
Estimation methods for Value at Risk

1 Introduction

1.1 History of VaR

In the last few decades, risk managers have truly experienced a revolution. The rapid increase in
the usage of risk management techniques has spread well beyond derivatives and is totally changing
the way institutions approach their financial risk. In response to the financial disasters of the early
1990s a new method called VaR (Value at Risk) was developed as a simple method to quantify
market risk (In recent years, VaR has been used in many other areas of risk including credit risk
and operational risk). Some of the financial disasters of the early 1990s are:

• Figure 1 (taken from http://www.brighthub.com / money / investing / articles / 126337.aspx)
shows the effect of Black Monday, which occurred on 19 October 1987. In a single day,
the Dow Jones stock index (DJIA) crashed down by 22.6 percent (by 508 points), causing
a negative knock on effect on other stock markets worldwide. Overall the stock market lost
$0.5 trillion;

• the Japanese stock price bubble, creating a $2.7 trillion loss in capital, see Figure 2 taken
from http://chovanec.wordpress.com/. According to this website, “the Nikkei Index after the
Japanese bubble burst in the final days of 1989. Again, the market showed a substantial
recovery for several months in mid-1990 before sliding to new lows”;

• Figure 3 (taken from http: // steadfastfinances.com / 2009 / 11 / 14 / the-psychology-of-
bubbles-using-hindsight-to-examine-why-we-bought - into - the - hype /) describes the dot.com
bubble. During 1999 and 2000, the NASDAQ rose at a dramatic rate with all technology
stocks booming. However, on 10 March 2000, the bubble finally burst, because of a sudden
simultaneous sell orders in big technology companies (Dell, IBM, Cisco) on the NASDAQ.
After a peak at $5048.62 on that day, the NASDAQ fell back down and has never since
recovered;

• Figure 4 describes the 1997 Asian financial crisis. It first occurred at the beginning in July
1997. During that period a lot of Asia got affected by this financial crisis, leading to a
pandemic spread of fear to a worldwide economic meltdown. The crisis was first triggered
when the Thai baht (Thailand currency) was cut from being pegged to the US dollars and
the government floated the baht. In addition, at the time Thailand was effectively bankrupt
from the burden of foreign debt it acquired. Later period saw a contagious spread of the crisis
to Japan and to South Asia, causing a slump in asset prices, stock market and currencies;

• the Black Wednesday, resulting in £800 million losses, see Figure 5 taken from http: //
www.telegraph.co.uk / news / uknews / 1483186 / Major-was-ready-to-quit-over-Black-Wednesday.html;
According to http: // en.wikipedia.org / wiki / Black Wednesday, Black Wednesday “refers to
the events of 16 September 1992 when the British Conservative government was forced to
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Figure 1: Black Monday crash on 19 October 1987. The Dow Jones stock index crashed down by
22.6 percent (by 508 points). Overall the stock market lost $0.5 trillion.

withdraw the pound sterling from the European Exchange Rate Mechanism (ERM) after
they were unable to keep it above its agreed lower limit”;

• and the infamous financial disasters of Orange County, Barings, Metallgesellschaft, Daiwa
and so many more.
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Figure 2: Japan stock price bubble near the end of 1989. A loss of $2.7 trillion in capital. A
recovery happened after mid-1990.

1.2 Definition of VaR

Till Guldimann is widely credited as the creator of value at risk (VaR) in the late 1980s. He was
then the head of global research at J.P. Morgan. VaR is a method that uses standard statistical
techniques to assess risk. The VaR “measures the worst average loss over a given horizon under
normal market conditions at a given confidence level” (Jorion, 2011, page xxii). The value of
VaR can provide users with information in two ways: as a summary measure of market risk, or
an aggregate view of a portfolio’s risk. Overall VaR is a forward looking risk measure and used
by financial institutions, regulators, non financial corporations and asset management exposed to
financial risk. The most important use of VaR has been for capital adequacy regulation under Basel
II and later revisions.

Let {Xt, t = 1, 2, . . . , n} denote a stationary financial series with marginal cumulative distribu-
tion function (cdf) F and marginal probability density function (pdf) f . The Value at Risk for a
given probability p is defined mathematically as

VaRp = inf {u : F (u) ≥ p} . (1)

That is, VaR is the quantile of F exceeded with probability 1−p. Figure 6 illustrates the definition
given by (1).

Sometimes, VaR is defined for log-returns of the original time series. That is, ifRt = ln (Xt+h/Xt),
t = 1, 2, . . . , n are the log-returns for some h with marginal cdf F then VaR is defined by (1). If αh

and σh denote the mean and standard deviation of the log-returns then one can write

VaRp = αh + σhψ
−1(p), (2)

where ψ(·) denotes the quantile function of the standardized log-returns Zt = (Rt − αh) /σh.

1.3 Applications of VaR

Applications of VaR can be classified as:
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Figure 3: Dot com bubble (the NASDAQ index) during 1999 and 2000. The bubble burst on 10
March 2000. The peak on that day was $5048.62. There is a recovery after 2002. Never recovered
to attain the peak.

• Information reporting - it measures aggregate risk and corporation risk in a non technical
way for easy understanding;

• Controlling risk - setting position limits for traders and business units, so they can compare
diverse market risky activities;

• Managing risk - reallocating of capital across traders, products, business units and whole
institutions.

Applications of value at risk have been extensive. Some recent applications and application
areas have included: estimation of highly parallel architectures (Dixon et al., 2012), estimation for
crude oil markets (He et al., 2012), multi resolution analysis based methodology in metals markets
(He et al., 2012), estimation of optimal hedging strategy under bivariate regime switching ARCH
framework (Chang, 2011), energy markets (Cheong, 2011), Malaysian sectoral markets (Cheong
and Isa, 2011), downside residential market risk (Jin and Ziobrowski, 2011), hazardous materials
transportation (Kwon, 2011), operational risk in Chinese commercial banks (Lu, 2011), longevity
and mortality (Plat, 2011), analysis of credit default swaps (Raunig et al., 2011), exploring oil-
exporting country portfolio (Sun et al., 2011), Asia-focused hedge funds (Weng and Trueck, 2011),
measure for waiting time in simulations of hospital units (Dehlendorff et al., 2010), financial risk
in pension funds (Fedor, 2010), catastrophic event modeling in the Gulf of Mexico (Kaiser et
al., 2010), estimating the South African equity market (Milwidsky and Mare, 2010), estimating
natural disaster risks (Mondlane, 2010), wholesale price for supply chain coordination (Wang, 2010),
U.S. movie box office earnings (Bi and Giles, 2009), stock market index portfolio in South Africa
(Bonga-Bonga and Mutema, 2009), multi-period supply inventory coordination (Cai et al., 2009),
Toronto stock exchange (Dionne et al., 2009), modeling volatility clustering in electricity price
return series (Karandikar et al., 2009), calculation for heterogeneous loan portfolios (Puzanova et
al., 2009), measurement of HIS stock index futures market risk (Yan and Gong, 2009), stock index
futures market risk (Gong and Li, 2008), estimation of real estate values (He et al., 2008), foreign
exchange rates (Ku and Wang, 2008), artificial neural network (Lin and Chen, 2008), criterion for
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Figure 4: Asian financial crisis (Asian dollar index) in July 1997. Not fully recovered even in 2011.
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Figure 5: Black Wednesday crash of 16 September 1992. Top image shows the exchange rate of
Deutsche mark to British pounds. Bottom image shows the UK interest rate on the day.

6



VaRp

p

Figure 6: Value at risk illustrated.
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management of storm-water (Piantadosi et al., 2008), inventory control in supply chains (Yiu et al.,
2008), layers of protection analysis (Fang et al., 2007), project finance transactions (Gatti et al.,
2007), storms in the Gulf of Mexico (Kaiser et al., 2007), mid-term generation operation planning
in electricity market environment (Lu et al., 2007), Hong Kong’s fiscal policy (Porter, 2007), bakery
procurement (Wilson et al., 2007), newsvendor models (Xu and Chen, 2007), optimal allocation
of uncertain water supplies (Yamout et al., 2007), futures floor trading (Lee and Locke, 2006),
estimating a listed firm in China (Liu et al., 2006), Asian pacific stock market (Su and Knowles,
2006), Polish power exchange (Trzpiot and Ganczarek, 2006), single loss approximation to value
at risk (Böcker and Klüppelberg, 2005), real options in complex engineered systems (Hassan et
al., 2005), effects of bank technical sophistication and learning over time (Liu et al., 2004), risk
analysis of the aerospace sector (Mattedi et al., 2004), Chinese securities market (Li et al., 2002),
risk management of investment-linked household property insurance (Zhu and Gao, 2002), project
risk measurement (Feng and Chen, 2001), long-term capital management for property/casualty
insurers (Panning, 1999), structure-dependent securities and FX derivatives (Singh, 1997), and
mortgage backed securities (Jakobsen, 1996).

1.4 Aims

The aim of this lecture notes is to review known methods for estimating VaR given by (1). The
review of methods is divided as follows: general properties (Section 2), parametric methods (Sec-
tion 3), nonparametric methods (Section 4), semiparametric methods (Section 5), and computer
software (Section 6). For each estimation method, we give the main formulas for computing value
at risk. We have avoided giving full details for each estimation method (for example, interpretation,
asymptotic properties, finite sample properties, finite sample bias, sensitivity to outliers, quality of
approximations, comparison with competing estimators, advantages, disadvantages and application
areas) because of space concerns. These details can be read from the cited references.

1.5 Further material

The review of value of risk presented here is not complete, but we believe we have covered most
of the developments in recent years. For a fuller account of the theory and applications of value
risk, we refer the readers to the following books: Bouchaud and Potters (2000, Chapter 3), Delbaen
(2000, Chapter 3), Moix (2001, Chapter 6), Voit (2001, Chapter 7), Dupacova et al. (2002, Part
2), Dash (2004, Part IV), Franke et al. (2004), Tapiero (2004, Chapter 10), Meucci (2005), Pflug
and Romisch (2007, Chapter 12), Resnick (2007), Ardia (2008, Chapter 6), Franke et al. (2008),
Klugman et al. (2008), Lai and Xing (2008, Chapter 12), Taniguchi et al. (2008), Janssen et al.
(2009, Chapter 18), Sriboonchitta et al. (2010, Chapter 4), Tsay (2010), Capinski and Zastawniak
(2011), Jorion (2011), and Ruppert (2011, Chapter 19).

2 General properties

This section describes general properties of value at risk. The properties discussed are: ordering
properties (Section 2.1), upper comonotonicity (Section 2.2), multivariate extension (Section 2.3),
risk concentration (Section 2.4), Hürlimann’s inequalities (Section 2.5), Ibragimov and Walden’s
inequalities (Section 2.6), Denis et al.’s inequalities (Section 2.7), Jaworski’s inequalities (Section
2.8), Mesfioui and Quessy’s inequalities (Section 2.9) and Slim et al.’s inequalities (Section 2.10).
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2.1 Ordering properties

Pflug (2000) and Jadhav and Ramanathan (2009) establish several ordering properties of VaRp.
Given random variables X, Y , Y1, Y2 and a constant c, some of the properties given by Pflug (2000)
and Jadhav and Ramanathan (2009) are:

(i) VaRp is translation equivariant, that is VaRp(Y + c) = VaRp(Y ) + c;

(ii) VaRp is positively homogeneous, that is VaRp(cY ) = cVaRp(Y ) for c > 0;

(iii) VaRp(Y ) = −VaR1−p(−Y );

(iv) VaRp is monotonic with respect to stochastic dominance of order 1 (a random variable Y1 is
less than a random variable Y2 with respect to stochastic dominance of order 1 if E [ψ (Y1)] ≤
E [ψ (Y2)] for all monotonic integrable functions ψ); that is, Y1 is less than a random variable
Y2 with respect to stochastic dominance of order 1 then VaRp (Y1) ≤ VaRp (Y2);

(v) VaRp is comonotone additive, that is if Y1 and Y2 are comonotone then VaRp (Y1 + Y2) =
VaRp (Y1)+VaRp (Y2). Two random variables Y1 and Y2 defined on the same probability space

(Ω,A, P ) are said to be comonotone if for all w,w
′ ∈ Ω, [Y1(w)− Y2(w)]

[
Y1

(
w

′

)
− Y2

(
w

′

)]
≥

0 almost surely;

(vi) if X ≥ 0 then VaRp(X) ≥ 0;

(vii) VaRp is monotonic, that is if X ≥ Y then VaRp(X) ≥ VaRp(Y ).

Let F denote the joint cdf of (X1,X2) with marginal cdfs F1 and F2. Write F ≡ (F1, F2, C) to
mean F (X1,X2) ≡ C (F1 (X1) , F2 (X2)), where C is known as the copula (Nelsen, 1999), a joint

cdf of uniform marginals. Let (X1,X2) have the joint cdf F ≡ (F1, F2, C),
(
X

′

1,X
′

2

)
have the joint

cdf F
′ ≡

(
F1, F2, C

′

)
, X = wX1 + (1− w)X2, and X

′

= wX
′

1 + (1− w)X
′

2. Then, Tsafack (2009)

shows that if C
′

is stochastically less than C then VaRp

(
X

′

)
≥ VaRp(X) for p ∈ (0, 1).

2.2 Upper comonotonicity

If two or more assets are comonotonic then their values (whether they be small, medium, large, etc)
move in the same direction simultaneously. In the real world, this may be too strong of a relation.
A more realistic relation is to say that the assets move in the same direction if their values are
extremely large. This weaker relation is known as upper comonotonicity (Cheung, 2009).

Let Xi denote the loss of the ith asset. Let X = (X1, . . . ,Xn) with joint cdf F (x1, . . . , xn). Let
T = X1 + · · · +Xn. Suppose all random variables are defined on the probability space (Ω,F ,Pr).
Then, a simple formula for the value at risk of T in terms of values at risk of Xi can be established
if X is upper comonotonic.

We now define what is meant by upper comonotonicity. A subset C ⊂ R
n is said to be comono-

tonic if (ti − si) (tj − sj) ≥ 0 for all i and j whenever (t1, . . . , tn) and (s1, . . . , sn) belong to C. The
random vector is said to be comonotonic if it has a comonotonic support.

Let N denote the collection of all zero probability sets in the probability space. Let Rn =
R
n∪(−∞, . . . ,−∞). For a given (a1, . . . , an) ∈ R

n, let U(a) denote the upper quadrant of (a1,∞)×
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· · · × (an,∞) and let L(a) denote the lower quadrant of (−∞, a1] × · · · × (−∞, an]. Let R(a) =
R
n\ (U (a) ∪ L (a)).

Then, the random vector X is said to be upper comonotonic if there exist a ∈ Rn and a zero
probability set N(a) ∈ N such that

(a) {X(w) | w ∈ Ω\N(a)} ∩ U(a) is a comonotonic subset of Rn;

(b) Pr (X ∈ U(a)) > 0;

(c) {X(w) | w ∈ Ω\N(a)} ∩R(a) is an empty set.

If these three conditions are satisfied then the value at risk of T can be expressed as

VaRp(T ) =

n∑

i=1

VaRp (Xi) (3)

for p ∈ (F (a∗1, . . . , a
∗
n) , 1) and a∗ = (a∗1, . . . , a

∗
n), a comonotonic threshold as constructed in Lemma

2 of Cheung (2009).

2.3 Multivariate extension

Multivariate VaR is a much more recent topic.

Let X be a random vector in R
r with joint cdf F . Prékopa (2012) gives the following definition

of multivariate VaR:

MVaRp =
{
u ∈ R

r
∣∣∣F (u) = p

}
. (4)

Note that MVaR may not be a single vector. It will often take the form of a set of vectors.

