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Preface 

This monograph attempts to  describe in an organized manner the central ideas and results of 
probabilistic extreme-value theory and related models stemming from the pioneering contri- 
butions of E. J. Gumbel in the early forties of this century. The exposition is unencumbered 
by excessive mathematical details and almost no proofs are provided. It is a book about 
extreme-value distributions ~ both univariate and multivariate - and their applications, 
supplemented by an up-to-date extensive bibliography, aimed mainly at  a novice in the field; 
hopefully a specialist may find therein some useful information as well. 

By laying bare the main structure of the theory of extreme value distributions and its 
applications, including the assumptions and conclusions, deficiencies and advantages, it is 
our intention that the volume will serve as a useful, balanced and critical introduction 
and simultaneously a guide to the literature. We have tried to keep the language and 
notation sufficiently familiar and simple to make it accessible for scientists with a modest 
probabilistic background. As always, as it is the case for books on probability, statistics and 
in particular on distribution theory, the ill-defined quality of “mathematical sophistication” 
and the ability to connect empirical statements with rigorous mathematical deductions are 
desirable prerequisites. In our opinion, the extreme value theory - as described in this book 
- is a most important and successful example of applicability of mathematics to modern 
engineering, empirical and environmental problems of great significance, and it is our hope 
that we also were somewhat successful in conveying the message. 

The authors express their thanks to Professors N. D. Singpurwalla and J. A. Tawn for 
their useful comments and to the editors at the Imperial College Press €or their most helpful 
assistance and efficient handling of the manuscript. 

Samuel Kotz, Washington, D.C., U.S.A. 
Saralees Nadarajah, Nottingham, U.K. 

September, 1999 
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Chapter 1 

Univariate Extreme Value 
Distributions 

1.1 Historical Survey 
Probabilistic extreme value theory is a curious and fascinating blend of an enormous va- 
riety of applications involving natural phenomena such as rainfall, floods, wind gusts, air 
pollution, and corrosion, and delicate advanced mathematical results on point processes and 
regularly varying functions. This area of research thus attracted initially the interests of 
theoretical probabilists as well as engineers and hydrologists, and only relatively recently of 
the mainstream statisticians. For a number of years it was closely related to the activities 
of E. J. Gumbel, a colorful personality, whose life and activities were affected by pre-World 
War I1 upheavals. 

The following pages are addressed not only or primarily to professionals in the field of 
statistical distributions and statistical inference but to that much larger audience which is 
interested in the topics without willing or being able to devote more than a limited amount 
of time to considering them. 

Probabilistic extreme value theory, first of all, deals with the stochastic behaviour of 
the maximum and the minimum of i.i.d. random variables. The distributional properties 
of extremes (maximum and minimum), extreme and intermediate order statistics, and ex- 
ceedances over (below) high (low) thresholds are determined by the upper and lower tails of 
the underlying distribution. 

Conversely, the tail of the underlying distribution function or functional parameters 
thereof may be evaluated by means of statistical procedures based on extreme and inter- 
mediate order statistics or exceedances over high thresholds. Focussing our attention on the 
tails has the advantage that certain parametric statistical models, specifically tailored for 
that part of the distribution, can be introduced. 

Historically, work on extreme value problems may be traced back to  as early as 1709 
when Nicolas Bernouilli discussed the mean largest distance from the origin given n points 
lying at random on a straight line of a fixed length t [see Gumbel (1958)]. 

Extreme value theory has originated mainly from the needs of astronomers in utilizing 
or rejecting outlying observations. The early papers by Fuller (1914) and Griffith (1920) on 
the subject were specialized both in fields of applications and in methods of mathematical 
analysis (see below). A systematic development of the general theory may be regarded as 
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2 Extreme Value Distributions 

