m+ 1

x2 +m

)
for −∞ < x <∞ and m > 0, where ψm(·) and Ψm(·) denote, respectively, the pdf and the cdf of a
Student’s t random variable with m degrees of freedom. Broda and Paolella (2011, Section 2.2.2)
also show the expected shortfall for X can be expressed as

ESp(X) = 2

∫ q

−∞
xψm(x)Ψm+1

(
λx

√
m+ 1

x2 +m

)
dx

for q satisfying FX(c) = p.
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3.7 Jones and Faddy’s skewed t distribution

Let a random variable X follow Jones and Faddy (2003)’s skewed t distribution given by the pdf

fX(x) = C

(
1 +

x

yx

)a+1/2(
1− x

yx

)b+1/2

,

where yx = (a+ b+x2)1/2 and 1/C = B(a, b)(a+ b)1/22a+b−1. Let qp denote the pth quantile of X.
Broda and Paolella (2011, Section 2.2.2) also show the expected shortfall for X can be expressed
as

ESp(X) =

√
a+ b

B(a, b)

{
By(a+ 1/2, b− 1/2)− 1

2
By(a− 1/2, b− 1/2)

}
where y = 1/2 + c(c2 + a+ b)−1/2/2, c satisfies FX(c) = p and

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1dt

denotes the incomplete beta function.

3.8 Generalized asymmetric t distribution

Let a random variable X follow Jones and Faddy (2003)’s skewed t distribution given by the pdf

fX(x) = C


(

1 +
(−xθ)d

ν

)−ν−1/d
, if x < 0,(

1 +
(x/θ)d

ν

)−ν−1/d
, if x ≥ 0,

where d > 0, ν > 0, θ > 0 and 1/C = (θ−1 + θ)d−1ν1/dB(1/d, ν). Let qp denote the pth quantile of
X. Broda and Paolella (2011, Section 2.2.2) also show the expected shortfall for X can be expressed
as

ESp(X) = −ν1/d 1 + θ2

θ + θ3
BL(ν − 1/d, 2/d)

BL(ν, 1/d)
,

where L = ν/{ν + (−qpθ)d}.

3.9 Noncentral t distribution

A random variable X follows the noncentral t distribution if its pdf is given by

fX(x) = exp
(
−µ2/2

) Γ ((k + 1)/2) kk/2√
πΓ(k/2)

(
k + x2

)−(k+1)/2
A(x)

for −∞ < x < ∞, where k > 0 denotes the degree of freedom parameter, −∞ < µ < ∞ denotes
the non-centrality parameter and

A(x) =
∞∑
i=0

(µx)i

i!

(
2

x2 + k

)i/2 Γ ((k + i+ 1)/2)

Γ((k + 1)/2)
.
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Broda and Paolella (2011, Section 2.2.2) also show the expected shortfall for X can be expressed
as

ESp(X) = exp
(
−µ2/2

) Γ ((k + 1)/2) kk/2√
πΓ(k/2)

∫ q

−∞
x
(
k + x2

)−(k+1)/2
A(x)dx

for q satisfying FX(c) = p. The noncentral t distribution has received much applications in risk
management since the paper by Harvey and Siddique (1999).

3.10 Stable distribution

A random variable, say S, is said to have stable distribution with tail index parameter 1 < α ≤ 2
and asymmetry parameter β ∈ [−1, 1] if its characteristic function is given by

lnφX(t) = −|t|α
[
1− iβsign(t) tan

πα

2

]
,

where i =
√
−1 is the imaginary unit. We write S ∼ Sα,β(0, 1). Let X denote the location-scale

variant X = µ+ σS and let qp = F−1S (p) denote the pth quantile of S. Broda and Paolella (2011,
Section 2.2.3) also show the expected shortfall for X can be expressed as

ESp(X) =
1

p
Stoy (qp, α, β) ,

where

Stoy(c, α, β) =
α

α− 1

| c |
π

∫ π/2

−θ0
g(θ) exp

{
− | c |α/(α−1) v(θ)

}
dθ,

g(θ) =
sin
{
α
(
θ0 + θ

)
− 2θ

}
sin
{
α
(
θ0 + θ

)} − α cos2 θ

sin2
{
α
(
θ0 + θ

)} ,
v(θ) =

{
cos
(
αθ0
)}1/(α−1) [ cos θ

sin
{
α
(
θ0 + θ

)}]α/(α−1) cos
{
α
(
θ0 + θ

)
− θ
}

cos θ
,

θ0 =
1

α
arctan

{
β tan

(πα
2

)}
, β = sign(c)β.

3.11 Generalized hyperbolic distribution

A random variable X follows the generalized hyperbolic distribution if its has the pdf

fX(x) =
(η/δ)λ√

2πKλ(δη)

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
{√

δ2 + (x− µ)2/α
}1/2−λ exp [β(x− µ)] ,

where µ ∈ R is the location parameter, α ∈ R is the shape parameter, β ∈ R is the asymmetry
parameter, δ ∈ R is the scale parameter, λ ∈ R, η =

√
α2 − β2, and Kν(·) is the modified Bessel
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function of order ν. Broda and Paolella (2011, Section 2.2.4) also show the expected shortfall for
X can be expressed as

ESp(X) =
(η/δ)λ√

2πKλ(δη)

∫ q

−∞
x
Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
{√

δ2 + (x− µ)2/α
}1/2−λ exp [β(x− µ)] dx

for q satisfying FX(c) = p.