Prékopa (2012) gives the following motivation for multivariate VaR: “A finance company gen-
erally faces the problem of constructing different portfolios that they can sell to customers. Each
portfolio produces a random total return and it is the objective of the company to have them above
given levels, simultaneously, with large probability. Equivalently, the losses should be below given
levels, with large probability. In order to ensure it we look at the total losses as components of
a random vector and find a multivariate p-quantile or MVaR to know what are those points in
the r-dimensional space (r being the number of portfolios), that should surpass the vector of total
losses, to guarantee the given reliability”.

Cousin and Bernardinoy (2011) provide another definition of multivariate VaR:

MVaRp = E [X | X ∈ ∂L(p)] =




E [X1 | X ∈ ∂L(p)]
E [X2 | X ∈ ∂L(p)]

...
E [Xr | X ∈ ∂L(p)]




or equivalently

MVaRp = E [X | F (X) = p] =




E [X1 | F (X) = p]
E [X2 | F (X) = p]

...
E [Xr | F (X) = p]


 ,
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where ∂L(p) is the boundary of the set
{
x ∈ R

r
+ : F (x) ≥ p

}
.

Cousin and Bernardinoy (2011) establish various properties of MVaR similar to those in the
univariate case. For instance,

(i) the translation equivariant property holds, that is

MVaRp (c+X) = c+MVaRp (X) =




c1 + E [X1 | F (X) = p]
c2 + E [X2 | F (X) = p]

...
cr + E [Xr | F (X) = p]


 ;

(ii) the positively homogeneous property holds, that is

MVaRp (cX) = cMVaRp (X) =




c1E [X1 | F (X) = p]
c2E [X2 | F (X) = p]

...
crE [Xr | F (X) = p]


 ;

(iii) if F is quasi-concave (Nelson, 1999) then

MVaRi
p(X) ≥ VaRp (Xi)

for i = 1, 2, . . . , r, where MVaRi
p(X) denotes the ith component of MVaRp(X);

(iv) if X is a comonotone non-negative random vector and if F is quasi-concave (Nelson, 1999)
then

MVaRi
p(X) = VaRp (Xi)

for i = 1, 2, . . . , r;

(v) if Xi = Yi in distribution for every i = 1, 2, . . . , s then

MVaRp(X) = MVaRp (Y)

for all p ∈ (0, 1);

(vi) if Xi is stochastically less than Yi for every i = 1, 2, . . . , s then

MVaRp(X) ≤ MVaRp (Y)

for all p ∈ (0, 1).

Bivariate value at risk in the context of a bivariate normal distribution has been considered
much earlier by Arbia (2002).

A matric variate extension of VaR and its application for power supply networks are discussed
in Chang (2011).
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2.4 Risk concentration

Let X1,X2, . . . ,Xn denote future losses, assumed to be non-negative independent random variables
with common cdf F and survival function F . Degen et al. (2010) define risk concentration as

C(α) =

VaRα

[
n∑

i=1

Xi

]

n∑

i=1

VaRα (Xi)

.

If F is regularly varying with index−1/ξ, ξ > 0 (Bingham et al., 1989), meaning that F (tx)/F (t) →
x−1/ξ as t→ ∞, then it is shown that

C(α) → nξ−1 (5)

as α→ 1. Degen et al. (2010) also study the rate of convergence in (5).

Suppose Xi, i = 1, 2, . . . , n are regularly varying with index −β, β > 0. According to Jang and
Jho (2007), for β > 1,

C(α) < 1

for all α ∈ [α0, 1] for some α0 ∈ (0, 1). This property is referred to as subadditivity. If C(α) < 1
holds as α→ 1 then the property is referred to as asymptotic subadditivity. For β = 1,

C(α) → 1

as α→ 1. This property is referred to as asymptotic comonotonicity. For 0 < β < 1,

C(α) > 1

for all α ∈ [α0, 1] for some α0 ∈ (0, 1). If C(α) > 1 holds as α→ 1 then the property is referred to
as asymptotic superadditivity.

Let N(t) denote a counting process independent of {Xi} with E [N(t)] <∞ for t > 0. According
to Jang and Jho (2007), in the case of subadditivity,

VaRα



N(t)∑

i=1

Xi


 ≤ E [N(t)]

N(t)∑

i=1

VaRα (Xi)

for all α ∈ [α0, 1] for some α0 ∈ (0, 1). In the case of asymptotic comonotonicity,

VaRα



N(t)∑

i=1

Xi


 ∼ E [N(t)]

N(t)∑

i=1

VaRα (Xi)

as α→ 1. In the case of superadditivity,

VaRα



N(t)∑

i=1

Xi


 ≥ E [N(t)]

N(t)∑

i=1

VaRα (Xi)
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for all α ∈ [α0, 1] for some α0 ∈ (0, 1).

Suppose X = (X1,X2, . . . ,Xn)
T is multivariate regularly varying with index β according to

Definition 2.2 in Embrechts et al. (2009). If Φ : Rn → R is a measureable function such that

lim
x→∞

Pr (Ψ(X) > x)

Pr (X1 > x)
→ q ∈ (0,∞)

then it is shown

lim
α→1

VaRα (Ψ(X))

VaRα (X1)
→ q1/β,

see Lemma 2.3 in Embrechts et al. (2009).

2.5 Hürlimann’s inequalities

Let X denote a random variable defined over [A,B], −∞ ≤ A < B ≤ ∞ with mean µ, and variance
σ. Hürlimann (2002) provides various upper bounds for VaRp(X): for p ≤ σ2/

{
σ2 + (B − µ)2

}
,

VaRp(X) ≤ B;

for σ2/
{
σ2 + (B − µ)2

}
≤ p ≤ (µ−A)2/

{
σ2 + (µ−A)2

}
,

VaRp(X) ≤ µ+

√
1− p

p
σ;

for p ≥ (µ−A)2/
{
σ2 + (µ−A)2

}
,

VaRp(X) ≤ µ+
(µ −A)(B −A)(1 − p)− σ2

(B −A)p − (µ−A)
. (6)

The equality in (6) holds if and only if B → ∞.

Now suppose X is a random variable defined over [A,B], −∞ ≤ A < B ≤ ∞ with mean µ,
variance σ, skewness γ and kurtosis γ2. In this case, Hürlimann (2002) provides the following upper
bound for VaRp(X):

VaRp(X) ≤ µ+ xpσ,

where xp is the 100(1− p) percentile of the standardized Chebyshev-Markov maximal distribution.
The latter is defined as the root of

p (xp) = p

if p ≤ (1/2)
{
1− γ/

√
4 + γ2

}
and as the root of

p (ψ (xp)) = 1− p

if p > (1/2)
{
1− γ/

√
4 + γ2

}
, where

p(u) =
∆

q2(u) + ∆ (1 + u2)
,

ψ(u) =
1

2

[
A(u)−

√
A2(u) + 4q(u)B(u)

q(u)

]
,

where ∆ = γ2 − γ2 + 2, A(u) = γq(u) + ∆u, B(u) = q(u) + ∆ and q(u) = 1 + γu− u2.
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2.6 Ibragimov and Walden’s inequalities

Let R(w) =
∑N

i=1 wiRi denote a portfolio return made up of N asset returns, Ri, and the non-
negative weights wi. Ibragimov (2009) provides various inequalities for the VaR of R(w). They
suppose that Ri are independent and identically distributed and belong to either CS, the class of
distributions which are convolutions of symmetric stable distributions Sα(σ, 0, 0) with α ∈ (0, 1] and
σ > 0 or CSLC, convolutions of distributions from the class of symmetric log-concave distributions
and the class of distributions which are convolutions of symmetric stable distributions Sα(σ, 0, 0)
with α ∈ [1, 2] and σ > 0.

Here, Sα(β, γ, µ) denotes a stable distribution specified by its characteristic function

φ(t) =





exp
{
iµt− γα|t|α

[
1− iβ tan

(
π
α

2

)
sign(t)

]}
, α 6= 1,

exp

{
iµt− γ|t|

(
1 + iβsign(t)

2

π
ln t

)}
, α = 1,

where i =
√
−1, α ∈ (0, 2], |β| ≤ 1, γ > 0 and µ ∈ R. The stable distribution contains as particular

cases: the Gaussian distribution for α = 2; the Cauchy distribution for α = 1, and β = 0; the Lévy
distribution for α = 1/2 and β = 1; the Landau distribution for α = 1 and β = 1; the dirac delta
distribution for α ↓ 0 and γ ↓ 0.

Furthermore, let IN =
{
(w1, . . . , wN ) ∈ R

N
+ : w1 + · · ·+ wN = 1

}
. Write a ≺ b to mean that∑k

i=1 a[i] ≤
∑k

i=1 b[i] for k = 1, . . . , N−1 and
∑N

i=1 a[i] =
∑N

i=1 b[i], where a[1] ≥ · · · ≥ a[N ] and b[1] ≥
· · · ≥ b[N ] denote the components of a and b in descending order. Let wN = (1/N, 1/N, . . . , 1/N)
and wN = (1, 0, . . . , 0).

With these notation, Ibragimov (2009) provides the following inequalities for VaRq (R(w)).
Suppose first that q ∈ (0, 1/2) and Ri belong to CSLC. Then,

(i) VaR1−q [R(v)] ≤ VaR1−q [R(w)] if v ≺ w;

(i) VaR1−q [R (wN )] ≤ VaR1−q [R(w)] ≤ VaR1−q [R (wN )] for all w ∈ IN .

Suppose now that q ∈ (0, 1/2) and Ri belong to CS. Then,

(i) VaR1−q [R(v)] ≥ VaR1−q [R(w)] if v ≺ w;

(i) VaR1−q [R (wN )] ≤ VaR1−q [R(w)] ≤ VaR1−q [R (wN )] for all w ∈ IN .

Further inequalities for VaR are provided in Ibragimov and Walden (2011) when a portfolio
return, say R, is made up of a two dimensional array of asset returns say Rij . That is,

R(w) =

r∑

i=1

c∑

j=1

wijRij

=
r∑

i=1

wi0Ri +
r∑

i=1

w0jCj +
r∑

i=1

c∑

j=1

wijUij

= R
(
w

(row)
0

)
+ C

(
w

(col)
0

)
+ U(w),
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where Ri, i = 1, . . . , r are referred to as “row effects”, Cj , j = 1, . . . , c are referred to as “column
effects”, and Uij , i = 1, . . . , r, j = 1, . . . , c are referred to as “idiosyncratic components”.

Let wrc = (1/(rc), 1/(rc), . . . , 1/(rc)), wrc = (1, 0, . . . , 0), w
(row)
0 = (1/r, 1/r, . . . , 1/r), w

(row)
0 =

(1, 0, . . . , 0), w
(col)
0 = (1/c, 1/c, . . . , 1/c), and w

(col)
0 = (1, 0, . . . , 0).

With these notation, Ibragimov and Walden (2011) provide the following inequalities for q ∈
(0, 1/2):

(i) if Ri, Cj , Uij belong to CSLC then VaR1−q [R (wrc)] ≤ VaR1−q [R(w)] ≤ VaR1−q [R (wrc)]
for all w ∈ Irc;

(ii) if Ri, Cj , Uij belong to CS then VaR1−q [R (wrc)] ≥ VaR1−q [R(w)] ≥ VaR1−q [R (wrc)] for
all w ∈ Irc;

(iii) if Uij belong to CSLC then VaR1−q [U (wrc)] ≤ VaR1−q [U(w)] ≤ VaR1−q [U (wrc)] for all
w ∈ Irc;

(iv) if Uij belong to CS then VaR1−q [U (wrc)] ≥ VaR1−q [U(w)] ≥ VaR1−q [U (wrc)] for all w ∈
Irc;

(v) if Ri belong to CSLC then VaR1−q [R (wr)] ≤ VaR1−q

[
R
(
w

(row)
0

)]
≤ VaR1−q [R (wr)] for

all w ∈ Irc;

(vi) if Ri belong to CS then VaR1−q [R (wr)] ≥ VaR1−q

[
R
(
w

(row)
0

)]
≥ VaR1−q [R (wr)] for all

w ∈ Irc;

(vii) if Cj belong to CSLC then VaR1−q [C (wc)] ≤ VaR1−q

[
C
(
w

(col)
0

)]
≤ VaR1−q [C (wc)] for

all w ∈ Irc;

(viii) if Cj belong to CS then VaR1−q [C (wc)] ≥ VaR1−q

[
C
(
w

(col)
0

)]
≥ VaR1−q [C (wc)] for all

w ∈ Irc.

Ibragimov and Walden (2011, Section 4) discuss an application of these inequalities to portfolio
component value at risk analysis.

2.7 Denis et al.’s inequalities

Let {Pt} denote prices of financial assets. The process could be modeled by

Pt = m+

∫ t

0
σsdBs +

∫ t

0
bsds+

Nt∑

i=1

γT−

i
Yi,

where B is a Brownian motion, Ñ is a compound Poisson process independent of B, T1, T2, . . . are
jump times for Ñ , b is an adapted integrable process, and σ, γ are certain random variables.

Denis et al. (2009) derive various bounds for the VaR of the process

P ∗
t = sup

0≤u≤t
Pu.

The following assumptions are made:
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(i) for all t > 0, E
(∫ t

0 σ
2
sds
)
<∞;

(ii) jumps of the compound Poisson process are non-negative and Y1 is not identically equal to
zero;

(iii) the process
∑Nt

i=1 γT−

i
Yi for t > 0 is well defined and integrable;

(iv) the jumps have a Laplace transform, L(x) = E [exp (xY1)], x < c for c a positive constant;

(v) there exists γ∗ > 0 such that γs ≤ γ∗ almost surely for all s ∈ [0, t];

(vi) there exists b∗(t) ≥ 0 and a∗(t) ≥ 0 such that

∫ t

0
σ2udu ≤ a∗(t),

∫ s

0
budu ≤ b∗(t)

almost everywhere for all s ∈ [0, t]. In this case, let

Kt(δ) = δb∗(t) + δ2
a∗(t)

2
+ λt [L (δγ∗)− 1]

for 0 < δ < c/γ∗.

With these assumptions, Denis et al. (2009) show that

VaR1−α (P
∗
t ) ≤ inf

δ<c/γ∗

{
m+

Kt(δ)− lnα

δ

}
,

VaR1−α (P
∗
t ) ≤ inf

0<δ<c/γ∗

{
m+ b∗(t) +

a∗(t)δ

2
+ λt

L (δγ∗)− 1

δ
− lnα

δ

}
.

For γ ≤ 0, Denis et al. (2009) show that

VaR1−α (P
∗
t ) ≤ m+ b∗(t) +

√
−2a∗(t) lnα.

If the jumps follow a simple Poisson process, Denis et al. (2009) show that

VaR1−α (P
∗
t ) ≤ inf

0<δ<∞

{
m+ b∗(t) +

a∗(t)δ

2
+ λt

exp (δγ∗)− 1

δ
− lnα

δ

}
.

If the jumps follow an exponential distribution with parameter ν > 0, Denis et al. (2009) show
that

VaR1−α (P
∗
t ) ≤ inf

0<δ<ν/γ∗

{
m+ b∗(t) +

a∗(t)δ

2
+

λt

ν/γ∗ − δ
− lnα

δ

}
.