having started with the paper by von Bortkiewicz (1922) that dealt with the distribution 
of range in random samples from a normal distribution. The importance of the paper by 
Bortkiewicz is inherent by the fact that the concept of distribution of largest value was 
clearly introduced in it for the first time. (In his classical book, E. J. Gumbel (1958) devotes 
a chapter to the memory of L. von Bortkiewicz.) In the very next year von Mises (1923) 
evaluated the expected value of this distribution, and Dodd (1923) calculated its median, 
also discussing some nonnormal parent distributions. Of more direct relevance is a paper 
by Frechet (1927) in which asymptotic distributions of largest values are considered. In the 
following year Fisher and Tippett (1928) published results of an independent inquiry into the 
same problem. While Frkchet (1927) had identified one possible limit distribution for the 
largest order statistic, Fisher and Tippett (1928) showed that extreme limit distributions 
can only be one of three types. Tippett (1925) had earlier studied the exact cumulative 
distribution function and moments of the largest order statistic and of the sample range 
from a normal population. Von Mises (1936) presented some simple and useful suficient 
conditions for the weak convergence of the largest order statistic to each of the three types 
of limit distributions given earlier by Fisher and Tippett (1928). We shall discuss von Mises’ 
conditions in a subsequent section. In 1943, Gnedenko presented a rigorous foundation 
for the extreme value theory and provided necessary and sufficient conditions for the weak 
convergence of the extreme order statistics. 

Mejzler (1949), Marcus and Pinsky (1969) (unaware of Mejzler’s result) and de Haan 
(1970) (1971) refined the work of Gnedenko. An important but much neglected work of Jun- 
cosa (1949) extends Gnedenko’s results to the case of not necessarily identically distributed 
independent random variables. Although of strong theoretical interest, Juncosa’s results do 
not seem to have much practical utility. The fact that asymptotic distributions of a very 
general nature can occur does not furnish much guidance for practical applications. 

The theoretical developments of the 1920s and mid 1930s were followed in the late 1930s 
and 1940s by a number of papers dealing with practical applications of extreme value s ta t is  
tics in distributions of human lifetimes, radioactive emissions [Gumbel (1937a,b), strength 
of materials [Weibull (1939)], flood analysis [Gumbel (1941, 1944, 1945, 1949a), Rantz and 
Riggs (1949)], seismic analysis [Nordquist (1945)], and rainfall analysis [Potter (1949)] to 
mention a few examples. From the application point of view, Gumbel made several signif- 
icant contributions to the extreme value analysis; most of them are detailed in his book- 
length account of statistics of extremes [Gumbel (1958)]. See the sections on Applications 
for more details. 

Gumbel was the first to call the attention of engineers and statisticians to possible appli- 
cations of the formal “extreme-value” theory to certain distributions which had previously 
been treated empirically. The first type of problem treated in this manner in the USA had 
to do with meteorological phenomena ~ annual flood flows, precipitation maxima, etc. This 
occurred in 1941. 

In essence, all the statistical models proposed in the study of fracture take as a starting 
point Griffith’s theory (already alluded to above), which states that the difference between 
the calculated strengths of materials and those actually observed resides in the fact that 
there exist flaws in the body which weaken it. 

The first writer to realize the connection between specimen strength and distribution of 
extreme values seems to be F. T. Peirce (1926) of the British Cotton Industry Association. 
The application of essentially the same ideas to the study of the strength of materials was 
carried out by the well-known Swedish physicist and engineer, W. Weibull (1939). 
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The Russian physicists, F'renkel and Kontorova (1943), were the next to study these 
problems. Another important neglected early publication related to extreme value analysis 
of the distribution of feasible strengths of rubbers is due to  S. Kase (1953). 

A comprehensive bibliography of literature on extreme value distributions and their ap- 
plications can easily be constructed to contain over 1,000 items at the time of this writing 
(1999). While this extensive literature serves as a testimony to the great vitality and appli- 
cability of the extreme value distributions and processes, it also unfortunately reflects on the 
lack of coordination between researchers and the inevitable duplication (or even triplication) 
of results appearing in a wide range of diverse publications. 