3.12 Normal mixture distribution

Broda and Paolella (2011, Section 2.3.2) also derive a formula for expected shortfall for a k-
component normal mixture. Let X denote a random variable with the cdf

FX(x) =
k∑
i=1

λiΦ

(
x− µi
σi

)
,

where λi are non-negative weights summing to one, −∞ < µi <∞ and σi > 0, where Φ(·) denotes
the standard normal cdf. Let qp denote the quantile defined by FX(qp) = p and let cj = (qp−µj)/σj .
Broda and Paolella (2011, Section 2.3.2) show that the expected shortfall of X can be expressed as

ESp(X) =
k∑
i=1

λiΦ (ci)

p

{
µi − σi

φ (ci)

Φ (ci)

}
.

3.13 Stable mixture distribution

Let a random variable X represent a k-component normal mixture of symmetric stable random
variables with non-negative weights λj , location parameters µj , scale parameters σj and zero asym-
metry parameters. Let qp denote the pth quantile of X and let cj = (qp − µj)/σj . Broda and
Paolella (2011, Section 2.3.3) also show that the expected shortfall of X can be expressed as

ESp(X) =
1

p

k∑
i=1

λi [σiStoy (ci, αi) + µiFS (ci)] ,

where S ∼ Sα,0(0, 1).

3.14 Student’s t mixture distribution

Let a random variable X represent a k-component normal mixture of Student’s t random variables
with non-negative weights λj , location parameters µj , scale parameters σj and degrees of freedom
νj . Let qp denote the pth quantile of X and let cj = (qp−µj)/σj . Broda and Paolella (2011, Section
2.3.4) also show that the expected shortfall of X can be expressed as

ESp(X) =
1

p

k∑
i=1

λi

[
σiTtail (ci, νi) +

µiν
−1/2
i

B (νi/2, 1/2)

∫ ci

−∞

(
1 +

x2

νi

)−(νi+1)/2

dx

]
.
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3.15 Generalized Pareto distribution

Suppose the financial observations of interest, say X1, X2, . . . , Xn, follow the generalized Pareto
distribution given by the cdf

F (x) = 1−
{

1 + ξ
x− u
σ

}−1/ξ
,

where either u < x < ∞ (ξ ≥ 0) or u < x < u− σ/ξ (ξ < 0). In this case, Pattarathammas et al.
(2008) show that the expected shortfall can be expressed as

ESp(X) =
1

1− ξ

{
u+

σ

ξ

[{
n(1− p)
Nu

}−ξ
− 1

]}
+
β − ξu
1− ξ

where Nu is the number of observations exceeding u. An estimate of ESp(X) can be obtained by
replacing the parameters, ξ and σ, by their maximum likelihood estimators.

3.16 Asymmetric exponential power distribution

A random variable X is said to have the asymmetric exponential power distribution if its pdf is
given by

f(x) =


α

α∗
K (p1) exp

[
− 1

p1

∣∣∣ x
2α∗

∣∣∣p1] , if x ≤ 0,

1− α
1− α∗

K (p2) exp

[
− 1

p2

∣∣∣∣ x

2 (1− α∗)

∣∣∣∣p2] , if x > 0,

where 0 < α < 1 is the skewness parameter, p1 > 0, p2 > 0, K(v) = 1/[2p1/pΓ(1 + 1/p)],
α∗ = αK(p1)/[αK(p1) + (1− α)K(p2)], and

α

α∗
K (p1) =

1− α
1− α∗

K (p2) = αK (p1) + (1− α)K (p2) = B.

For a standard asymmetric exponential power random variable, Zhu and Galbraith (2011) have
shown that the expected shortfall of X is given by

ESp(X) =
2

F (q)

{
− αα∗E (p1)

[
1−G

(
h1(q),

2

p1

)]

+ (1− α) (1− α∗)E (p2)G

(
h2(q),

2

p2

)}
,

where F (·) denotes the cdf of X, q is the root of F (q) = p, and

E(p) = p1/pΓ(2/p)/Γ(1/p),

G(x, a) = γ(a, x)/Γ(a),

h1(q) =
1

p1

∣∣∣∣min(q, 0)

2α∗

∣∣∣∣p1 , h1(q) =
1

p2

∣∣∣∣max(q, 0)

2 (1− α∗)

∣∣∣∣p2 ,
where γ(a, x) =

∫ x
0 t

a−1 exp(−t)dt denotes the incomplete gamma function.

11



3.17 Generalized asymmetric Student’s t distribution

A random variable X is said to have the generalized asymmetric Student’s t distribution if its pdf
is given by

f(x) =


α

α∗
K (v1)

[
1 +

1

v1

( x

2α∗

)2]− v1+1
2

, if x ≤ 0,

1− α
1− α∗

K (v2)

[
1 +

1

v2

(
x

2 (1− α∗)

)2
]− v2+1

2

, if x > 0,

where 0 < α < 1 is the skewness parameter, v1 > 0, v2 > 0, K(v) = Γ((v + 1)/2)/[
√
πvΓ(v/2)],

α∗ = αK(v1)/[αK(v1) + (1− α)K(v2)], and

α

α∗
K (v1) =

1− α
1− α∗

K (v2) = αK (v1) + (1− α)K (v2) = B.

For a standard generalized asymmetric Student’s t random variable, Zhu and Galbraith (2009) have
shown that the expected shortfall of X is given by

ESp(X) =
4B

F (q)

{
(α∗)2

v1
v1 − 1

[
1 +

1

v1

(
min(q, 0)

2α∗

)2
](1−v1)/2

+ (1− α∗)2 v2
v2 − 1

[1 +
1

v2

(
max(q, 0)

2 (1− α∗)

)2
](1−v2)/2

− 1

},
where F (·) denotes the cdf of X and q is the root of F (q) = p.