About the issue of continuity / discontinuity of the market with jumps, see Walter (2015).
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2.8 Jaworski’s inequalities

Jaworski (2007, 2008) considers the following situation: suppose si, i = 1, . . . , n are the quotients
of the currency rates at the end and at the beginning of an investment; suppose that the joint cdf of
(s1, . . . , sn) is C (F1 (s1) , . . . , Fn (sn)), where C is a copula (Nelsen, 1999) and Fi is the marginal cdf
of si; suppose wi is the part of the capital invested in the ith currency, where wi are non-negative
and sum to one. Then, the final investment value is

W1(w) = (w1s1 + · · ·+ wnsn)W0,

where w = (w1, . . . , wn). Jaworski (2007, 2008) defines the value of risk for a given w and a
probability α as

VaRα(w) = sup {V : Pr (W0 −W1(w) ≤ V ) ≤ α} .

Jaworski (2007) shows this VaR can be bounded as

n∑

i=1

VaRα
′ (ei) ≤ VaRα ≤

n∑

i=1

VaRα (ei)

for portfolios consisting of only one currency, where ei = (0, . . . , 0, 1, 0, . . . , 0)T and α
′

= α2/C(α, . . . , α).

2.9 Mesfioui and Quessy’s inequalities

Suppose a portfolio is made up of n assets and let X1,X2, . . . ,Xn denote the losses for the n assets.
Suppose also that the joint cdf of (X1, . . . ,Xn) is C (F1 (x1) , . . . , Fn (xn)), where C is a copula
(Nelsen, 1999), and Fi is the marginal cdf of Xi. Furthermore, define the dual of a given copula C
(Definition 2.4, Mesfioui and Quessy, 2005) as

Cd (u1, . . . , un) = Pr (U(0, 1) ≤ u1 or · · · or U(0, 1) ≤ un) .

With these notation, Mesfioui and Quessy (2005) derive various inequalities for the value at risk of
S = X1 + · · ·+Xn. If C is such that C ≥ qCL and C ≤ Cd

U for some copulas CL and CU then

VaRα ≤ VaRα(S) ≤ VaRα,

where

VaRα = supCd
U
(u1,...,un)=α

n∑

i=1

F−1
i (ui)

and

VaRα = infCL(u1,...,un)=α

n∑

i=1

F−1
i (ui) .

If X1,X2, . . . ,Xn are identical random variables with common cdf F and if x∗ ∈ R is such that
f(x) = dF (x)/dx is non-increasing for x ≥ x∗ then it is shown under certain conditions that

VaRα(S) ≤ nF−1
(
δ−1
CL

(α)
)
,
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where δCL
(t) = CL(t, . . . , t) is the diagonal section of CL.

Mesfioui and Quessy (2005) also show that if X is a random variable with mean µ and variance
σ2 then

gµ,σ(α) ≤ VaRα(X) ≤ hµ,σ(α),

where

ga,b(u) = {a− bq(1− u)} I
(
u ≥ b2

a2 + b2

)

and

gha,b(u) = a+ aq2(u)I

(
u ≤ b2

a2 + b2

)
+ bq(u)I

(
u >

b2

a2 + b2

)
,

where q(u) =
√
u/(1 − u). If Xi, i = 1, . . . , n have means µi, i = 1, . . . , n and variances σ2i ,

i = 1, . . . , n then it is shown that

gµ,σ(α) ≤ VaRα(S) ≤ hµ,σ(α),

where µ = µ1 + · · ·+ µn and σ = σ1 + · · ·+ σn.

2.10 Slim et al.’s inequalities

Suppose a portfolio is made up of d assets. Let X1,X2, . . . ,Xn denote the losses for the n assets.
Let Fi and fi denote the cdf and the pdf of Xi. Let x∗i denote the value for which fi(x) is
non-increasing for all x ≤ x∗i . Given this notation, the total portfolio loss can be expressed as
S = w1X1 + w2X2 + · · · + wnXn for some non-negative weights wi summing to one. Slim et al.
(2010) show that the VaR of S can be bounded as follows:

VaRp ≤ VaRp(S) ≤ VaRp,

where

VaRp = infu1+···+un=α+n−1

n∑

i=1

F−1
i (ui)

and

VaRp = max1≤i≤n



F

−1
i (α) +

∑

1≤j 6=i≤n

F−1
j (n)





for α ≤ min {F1 (x
∗
1) , . . . , Fn (x

∗
n)}. The use of the above results allows easy computation for

explicit VaR bounds for possibly dependent risks.
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3 Parametric methods

This section concentrates on estimation of value at risk when data comes from a parametric dis-
tribution and we want to make use of the parameters. The parametric methods summarized are
based on: Gaussian distribution (Section 3.1), Student’s t distribution (Section 3.2), Pareto pos-
itive stable distribution (Section 3.3), log folded t distribution (Section 3.4), variance covariance
method (Section 3.5), Gaussian mixture distribution (Section 3.6), generalized hyperbolic distri-
bution (Section 3.7), fourier transformation method (Section 3.8), principal components method
(Section 3.9), quadratic forms (Section 3.10), elliptical distribution (Section 3.11), copula method
(Section 3.12), Gram-Charlier approximation (Section 3.13), delta gamma approximation (Section
3.14), Cornish-Fisher approximation (Section 3.15), Johnson family method (Section 3.16), Tukey
method (Section 3.17), asymmetric Laplace distribution (Section 3.18), asymmetric power distri-
bution (Section 3.19), Weibull distribution (Section 3.20), ARCH models (Section 3.21), GARCH
models (Section 3.22), GARCH model with heavy tails (Section 3.23), ARMA-GARCH model (Sec-
tion 3.24), Markov switching ARCH model (Section 3.25), fractionally integrated GARCH model
(Section 3.26), RiskMetrics model (Section 3.27), capital asset pricing model (Section 3.28), Dagum
distribution (Section 3.29), location-scale distributions (Section 3.30), discrete distributions (Sec-
tion 3.31), quantile regression method (Section 3.32), Brownian motion method (Section 3.33),
Bayesian method (Section 3.34), and Rachev et al.’s method (Section 3.35).

3.1 Gaussian distribution

If X1,X2, . . . ,Xn are observations from a Gaussian distribution with mean µ and variance σ2 then
VaR can be estimated by

V̂aRα = X +Φ−1(α)s, (7)

where X is the sample mean and s2 is the sample variance

s2 =
1

n

n∑

i=1

(
Xi −X

)2
. (8)

The estimator in (7) is biased and consistent. If the n in (8) is replaced by n− 1 then (7) becomes
unbiased and consistent.

3.2 Student’s t distribution

If X1,X2, . . . ,Xn are observations from a Student’s t distribution with ν degrees of freedom then
VaR can be estimated by (Arneric et al., 2008)

V̂aRα = X + tν,αs

√
3 + κ

3 + 2κ
,

where κ is the excess sample kurtosis and tν,α is the 100α percentile of a Student’s t random variable
with ν degrees of freedom.
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3.3 Pareto positive stable distribution

Sarabia and Prieto (2009) and Guillen et al. (2011) introduce the Pareto positive stable distribution
specified by the cdf

F (x) = 1− exp {−λ [ln(x/σ)]ν} (9)

for x ≥ σ, λ > 0 and ν > 0. Here, λ and ν are shape parameters and σ is a scale parameter. The
Pareto distribution is the particular case of (9) for ν = 1.

The Pareto positive stable distribution has been applied to risk management, see, for example,
Guillen et al. (2011). If X is a random variable having the cdf (9) then it is easy to see that

VaRα = σ exp

{[
− 1

λ
ln(1− α)

]1/ν}

for 0 < α < 1. So, if
(
σ̂, λ̂, ν̂

)
are maximum likelihood estimators of (σ, λ, ν) then

V̂aRα = σ̂ exp

{[
− 1

λ̂
ln(1− α)

]1/ν̂}

for 0 < α < 1.

3.4 Log folded t distribution

Brazauskas and Kleefeld (2011) introduce the log folded t distribution specified by the quantile
function

F−1(u) = exp
{
σQT (ν)((u+ 1)/2)

}

for 0 < u < 1, where σ > 0 is a scale parameter, ν > 0 is a shape parameter, and QT (ν)(·) denotes
the quantile function of a Student’s t random variable with ν degrees of freedom. Brazauskas and
Kleefeld (2011) also provide an application of this distribution to risk management.

Suppose X1,X2, . . . ,Xn is a random sample from the log folded t distribution with order statis-
tics X1:n < X2:n < · · · < Xn:n. Brazauskas and Kleefeld (2011) show that the value at risk can be
estimated by

V̂aR1−α = exp
{
σ̂QT (ν)(1− α/2)

}
,

where

σ̂ =

[
1

n

n∑

i=1

ln2Xi

]1/2

or

σ̂ =
1

c(a, b) (n−mn −m∗
n)

n−m∗

n∑

i=mn+1

lnXi:n,

where

c(a, b) =
1

1− a− b

∫ 1−b

a
QT (∞)((u+ 1)/2)du,

where mn and m∗
n are integers 0 ≤ mn < n − m∗

n ≤ n such that mn/n → a and m∗
n/n → b as

n→ ∞, where a and b are trimming proportions with 0 ≤ a+ b < 1.
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3.5 Variance covariance method

Suppose the portfolio return, say R, is made up of N asset returns, Ri, i = 1, 2, . . . , N , as

R =

N∑

i=1

wiRi,

where wi are non-negative weights summing to one. Suppose also E (Ri) = µi, Var (Ri) = σ2i and
Cov (Ri, Rj) = σiσjρij . The variance covariance method suggests that the value at risk of R can
be approximated by

VaRα(R) =
N∑

i=1

wiµi +Φ−1 (α)

√√√√
N∑

i=1

wiσ2i +
N∑

i,j=1,i 6=j

wiwjσiσjρij.

An estimator can be obtained by replacing the parameters µi, σi and ρij by their maximum likeli-
hood estimators.

3.6 Gaussian mixture distribution

Let {Pt} denote the financial asset prices and let Rt = lnPt − lnPt−1 denote the log-return corre-
sponding to the original financial series. Zhang and Cheng (2005) consider the model that Rt have
a Gaussian mixture distribution specified by the pdf

f(r) =
K∑

k=1

pk
1√
2πσk

exp

{
−(r − µk)

2

2σ2k

}

for K ≥ 1, where the mixing coefficients pk sum to one. Let VaRk
α denote the VaR corresponding

to the kth component, that is

∫ VaRk
α

−∞

1√
2πσk

exp

{
−(r − µk)

2

2σ2k

}
dr = α.

Let VaRα denote the VaR corresponding to the mixture model, that is

∫ VaRα

−∞

K∑

k=1

pk
1√
2πσk

exp

{
−(r − µk)

2

2σ2k

}
dr = α.

Then, Theorem 1 in Zhang and Cheng (2005) shows that

min
1≤k≤K

VaRk
α ≤ VaRα ≤ max

1≤k≤K
VaRk

α

always holds.

Furthermore, let αk denote the significance level of VaR corresponding to the kth component,
that is

α(k) =

∫ VaR

−∞

1√
2πσk

exp

{
−(r − µk)

2

2σ2k

}
dr.
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Let α denote the significance level of VaR corresponding to the mixture model, that is

α =

∫ VaR

−∞

K∑

k=1

pk
1√
2πσk

exp

{
−(r − µk)

2

2σ2k

}
dr = α.

Then, Theorem 2 in Zhang and Cheng (2005) shows that

min
1≤k≤K

α(k) ≤ α =

K∑

k=1

pkα
(k) ≤ max

1≤k≤K
α(k)

always holds.

3.7 Generalized hyperbolic distribution

Suppose the log-returns, Rt = lnXt − lnXt−1, follow the model

Rt = σtǫt,

where σt is the volatility process and ǫt are independent and identical random variables with
zero mean and unit variance. Let VaRα,t denote the corresponding value at risk. Suppose ǫt are
independent and identical and have the generalized hyperbolic distribution specified by the pdf

f(x) =
(η/δ)λ√
2πKλ(δη)

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)

{√
δ2 + (x− µ)2/α

}1/2−λ
exp [β(x− µ)] ,

where µ ∈ R is a location parameter, α ∈ R is a shape parameter, β ∈ R is an asymmetry parameter,
δ ∈ R is a scale parameter, λ ∈ R, η =

√
α2 − β2, and Kν(·) denotes the modified Bessel function

of order ν.

Tian and Chan (2010) propose a method based on saddlepoint approximation for computing
VaRα,t. It can be described as follows:

1. Estimate σ2t by

σ̂2t =




m∑

j=1

ωjRt−j




2

for m > 1, where ωj are some non-negative weights summing to one;

2. Compute t̂ as the root of κ
′
(
t̂
)
= t, where κ

′

(·) is defined in step 3;

3. Compute q̂p as the root of

p =





exp

{
κ
(
t̂
)
− t̂t+

1

2
t̂2κ

′′ (
t̂
)}

Φ

(
−
√
t̂2κ′′

(
t̂
))

, if t > E,

1

2
, if t = E,

1− exp

{
κ
(
t̂
)
− t̂t+

1

2
t̂2κ

′′ (
t̂
)}

Φ

(
−
√
t̂2κ′′

(
t̂
))

, if t < E,
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where

E = µ+
δβKλ+1(δη)

ηKλ(δη)
,

κ(z) = µz + ln ηλ − λ ln η + lnKλ(δη) − lnKλ(δη),

κ
′

(z) = µ+
δ(β + z)Kλ+1(δη)

ηKλ(δη)
,

κ
′′

(z) =
δKλ+1(δη)

ηKλ(δη)
+
δ2(β + z)2Kλ+2(δη)

η2Kλ(δη)
− δ2(β + z)2K2

λ+1(δη)

η2K2
λ(δη)

;

4. Estimate VaRα,t by V̂aRα,t = σ̂tq̂p.

3.8 Fourier transformation method

Siven et al. (2009) suggest a method for computing VaR by approximating the cdf F by a Fourier
series. The approximation is given by the following result due to Hughett (1998): suppose

(a) that there exists constants A and α > 1 such that F (−y) ≤ A|y|−α and 1 − F (y) ≤ A|y|−α

for all y > 0,

(b) that there exist constants B and β > 0 such that |φ(u)| ≤ B |u/(2π)|−β for all u ∈ R, where
φ(·) denotes the characteristic function corresponding to F (·);

Then, for constants 0 < l < 2/3, T > 0 and N > 0, the cdf F can be approximated as

F (x) ≈ 1

2
+ 2

N/2−1∑

k=1

Re (G[k] exp (2πikx/T )) ,

where i =
√
−1, Re(·) denotes the real part, and

G(k) =
1− cos(2πlk)

2πik
φ (−2πk/T ) .

An estimator for VaRp is obtained by solving the equation

1

2
+ 2

N/2−1∑

k=1

Re (G[k] exp (2πikx/T )) = p

for x.

3.9 Principal components method

Brummelhuis et al. (2002) use an approximation based on the principal component method to
compute VaR. If S(t) = (S1(t), . . . , Sn(t)) is a vector of risk factors over time t and if Π (t,S(t)) is
a random variable they define VaR to be

Pr [Π (0,S(0)) −Π(t,S(t)) > VaR] = α. (10)
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This equation is too general to be solved. So, Brummelhuis et al. (2002) consider the quadratic
approximation

Π (t,S(t)) −Π(0,S(0)) ≈ Θt+∆ξ +
1

2
ξΓξT

and assume that ξ is normally distributed with mean m and covariance matrix V. Under this
approximation, we can rewrite (10) as

Pr

[
Θ+∆ξ +

1

2
ξΛξT ≤ −VaR

]
= α.

Let V = HTH denote the Cholesky decomposition and let

Θ̃ = Θ +m∆+
1

2
mΓmT ,

∆̃ = (∆+mΓ)HT ,

Γ̃ = HΓHT .