There are several excellent books that deal with the asymptotic theory of extremes and 
their statistical applications. We cite a few known to us (without in any way dispraising 
those that are not mentioned). David (1981) and Arnold, Balakrishnan, and Nagaraja (1992) 
provide a compact account of the asymptotic theory of extremes; Galambos (1978, 1987), 
Resnick (1987), and Leadbetter, Lindgren, and RootzCn (1983) present elaborate treatments 
of this topic. Reiss (1989) discussed various convergence concepts and rates of convergence 
associated with extremes (and also with order statistics). Castillo (1988) has successfully 
updated Gumbel (1958) and presented many statistical applications of extreme value t h e  
ory with emphasis on engineering. Harter (1978) prepared an authoritative bibliography 
of extreme value theory which is still of substantial scientific value. Beirlant, Teugels and 
Vynekier (1996) provide a lucid practical analysis of extreme values with emphasis on actu- 
arial applications. 

1.2 The Three Types of Extreme Value Distributions 
Extreme value distributions are usually considered to comprise the following three families: 

Type 1, (Gumbel-type distribution): 

Pr[X 5 z] = e ~ p [ - e ( ~ - ~ ) / ~ ] .  (1.1) 

Type 2, (F'rCchet-type distribution): 

Type 3, (Weibull-type distribution): 

where p, u(> 0) and [(> 0) are parameters. 
The corresponding distributions of ( - X )  are also called extreme value distributions. 

(Observe that Frkchet and Weibull distributions are related by a simple change of sign.) 
Of these families of distributions, type 1 is the most commonly referred to  in discussions 

of extreme values. Indeed some authors call (1.1) the extreme value distributions. In view of 
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this, and the fact that distributions (1.2) and (1.3) can be transformed to type 1 distributions 
by the simple transformations 

z= l o g ( X - p ) ,  z = - l o g ( p - X ) ,  

respectively, we will, for the greater part of this chapter, confine ourselves to discussion of 
type 1 distributions. We note that type 3 distribution of ( - X )  is a Weibull distribution. 

Type 1 distributions are also sometimes called, in earlier writings, doubly exponential 
distributions, on account of the functional form of (1.1). 

The term “extreme value” is attached to these distributions because they can be obtained 
as limiting distributions (as n + m) of the greatest value among n independent random 
variables each having the same continuous distribution. By replacing X by -X, limiting 
distributions of least values are obtained. 

Although the distributions are known as extreme value, it is to  be borne in mind that 
they do not represent distributions of all kinds of extreme values (e.g., in samples of finite 
size), and they can be used empirically (without an extreme value model). 

The three types of distributions in (1.1)-(1.3) may all be represented as members of a 
single family of generalized distributions with cumulative distribution function 

For E > 0, the distribution (1.4) is of the same form as (1.2). For E < 0, the distribution 
(1.4) becomes of the same form as (1.3). Finally, when + 00 or -m, the distribution (1.4) 
becomes the same form as the type 1 extreme value distribution in (1.1). For this reason the 
distribution function in (1.4) is known as the generalized extreme value distribution and is 
also sometimes referred to as the von Mises type extreme value distribution or the von Mises- 
Jenkinson type distribution. We shall discuss this generalized family in a separate section. 
Occasionally we shall use slightly different, but of course equivalent parametrizations. 

1.3 Limiting Distributions and Domain of Attraction 
Extreme value distributions were obtained as limiting distributions of greatest (or least) 
values in random samples of increasing size. To obtain a nondegenerate limiting distribution, 
it is necessary to “reduce” the actual greatest value by applying a linear transformation with 
coefficients which depend on the sample size. This process is analogous to standardization 
though not restricted to this particular sequence of linear transformations. 

If XI, Xz, . . . , X, are independent random variables with common probability density 
function 

P x $ 4  = f ( x ) ,  j = I , % .  . . , n ,  

then the cumulative distribution function of XA = max(X1, Xz, . . . , Xn) is 

Fx:,(4 = [F(X)l” 9 

where 
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As n tends to infinity, it is clear that for any fixed value of x 

which is a degenerate distribution. If there is a limiting distribution of interest, we must 
find it as the limiting distribution of some sequence of transformed “reduced” values, such 
as (a,XA + b,) where a,, b, may depend on n but not on Z. 