3.18 Mittnik and Paolella’s generalized t distribution

Mittnik and Paolella (2000)’s generalized t distribution has the pdf specified by

f(x) = I(x < 0)C

[
1 +

(−xψ)d

ν

]−(ν+1/2)

+ I(x ≥ 0)C

[
1 +

(x/ψ)d

ν

]−(ν+1/2)

where d > 0, ν > 0, ψ > 0 and C =
[
(ψ + 1/ψ)d−1ν1/dB(1/d, ν)

]−1
. Let X denote a random

variable having this distribution. Taylor (2008a) has shown that the expected shortfall of X is
given by

ESp(X) =


−Cν

2/d

pψ2d
BL (ν − 1/d, 2/d) , if p ≤ 1/2,

Cν2/dψ

(1− p)d
[B (2/d, ν − 1/d)−BU (2/d, ν − 1/d)] , if p > 1/2,

where L = ν/
{
ν + (−qψ)d

}
, U = (q/ψ)d/

{
ν + (q/ψ)d

}
, q is the pth quantile of X and

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1dt

is the incomplete beta function.
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3.19 Asymmetric Laplace distribution

Lu et al. (2010)’s asymmetric Laplace distribution has the pdf specified by

f(x) =
b

τ
exp

[
− b
τ
| x− τ |

(
1

c
I(x < γ) +

1

1− c
I(x > γ)

)]
,

where b =
√
c2 + (1− c)2, γ is a location parameter, τ is a scale parameter, and c is a shape

parameter. Let X denote a random variable having this pdf. Chen et al. (2012) have shown that
the expected shortfall of X is given by

ESp =
c

b

[
ln
(p
c

]
− 1
]

for 0 ≤ p < c.

3.20 Elliptical distribution

Suppose a portfolio loss can be expressed as X = δ1X1 + · · · + δnXn = δTX, where δi are non-
negative weights summing to one, Xi are assets losses, δ = (δ1, . . . , δn), and X = (X1, . . . , Xn). Sup-

pose too that X has the elliptical distribution given by the pdf f(x) =| Σ |−1 g
(

(x− µ)T Σ−1 (x− µ)
)

.

In this case, Kamdem (2005) shows that the expected shortfall of X can be expressed as

ESp(X) = −δµ +
∣∣δTΣδ

∣∣1/2 π(n−1)/2

pΓ ((n+ 1)/2)

∫ ∞
q2

(
u− q2

)(n−1)/2
g(u)du, (6)

where q is the root of

π(n−1)/2

Γ ((n+ 1)/2)

∫ ∞
q

∫ ∞
z

(u− z)(n−3)/2g(u)dudz = p.

The multivariate t distribution mean vector µ, covariance matrix Σ and degrees of freedom ν
is a member of the elliptical family. For this particular case, Kamdem (2005) shows that (6) can
be reduced to

ESp(X) = −δµ + a
∣∣δTΣδ

∣∣1/2 ,
where a is the root of

a =
Γ ((ν − 1)/2) νν/2

p
√
πΓ(ν/2)

(
ν + q2

)−(ν+1)/2
,

where q is the root of

νν/2Γ ((ν + 1)/2)

ν
√
πsνΓ(ν/2)

2F1

(
1 + ν

2
,
ν

2
; 1 +

ν

2
;− ν

s2

)
= p,

where 2F1(a, b; c;x) denotes the Gauss hypergeometric function.
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3.21 Multivariate gamma distribution

Suppose a portfolio loss can be expressed as S = X1+ · · ·+Xn, where Xi are assets losses. Suppose
too that (X1, . . . , Xn) has Mathai and Moschopoulos (1991)’s multivariate gamma distribution;
that is,

Xj =
α0

αj
Y0 + Yj

for j = 1, 2, . . . , n, where Yj , j = 0, 1, . . . , n are independent gamma random variables with shape
parameters γj and scale parameters αj . According to Mathai and Moschopoulos (1991, Theorem
2.1), the pdf of S can be expressed as

fS(s) =
∞∑
k=0

pkg (s|γ + k, αmax) ,

where αmax = max(α1, . . . , αn), γ = γ1 + · · ·+ γn, pk = Cδk, k = 0, 1, . . ., where

C =
n∏
j=1

(
αj
αmax

)γj
,

∆j,i =

(
1− αj

αmax

)i
, j = 1, 2, . . . , n, i = 1, 2, . . . , k,

δk = k−1
k∑
i=1

n∑
j=1

γj∆j,iδk−i, k > 0

and δ0 = 1. The cdf of S is a gamma random variable with shape parameter γ + K and scale
parameter αmax, where K is a discrete random variable with pmf pk = Cδk, k = 0, 1, . . ..

Furman and Landsman (2005) derive an expression for the expected shortfall of S. Let V an
independent convolution of a gamma random variable with shape parameter γ + K + 1 and scale
parameter αmax and another gamma random variable with shape parameter γ0 and scale parameter
α0/η. Let Zt, t = 0, 1, . . . , n denote a gamma random variable with unit shape parameter and scale
parameter αt. Let Zmax denote the Zt for which αt = max(α0, αmax). Further, let EK(·) and EV (·)
denote the expectations with respect to K and V , respectively. Then, according to Furman and
Landsman (2005, Theorem 1), the expected shortfall of S can be expressed as

ESp(S) = η
γ0
α0

1− FS+ηZ0 (sp)

1− FS (sp)
+

γ

αmax

1− FS+Zmax (sp)

1− FS (sp)

+
EK

(
KEV

(
Γ−1 (γ +K + V + 1) γ (γ +K + V + 1, αmax)

))
αmaxFS (sp)

,

where sp satisfies FS(sp) = p and γ(a, x) =
∫ x
0 t

a−1 exp(−t)dt denotes the incomplete gamma
function.