Also let Γ̃ = PD̃PT denote the principal components decomposition of Γ̃, v = ∆̃PD̃−1, and T =
Θ̃− 1

2vDvT . With these notation, Brummelhuis et al. (2002) show that VaR can be approximated
by

VaR = K − T,

where K is the root of

1

(2π)n/2

∫

1

2
zD̃zT≤−VaR−T

exp

{
−1

2
|z − v|2

}
dz = α.

3.10 Quadratic forms

Suppose the financial series are realizations of a quadratic form

V = θ + δTY +
1

2
YTΛY = θ +

m∑

j=1

(
δjYj +

1

2
λjY

2
j

)
,

where Y = (Y1, Y2, . . . , Ym)T is a standard normal vector, δ = (δ1, δ2, . . . , δm)T and Λ = diag
(λ1, λ2, . . . , λm). Examples include non-linear positions like options in finance or the modelling of
bond prices in terms of interest rates (duration and convexity). Here, λ’s are the eigenvalues sorted
in ascending order. Suppose there are n ≤ m distinct eigenvalues. Let ij denote the highest index
of the jth distinct eigenvalue with multiplicity µj . For j = 1, 2, . . . , n, let

Vj =





1

2
λij

ij∑

ℓ=ij−1+1

(
δℓ
λij

+ Yℓ

)2

, if λij 6= 0,

λij

ij∑

ℓ=ij−1+1

δℓYℓ, if λij = 0,

δ
2
j =

ij∑

ℓ=ij−1+1

δ2ℓ ,

a2j = δ
2
j/λ

2
ij .
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Let bj denote the moment generating function of V − Vj evaluated at 1/λij . With this notation,
Jaschke et al. (2004) derive various approximations for VaR. The first of these applicable for λi1 < 0
is

VaRα ≈ λi1 ln b1 +
λi1
2
χ2
µ1,1−α

(
a21
)
,

where χ2
µ,α(δ) denotes the 100α percentile of a non-central chisquare random variable with degrees

of freedom µ and non-centrality parameter δ. The second of the approximations applicable for
λi1 = 0 and λin = 0 is

VaRα ≈ θ −
n∑

j=2

δ
2
j

2λij
+
(
F̃ t
1

)−1
(α),

where

F̃ t
1(x) =



∣∣δ1
∣∣

√
2π

exp


−

n∑

j=2

a2j/2




n∏

j=2

∣∣∣δ21/λij
∣∣∣
µj/2



exp

[
−x2/

(
2δ

2
1

)]

(−x)1+
∑n

j=2
µj/2

.

The third of the approximations applicable for λi1 > 0 and λin < 0 is

VaRα ≈ θ −
n∑

j=1

δ
2
j

2λij
+
(mα
2d

)2/m
,

where

d =
1

Γ(m/2)

n∏

j=1

∣∣λij
∣∣−µj/2 exp


−

n∑

j=1

a2j/2


 .

3.11 Elliptical distribution

Suppose a portfolio return, say R, is made up of n asset returns, say Ri, i = 1, 2, . . . , n, as
R = δ1R1+ · · ·+δnRn = δTR, where δi are non-negative weights summing to one, δ = (δ1, . . . , δn)

T

and R = (R1, . . . , Rn)
T . Kamdem (2005) derives various expressions for the value at risk of R by

supposing that R has an elliptically symmetric distribution.

If R has the joint pdf fR(r) =| Σ |−1/2 g
(
(r− µ)T Σ−1 (r− µ)

)
, where µ is the mean vector,

Σ is the variance-covariance matrix, and g(·) is a continuous and integrable function over R, then
it is shown that

VaRα(R) = δTµ+ q
√
δTΣδ,

where q is the root of

G(s) = α,

where

G(s) =
π(n−1)/2

Γ ((n− 1)/2)

∫ −∞

s

∫ ∞

z2
1

(
u− z21

)(n−3)/2
g(u)dudz1. (11)
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If R follows a mixture of elliptical pdfs given by

fR(r) =
m∑

i=1

βj |Σj|−1/2 gj

(
(r− µj)

T
Σ−1

j (r− µj)
)
,

where µj is the mean vector for the jth elliptical pdf, Σj is the variance-covariance matrix for the
jth elliptical pdf, and βj are non-negative weights summing to one, then it is shown that the value
at risk of R is the root of

m∑

j=1

βjGj

(
δTµj +VaRα√

δTΣjδ

)
= α,

where Gj(·) is defined as in (11).

3.12 Copula method

Suppose a portfolio return, say R, is made up of two asset returns, R1 and R2, as R = wR1 +
(1 − w)R2, where w is the portfolio weight for asset 1 and 1 − w is the portfolio weight for asset
2. Huang et al. (2009) consider computation of VaR for this situation by supposing that the joint
cdf of (R1, R2) is C (F1 (R1) , F2 (R2)), where C is a copula (Nelsen, 1999), Fi is the marginal cdf
of Ri and fi is the marginal pdf of Ri. Then, the cdf of R is

Pr (R ≤ r) = Pr (wR1 + (1− w)R2 ≤ r)

= Pr

(
R1 ≤

r

w
− (1− w)R2

w

)

=

∫ ∞

−∞

∫ r/w−(1−w)R2/w

−∞
c (F1 (r1) , F2 (r2)) f1 (r1) f2 (r2) dr1dr2,

where c is the copula pdf. So, VaRp(R) can be computed by solving the equation

∫ ∞

−∞

∫ VaRp(R)/w−(1−w)R2/w

−∞
C (F1 (r1) , F2 (r2)) dr1dr2 = p.

In general, this equation will have to solved numerically or by simulation.

Franke et al. (2011) consider the more general case that the portfolio return R is made up of n
asset returns, Ri, i = 1, 2, . . . , n; that is

R =

n∑

i=1

wiRi

for some non-negative weights summing to one. Suppose as above that the joint cdf of (R1, . . . , Rn)
is C (F1 (R1) , . . . , Fn (Rn)), where Fi is the marginal cdf of Ri and fi is the marginal pdf of Ri.
Then, the cdf of R is

Pr (R ≤ r) =

∫

U
c (u1, . . . , un) du1 · · · dun,

where

U =
{
[0, 1]n−1 × [0, un(r)]

}
,
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and

un(r) = Fn

(
r/wn −

n−1∑

i=1

wiF
−1
i (ui) /wn

)
.

So, VaRp(R) can be computed by solving the equation

∫

U
c (u1, . . . , un) du1 · · · dun = p.

Again, this equation will have to be computed by numerical integration or simulation.

3.13 Gram-Charlier approximation

Simonato (2011) suggests a number of approximations for computing (2). The first of these is based
on Gram Charlier expansion.

Let κ3 = E
[
Z3
t

]
denote the skewness coefficient and κ4 = E

[
Z4
t

]
the kurtosis coefficient of the

standardized log-returns. Simonato (2011) suggests the approximation

VaRα = αh + σhψ
−1
GC(p),

where ψ−1
GC(·) is the inverse function of

ψGC(k) = Φ(k)− κ3
6

(
k2 − 1

)
φ(k)− κ4 − 3

24
k
(
k2 − 3

)
φ(k),

where Φ(·) denotes the standard normal cdf and φ(·) denotes the standard normal pdf.

3.14 Delta gamma approximation

Let R = (R1, . . . , Rn)
T denote a vector of returns normally distributed with zero means and

covariate matrix Σ. Suppose the return of an associated portfolio takes the general form Y = g(R).
It will be difficult to find the value of risk of Y for general g(·). Some approximations are desirable.
The delta gamma approximation is a commonly used approximation (Feuerverger and Wong, 2000).

Suppose we can approximate Y = aT1 R + RTB1R for a1 a n × 1 vector and B1 a n × n
matrix. Let Σ = HHT denote the Cholesky decomposition. Let λ1, . . . , λn and P1, . . . ,Pn denote
the eigenvalues and eigenvectors of HTB1H. Let aj denote the entries of PTHTa1, where P =
(P1, . . . ,Pn). Then, the delta gamma approximation is that

Y
d
=

n∑

j=1

(
ajZj + λjZ

2
j

)
, (12)

where Z1, . . . , Zn are independent standard normal random variables. The value of risk can be
obtained by inverting the distribution of the right hand side of (12).
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3.15 Cornish-Fisher approximation

Another approximation suggested by Simonato (2011) is based on Cornish-Fisher expansion. With
the notation as in Section 3.13, the approximation is

VaRα = αh + σhψ
−1
CF (p),

where ψ−1
CF (·) is the inverse function of

ψ−1
CF (p) = Φ−1(p) +

κ3
6

[(
Φ−1(p)

)2 − 1
]
+
κ4 − 3

24

[(
Φ−1(p)

)3 − 3Φ−1(p)
]

−κ
2
3

36

[
2
(
Φ−1(p)

)3 − 5Φ−1(p)
]
,

where Φ−1(·) denotes the standard normal quantile function.

3.16 Johnson family method

A third approximation suggested by Simonato (2011) is based on the Johnson family of distributions
due to Johnson (1949).

Let Y denote a standard normal random variable. A Johnson random variable can be expressed
as

Z = c+ dg−1

(
Y − a

b

)
,

where

g−1 (u) =





exp(u), for the lognormal family,
[exp(u)− exp(−u)] /2, for the unbounded family,
1/ [1 + exp(−u)] , for the bounded family,
u, for the normal family.

Here, a, b, c and d are unknown parameters determined, for example, by the method of moments,
see Hill et al. (1976).

With the notation as above, the approximation is

VaRα = αh + σhψ
−1
J (p; a, b, c, d),

where

ψ−1
J (p; a, b, c, d) = c+ dg−1

(
Φ−1(p)− a

b

)
,

where Φ−1(·) denotes the standard normal quantile function.

3.17 Tukey method

Jiménez and Arunachalam (2011) present a method for approximating VaR based on Tukey’s g
and h family of distributions.
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Let Y denote a standard normal random variable. A Tukey’s g and h random variable can be
expressed as

Z = g−1 [exp(gY )− 1] exp
(
hY 2/2

)

for g 6= 0 and h ∈ R. The family of lognormal distributions is contained as the particular case for
h = 0. The family of Tukey’s h distribution is contained as the limiting case for g → 0.

With the notation as in Section 3.13, the approximation suggested by Jiménez and Arunachalam
(2011) is

VaRp = A+BTg,h
(
Φ−1(p)

)
,

where A and B are location and scale parameters. For g = 0 and h = 1, Z is a normal random
variable with mean µ and standard deviation σ, so A = µ and B = σ. For g = 0.773 and
h = −0.09445, Z is an exponential random variable with parameter λ, so A = (1/λ) ln 2 and
B = g/λ. For g = 0 and h = 0.057624, Z is a Student’s t random variable with ten degrees of
freedom, so A = 0 and B = 1.

3.18 Asymmetric Laplace distribution

Trindade and Zhu (2007) consider the case that the log-returns of X1,X2, . . . ,Xn is a random
sample from the asymmetric Laplace distribution given by the pdf

f(x) =
κ
√
2

τ (1 + κ2)





exp

(
−κ

√
2

τ
|x− θ|

)
, if x ≥ θ,

exp

(
−
√
2

κτ
|x− θ|

)
, if x < θ

for x ∈ R, τ > 0 and κ > 0. The maximum likelihood estimator of VaRα is derived as

V̂aRα = − τ̂ ln
[(
1 + κ̂2

)
(1− α)

]

κ̂
√
2

,

where (τ̂ , κ̂) are the maximum likelihood estimators of (τ, κ). Trindade and Zhu (2007) show further
that

√
n
(
V̂aRα −VaRα

)
→ N

(
0, σ2

)

in distribution as n→ ∞, where σ2 = τ2
[
(ω − 1)2κ2 + 2ω2

]
/
(
4κ2
)
and ω = ln

[(
1 + κ2

)
(1− α)

]
.

3.19 Asymmetric power distribution

Komunjer (2007) introduces the asymmetric power distribution as a model for risk management.
A random variable, say X, is said to have this distribution if its pdf is

f(x) =





δ1/λ

Γ(1 + 1/λ)
exp

[
− δ

αλ
|x|λ

]
, if x ≤ 0,

δ1/λ

Γ(1 + 1/λ)
exp

[
− δ

(1− α)λ
|x|λ

]
, if x > 0

(13)
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for x ∈ R, where 0 < α < 1, λ > 0 and δ = 2αλ(1 − α)λ/
{
αλ + (1− α)λ

}
. Note that λ is a shape

parameter and α is a scale parameter. The cdf corresponding to (13) is shown to be (Lemma 1,
Komunjer, 2007)

F (x) =





α

[
1− I

(
δ

αλ

√
λ|x|λ, 1/λ

)]
, if x ≤ 0,

1− (1− α)

[
1− I

(
δ

(1− α)λ

√
λ|x|λ, 1/λ

)]
, if x > 0,

(14)

where I(x, γ) =
∫ x

√
γ

0 tγ−1 exp(−t)dt/Γ(γ). Inverting (14) as in Lemma 2 of Komunjer (2007), we
can express VaRp(X) as

VaRp(X) =





−
[
αλ

δ
√
λ

]1/λ [
I−1

(
1− p

α
,
1

λ

)]1/λ
, if p ≤ α,

−
[
(1− α)λ

δ
√
λ

]1/λ [
I−1

(
1− 1− p

1− α
,
1

λ

)]1/λ
, if p > α,

(15)

where I−1(·, ·) denotes the inverse function of I(·, ·). An estimator of VaRp(X) can be obtained
by replacing the parameters in (15) by their maximum likelihood estimators, see Proposition 2 in
Komunjer (2007).

3.20 Weibull distribution

Gebizlioglu et al. (2011) consider estimation of VaR based on the Weibull distribution. Suppose
X1,X2, . . . ,Xn is a random sample from a Weibull distribution with the cdf specified by F (x) =
1− exp

{
−(x/θ)β

}
for x > 0, θ > 0 and β > 0. Then, the estimator for VaR is

V̂aRα = {− ln(1− α)}1/β̂ θ̂.

Gebizlioglu et al. (2011) consider various methods for obtaining the estimators θ̂ and β̂. By the
method of maximum likelihood, θ̂ and β̂ are the simultaneous solutions of

x2

s2
=

{Γ (1 + 1/β)}2
Γ (1 + 2/β) − Γ2 (1 + 1/β)

and

θ̂ =
x

Γ
(
1 + 1/β̂

) ,

where x is the sample mean and s2 is the sample variance. By Cohen and Whitten (1982)’s modified
method of maximum likelihood, θ̂ and α̂ are the simultaneous solutions of

−
nXβ

(1)

ln [n/(n+ 1)]
=

n∑

i=1

Xβ
i

and

θ̂ =

(
1

n

n∑

i=1

X β̂
i

)1/β̂

,
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where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics in ascending order. By Tiku (1967, 1968)
and Tiku and Akkaya (2004)’s modified method of maximum likelihood,

θ̂ = exp
(
δ̂
)
, β̂ = 1/η̂,

where

δ̂ = K +Dη̂, η̂ =
{
B +

√
B2 + 4nC

}
/(2n),

K =

n∑

i=1

βiX(i)/m, D =

n∑

i=1

(αi − 1) /m,

B =

n∑

i=1

(αi − 1)
(
X(i) −K

)
, C =

n∑

i=1

βi
(
X(i) −K

)2
,

m =
n∑

i=1

βi, αi =
[
1− t(i)

]
exp

(
t(i)
)
,

βi = exp
(
t(i)
)
, t(i) = ln (− ln (1− i/(n + 1))) .