To distinguish the limiting cumulative distribution of the “reduced” greatest value from 
F ( z ) ,  we will denote it by G(z). Then since the greatest of N n  values X I ,  X,, . . . , X N ,  is 
also the greatest of the N values 

m=(X(j-l)n+l, X(j-l)n+~, . . ‘ 2  Xjn) , j = 1,2, . . . N 7 

it follows that G(z )  must satisfy the equation 

[G(z)lN G(aNz + b N ) .  (1.5) 

This equation was obtained by FrCchet (1927) and also by Fisher and Tippett (1928). It 

Type 1 distributions are obtained by taking U N  = 1; types 2 and 3 by taking U N  # 1. In 
is sometimes called the stability postulate. 

this latter case 

Z = UNZ = bN if Z = b N ( 1  - U N ) - ’ ,  

and from (1.5) it follows that G ( b N ( 1 -  a ~ ) - ’ )  must equal to 1 or 0. Type 2 corresponds to 
1, and type 3 to 0. We shall briefly sketch the derivation of the type 1 distribution ( U N  = 1). 
Equation (1.5) is now 

[G(z)IN = g(Z + b n )  . 

[G(Z)INM = [G(Z + bn)IM = G(Z + bn + b M ) .  

(1.6) 

(1.7) 

Since G(z + bN) must also satisfy (1.5) 

Also from (1.5) 

and from (1.7) and (1.8) we have 

[G(.)INM = G(z + bNM) 

bnr + b,v = b N M ,  

whence 
b, = ulog N , with u a constant. 

Taking logarithms of (1.6) twice and inserting the value of bN from (1.9), we have (noting 
that G 5 1) 

log N + log { - log G(z)} = log { - log G(z + 0 log N ) }  . (1.10) 

Denote 



Hence from (1.10) we have 
X 

U 
h(x) = h(0) - - . 

Since h(x) decreases as x increases, u > 0. From (l.ll), 

Extreme Value Distributions 

(1.11) 

[-” - Z h ( O ) l  
-log G(z) = exp 

= exp (-7) , 

where p = u log (- log G(0)). Hence 

in agreement with (1.1). For derivations of types 2 and 3, interested readers may refer to 
Galambos (1978, 1987). 

As already mentioned earlier, Gnedenko (1943) established certain correspondences be- 
tween the parent distribution [F(x)] and the type to which the limiting distribution belongs. 
It should be noted that the conditions relate essentially to the behavior of F(x) for high 
(low) values of z if the limiting distribution of greatest (least) values is to be considered. It 
is possible for greatest and least values, corresponding to the same parent distribution, to 
have different limiting distributions. 

The conditions established by Gnedenko can be summarized as follows: 
For the type 1 distribution: Defining X, by the equation 

the condition is 

For the type 2 distribution: 

1 - F(x) 
lim = c k ,  c > O , k > O .  (1.13) 

z+m 1 - F(cx) 

For the type 3 distribution: 

1 - F(cx + w )  
z+o- 1 - F(x + w )  
lim = c k ,  c > O , k > O ,  (1.14) 

where F ( w )  = 1, F(x) < 1 for x < w. 
Gnedenko also showed that these conditions are necessary, as well as sufficient, and 

that there are no other distributions satisfying the stability postulate. Among distributions 
satisfying the type 1 condition (22.13) are normal, exponential and logistic; the type 2 
condition (22.14) is satisfied by Cauchy; the type 3 condition is satisfied by nondegenerate 
distributions with range of variation bounded above. 

Gnedenko’s (1943) results have been generalized by numerous authors. Results for order 
statistics of fixed and increasing rank were obtained by Smirnov (1952) who - in his ex- 
tremely valuable theoretical paper - completely characterized the limiting types and their 
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domains of attraction. Generalizations for the maximum term have been made by Juncosa 
(1949) who dropped the assumption of a common distribution, Watson (1954) who proved 
that under mild restrictions the limiting distribution of the maximum term of a stationary 
sequence of m-dependent random variables is the same as in the independent case, Berman 
(1962) who studied exchangeable random variables and samples of random size, and Harris 
(1970) who extended the classical theory by introducing a model from reliability theory. 
Weinstein (1973) generalized the basic result of Gnedenko dealing with the asymptotic dis- 
tribution of the exponential case with the initial distribution 

V(Z) = 1 - e P ”  (x 2 0 )  

[Gnedenko’s (1943) result is for v = 11. Jeruchim (1976) has warned that the additional 
parameter v must be treated cautiously in applications. 