3.22 Bayesian approach

Let X1, X2, . . . , Xn denote the financial series of interest and let PL(·) denote the profit and loss
function associated with the series. Suppose the series is fitted to a model parameterized by θ,
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where θ has a prior pdf π(θ). Then an algorithm for Bayesian computation of expected shortfall
due to Hoogerheide and van Dijk (2008) is

1. simulate θi, i = 1, 2, . . . ,m from the posterior distribution of θ. This can be performed using
either Gibbs sampling (Geman and Geman, 1984)) or the Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970);

2. simulate future values of the financial series, say X∗i = {Xi
n+1, X

i
n+2, . . . , X

i
n+τ}, i = 1, 2, . . . ,m

given the θi and the past observations;

3. compute the profit and loss function values PL(X∗i), i = 1, 2, . . . ,m and order them in
ascending order to yield PL(j), j = 1, 2, . . . ,m;

4. estimate expected shortfall as

ÊSp =
1

n(1− p)

n(1−p)∑
j=1

PL(j).

Hoogerheide and van Dijk (2008) also propose a variant of this algorithm incorporating importance
sampling.

3.23 Random walks

Suppose that the financial returns {Xt} is a random walk; that is, Xt = Xt−h + rt, where rt are
independent normal random variables with mean µ and variance σ2. Let

µ̂ =
1

n

n∑
i=1

rih, σ̂ =

√√√√ 1

n− 1

n∑
i=1

(rih − µ̂)2, σ̂k =
√
kσ̂, µ̂k = kµ̂.

Let rki =
∑k−1

i=0 rt−ih denote the k-period returns. With this notation, Embrechts et al. (2005)
show that the expected shortfall of k-period returns can be estimated by

ÊSp =
1

p
exp

(
µ̂k +

(
σ̂k
)2

2

)
Φ
(

Φ−1(p)− σ̂k
)
− 1,

where Φ(·) denotes the standard normal cdf.

3.24 Autoregressive process

Suppose that the financial returns {Xt} is an autoregressive process; that is,

Xt =

q∑
i=1

aiXt−ih + et,
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or alternatively

Xt =

q∑
i=1

aiXt−ih + et,

where ai are parameters with | ai | summing to a number less than one, ei are independent
normal random variables with mean µ0 + µ1t and constant variance σ2, Xt = Xt − µt, µ =
µ1/(1 − a1 − · · · − ap), and et are independent normal random variables with zero mean and
constant variance σ2. Let q̂, âi and σ̂ denote the maximum likelihood estimates. Let

µ̂k = khµ̂+ m̂, σ̂k = σ̂

√√√√k−1∑
j=0

δ2j ,

where

µ̂ = (snh − s0) /(nh),

m̂ = ŝt+kh − s̃t,

δj =

j∑
i=1

âiI(i = j),

where âi = 0 for i > q̂ and ŝt+kh satisfy

ŝt+jh =

q̂∑
i=1

âiŝt+(j−i)h, j = 1, 2, . . . , k,

ŝu = su, u ≤ t.

With this notation, Embrechts et al. (2005) show that the expected shortfall of k-period returns
can be estimated by

ÊSp =
1

p
exp

(
µ̂k +

(
σ̂k
)2

2

)
Φ
(

Φ−1(p)− σ̂k
)
− 1,

where Φ(·) denotes the standard normal cdf.

3.25 GARCH (1, 1) process

Suppose that the financial returns {Xt} is a GARCH (1, 1) process; that is,

Xt = Xt−h + rt,

where rt = rt + µ, rt = σtet, σ
2
t = α0 + α1r

2
t−h + β1σ

2
t−h, and et are independent standard normal

variables. Let µ̂, α̂0, α̂1 and β̂1 denote the maximum likelihood estimates. Let

µ̂k = kµ, σ̂k = σ̂(t, t),
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where σ̂(t, t) is specified by

σ̂2 (t∗, t) = α̂0 + α̂1

(
rkt∗ − µ̂k

)2
+ β̂1σ̂

2 (t∗ − kh, t) ,

σ̂2 (t− nkh, t) =
k

nk − 1

nk−1∑
i=0

(rt−ih − µ̂)2

for t∗ = t − (n − 1)kh, . . . , t − kh, t and n denoting the number of k-period returns. With this
notation, Embrechts et al. (2005) show that the expected shortfall of k-period returns can be
estimated by

ÊSp =
1

p

∫ p

0
exp

(
µ̂k + σ̂kxq

ν̂k

)
dq − 1,

where xqν denotes the qth quantile of a Student’s t random variable with ν degrees of freedom and
µ̂k is calculated using a six-step procedure described in Section 5 of Embrechts et al. (2005).