By the least squares method, θ̂ and α̂ are those minimizing

n∑

i=1

(
1− exp

{
−
[
X(i)/θ

]β}− i

n+ 1

)2

with respect to θ and α. By the weighted least squares method, θ̂ and α̂ are those minimizing

n∑

i=1

(n+ 1)2(n+ 2)

i(n − i+ 1)

(
1− exp

{
−
[
X(i)/θ

]β}− i

n+ 1

)2

with respect to θ and α. By the percentile method, θ̂ and α̂ are those minimizing

n∑

i=1

{
X(i) − θ

[
− ln

(
1− i

n+ 1

)]1/β}2

with respect to θ and α.

3.21 ARCH models

ARCH models are popular in finance. Suppose the log-returns, say Rt, of {X1,X2, . . . ,Xn} follow
the ARCH model specified by

Rt = σtǫt, σ
2
t = β0 +

k∑

j=1

βjR
2
t−j ,

where ǫi are independent and identical random variables with zero mean, unit variance, pdf f(·)
and cdf F (·), and β = (β0, β1 . . . , βk)

T is an unknown parameter vector satisfying β0 > 0 and

βj ≥ 0, j = 1, 2, . . . , k. If β̂ =
(
β̂0, β̂1 . . . , β̂k

)T
are the maximum likelihood estimators then the

residuals are

ǫ̂t = Rt/σ̂t,
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where

σ̂2t = β̂0 +
k∑

j=1

β̂jR
2
t−j.

Taniai and Taniguchi (2008) show that VaR for this ARCH model can be approximated by

V̂aRp ≈ σ̂n+1

[
F−1(p) + σ̂Φ−1(α)/

√
n
]
,

where

σ2 =
1

f2 (F−1(p))

[
p(1− p)

+F−1(p)f
(
F−1(p)

)
{∫ F−1(p)

−∞
u2f(u)du− p

}
τTU−1V

+
1

4

(
F−1(p)

)2
f2
(
F−1(p)

)
τTU−1SU−1τ

]
,

whereV = E
[
σ2tWt−1

]
, S = 2E

[
σ4tWt−1W

T
t−1

]
, W =

(
1, R2

t , . . . , R
2
t−k+1

)T
, U = E

[
Wt−1W

T
t−1

]
,

τ = (τ0, τ1, . . . , τk)
T , τ0 = E

[
1/σ2t

]
, and τj = E

[
R2

t−j/σ
2
t

]
, j = 1, 2, . . . , k.

3.22 GARCH models

Suppose the financial returns, say Rt, satisfy the model

[1− φ(L)]Rt = [1− θ(L)] ǫt, ǫt = ηt
√
ht, (16)

where ηt are independent and identical standard normal random variables, Rt is the return at time
t, L denotes the lag operator satisfying LRt = Rt−1, φ(L) is the polynomial φ(L) = 1−∑r

i=1 φiL
i,

θ(L) is the polynomial θ(L) = 1+
∑s

i=1 θiL
i, ht is the conditional variance, and ηt are independent

and identical residuals with zero means and unit variances. One popular specification for ht is

ht = ω +

p∑

i=1

αiǫ
2
t−i +

q∑

i=1

βiht−i. (17)

This corresponds to the GARCH (p, q) model.

For the model given by (16) and (17), Chan (2009b) proposes the following algorithm for
computing VaR:

1. Estimate the maximum likelihood estimates of the parameters in (16) and (17);

2. Using the parameter estimates, compute the standardized residuals η̂t = (Rt − r̂t) /ĥt;

3. Compute the first k sample moments for η̂t;
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4. Compute

p̂ (ηt) = exp

(
k∑

i=1

λiη
i
t

)
/

∫
exp

(
k∑

i=1

λiη
i
t

)
dηt.

The parameters λ1, λ2, . . . , λk are determined from the sample moments of step 3 in a way
explained in Chan (2009a) and Rockinger and Jondeau (2002);

5. Compute V̂aRp as the root of the equation

∫ K

−∞
p̂ (ηt) dηt = p.

3.23 GARCH model with heavy tails

Chan et al. (2007) consider the case that financial returns, say Rt, come from a GARCH (p, q)
specified by

Rt = σtǫt, σ
2
t = c+

p∑

i=1

biR
2
t−i +

q∑

j=1

ajσ
2
t−j ,

where Rt is strictly stationary with ER2
t < ∞, and ǫt are zero mean, unit variance, independent

and identical random variables independent of {Rt−k, k ≥ 1}. Further, Chan et al. (2007) assume
that ǫt have heavy tails, that is their cdf, say G, satisfies

lim
x→∞

1−G(xy)

1−G(x)
= y−γ , lim

x→∞
G(−x)
1−G(x)

= d

for all y > 0, where γ > 0 and d ≥ 0. Chan et al. (2007) show that the VaR for this model given
by

VaRα = inf {x : Pr (Rn+1 ≤ x|Rn+1−k, k ≥ 1) ≥ α}

can be estimated by

V̂aRα = σ̃n+1

(
â, b̂, ĉ

)
(1− α)−1/γ̂

(
k

m

)1/γ̂

ǫ̂m,m−k,
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where

σ̃2t (a, b, c) =
c

1−
q∑

j=1

aj

+

p∑

i=1

biR
2
t−i

+

p∑

i=1

bi

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

aj1 · · · ajkR2
t−i−j1−···−jk

I {t− i− j1 − · · · − jk ≥ 1} ,

Lν(a, b, c) =

n∑

t=ν

{
R2

t /σ̃
2
t (a, b, c) + ln σ̃2t (a, b, c)

}
,

(
â, b̂, ĉ

)
= argmin(a,b,c)Lν(a, b, c),

ǫ̂t = Rt/σ̃
2
t

(
â, b̂, ĉ

)
,

γ̂ =

{
1

k

k∑

i=1

ln
ǫ̂m,m−i+1

ǫ̂m,m−k

}−1

,

where ν = ν(n) → ∞ and ν/n → 0 as n → ∞, m = n − ν + 1, ǫ̂m,1 ≤ ǫ̂m,2 ≤ · · · ≤ ǫ̂m,m are the
order statistics of ǫ̂ν , ǫ̂ν+1, . . . , ǫ̂n, and k = k(m) → ∞ and k/m → 0 as n→ ∞. Chan et al. (2007)

also establish asymptotic normality of V̂aRα.

3.24 ARMA-GARCH model

Suppose the financial returns, say Rt, t = 1, 2, . . . , T , satisfy the ARMA(p, q)-GARCH(r, s) model
specified by

Rt = a0 +

p∑

i=1

aiRt−i + ǫt +

q∑

j=1

bjǫt−j,

σ2t = c0 +

r∑

i=1

ciǫ
2
t−i +

s∑

j=1

djσ
2
t−j ,

ǫt = ztσt,

where zt are independent standard normal random variables. For this model, Hartz et al. (2006)
show that the h-step ahead forecast of value at risk can be estimated by

µ̂T+h + σ̂T+hΦ
−1(α),
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where

ǫ̂t = Rt − â0 −
p∑

i=1

âiRt−i −
q∑

j=1

b̂j ǫ̂t−j ,

σ̂2t = ĉ0 +
r∑

i=1

ĉiǫ̂
2
t−i +

s∑

j=1

d̂j σ̂
2
t−j ,

µ̂T+h = â0 +

p∑

i=1

âiRT+h−i +

q∑

j=1

b̂j ǫ̂T+h−j,

σ̂2T+h = ĉ0 +
r∑

i=1

ĉiǫ̂
2
T+h−i +

s∑

j=1

d̂j σ̂
2
T+h−j.

The parameter estimators required can be obtained, for example, by the method of maximum
likelihood.

3.25 Markov switching ARCH model

Suppose the financial returns, say Rt, t = 1, 2, . . . , T , satisfy the Markov switching ARCH model
specified by

Rt = ust + ǫt,

ǫt = (gstwt)
1/2 ,

wt = (htet)
1/2 ,

ht = a0 + a1w
2
t−1 + · · ·+ aqw

2
t−q,

where et are standard normal random variables, st is an unobservable random variable assumed to
follow a first-order Markov process, and wt is a typical ARCH (q) process. This model is due to
Bollerslev (1986). An estimator of the value at risk at time t can be obtained by inverting the cdf
of Rt with its parameters replaced by their maximum likelihood estimators.

3.26 Fractionally integrated GARCH model

Suppose the financial returns, say Rt, t = 1, 2, . . . , T , satisfy the fractionally integrated GARCH
model specified by

Rt = σtǫt,

σ2t = w +

p∑

i=1

βi
(
σ2t−i −R2

t−i

)
−

∞∑

i=1

λiR
2
t−i,

where ǫt are random variables with zero means and unit variances. This model is due to Baillie
et al. (1996). An estimator of the value at risk at time t can be obtained by inverting the cdf of
Rt with its parameters replaced by their maximum likelihood estimators. This of course depends
on the distribution of ǫt. If, for example, ǫt are normally distributed then V̂aRt,α = σ̂t+1Φ

−1(α),
where σ̂t+1 may be the maximum likelihood estimator of σt+1.
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3.27 RiskMetrics model

Suppose {Rt} are the log-returns of {X1,X2, . . . ,Xn} and let Ωt denote the information up to time
t. The RiskMetrics model (RiskMetrics, 1996) is specified by

Rt = ǫt,

ǫt
∣∣Ωt−1 ∼ N

(
0, σ2t

)
,

σ2t = λσ2t−1 + (1− λ)ǫ2t−1, 0 < λ < 1.

The value at risk for this model can be computed by inverting

Pr (Rt < VaRt,α) = α

with the parameters, σ2t and λ, replaced by their maximum likelihood estimators.

3.28 Capital asset pricing model

Let Ri denote the return on asset i, let Rf denote the “risk-free rate”, and let Rm denote the
“return on the market portfolio”. With this notation, Fernandez (2006) considers the capital asset
pricing model given by

Ri −Rf = αi + βi (Rm −Rf ) ǫi

for i = 1, 2, . . . , k, where ǫi are independent random variables with Var (ǫi) = σ2ǫi , and Var (Rm) =
σ2m. It is easy to see that

Var (Ri) = β2i σ
2
m + σ2e ,

Cov (Ri, Rj) = βiβjσ
2
m.

Fernandez (2006) shows that the value at risk of the portfolio of k assets can be expressed as

VaRα = V0Φ
−1(α)

√
wT (ββTσ2m +E)w, (18)

wherew is a k×1 vector of portfolio weights, V0 is the initial value of the portfolio, β = (β1, . . . , βk)
T

and E = diag
(
σ2ǫ1 , . . . , σ

2
ǫk

)T
. An estimator of (18) can be obtained by replacing the parameters

by their maximum likelihood estimators.

3.29 Dagum distribution

The Dagnum distribution is due to Dagum (1977, 1980). It has the pdf and cdf specified by

f(x) = βλδ exp(−δx) [1 + λ exp(−δx)]−β−1

and

F (x) = [1 + λ exp(−δx)]−β ,

respectively, for x > 0, λ > 0, β > 0 and δ > 0. Domma and Perri (2009) discuss an application of
this distribution for VaR estimation. They show that

V̂aRp =
1

δ̂
ln

(
λ̂

p−1/β̂ − 1

)
,
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where
(
λ̂, β̂, δ̂

)
are maximum likelihood estimators of (λ, β, δ) based on {X1,X2, . . . ,Xn} being a

random sample coming from the Dagnum distribution. Domma and Perri (2009) show further that

√
n
(
V̂aRp −VaRp

)
→ N

(
0, σ2

)

in distribution as n→ ∞, where σ = gI−1gT and

g =

[
− p−1/β ln p

δβ2
(
p−1/β − 1

) , 1

λδ
,− 1

δ2
ln

(
λ

p−1/β − 1

)]
.

Here, I is the expected information matrix of
(
λ̂, β̂, δ̂

)
. An explicit expression for the matrix is

given in the appendix of Domma and Perri (2009).

3.30 Location-scale distributions

Suppose X1,X2, . . . ,Xn is a random sample from a location-scale family with cdf Fµ,σ(x) =
F0 ((x− µ)/σ) and pdf fµ,σ(x). Then,

VaRp = µ+ zpσ, (19)

where zp = F−1
0 (p). The point estimator for VaR is

V̂aRp = µ̂n + zpcnσ̂n,

where

µ̂n =
1

n

n∑

i=1

Xi,

σ̂2n =
1

n− 1

n∑

i=1

(Xi − µ̂n)
2 ,

and

cn = (E [σ̂n/σ])
−1 .

Bae and Iscoe (2012) propose various confidence intervals for VaR. Based on cn = 1 +O
(
n−1

)

and asymptotic normality, Bae and Iscoe (2012) propose the interval

µ̂n + zpσ̂n ± σ̂n√
n
z(1+α)/2

√

1 +
z2p
4
(κ− 1) + zpω, (20)

where α is the confidence level, κ is the kurtosis of F0(x), and ω is the skewness of F0(x). Based on
Bahadur (1966)’s almost sure representation of the sample quantile of a sequence of independent
random variables, Bae and Iscoe (2012) propose the interval

ξ̂p ±
1√
n
z(1+α)/2

√
p(1− p)

fµ,σ

(
ξ̂p

) ,
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where ξp is the pth quantile and ξ̂p is its sample counterpart.

Sometimes the financial series of interest is strictly positive. In this case, if X1,X2, . . . ,Xn is
a random sample from a log location-scale family with cdf Gµ,σ(x) = lnF0 ((x− µ)/σ), then (19)
and (20) generalize to

VaRp = exp (µ+ zpσ)

and

exp


µ̂n + zpσ̂n ± σ̂n

n
z(1+α)/2

√

1 +
z2p
4
(κ− 1) + zpω


 ,

respectively, as noted by Bae and Iscoe (2012).

3.31 Discrete distributions

Göb (2011) considers VaR estimation for the three most common discrete distributions: Poisson,
binomial and negative binomial. Let

Lc(λ) =

c∑

y=0

λy exp(−λ)
y!

.

Then, the VaR for the Poisson distribution is

VaRp(λ) = inf {c = 0, 1, . . . | Lc(λ) ≥ p} .

Letting

Ln,c(r) =
c∑

y=0

(
n

y

)
ry(1− r)n−y,

the VaR for the binomial distribution is

VaRp(r) = inf {c = 0, 1, . . . | Ln,c(r) ≥ p} .

Letting

Hn,c(r) =

c∑

y=0

(
n+ y − 1

y

)
(1− r)yrn,

the VaR for the negative binomial distribution is

VaRp(r) = inf {c = 0, 1, . . . | Hn,c(r) ≥ p} .

Göb (2011) derives various properties of these VaR measures in terms of their parameters. For the
Poisson distribution, the following properties were derived:

(a) for fixed p ∈ (0, 1), VaRp(λ) is increasing in λ ∈ [0,∞) with limλ→∞VaRp(λ) = ∞. There are
values 0 = λ−1 < λ0 < λ1 < λ2 < · · · , limc→∞ λc = ∞, such that, for c ∈ N0, VaRp(λ) = c on
the interval (λc−1, λc] and Lc(λ) > Lc (λc) = p for λ ∈ (λc−1, λc). In particular, λ0 = − ln(p).
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(b) For fixed λ > 0, c = −1, 0, 1, . . ., let pc = Lc(λ). Then, for c = 0, 1, 2, . . ., VaRp(λ) = c for
p ∈ (pc−1, pc].

For the binomial distribution, the following properties were derived:

(a) for fixed p ∈ (0, 1), VaRp(r) is increasing in r ∈ [0, 1]. There are values 0 = r−1 < r0 < r1 <
r2 < · · · < rn = 1 such that, for c ∈ {0, . . . , n}, VaRp(r) = c on the interval (rc−1, rc] and
Ln,c(r) > Ln,c (rc) = p for r ∈ (rc−1, rc). In particular, r0 = 1− p1/n and rn−1 = (1− p)1/n.