Gnedenko’s derivations resulted in further investigations as to validity of the law of large 
numbers for maxima and the relative stability of maxima. Green (1975) derived sufficient 
conditions for the consistent estimation of parameters based on extremes for very broad 
families of distributions. 

There are numerous extensions of limit theorems for extremes in general settings. For a 
most recent discussion see Silvestrov and Teugels (1998)” and the references therein. The 
results require advanced tools such as Skorokhod topology J ,  U-compactness, etc. which are 
beyond the scope of this monograph. So far these results are solely of theoretical interest. 

The necessary and sufficient conditions in (1.12)-(1.14) are often difficult to  verify. In 
such instances the following sufficient conditions established by von Mises (1936) may be 
useful (though they are applicable only for absolutely continuous parent distributions): 

As mentioned above, we start with underlying common distribution function F .  Let 
XI,. . . , X n  be i.i.d. random variables with the distribution F .  Let XI:, 5 . . . 5 Xn:n be the 
corresponding order statistics. Then: 

(Xn:n - b,)/a, converges in distribution to some nondegenerate limiting distribution G 
for some choice of constants a, > 0, b, E R i f  and only i f  for any integer k the random 
vector 

converges in distribution to Gtk) having Lebesgue density 

otherwise. 

In this case we say that F is in the domain of attraction of G and the notation F E D(G) 

There is a multitude of papers in which necessary and sufficient conditions for F to  be 

Among these, the sufficient conditions due to von Mises (1936) are widely studied to this 

is by now universally acceptable. 

in the domain of attraction of G are provided. 

day and are easily applicable. 

“Silvestrov, D. S. and Teugels, 3. L. (1998), Limit theorems for eztremes with random sample size, 
Adu. Appl. Prob. 30, 777-800. 
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Recall that G must be of one of the following types, where a > 0: 

Gl,,(z) := exp ( - zPa) ,  z > 0,  (Frkchet), 

Gz,,(z) := exp (-(-z),), z 5 0 ,  (reversed Weibull) and 

G ~ ( z )  := exp ( - e P ) ,  z E R , 

Assume that F possesses a positive derivative f on [zo, w ( F ) ]  where z o  < w ( F )  and w ( F )  
is sup{z E R for which F ( z )  < 1). Then, according to von Mises, in order that F E D(G1,+) 
it is sufficient that w ( F )  = co (i.e. for all z E R, F ( z )  < l), and lims400 zf(z)/[l-F(z)] = a,  
with the very same a as in the definition of Gl,,. 

A more recent necessary and sufficient condition due to  Galambos (1987) and Worms 
(1998) is based on the additive excess property: 

There exists a mapping g from ]-m, s ( P ) [  (where s ( P )  = sup{z E R; 1 - F ( z )  > 0)) 
into R+ such that for all z E R+: 

(Gumbel distribution) . 

lim [I - 
t+s(P)  

F ( t ) ]  = e-2 

It was Worms (1998) who replaced Galambos’ (1987) condition z E R (which has no proba- 
bilistic meaning) by the condition z E R,. 

For F E D(G2, a )  it is sufficient that 

(namely F ( z )  < 1 only on a finite set; recall the definition of Gz,,). 

it is: 
For F E D(G3) the von Mises condition is a bit more involved. In the original version 

Falk and Marohn (1993) suggested the following strengthening of this condition: Suppose F 
has a positive derivative f on (zo, w(F)) such that for some c E (0, cc), 

Since (1 - F(z))’  = -f(z) and JZY‘”’((l - F(u))du)’ = -(1 - F ( z ) ) ,  

by the l’H6pital rule. 

extreme value distribution). For this density it is easy to verify that 
Consider the normal density p and the corresponding distribution function @ (not an 
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Thus @ satisfies the original von Mises condition but not the Falk and Marohn (1993) 
modification. 