3.26 Quantile regression method

Quantile regression (Koenker and Hallock, 2001; Koenker, 2005) has been used to estimate expected
shortfall, see Taylor (2008b). The idea is to regress the financial returns on some known covariates.
Let Xt at time t denote the financial return, let zt denote a k × 1 vector of covariates at time t,
and let β denote a k × 1 vector of regression coefficients. Taylor (2008b) provides several quantile
based estimators for expected shortfall. Two of them are

ÊSp =
1

pn

n∑
t=1

(
Xt − zTt β̂

) [
p− I

(
Xt < zTt β̂

)]
and

ÊSp =
1

p
n∑
t=1

λn−t

n∑
t=1

λn−t
(
Xt − zTt β̂

) [
p− I

(
Xt < zTt β̂

)]
,

where β̂ is chosen as the β that minimizes

n∑
t=1

λn−t
(
Xt − zTt β

) [
p− I

(
Xt < zTt β

)]
for some weighting parameter λ. Another estimator suggested by Taylor (2008b) is

ÊSp =
1

p

n∑
t=1

λn−t

n∑
t=1

λn−t

[
p
(
Xt − zTt β̂

)
+
(
zTt β̂ −Xt

)
Φ

(
zTt β̂ −Xt

h

)

+hφ

(
zTt β̂ −Xt

h

)]
,
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where β̂ is chosen as the β that minimizes

n∑
t=1

λn−t

[
p
(
Xt − zTt β

)
+
(
zTt β −Xt

)
Φ

(
zTt β −Xt

h

)
+ hφ

(
zTt β −Xt

h

)]

for some weighting parameter λ and a suitable bandwidth h.

3.27 Location-scale distributions

Suppose X1, X2, . . . , Xn is a random sample from the location-scale family with cdf Fµ,σ(x) =
F0((x− µ)/σ) and pdf fµ,σ(x) = (1/σ)f0((x− µ)/σ), where f0(x) = dF0(x)/dx. Then,

ESp = µ+ epσ, (7)

where ep = (1/(1− p))
∫∞
zp
xf0(x)dx and zp = F−10 (p). The point estimate for expected shortfall is

ÊSp = µ̂n + epcnσ̂n,

where

µ̂n =
1

n

n∑
i=1

Xi,

σ̂2n =
1

n− 1

n∑
i=1

(Xi − µ̂n)2 ,

and

cn = (E [σ̂/σ])−1 .

Bae and Iscoe (2012) propose various confidence intervals for expected shortfall. Based on
cn = 1 +O(n−1) and asymptotic normality, Bae and Iscoe (2012) propose the interval

µ̂n + epσ̂n ±
σ̂n
n
z(1+α)/2

√
1 +

e2p
4

(κ− 1) + epω, (8)

where α is the confidence level, κ is the kurtosis of F0(x), and ω is the skewness of F0(x). Based
on an empirical estimator due to Brazauskas et al. (2008) (see Section 4.3), Bae and Iscoe (2012)
propose the interval

1

1− p

∫ 1

p
F̂µ,σ(u)du± 1√

n
z(1+α)/2

√
σ2

1− p

[
p (ep − zp)2 + σ2p

]
,

where F̂µ,σ(·) denotes the empirical cdf and

σ2p =
1

1− p

∫ ∞
zp

z2f0(z)dz − e2p.

18



Sometimes the financial series of interest is strictly positive. In this case, if X1, X2, . . . , Xn is
a random sample from a log location-scale family with distribution function Gµ,σ(x) = lnF0((x −
µ)/σ), then (7) and (8) will generalize to

ESp = exp (µ+ hp(σ))

and

exp

µ̂n + hp (σ̂n)± σ̂n√
n
z(1+α)/2

√
1 +

ν2p (σ̂n)

4
(κ− 1) + νp (σ̂n)ω

 ,
respectively, as noted by Bae and Iscoe (2012), where

hp(y) = ln

[
1

1− p

∫ ∞
zp

exp(ty)f0(t)dt

]

and

νp(σ) =

∫ ∞
zp

t exp(σt)f0(t)dt∫ ∞
zp

exp(σt)f0(t)dt

.

3.28 RiskMetrics model

Let rt be the financial return at time t and let Ωt denote the information available up to time t.
Then the aggregate return from time t to time t+h is rt+1 + · · ·+rt+h = Rt,h say. The RiskMetrics
model (RiskMetrics Group, 1996) supposes Rt,h | Ωt is normal with mean hµ and variance hσ2t+1,
where µ = E(rt+1 | Ωt) and σ2t+1 = V ar(rt+1 | Ωt). So, the corresponding expected shortfall is

ÊSp = hµ−
√
h

p
σt+1φ

(
Φ−1(p)

)
,

where φ(·) denotes the standard normal pdf and Φ(·) denotes the standard normal cdf.

3.29 QGARCH (1, 1) model

With the notation as in Section 3.28, suppose Rt,h | Ωt is normal with mean hµ and variance
V ar(Rt,h | Ωt) unspecified. In this case, one has the QGARCH (1, 1) model (Wong and So, 2010)
with the corresponding expected shortfall given by

ÊSp = hµ−
√
V ar (Rt,h | Ωt)

p
φ
(
Φ−1(p)

)
,

where φ(·) denotes the standard normal pdf and Φ(·) denotes the standard normal cdf.

19



3.30 QGARCH (p, q) model

With the notation as in Section 3.28, suppose Rt,h follows Theodossiou (1998)’s skew t distribution
given by the pdf

f(x) =


C

[
1 +

2

v − 2

(
x+ a

θ(1− τ)

)2
]−(v+1)/2

, if x < −a,

C

[
1 +

2

v − 2

(
x+ a

θ(1 + τ)

)2
]−(v+1)/2

, if x ≥ −a

(9)

with V ar(Rt,h | Ωt) unspecified, where

C =

√
B (3/2, v/2− 1)S(τ)

B3/2 (1/2, v/2)
,

θ =

√
2

S(τ)
,

a =
2τB (1, (v − 1)/2)

S(τ)
√
B (1/2, v/2)

√
B (3/2, v/2− 1)

,

S(τ) =

√
1 + 3τ2 − 4τ2B2 (1, (v − 1)/2)

B (1/2, v/2)B (3/2, v/2− 1)
.