(b) For fixed 0 < r < 1, c = −1, 0, 1, . . ., let pc = Ln,c(r). Then, for c = 0, 1, 2, . . . , n, VaRp(r) = c
for p ∈ (pc−1, pc].

For the negative binomial distribution, the following properties were derived:

(a) for fixed p ∈ (0, 1), VaRp(r) is decreasing in r ∈ [0, 1]. There are values 1 = r−1 > r0 > r1 >
r2 > · · · , limc→∞ rc = 0, such that, for c ∈ N0, VaRp(r) = c on the interval [rc, rc−1) and
Hn,c(r) > Hn,c (rc) = p for r ∈ (rc, rc−1). In particular, r0 = p1/n.

(b) For fixed 0 < r < 1, c = −1, 0, 1, . . ., let pc = Hn,c(r). Then, for c = 0, 1, 2, . . . , n, VaRp(r) = c
for p ∈ (pc−1, pc].

Empirical estimation of the three VaR measures can be based on asymptotic normality.

3.32 Quantile regression method

Quantile regressions have been used to estimate value at risk, see Koenker and Basset (1978),
Koenker and Portnoy (1997), Chernozhukov and Umantsev (2001) and Engle and Manganelli
(2004). The idea is to regress the value at risk on some known covariates. Let Xt at time t
denote the financial variable, let zt denote a k × 1 vector of covariates at time t, let βα denote a
k× 1 vector of regression coefficients, and let VaRt,α denote the corresponding value at risk. Then,
the quantile regression model can be rewritten as

VaRt,α = g (zt;βα) . (21)

In the linear case, (21) could take the form

VaRt,α = zTt βα.

The parameters in (21) can be estimated by least squares as in standard regression.

3.33 Brownian motion method

Cakir and Raei (2007) describe simulation schemes for computing value at risk for single asset and
multiple asset portfolios. Let Pt denote the price at time t, let T denote a holding period divided
into small intervals of equal length ∆t, let ∆Pt denote the change in Pt over ∆t, let Zt denote
a standard normal shock, let µ denote the mean of returns over the holding period T , and let σ
denote the standard deviation of returns over the holding period T . With these notation, Cakir
and Raei (2007) suggest the model

∆Pt

Pt
= µ∆t+ σ

√
∆tZt. (22)

Under this model, the VaR for single asset portfolios can be computed as follows:
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(i) starting with Pt, simulate Pt, Pt+1, . . . , PT using (22);

(ii) repeat step (i) ten thousand times;

(iii) compute the empirical cdf over the holding period;

(iii) compute V̂aRα as 100α percentile of the empirical cdf.

The VaR for multiple asset portfolios can be computed as follows:

(i) suppose the price at time t for the ith asset follows

∆P i
t

P i
t

= µi∆t+ σi
√
∆tZi

t (23)

for i = 1, 2, . . . , N , where N is the number of assets, and the notation is the same as that
for single asset portfolios. The standard normal shocks, Zi

t , i = 1, 2, . . . , N , need not be
correlated;

(ii) starting with P i
t , i = 1, 2, . . . , N , simulate P i

t , P
i
t+1, . . . , P

i
T , i = 1, 2, . . . , N using (23);

(iii) compute the portfolio price for the holding period as the weighted sum of the individual asset
prices;

(iv) repeat steps (ii) and (iii) ten thousand times;

(v) compute the empirical cdf of the portfolio price over the holding period;

(vi) compute V̂aRα as 100α percentile of the empirical cdf.

3.34 Bayesian method

Pollard (2007) defines a Bayesian value at risk. Let Xt denote the financial variable of interest at
time t. Let p (Xt | Θ, Zt) denote the posterior pdf of Xt given some parameters Θ and “state”
variables Zt. Pollard (2007) defines the Bayesian value at risk at time t as

VaRα =

{
x :

∫ x

−∞
p (y | Θ, Zt+1) dy = α

}
. (24)

The “state” variables Zt are assumed to follow a transition pdf f (Zt, Zt+1).

Pollard (2007) also proposes several methods for estimating (24). One of them is the following:

(i) Use Markov Chain Monte Carlo to simulate N samples,
{(
Z

(n)
t ,Θ(n)

)
, n = 1, 2, . . . , N

}
,

from the joint conditional posterior pdf of (Zt,Θ) given Yt = {Xτ , τ = 1, 2, . . . , t};

(ii) For n from 1 to N , simulate Z
(n)
t+1 from the conditional posterior pdf of Zt+1 given Θ(n) and

Z
(n)
t ;

(iii) For n from 1 to N , simulate X
(n)
t+1 from the conditional posterior pdf of Xt+1 given Θ(n) and

Z
(n)
t+1;
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(iv) Compute the empirical cdf

Ĝ(x) =
1

N

N∑

n=1

I
{
X

(n)
t+1 ≤ x

}
; (25)

(v) Estimate VaR as Ĝ−1(α).

3.35 Rachev et al.’s method

Let R =
∑n

i=1 wiRi denote a portfolio return made up of n asset returns, Ri, and the non-negative
weights wi summing to one. Suppose Ri are independent Sα (αi, βi, 0) random variables. Then, it
can be shown that (Rachev et al., 2003) R ∼ Sα (αp, βp, 0), where

αp =

[
n∑

i=1

(|wi|σi)α
]1/α

and

βp =

n∑

i=1

sign (wi)βi (|wi|σi)α

n∑

i=1

(|wi|σi)α
.

Hence, the value of risk of R can be estimated by the following algorithm due to Rachev et al.
(2003):

• estimate αi and βi (to obtain say α̂i and β̂i) using possible data on the ith asset return;

• estimate αp and βp by

α̂p =

[
n∑

i=1

(|wi| σ̂i)α
]1/α

and

β̂p =

n∑

i=1

sign (wi) β̂i (|wi| σ̂i)α

n∑

i=1

(|wi| σ̂i)α
,

respectively;

• estimate VaRp(R) as the pth quantile of Sα

(
α̂p, β̂p, 0

)
.
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4 Nonparametric methods

This section concentrates on estimation methods for value at risk when the data are assumed to
come from no particular distribution. The nonparametric methods summarized are based on: his-
torical method (Section 4.1), filtered historical method (Section 4.2), importance sampling method
(Section 4.3), bootstrap method (Section 4.4), kernel method (Section 4.5), Chang et al.’s estima-
tors (Section 4.6), Jadhav and Ramanathan’s method (Section 4.7), and Jeong and Kang’s method
(Section 4.8).

4.1 Historical method

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending order corresponding to the
original financial series X1,X2, . . . ,Xn. The historical method suggests to estimate value at risk
by

V̂aRα(X) = X(i)

for α ∈ ((i− 1)/n, i/n].

4.2 Filtered historical method

Suppose the log-returns, Rt = lnXt− lnXt−1, follow the model, Rt = σtǫt, discussed before, where
σt is the volatility process and ǫt are independent and identical random variables with zero means.
Let ǫ(1) ≤ ǫ(2) ≤ · · · ≤ ǫ(n) denote the order statistics of {ǫt}. The filtered historical method
suggests to estimate value at risk by

V̂aRα = ǫ(i)σ̂t

for α ∈ ((i− 1)/n, i/n], where σ̂t denotes an estimator of σt at time t. This method is due to Hull
and White (1998) and Barone-Adesi et al. (1999).

4.3 Importance sampling method

Suppose F̂ (·) is the empirical cdf of X1,X2, . . . ,Xn. As seen in Section 4.1, an estimator for VaR
is F̂−1(α). This estimator is asymptotically normal with variance equal to

α(1 − α)

nf2 (VaRα)
.

This can be large if α is closer to zero or one. There are several methods for variance reduction. One
popular method is importance sampling. Suppose G(·) is another cdf and let S(x) = F̂ (dx)/G(dx)
and

Ŝ(x) =
1

n

n∑

i=1

I {Xi ≤ x}S (Xi) .

Hong (2011) shows that Ŝ−1(p) under certain conditions can provide estimators for VaR with
smaller variance.

42



4.4 Bootstrap method

Suppose F̂ (·) is the empirical cdf of X1,X2, . . . ,Xn. The bootstrap method can be described as
follows:

1. simulate B independent sample from F̂ (·);

2. for each sample estimate VaRα, say V̂aR
(i)

α for i = 1, 2, . . . , B, using the historical method;

3. take the estimate of VaR as the mean or the median of V̂aR
(i)

α for i = 1, 2, . . . , B.

One can also construct confidence intervals for VaR based on the bootstrapped estimates V̂aR
(i)

α ,
i = 1, 2, . . . , B.

4.5 Kernel method

Kernels are commonly used to estimate pdfs. Let K(·) denote a symmetric kernel, i.e., a symmetric
pdf. The kernel estimator of F can be given by

F̂ (x) =
1

n

n∑

i=1

G

(
x−Xi

h

)
, (26)

where h is a smoothing bandwidth and

G(x) =

∫ x

−∞
K(u)du.

A variable width version of (26) is

F̂ (x) =
1

n

n∑

i=1

1

hTi
G

(
x−Xi

hTi

)
, (27)

where Ti = dk (xi) is the distance of Xi from its kth nearest neighbor among the remaining (n− 1)

data points and k = n−1/2. The kernel estimator of VaR, say V̂aRp, is then the root of the equation

F̂ (x) = p (28)

for x, where F̂ (·) is given by (26) or (27). According to Sheather and Marron (1990), V̂aRp could
also be estimated by

V̂aRp =

n∑

i=1

F̂ ((i− 1/2)/n − p)X(i)

n∑

i=1

F̂ ((i− 1/2)/n − p)

,

where F̂ (·) is given by (26) or (27) and
{
X(i)

}
are the ascending order statistics of Xi.

The estimator in (28) is due to Gourieroux et al. (2000). Its properties have been studied many
authors. For instance, Chen and Tang (2005) show under certain regularity conditions that

√
n
(
V̂aRp −VaRp

)
→ N

(
0, σ2(p)f−2 (VaRp)

)
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in distribution as n→ ∞, where

σ2(p) = lim
n→∞

σ2(p;n),

σ2(p;n) =

{
p(1− p) + 2

n−1∑

k=1

(
1− k

n

)
γ(k)

}
,

γ(k) = Cov {I (X1 < VaRp) , I (Xk+1 < VaRp)} .
Here, I {·} denotes the indicator function.

4.6 Chang et al.’s estimators

Chang et al. (2003) propose several non-parametric estimators for the VaR of log-returns, say Rt

with pdf f(·). The first of these is V̂aRα = (1 − w)R(m) + wR(m+1), where m = [nα+ 0.5] and
w = nα−m+0.5, where [x] denotes the greatest integer less than or equal to x. This estimator is
shown to have the asymptotic distribution

√
n
(
V̂aRα −VaRα

)
→ N

(
0, α(1 − α)(p)f−2 (VaRα)

)

in distribution as n → ∞. It is sometimes referred to as the historical simulation estimator. The
second of the proposed estimators is

V̂aRα =
n∑

i=1

R(i)

[
Bi/n ((n+ 1)α, (n + 1)(1 − α))

−B(i−1)/n ((n+ 1)α, (n + 1)(1− α))
]
.

This estimator is shown to have the asymptotic distribution

√
n
(
V̂aRα −VaRα

)
→ N

(
0, α(1 − α)(p)f−2 (VaRα)

)

in distribution as n→ ∞. The third of the proposed estimators is

V̂aRα =

n∑

i=1

ki,nR(i),

where

ki,n = Bqi,n ((n+ 1)α, (n + 1)(1 − α))−Bqi−1,n
((n+ 1)α, (n + 1)(1 − α)) ,

q0,n = 0, qi,n =
i∑

j=1

wj,n, j = 1, 2, . . . , n,

wi,n =





1

2

[
1− n− 2√

n(n− 1)

]
, if i = 1, n,

1√
n(n− 1)

, if i = 2, 3, . . . , n − 1.

This estimator is shown to have the asymptotic distribution

√
n
(
V̂aRα −VaRα

)
→ N

(
0, α(1 − α)(p)f−2 (VaRα)

)

in distribution as n→ ∞.
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4.7 Jadhav and Ramanathan’s method

Jadhav and Ramanathan (2009) provide a collection of non-parametric estimators for VaRα. Let
X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics in ascending order corresponding toX1,X2, . . . ,Xn.
For given α, define i = [nα+ 0.5], j = [nα], k = [(n+ 1)α], g = nα − j, h = (n + 1)α − k and
r = [(p+ 1)α]. The collection provided is

V̂aRα = (1− g)X(j) + gX(j+1),

V̂aRα =

{
X(j), if g < 0.5,

X(j+1), if g ≥ 0.5,

V̂aRα =

{
X(j), if g = 0,

X(j+1), if g > 0,

V̂aRα = (1− h)X(k) + hX(k+1),

V̂aRα =





X(j) +X(j+1)

2
, if g = 0,

X(j+1), if g > 0,

V̂aRα = X(j+1),

V̂aRα = (0.5 + i− np)X(i) + (0.5 − i+ np)X(i+1), 0.5 ≤ nα ≤ n− 0.5,

V̂aRα =

n∑

m=1

Wn,mX(m),

V̂aRα =

r+n−p∑

m=r

(
m− 1

r − 1

)(
n−m

p− r

)

(
n

p

) X(m),

where

Wn,m = Im/n (α(n + 1), (1 − α)(n + 1))− I(m−1)/n (α(n + 1), (1 − α)(n + 1)) ,

where Ix(a, b) denote the incomplete beta function ratio defined by

Ix(a, b) =

∫ x

0
ta−1(1− t)b−1dt

B(a, b)
=

∫ x

0
ta−1(1− t)b−1dt

∫ 1

0
ta−1(1− t)b−1dt

.

The last of the estimators in the collection is due to Kaigh and Lachenbruch (1982). The second
last is due to Harrell and Davis (1982).

4.8 Jeong and Kang’s method

Suppose the log-returns, Rt = lnXt − lnXt−1, follow the model, Rt = σtǫt, discussed before. Let
VaRα,t denote the corresponding VaR. Jeong and Kang (2009) propose a fully non-parametric
estimator for the VaRα,t defined by

Pr (Rt < VaRα,t| Ft−1) = α,
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where Ft is the σ-field generated by (σs)s≤t. Let

Qn(α) =

{
X(s), if (s− 1)/n < α ≤ s/n,

X(1), if α = 0,

ai =

∫ 1

0
(α− s)iK

(
α− s

h

)
ds,

and

Ai(α) =

∫ 1

0
(α− s)iK

(
α− s

h

)
Qn(s)ds

for some kernel function K(·) with bandwidth h. With this notation, Jeong and Kang (2009)
propose the estimator

V̂aRα,t = σ̂tq̂2,

where

σ̂2t =
1

m̂

t−1∑

p=t−m̂

R2
p

and

q̂2 =
A0(α)

(
a2a4 − a23

)
−A1(α) (a1a4 − a2a3) +A2(α)

(
a1a3 − a22

)

a0
(
a2a4 − a23

)
− a1 (a1a4 − a2a3) + a2

(
a1a3 − a22

) .

Here, m̂ can be determined using a recursive algorithm presented in Section 2.1 of Jeong and Kang
(2009).

5 Semiparametric methods

This section concentrates on estimation methods for value at risk which have both parametric and
nonparametric elements. The semiparametric methods summarized are based on: extreme value
theory method (Section 5.1), generalized Pareto distribution (Section 5.2), Matthys et al.’s method
(Section 5.3), Araújo Santos et al.’s method (Section 5.4), Gomes and Pestana’s method (Section
5.5), Beirlant et al.’s method (Section 5.6), Caeiro and Gomes’s method (Section 5.7), Figueiredo
et al.’s method (Section 5.8), Li et al.’s method (Section 5.9), Gomes et al.’s method (Section
5.10), Wang’s method (Section 5.11), M -estimation method (Section 5.12), and the generalized
Champernowne distribution (Section 5.13).