On the other hand, there arc examples of distributions for which the original, but not the 
modified condition, arc satisfied. Falk and Marohn (1993) provided an alternative (equiv- 
alent) formulation of von Mises conditions via the generalized Pareto distributions (GPD) 
rather than the extreme value distributions. They take the distribution functions 

W ( z )  = 1 + log (G(z)) 

which yield the three classes of distributions: 

Wl,,(Z) = 1 - z--, 

W2,&) = 1 - (-z)" , 

2 2 1  

z E [-1,0] 

and 
W3(z) = 1 - exp(-z), z 2 0 .  

Note that G(z) must satisfy 

1 
- 5 G(z) 5 1 
e 

The choice of the normalizing constants U N  and b N  > 0 - to  be denoted from now on 
by a, and b, - are as follows: 

For the type 1 distribution: 

a, = F-' (1 - k) , 

For the type 2 distribution: 

a, = 0 ,  

b -F-' 1 - -  . ,- ( :) 
For the type 3 distribution: 

a, = P ( l ) ,  

b, = F-'(l) -F-'  1 - - . ( 3 

(1.15) 

(1.16) 

(1.17) 

Analogous results for the limiting distributions of the sample minimum can be stated in a 
straightforward manner. Another line of development is the characterization of convergence 
in terms of moments. Clough and Kotz (1965) suggested using the mean and standard 
deviation of the distribution as scaling constants in place of b, and G. This is valid, provided 
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the rescaled mean and variance themselves converge to the mean and variance of the limiting 
distribution. Conditions for that were given by Pickands (1968). 

With Fx(x; p, cr) denoting the extreme value distribution for the sample minimum with 
the cdf given by 

Fx(z; p, cr) = 1 - exp { -e(z-p)'u}, cr > 0 ,  p E R , 

and Gx(x; a, b, c) denoting the three-parameter Weibull distribution with the cdf 

for a, b > 0 and c E R, Davidovich (1992) established some bounds for the difference between 
the two cdf's. Namely, 

i f x s c ,  

i f c < x < c + 2 b ,  

if x 2 c + 2 b .  

If Yl, Yz, . . . , are independent variables, each having the exponential distribution 

Pr[Y < y] = 1 - e-Y , y > 0 ,  (1.18) 

and if L is the zero-truncated Poisson variable 

(1.19) 

then the random variable defined by 

X = max(Yl,. . . , YL) 

has the extreme value distribution with cdf 

Pr(X < 2) = (ex - I)-l[exp(X(l- e-")}I = c e x ~ [ - X e - ~ ] .  (1.20) 

In connection with the asymptotic nature of extreme value distributions (and densities), 
the following recent result by Beirlant and Devroye (1999) may be of relevance. 

Let X I , .  . . , X, be an i.i.d. sample drawn from a density f (with cdf F) on the real 
line. The basic tenet of the classical extreme-value distributional theory is that Y, = 
max(X1,. . . , Xn) is in the domain of attraction of an extreme value distribution and a few 
results on the rate of convergence of the distribution of Y, to its limit distribution in uniform 
metric and total variation distance are available (de Haan and Resnick (1996)). 

Various methods have been developed to test whether a sequence of i.i.d. observations 
belongs to the domain of attraction of one of the three distributions (see Castillo (1986), 
Marohn (1998) and Alves and Gomes (1996) for the Gumbel type; Tiku and Singh (1981) 
and Shapiro and Brain (1987) for the Weibull type). 
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However, the general problem of designing an estimate fyn of the density of Y, (re- 
spectively the cdf of Y,) that is consistent in total variation is unsolvable. Specifically, 
Beirlant and Devroye (1999) showed that there exists a unimodal infinitely many times 
differential density such that 

here g, = n f P-' is the density of Y,. Thus a universally consistent density estimator does 
not exist. Hence to study rates of convergences of Y, to its limit distribution, both tail and 
smoothness conditions are required. 