Let F (·) denote the cdf corresponding to (9). In this case, one has the QGARCH (p, q) model
(Wong and So, 2010) with the corresponding expected shortfall given by

ÊSp = hµ−
√
V ar (Rt,h | Ωt)

[
θ2(1− τ)2f

(
F−1(p)

)
p

v − 2 + 2β2(p)

2(v − 1)
+ a

]
,

where β(p) =
{
a+ F−1(p)

}
/ [θ(1− τ)].

3.31 Block minimum method

Let rt denote the financial return at time t. Let r(1) denote the minimum of the returns over a
long enough period of time. According to extreme value theory (see, for example, Leadbetter et al.
(1987)), the cdf of r(1) can be approximated by

F (x) = exp

{
−
(

1 + ξ
x− µ
σ

)−1/ξ}
(10)

for 1 + ξ(x− µ)/σ > 0, µ ∈ R, σ > 0 and ξ ∈ R. The corresponding pdf is

f(x) =
1

σ

(
1 + ξ

x− µ
σ

)−1/ξ−1
exp

{
−
(

1 + ξ
x− µ
σ

)−1/ξ}
(11)

for 1+ξ(x−µ)/σ > 0, µ ∈ R, σ > 0 and ξ ∈ R. The distribution given by (10) and (11) is known as
the generalized extreme value distribution. The corresponding expected shortfall can be computed
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as

ESp =
1

σ

∫ u

−∞
x

(
1 + ξ

x− µ
σ

)−1/ξ−1
exp

{
−
(

1 + ξ
x− µ
σ

)−1/ξ}
dx,

where

u = µ− σ

ξ

[
1− {− ln p}−ξ

]
. (12)

See Ou and Yi (2009).

4 Nonparametric methods

4.1 Historical method

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending order corresponding to
the original financial returns X1, X2, . . . , Xn. The historical method suggests to estimate expected
shortfall by

ÊSp(X) =

 n∑
i=[np]

X(i)

 /(n− [np]),

where [x] denotes the largest integer not greater than x.

4.2 Filtered historical method

Let êi, i = 1, 2, . . . , n denote the residuals after the financial series is fitted to some model like
ARMA-GARCH. Then the filtered historical estimator of expected shortfall (Magadia, 2011) is
given by

ÊSp(X) =

∑
ηt>q

ηt∑
ηt>q

Iηt>q
,

where

ηt = êt −
1

n

n∑
t=1

êt

and q = η([pn]+1) is the ([pn] + 1)th order statistic of {η1, . . . , ηn}.

4.3 Brazauskas et al.’s estimator

For the financial series in Section 4.1, let F̂ (·) denote the empirical cdf and F̂−1(·) its quantile
function. Brazauskas et al. (2008) suggest the estimator

ÊSp(X) =
1

p

∫ p

0
F̂−1(u)du.
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4.4 Yamai and Yoshiba’s estimator

With the notation as in Section 4.1, Yamai and Yoshiba (2002) suggest the following estimator for
expected shortfall

ÊSp(X) =
1

n(α− β)

nα∑
i=nβ

Xi,

where α is assumed to be much greater than β.

4.5 Inui and Kijima’s estimator

With the notation as in Section 4.1, Inui and Kijima (2005) suggest the following estimator for
expected shortfall

ÊSp(X) =

{
−Xk:n, if n(1− p) is an integer,

−pXk:n − (1− p)Xk+1:n, if n(1− p) is not an integer,

where

Xk:n =
1

k

(
X(1) + · · ·+X(k)

)
for k = 1, 2, . . . , n.

4.6 Chen’s estimator

With the notation as in Section 4.1, Chen (2008) suggests the following estimator for expected
shortfall

ÊSp(X) =
1

1 + [np]

n∑
i=1

XiI
(
Xi ≥ X([n(1−p)]+1)

)
.

4.7 Peracchi and Tanase’s estimator

With the notation as in Section 4.1, Peracchi and Tanase (2008) suggest the following estimator
for expected shortfall

ÊSp(X) =
1

np

[np]∑
i=1

X(i) +

(
1− [np]

np

)
Y([np]+1).
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4.8 Jadhav et al.’s estimators

Jadhav et al. (2009) propose several modifications of the historical estimator for expected shortfall.
With the notation as in Section 4.1, one estimator proposed is

ÊSp(X) = −

[np1+a]+1∑
i=0

X(i)[
np1+a

]
+ 2

,

where i =
[
(n+ 1)p

′

(i)

]
,

p
′

(i) = p− ip

[np] + 1
, i = 0, 1, . . . ,

[
np1+a

]
+ 1,

and a is a constant taking values in [0, 0.1]. Another estimator proposed is

ÊSp(X) = −

[np1+a]+1∑
i=0

(
1− hiX(i) + khiXi+1

)
[
np1+a

]
+ 2

,

where i =
[
(n+ 1)p

′

(i)

]
, hi = (n+ 1)p

′

(i) −
[
(n+ 1)p

′

(i)

]
,

p
′

(i) = p− ip

[np] + 1
, i = 0, 1, . . . ,

[
np1+a

]
+ 1,

and a is a constant taking values in [0, 0.1].