5.1 Extreme value theory method

Let Mn = max {R1, R2, . . . , Rn} denote the maximum of financial returns. Extreme value theory
says that under suitable conditions there exist norming constants an > 0 and bn such that

Pr {an (Mn − bn) ≤ x} → exp
{
−(1 + ξx)−1/ξ

}
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in distribution as n → ∞. The parameter ξ is known as the extreme value index. It controls the
tail behavior of the extremes.

There are several estimators proposed for ξ. One of the earliest estimators due to Hill (1975) is

ξ̂ =
1

k

k∑

i=1

ln
R(i)

R(k+1)
, (29)

where R(1) > R(2) > · · ·R(k) > · · · > R(n) are the order statistics in descending order. Another
earliest estimator due to Pickands (1975) is

ξ̂ =
1

ln 2
ln
R(k+1) −R(2k+1)

R(2k+1) −R(4k+1)
. (30)

The tails of F for most situations in finance take the Pareto form, that is

1− F (x) = Cx−1/ξ (31)

for some constant C. Embrechts et al. (1997, page 334) propose estimating C by Ĉ = (k/n)R
1/ξ̂
k+1.

Combining (29) and (31), Odening and Hinrichs (2003) propose estimating VaR by

V̂aR1−p = R(k+1)

(
k

np

)ξ̂

. (32)

This estimator is actually due to Weissman (1978).

An alternative approach is to suppose that the maximum of financial returns follows the gen-
eralized extreme value cdf (Fisher and Tippett, 1928) given by

G(x) = exp

{
−
(
1 + ξ

x− µ

σ

)−1/ξ
}

(33)

for 1+ ξ(x−µ)/σ > 0, µ ∈ R, σ > 0 and ξ ∈ R. In this case, the value at risk can be estimated by

V̂aRp = µ̂− σ̂

ξ̂

[
1− {− ln p}−ξ̂

]
,

where
(
µ̂, σ̂, ξ̂

)
are the maximum likelihood estimators of (µ, σ, ξ). Prescott and Walden (1990)

provide details of maximum likelihood estimation for the generalized extreme value distribution.

The Gumbel distribution is the particular case of (33) for ξ = 0. It has the cdf specified by

G(x) = exp

{
− exp

(
−x− µ

σ

)}

for µ ∈ R and σ > 0. If the maximum of financial returns follows this cdf then the value at risk
can be estimated by

V̂aRp = µ̂− σ̂ ln {− ln p} ,

where (µ̂, σ̂) are the maximum likelihood estimators of (µ, σ).

For more on extreme value theory, estimation of the tail index and applications, we refer the
readers to Longin (1996, 2000), Beirlant et al. (2015), Fraga Alves and Neves (2015) and Gomes
et al. (2015).

47



5.2 Generalized Pareto distribution

The Pareto distribution is a popular model in finance. Suppose the log-return, say Rt, ofX1,X2, . . . ,Xn

comes from the generalized Pareto distribution with cdf specified by

F (y) =
Nu

n

(
1 + γ

y − u

σ

)−1/γ

for u < y < ∞, σ > 0 and γ ∈ R, where u is some threshold and Nu is the number of observed
exceedances above u.

For this model, several estimators are available for the VaR. Let R(1) ≤ R(2) ≤ · · · ≤ R(n)

denote the order statistics in ascending order. The first estimator due to Pickands (1975) is

V̂aR1−p = R(n−k+1) +
1

1− 2−γ̂

[(
k

(n+ 1)p

)γ̂

− 1

]
(
R(n−k+1) −R(n−2k+1)

)
,

where

γ̂ =
1

ln 2
ln
R(n−k+1) −R(n−2k+1)

R(n−2k+1) −R(n−4k+1)

for k 6= n/4. The second estimator due to Dekkers et al. (1989) is

V̂aR1−p = R(n−k) +
â

γ̂

[(
k

np

)γ̂

− 1

]
,

where

γ̂ =M
(1)
k+1 + 1− 1

2


1−

(
M

(1)
k+1

)2

M
(2)
k+1




−1

,

M ℓ
(k+1) =

1

k

k∑

i=1

[
lnR(n−i+1) − lnR(n−k)

]ℓ
, ℓ = 1, 2,

â =
R(n−k)M

(1)
(k+1)

ρ1
,

ρ1 =





1, if γ ≥ 0,
1

1− γ
, if γ < 0.

Suppose now that the returns are from the alternative generalized Pareto distribution with cdf
specified by

F (x) = 1−
(
1 + ξ

x− u

σ

)−1/ξ

for 1 + ξ(x− u)/σ > 0. Then, the VaR is

VaRp = u+
σ

ξ

[
(1− p)−ξ − 1

]
. (34)
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If σ̂ and ξ̂ are the maximum likelihood estimators of σ and ξ, respectively, then the maximum
likelihood estimator of VaR is

V̂aRp = û+
σ̂

ξ̂

[
(1− p)−ξ̂ − 1

]
.

There are several methods for constructing confidence intervals for (34). One popular method is
the bias-corrected method due to Efron and Tibshirani (1993). This method based on bootstrapping
can be described as follows:

1. Given a random sample r = (r1, r2, . . . , rn), calculate the maximum likelihood estimate θ̂ =(
σ̂, ξ̂
)
and θ̂(i), the maximum likelihood estimate with the ith data point, ri, removed;

2. Simulate r∗i = {r∗1, r∗2, . . . , r∗n} from the generalized Pareto distribution with parameters θ̂;

3. Compute the maximum likelihood estimate, say θ̂∗i, for the sample simulated in step 2;

4. Repeat steps 2 and 3, B times;

5. Compute

α1 = Φ

(
ẑ0 +

ẑ0 +Φ−1(α)

1− â (ẑ0 +Φ−1(α))

)

and

α2 = Φ

(
ẑ0 +

ẑ0 +Φ−1(1− α)

1− â (ẑ0 +Φ−1(1− α))

)
,

where

ẑ0 = Φ−1




B∑

i=1

I
{
V̂aR

∗i
< V̂aR

}

B




and

â =

n∑

i=1

I
(
V̂aR− V̂aR(i)

)3

6

{
n∑

i=1

I
(
V̂aR − V̂aR(i)

)2
}3/2

,

where V̂aR is the mean of V̂aR
∗i
;

6. Compute the bias-correct confidence interval for VaR as
(
V̂aR

∗(α1)
, V̂aR

∗(α2)
)
,

where V̂aR
∗(α)

is the 100α percentile of V̂aR
∗i
.

Note that θ̂∗i and V̂aR
∗i

are the bootstrap replicates of θ and VaR, respectively.
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5.3 Matthys et al.’s method

Several improvements have been proposed on (32). The one due to Matthys et al. (2004) takes
account of censoring. Suppose only N of the n are actually observed, the remaining are considered
to be censored or missing. In this case, Matthys et al. (2004) show that VaR can be estimated by

V̂aR1−p = R(n−k)

[
k + 1

(n+ 1)p

]γ̂
exp

{
− b̂
ρ̂

[
1−

(
(n+ 1)p

k + 1

)−ρ̂
]}

,

where

H
(c)
k,n =

1

k − n+N




k∑

j=n−N+1

ln
R(n−j+1)

R(n−k)
+ (n−N) ln

R(N)

R(n−k)


 ,

C = (n−N)/k, Zj,k = j ln
R(n−j+1)

R(n−j)
,

ρ̂ = − 1

lnλ
ln
H

(c)
[λ2k],n

−H
(c)
[λk],n

H
(c)
[λk],n −H

(c)
k,n

,

γ̂ =
1

k − n+N

k∑

j=n−N+1

Zj − b̂
1− C1−ρ̂

(1− C) (1− ρ̂)
,

b̂ =

1

k − n+N

k∑

j=n−N+1

[(
j

k + 1

)−ρ̂

− 1− C1−ρ̂

(1− C) (1− ρ̂)

]
Zj

[
1− C1−2ρ̂

(1− C) (1− 2ρ̂)
− 1− C1−ρ̂

(1− C) (1− ρ̂)

]2 .

Here, λ is a tuning parameter and takes values in the unit interval. Among other properties,
Matthys et al. (2004) establish asymptotic normality of VaR1−p.

5.4 Araújo Santos et al.’s method

The improvement of (32) due to Araújo Santos et al. (2006) takes the expression

V̂aR1−p = R(nq) +
(
R(n−k) −R(nq)

)( k

np

)Hn

,

where nq = [nq] + 1 and

Hn =
1

k

k∑

i=1

ln
R(n−i+1) −R(nq)

R(n−k) −R(nq)
.

5.5 Gomes and Pestana’s method

The improvement of (32) due to Gomes and Pestana (2007) takes the expression

V̂aR1−p = R(n−k+1) exp

[
H(k) ln

(
k

np

)]
,
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where

H(k) = H(k)

[
1− β̂

1− ρ̂

(n
k

)ρ̂
]
,

H(k) =
1

k

k∑

i=1

Ui, Ui = i ln

(
R(n−i+1)

R(n−i)

)
,

ρ̂ = min


0,

3
(
T (τ)
n (k)− 1

)

T (τ)
n (k)− 3


 ,

T (τ)
n (k) =





(
M (1)

n (k)
)τ

−
(
M (2)

n (k)/2
)τ/2

(
M (2)

n (k)/2
)τ/2

−
(
M (3)

n (k)/6
)τ/3 , if τ 6= 0,

ln
(
M (1)

n (k)
)
− 1

2
ln
(
M (2)

n (k)/2
)

1

2
ln
(
M (2)

n (k)/2
)
− 1

3
ln
(
M (3)

n (k)/6
) , if τ = 0,

M (j)
n (k) =

1

k

k∑

i=1

[
lnR(n−i+1) − lnR(n−k)

]j
,

β̂ =

(
k

n

)ρ̂ dρ̂(k)D0(k) −Dρ̂(k)

dρ̂(k)Dρ̂(k)−D2ρ̂(k)
,

dα(k) =
1

k

k∑

i=1

(
i

k

)−α

, Dα(k) =
1

k

k∑

i=1

(
i

k

)−α

Ui.

Here, τ is a tuning parameter. Under suitable conditions, Gomes and Pestana (2007) show further
that √

k

ln k − ln(np)

(
V̂aR1−p −VaR1−p

)
→ N

(
0, ξ2

)

in distribution as n→ ∞.

5.6 Beirlant et al.’s method

The improvement of (32) due to Beirlant et al. (2004) takes the expression

V̂aR1−p = R(n−k)

[
k + 1

(n+ 1)p

]γ̂
exp

{
− γ̂β̂
ρ̂

(
n+ 1

k + 1

)ρ̂
[
1−

(
(n+ 1)p

k + 1

)−ρ̂
]}

,

where ρ̂ is as given by Section 5.5, and

γ̂ =
1

k

k∑

i=1

i ln
R(n−i+1)

R(n−i)
,

β̂ =

(
k

n

)ρ̂ dρ̂(k)D0(k)−Dρ̂(k)

dρ̂(k)Dρ̂(k)−D2ρ̂(k)
,

dα(k) =
1

k

k∑

i=1

(
i

k

)−α

, Dα(k) =
1

k

k∑

i=1

(
i

k

)−α

Ui.
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This estimator is shown to be consistent.

5.7 Caeiro and Gomes’s method

Caeiro and Gomes (2008, 2009) propose several improvements on (32). The first of these takes the
expression

V̂aR1−p = R(n−k)

(
k

np

)γ̂
{
1− γ̂β̂

ρ̂

(n
k

)γ̂
[
1−

(
(n+ 1)p

k + 1

)−ρ̂
]}

,

where ρ̂ and β̂ are as given by Section 5.5, and γ̂ is as given by Section 5.6. The second of these
takes the expression

V̂aR1−p = R(n−k)

(
k

np

)γ̂

exp

{
− γ̂β̂
ρ̂

(n
k

)γ̂
[
1−

(
(n+ 1)p

k + 1

)−ρ̂
]}

,

where ρ̂ and β̂ are as given by Section 5.5, and γ̂ is as given by Section 5.6. The third of these
takes the expression

V̂aR1−p =
R(n−[k/2]) −R(n−k)

2γ̂ − 1

(
k

np

)γ̂ [
1−B1/2

(
γ̂; ρ̂, β̂

)]
,

where ρ̂ and β̂ are as given by Section 5.5, γ̂ is as given by Section 5.6, and Bx(a, b) denotes the
incomplete beta function defined by

Bx(a, b) =

∫ x

0
ta−1(1− t)b−1dt.

The fourth of these takes the expression

V̂aR1−p =
R(n−[k/2]) −R(n−k)

2H(k) − 1

(
k

np

)H(k) [
1−B1/2

(
H(k); ρ̂, β̂

)]
,

where ρ̂, β̂ and H(k) are as given in Section 5.5. All of these estimators are shown to be consistent
and asymptotically normal.

5.8 Figueiredo et al.’s method

The latest improvement of (32) is due to Figueiredo et al. (2012). It takes the expression

V̂aR1−p = R(nq) +
(
R(n−k) −R(nq)

)( k

np

)Hn

,

where nq = [nq] + 1 and

Hn = Hn

[
1− β̂(n/k)ρ̂

1− ρ̂

]

with
(
β̂, ρ̂

)
as defined in Section 5.5 and Hn as defined in Section 5.4.
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5.9 Li et al.’s method

Let pn be such that pn → 0 and npn → q > 0 as n → ∞. Li et al. (2010) derive estimators for
VaR1−pn for large n. They give the estimator

V̂aR1−pn = ĉ1/α̂p−1/α̂
n

[
1 + α̂−1ĉ−β̂/α̂d̂pβ̂/α̂−1

n

]
,

where

ĉ =
α̂β̂

α̂− β̂
Rα̂

(n−k)

[
1

β̂
− 1

k

k∑

i=1

ln
R(n−i+1)

R(n−k)

]

and

d̂ =
α̂β̂

β̂ − α̂
Rβ̂

(n−k)

[
1

α̂
− 1

k

k∑

i=1

ln
R(n−i+1)

R(n−k)

]
,

where α̂ and β̂ are the simultaneous solutions of the equations

1

k

k∑

i=1

Q−1
i (α, β) = 1

and

1

k

k∑

i=1

Q−1
i (α, β) ln

R(n−i+1)

R(n−k)
=

1

β
,

where

Qi(α, β) =
α

β

[
1 +

αβ

α− β
H(α)

](
R(n−i+1)

R(n−k)

)β−α

− αβ

α− β
H(α)

and

H(α) =
1

α
− 1

k

k∑

i=1

ln
R(n−i+1)

R(n−k)
.

Li et al. (2010) show under suitable conditions that

√
k

ln k − ln (npn)

[
V̂aR1−pn

F−1 (1− pn)
− 1

]
→ N

(
0,

β4

α2(β − α)4

)

in distribution as n→ ∞.