4.9 Kernel method

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending order corresponding to the
financial returns X1, X2, . . . , Xn. Let K(·) denote a symmetric kernel, h a suitable bandwidth,
Kh(u) = (1/h)K(u/h), A(x) =

∫ x
−∞K(u)du and Ah(u) = A(u/h). Yu et al. (2010) suggest the

following formula for kernel estimation of expected shortfall:

ÊSp(X) =
1

np

n∑
i=1

XiAh (q̂(p)−Xi) ,

where

q̂(p) =

n∑
i=1

[∫ i/n

i−1/n
Kh(t− p)dt

]
X(i).

An alternative is to obtain q̂p as the solution of

1

n

n∑
i=1

Ah (x− xi) = p.

Further details on this kernel method can be seen from Scaillet (2004) and Chen (2008).
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4.10 Trimmed kernel method

With the notation as in Section 4.9, let X
(−)
t = XtI(Xt < 0) and let {kn} be such that kn → ∞

and kn/n → 0 as n → ∞. Hill (2012) suggests several trimmed estimators for expected shortfall.
One of them is

ÊSp(X) =
1

np

n∑
i=1

XiI
(
X

(−)
(kn)
≤ Xi ≤ q̂(p)

)
,

where q̂(p) is as defined in Section 4.9. Three other estimators proposed in Hill (2012) are

ÊSp(X) =
1

np

n∑
i=1

XiI
(
X

(−)
(kn)
≤ Xi ≤ q̂(p)

)
+

1

p

(
κ̂
(−)
kn

κ̂
(−)
kn
− 1

kn
n
X

(−)
(ln)

)
,

ÊSp(X) =
1

np

n∑
i=1

XiI
(
X

(−)
(kn)
≤ Xi ≤ q̂(p)

)
+

1

p

(
κ̂
(−)
mn

κ̂
(−)
mn − 1

kn
n
X

(−)
(ln)

)
,

and

ÊSp(X) =
1

np

n∑
i=1

XiI
(
X

(−)
(kn)
≤ Xi ≤ q̂(p)

)
+

1

p

 κ̂
(−)
mn(λ̂n)

κ̂
(−)
mn(λ̂n)

− 1

kn
n
X

(−)
(ln)

 ,

where

κ̂
(−)
kn

=

 1

kn

n∑
i=1

ln

X
(−)
(i)

X
(−)
(kn)

−1

and

λ̂ = argminλ

∣∣∣∣∣ 1

np

n∑
i=1

XiI
(
X

(−)
(kn)
≤ Xi ≤ q̂(p)

)

+
1

p

 κ̂
(−)
mn(λ̂n)

κ̂
(−)
mn(λ̂n)

− 1

kn
n
X

(−)
(ln)

− q̂(p)∣∣∣∣∣,
where mn satisfies kn/mn → 0, mn = o(1), and ln satisfies Pr (Xt < −ln) = kn/n. The two latter
of the three estimators are bias corrected estimators.

4.11 Richardson’s method

Fan et al. (2010) have suggested an algorithm for estimating expected shortfall based on Richard-
son’s extrapolation method (Richardson, 1911; Richardson and Gaunt, 1927). The algorithm is as
follows:

1. generate a samples X1, X2, . . . , XN by a Monte Carlo method;
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2. estimate the corresponding expected shortfall by the historical method;

3. repeat steps 1 and 2 say one thousand times and compute the mean

mN =
1

1000

1000∑
i=1

ÊSN,i,

where ÊSN,i are the one thousand expected shortfall estimates;

4. set sn = mNn , n = 1, 2, . . . , k + 1 for some k and N1, N2, . . . , Nk+1 (for example, k = 2,
N1 = 100, N2 = 200 and N3 = 300);

5. estimate expected shortfall as∣∣∣∣∣∣∣∣∣
s1 s2 · · · sk+1

1 1/2 · · · 1/(k + 1)
...

...
. . .

...

1k (1/2)k · · · (1/(k + 1))k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 1/2 · · · 1/(k + 1)
...

...
. . .

...

1k (1/2)k · · · (1/(k + 1))k

∣∣∣∣∣∣∣∣∣

.

For example, if k = 2, N1 = 100, N2 = 200 and N3 = 300 then one can estimate expected
shortfall as ∣∣∣∣∣∣

m100 m200 m300

1 1/2 1/3
1 1/4 1/9

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1
1 1/2 1/3
1 1/4 1/9

∣∣∣∣∣∣
.

5 Semiparametric methods

5.1 Heavy tailed processes

Suppose that the financial returns {Xt} is a heavy tailed process; that is, rt = Xt = Xt−h satisfies

Pr (rt < −x) ∼ x−αL(x)

as x→∞, where α > 0 and L(·) is a slowly varying function. The Hill estimator of α is given by

α̂`,n =

[
1

`

∑̀
i=1

ln

(
r(i)

r(`)

)]−1
,
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where n denotes the number of k-period returns and r(1) ≤ r(2) ≤ · · · ≤ r(n) are the order statistics
in ascending order. With this notation, Embrechts et al. (2005) show that the expected shortfall
of k-period returns can be estimated by

ÊSp =
1

p

∫ p

0
exp

[(
k`n,p
nq

)1/α̂`n,p,n

r`n,p

]
dq − 1,

where `n,p = [n(p+ 0.045 + 0.005h)].

5.2 Necir et al.’s estimator

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending order corresponding to
the financial returns X1, X2, . . . , Xn. Another semiparametric estimator for expected shortfall
suggested by Necir et al. (2010) is

ÊSp =
1

p

∫ p

k/n
F̂−1(t)dt+

kX(n−k)

np (1− γ̂)
,

where

γ̂ =
1

k

k∑
i=1

ln
X(n−i+1)

X(n−k)

is Hill’s estimator of tail index and F̂−1(·) denotes the empirical quantile function.