5.10 Gomes et al.’s method

Gomes et al. (2011) propose a bootstrap based method for computing VaR. The method can be
described as follows:
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1. For an observed sample, r1, r2, . . . , rn, compute ρ̂ as in Section 5.5 for τ = 0 and τ = 1;

2. Compute the median of ρ̂ = ρ̂(k), say M , for k ∈
([
n0.995

]
,
[
n0.999

])
. Also compute

Iτ =
∑

k∈([n0.995],[n0.999])

(ρ̂(k)−M)2

for τ = 0, 1. Choose the tuning parameter, τ , as zero if I0 ≤ I1 and as one otherwise;

3. Compute ρ̂ = ρ̂
([
n0.999

])
and β̂ = β̂

([
n0.999

])
using the formulas in Section 5.5 and the

chosen tuning parameter;

4. Compute H(k), k = 1, 2, . . . , n− 1 in Section 5.5 with the estimates ρ̂ and β̂ in step 3;

5. Set n1 =
[
n0.95

]
and n2 =

[
n21/n

]
+ 1;

6. Generate B bootstrap samples
(
r∗1, r

∗
2, . . . , r

∗
n2

)
and

(
r∗1, r

∗
2 , . . . , r

∗
n2
, r∗n2+1, . . . , r

∗
n1

)
from the

empirical cdf of r1, r2, . . . , rn;

7. Compute H([k/2]) − H(k) for the bootstrap samples in step 6. Let t1,ℓ(k), ℓ = 1, 2, . . . , B
denote the estimates for the bootstrap samples of size n1. Let t2,ℓ(k), ℓ = 1, 2, . . . , B denote
the estimates for the bootstrap samples of size n2;

8. Compute

MSE1(j, k) =
1

B

B∑

i=1

t2j,ℓ(k)

and

MSE2(j, k) = ln2
(
k

np

)
MSE1

for j = 1, 2 and k = 1, 2, . . . , nj − 1;

9. Compute

P̂ (j) = arg min
1≤k≤nj−1

MSE1(j, k), Q̂(j) = arg min
1≤k≤nj−1

MSE2(j, k)

for j = 1, 2;

10. Compute

k̂0 = min




n− 1,




(
1− 4ρ̂

)2/(1−ρ̂)
P̂ 2(1)

P̂
([
n21/n

]
+ 1
)


+ 1





;

11. Compute H
(
k̂0

)
with the estimates ρ̂ and β̂ in step 3;

12. Compute

ℓ̂0 = min




n− 1,




(
1− 4ρ̂

)2/(1−ρ̂)
Q̂2(1)

Q̂
([
n21/n

]
+ 1
)


+ 1





;
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13. Finally, estimate VaR1−p as

V̂aR1−p = r(n−ℓ̂0+1)

(
ℓ̂0
np

)H(ℓ̂0)

.

5.11 Wang’s method

Wang (2010) combine the historical method in Section 4.1 with the generalized Pareto model in
Section 5.2 to suggest the following estimator for VaR:

V̂aRp =





R(i), p ∈ ((i− 1)/n, i/n] , if p < p0,

u+
σ̂

ξ̂

[
(1− p)−ξ̂ − 1

]
, if p ≥ p0,

where σ̂ and ξ̂ are the maximum likelihood estimators of σ and ξ, respectively, and p0 is an
appropriately chosen threshold.

5.12 M-estimation method

Iqbal and Mukherjee (2012) provide anM -estimator for VaR. They consider a GARCH (1, 1) model
for returns R1, . . . , Rn specified by

Rt = σtǫt,

where

σ2t = ω0 + α0R
2
t−1 + β0σ

2
t−1 + γ0I (Rt−1 < 0)R2

t−1

and ǫt are independent and identical random variables symmetric about zero. The unknown pa-
rameters are θ0 = (ω0, α0, γ0, β0)

T and they belong to the parameter space, the set of all of all
θ = (ω,α, γ, β)T with ω,α, β > 0, α + γ ≥ 0 and α + β + γ/2 < 1. The M -estimator, say θ̂T , is
obtained by solving the equation

n∑

t=1

m̂t(θ) = 0,

where

m̂t(θ) = (1/2)
{
1−H

(
Rt/v̂

1/2
t (θ)

)} [
˙̂vt(θ)/v̂t(θ)

]

and

v̂t(θ) =
ω

1− β
+ I(t ≥ 2)



α

t−1∑

j=1

βj−1R2
t−j + γ

t−1∑

j=1

I (Rt−j < 0) βj−1R2
t−j



 ,

where H(x) = xψ(x) for some skew-symmetric function ψ : R → R and ˙̂vt(θ) denotes the derivative

of v̂t(θ). Iqbal and Mukherjee (2012) propose that VaRp can be estimated by v̂
1/2
t

(
θ̂T

)
multiplied

by the ([np] + 1)th order statistic of

{
Rt/

{
v̂t

(
θ̂T

)}1/2
, t = 2, 3, . . . , n

}
.
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5.13 Generalized Champernowne distribution

Champernowne generalized distribution was introduced by Buch-Larsen et al. (2005) as a model
for insurance claims. A random variable, say X, is said to have this distribution if its cdf is

F (x) =
(x+ c)a − ca

(x+ c)a + (M + c)a − 2ca
(35)

for x > 0, where α > 0, c > 0 and M > 0 is the median. Charpentier and Oulidi (2010)
provide estimators of VaRp(X) based on beta kernel quantile estimators. They suggest the following
algorithm for estimating VaRp(X):

• suppose X1,X2, . . . ,Xn is a random sample from (35);

• let
(
M̂, α̂, ĉ

)
denote the estimators of the parameters (M,α, c); if the method of maximum

likelihood is used then the estimators can be obtained by maximizing the log-likelihood given
by

lnL(α,M, c) = n {ln a+ ln [(M + c)a − ca]}+ (a− 1)
n∑

i=1

ln (Xi + c)

−2

n∑

i=1

ln [(Xi + c)a + (M + c)a − 2ca] ;

• transform Yi = F (Xi), where F (·) is given by (35) with (M,α, c) replaced by
(
M̂ , α̂, ĉ

)
;

• estimate the cdf of Y1, Y2, . . . , Yn as

F̂n,Y (y) =

n∑

i=1

∫ y

0
Kβ (Yi; b, t) dt

n∑

i=1

∫ 1

0
Kβ (Yi; b, t) dt

,

where Kβ (·; b, t) is given by either

Kβ(u; b, t) = kt/b+1,(1−t)/b+1(u) =
ut/b(1− u)(1−t)/b

B (t/b+ 1, (1 − t)/b+ 1)

or

Kβ(u; b, t) =





kt/b,(1−t)/b(u), if t ∈ [2b, 1 − 2b],

kρb(t),(1−t)/b(u), if t ∈ [0, 2b),

kt/b,ρb(1−t)(u), if t ∈ (1− 2b, 1],

where ρb(t) = 2b2 + 2.5 −
√
4b4 + 6b2 + 2.25 − t2 − t/b;

• solve F̂n,Y (q) = p for q by using some Newton algorithm;

• estimate VaRp(X) by V̂aRp(X) = F−1

M̂,α̂,ĉ
(q).
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6 Computer software

Software for computing value at risk and related quantities are widely available. Some software
available from the R package (R Development Core Team, 2015) are:

• the package actuar due to Vincent Goulet, Sébastien Auclair, Christophe Dutang, Xavier
Milhaud, Tommy Ouellet, Louis-Philippe Pouliot and Mathieu Pigeon. According to the
authors, this package provides “additional actuarial science functionality, mostly in the fields
of loss distributions, risk theory (including ruin theory), simulation of compound hierarchical
models and credibility theory. The package also features 17 new probability laws commonly
used in insurance, most notably heavy tailed distributions”;

• the package ghyp due to David Luethi and Wolfgang Breymann. According to the authors,
this package “provides detailed functionality for working with the univariate and multivariate
Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse
Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Es-
pecially, it contains fitting procedures, an AIC-based model selection routine, and functions
for the computation of density, quantile, probability, random variates, expected shortfall and
some portfolio optimization and plotting routines as well as the likelihood ratio test. In
addition, it contains the Generalized Inverse Gaussian distribution”;

• the package PerformanceAnalytics due to Peter Carl, Brian G. Peterson, Kris Boudt, and Eric
Zivot. According to the authors, this package “aims to aid practitioners and researchers in
utilizing the latest research in analysis of non-normal return streams. In general, it is most
tested on return (rather than price) data on a regular scale, but most functions will work
with irregular return data as well, and increasing numbers of functions will work with P & L
or price data where possible”;

• the package crp.CSFP due to Matthias Fischer, Kevin Jakob and Stefan Kolb. According to
the authors, this package models “credit risks based on the concept of “CreditRisk+”, First
Boston Financial Products, 1997 and “CreditRisk+ in the Banking Industry”, Gundlach &
Lehrbass, Springer, 2003”;

• the package fAssets due to Diethelm Wuertz and many others;

• the package fPortfolio due to the Rmetrics Core Team and Diethelm Wuertz;

• the package CreditMetrics due to Andreas Wittmann;

• the package fExtremes due to Diethelm Wuertz and many others;

• the package rugarch due to Alexios Ghalanos.

Some other software available for computing value at risk and related quantities are:

• the package EC - VaR due to Rho - Works Advanced Analytical Systems, http: // www .
rhoworks . com / ecvar.php. According to the authors, this package implements “Conditional
Value - at Risk, BetaVaR, Component VaR, traditional VaR and back testing measures for
portfolios composed of stocks, currencies and indexes. An integrated optimizer can solve
for the minimum CVaR portfolio based on market data, while a module capable of doing
Stochastic Simulation allows to graph all feasible portfolios on CVaR - Return space. EC -
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VaR employs a full - valuation historical - simulation approach to estimate Value - at - Risk
and other risk indicators”;

• the package VaR calculator and simulator due to Lapides Software Development Inc, http: //
members.shaw.ca / lapides / var.html. According to the authors, this package implements
“simple, robust, down to earth implementation of JP Morgan’s RiskMetrics. Build to answer
day to day needs of medium size organisations. Ideal for managers with focus on performance,
end result and value. Allows one to calculate the value at risk of any portfolio. Calculates
correlations, volatilities, valuates complex financial instruments and employs 2 methods: An-
alytical VaR calculation and Monte Carlo simulation”;

• the package NtInsight for asset liability management due to Numerical Technologies, http:
// www.numtech.com / financial-risk-management-software / . According to the producers,
this package is used by “banks and insurance companies that handles massive and compli-
cated financial simulation without oversimplified approximations. It provides asset/liability
management professionals an integrated balance sheet management environment to monitor,
analyze and manage liquidity risks, interest - rate risks, and earnings - at - risk”;

• the package Protecht.ALM due to David Tattam and David Bergmark from the company
Protecht, http: // www.protecht.com.au / risk-management-software / asset-liability-risk. Ac-
cording to the authors, this package provides “a full analysis and measurement of interest
rate risk using variety of complimentary best practice measures such as VaR, PVBP and
gap reporting. Also offers web based scenario and risk reporting for in - house reporting of
exposures”;

• the package ProFintm Risk due to the company Entrion, http:// www.entrion.com / software /.
According to the authors, this package provides “a multi commodity Energy risk application
that calculates VaR. The result is a system that minimizes the resource needed for daily risk
calculator; which in turn, changes the focus from calculating risk to managing risk. VaR is
calculated using the Delta - Normal method and this method calculates VaR using commodity
prices and positions, volatilities, correlations and risk statistics. This application calculates
volatilities and correlations using exponentially weighted historical prices”;

• the package ALM Optimizer for asset allocation software due to Bob Korkie from the company
RMKorkie & Associates, http://assetallocationsoftware.org/. According to the author, this
package provides “risk and expected return of Markowitz efficient portfolios but extended to
include recent technical advances on the definition of risk, adjustments for input bias, non
normal distributions, and enhancements that allow for overlays, risk budgets, and investment
horizon adjustments”. Also the package “is a true Portfolio Optimizer with lognormal asset
returns and user specified return or surplus optimization; optimization, risk, and rebalancing
horizons; volatility, expected shortfall, and two value at risk (VaR) risk variables tailored to
the risk horizon; and user specified portfolio constraints including risk budget constraints”;

• the package QuantLib due to StatPro, http://www.statpro.com/portfolio-analytics-products/risk-
management-software/. According to the authors, this package provides “access to a complete
universe of pricing functions for risk assessment covering every asset class from equity, interest
rate-linked products to mortgage-backed securities”. The package has key features including
“Multiple ex-ante risk measures including Value-at-Risk and CVaR (expected shortfall) at a
variety of confidence levels, potential gain, volatility, tracking error and diversification grade.
These measures are available in both absolute and relative basis”;

58



• the package FinAnalytica’s Cognity risk management due to FinAnalytica, http: // www .
finanalytica . com / daily-risk-statistics / . According to the authors, this package provides
“more accurate fat-tailed VaR estimates that do not suffer from the over-optimism of normal
distributions. But Cognity goes beyond VaR and also provides the downside Expected Tail
Loss (ETL) measure - the average or expected loss beyond VaR. As compared with volatility
and VaR, ETL, also known as Conditional Value at Risk (CVaR) and Expected Shortfall
(ES), is a highly informative and intuitive measure of extreme downside losses. By combining
ETL with fat-tailed distributions, risk managers have access to the most accurate estimate
of downside risk available today”;

• the package CVaR Expert due to CVaR Expert Rho - Works Advanced Analytical Systems,
http://www.rhoworks.com/software/detail/cvarxpert.htm. According to the authors, this pack-
age implements “total solution for measuring, analyzing and managing portfolio risk using
historical VaR and CVaR methodologies. Traditional Value-at-Risk, Beta VaR, Component
VaR, Conditional VaR and backtesting modules are incorporated on the current version,
which lets you work with individual assets, portfolios, asset groups and multi currency in-
vestments (Enterprise Edition). An integrated optimizer can solve for the minimum CVaR
portfolio based on market data and investor preferences, offering the best risk benchmark
that can be produced. A module capable of doing Stochastic Simulation allows you to graph
the CVaR-Return space for all feasible portfolios”;

• the Kamakura Risk Manager software (KRM) due to ZSL Inc, http: // www.zsl.com / solutions
/ banking-finance / enterprise-risk-management-krm. According to the authors, KRM “com-
pletely integrates credit portfolio management, market risk management, asset and liability
management, Basel II and other capital allocation technologies, transfer pricing, and per-
formance measurement. KRM is also directly applicable to operational risk, total risk, and
accounting and regulatory requirements using the same analytical engine, GUI and reporting,
and its vision is that completely integrated risk solution based on common assumptions and
methodologies. KRM offers, dynamic value at risk and expected shortfall, historical value at
risk measurement, Monte Carlo value at risk measurement, etc”;

• the package G@RCH 6, OxMetrics due to Timberlake Consultants Limited, http: // www .
timberlake . co . uk / ?id=64#garch. According to the authors, the package is “dedicated
to the estimation and forecasting of univariate ARCH-type models. G@RCH provides a
user-friendly interface (with rolling menus) as well as some graphical features (through the
OxMetrics graphical interface). G@RCH helps the financial analysis: value-at-risk, expected
shortfall, backtesting (Kupiec LRT, dynamic quantile test); forecasting, realized volatility”.

7 Conclusions

We have reviewed the current state of the most popular risk measure, value at risk, with emphasis on
recent developments. We have reviewed ten of its general properties, including upper comonotonic-
ity and multivariate extensions; thirty five of its parametric estimation methods, including time
series, quantile regression and Bayesian methods; eight of its nonparametric estimation methods,
including historical methods and bootstrapping; thirteen of its semiparametric estimation meth-
ods, including extreme value theory and M -estimation methods; twenty known computer software,
including those based on the R platform.
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This review could encourage further research with respect to measures of financial risk. Some
open problems to address are: further multivariate extensions of risk measures and corresponding
estimation methods; development of a comprehensive R package implementing a wide range of
parametric, nonparametric and semiparametric estimation methods, no such packages are available
to date; estimation based on nonparametric Bayesian methods; estimation methods suitable for big
data; and so on.
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