6 Computer software

Software for computing expected shortfall and related quantities are widely available. Some software
available from the R package (R Development Core Team, 2011) are:

• the package ghyp due to David Luethi, Wolfgang Breymann. According to the author, this
package “provides detailed functionality for working with the univariate and multivariate
Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse
Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Es-
pecially, it contains fitting procedures, an AIC-based model selection routine, and functions
for the computation of density, quantile, probability, random variates, expected shortfall and
some portfolio optimization and plotting routines as well as the likelihood ratio test. In
addition, it contains the Generalized Inverse Gaussian distribution”;

• the package evir due to Bernhard Pfaff, Alexander McNeil and Alec Stephenson;

• the package fAssets due to the Rmetrics Core Team;

• the package crp.CSFP due to Matthias Fischer, Kevin Jakob and Stefan Kolb;

• the package QRM due to Bernhard Pfaff, Alexander McNeil and Scott Ulmann.
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Some other software available for computing value at risk and related quantities are:

• the package ALM Optimizer for asset allocation software due to Bob Korkie from the company
RMKorkie & Associates, http://assetallocationsoftware.org/. According to the author, this
package provides “risk and expected return of Markowitz efficient portfolios but extended to
include recent technical advances on the definition of risk, adjustments for input bias, non
normal distributions, and enhancements that allow for overlays, risk budgets, and investment
horizon adjustments”. Also the package “is a true Portfolio Optimizer with lognormal asset
returns and user specified: return or surplus optimization; optimization, risk, and rebalancing
horizons; volatility, expected shortfall, and two value at risk (VaR) risk variables tailored to
the risk horizon; and user specified portfolio constraints including risk budget constraints”;

• the package QuantLib due to StatPro, http://www.statpro.com/portfolio-analytics-products/risk-
management-software/. According to the authors, this package provides “access to a complete
universe of pricing functions for risk assessment covering every asset class from equity, interest
rate-linked products to mortgage-backed securities”. The package has key features including
“Multiple ex-ante risk measures including Value-at-Risk and CVaR (expected shortfall) at a
variety of confidence levels, potential gain, volatility, tracking error and diversification grade.
These measures are available in both absolute and relative basis”;

• the package FinAnalytica’s Cognity risk management due to FinAnalytica, http://www.finanalytica.com/daily-
risk-statistics/. According to the authors, this package provide “more accurate fat-tailed VaR
estimates that do not suffer from the over-optimism of normal distributions. But Cognity
goes beyond VaR and also provides the downside Expected Tail Loss (ETL) measure - the
average or expected loss beyond VaR. As compared with volatility and VaR, ETL, also known
as Conditional Value at Risk (CVaR) and Expected Shortfall (ES), is a highly informative
and intuitive measure of extreme downside losses. By combining ETL with fat-tailed distri-
butions, risk managers have access to the most accurate estimate of downside risk available
today”;

• the package CVaR Expert due to CVaR Expert Rho - Works Advanced Analytical Systems,
http://www.rhoworks.com/software/detail/cvarxpert.htm. According to the authors, this pack-
age implements “total solution for measuring, analyzing and managing portfolio risk using
historical VaR and CVaR methodologies. Traditional Value-at-Risk, Beta VaR, Component
VaR, Conditional VaR and backtesting modules are incorporated on the current version,
which lets you work with individual assets, portfolios, asset groups and multi currency in-
vestments (Enterprise Edition). An integrated optimizer can solve for the minimum CVaR
portfolio based on market data and investor preferences, offering the best risk benchmark
that can be produced. A module capable of doing Stochastic Simulation allows you to graph
the CVaR-Return space for all feasible portfolios”;

• the Enterprise Risk Management software (KRM) due to ZSL Inc, http: // www.zsl.com /
solutions / banking-finance / enterprise-risk-management-krm. According to the authors, “Ka-
makura Risk Manager (KRM) completely integrates credit portfolio management, market
risk management, asset and liability management, Basel II and other capital allocation tech-
nologies, transfer pricing, and performance measurement. KRM is also directly applicable
to operational risk, total risk, and accounting and regulatory requirements using the same
analytical engine, GUI and reporting, and its vision is that completely integrated risk so-
lution based on common assumptions and methodologies. KRM offers, dynamic value at
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risk and expected shortfall, historical value at risk measurement, Monte Carlo value at risk
measurement, etc”;

• the package NtInsight due to Numerical Technologies Company, http: // www.numtech.com
/ news / basel-committee-proposes-expected-shortfall / #more-3396. According to the au-
thors, “Numerical Technologies understands the advantages of measuring expected shortfall.
NtInsight uses massive parallel programming and applies faster codes when processing the
transaction-level, 1 million Monte Carlo iterations needed to precisely capture the non-linear
behavior of tail risk. It has been tested by major financial institutions in Japan where re-
porting expected shortfall is part of the regulatory requirement”;

• the package G@RCH 6, OxMetrics due to Timberlake Consultants Limited, http://www.timberlake.co.uk/?id=64#garch.
According to the authors, the package is “dedicated to the estimation and forecasting of uni-
variate ARCH-type models. G@RCH provides a user-friendly interface (with rolling menus)
as well as some graphical features (through the OxMetrics graphical interface). G@RCH helps
the financial analysis: value-at-risk, expected shortfall, backtesting (Kupiec LRT, dynamic
quantile test); forecasting, realized volatility”.
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