Angus (1993) considered asymptotic analysis of bootstrap distributions for the extremes 
from an i.i.d. sample. In contrast to the case of almost sure convergence to a fixed (normal) 
distribution in the case of the sample mean (a finite variance case), the bootstrap distribution 
of an extreme tends in distribution to a random probability measure. 

1.4 Distribution Function and Moments of Type 1 
Distribution 

Corresponding to type 1 distribution (1.1) is the probability density function: 

P x ( z )  = g - l e - b - P ) / u  exp [-,-(.-P)/.]. 

- 1% {- logFx(z; p,  0)) = (. - p ) / u  

(1.21) 

We reiterate that 

and the cdf would be linear if drawn on graph paper on which the percentage scale were 
doubly logarithmic. The empirical cdf would then be approximately linear. Specially pre- 
pared probability graph paper for this purpose is commercially available. We shall discuss 
applications of this graph paper in the section on statistical inference. 

If p = 0 and u = 1, or equivalently, the distribution is of Y = (X - p) /u ,  we have the 
standard form 

Since, the variable 2 = exp [-(X - p ) / o ]  = ecY has the exponential distribution 

PY (Y) = exp [-Y - .-"I . 

p z ( z )  = e-* , z 2 0 ,  

it follows that 

for t < 1. The moment generating function of X is 

and the cumulant generating function is 

(1.22) 

(1.23) 

(1.24) 
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Thus, the first order cumulant 

kl(X) = E(X)  = p - O$(l) = p + ya  

= p + 0.57722a1 (1.25) 

where y is Euler's constant, and the higher cumulants are 

(1.26) 

where $(.) is the digamma function. 
The variance is: 

1 
6 

Var(X) = -?a2 = 1.644930' (1.27a) 

and 
std. dev.(X) = 1.28255~.  

The moment ratios are 

a:(X)  = pl(X) N 1.29857, 

(1.27b) 

(1.28) 
a4(X) = p'(x) = 5.4. 

We emphasize that p and a are (purely) location and scale parameters, respectively. 
All distributions (1.21) have the same shape. 
The distribution is unimodal. Its mode is at X = p and there are points of inflection at 

X = p f alog [f(3 + &)I N p f 0.962420. (1.29) 

From (1.1) for 0 < p < 1, the pth quantile defined by F(X,) = p becomes 

x, = p - alog(-logp). (1.30) 

From (1.30) we immediately obtain the lower quartile, median, and upper quartile to  be 

Xo.2, = p - 0.326630, 

x0.50 = p + 0.366110, 

Xo.75 = p + 1.24590~, 

(1.31) 

(1.32) 

(1.33) 

respectively 
Quantiles of the distribution are easy to compute from (1.30). They are of special im- 

portance in applications of extreme value distributions. Most of the standard distribution 
(1.22) is contained in the interval (-2,7). For the type 1 distribution function we find the 
probability between p - 2a and p + 7a to be 0.998. That is 99.8% of the distribution lies 
between Mean -2.0094 x (standard deviation) and Mean + 5.0078 x (standard deviation). 

Table 1.1 gives standardized percentile points (i.e. for a type 1 extreme value distribution 
with expected value zero and standard deviation 1, corresponding to  a = &/7r = 0.77970; 

The positive skewness of the distribution is clearly indicated by these values. See Fig. 1.1. 
We must emphasize that often type 1 is chosen without further investigation for practi- 
cal (ease of fitting) as well as theoretical reasons. Cohen (1982) shows that perhaps this 
preference for type 1 may sometimes be misguided (see the Appendix). 

p = -70 = -0.45006). 
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Figure 1.1: Standard type 1 probability density function (1.21). 

Table 1.1: Standardized percentiles for type 1 extreme value distribution. 

a Percentiles 

0.0005 
0.0001 
0.005 
0.01 
0.05 
0.1 
0.9 
0.95 
0.99 
0.9975 
0.999 

-2.0325 
-1.9569 
-1.7501 
-1.6408 
-1.3055 
-1.1004 

1.3046 
1.8658 
3.1367 
4.2205 
4.9355 

1.5 Order Statistics, Record Values and 
Characterizations 

If Y: 5 yz' 5 YA are the order statistics corresponding to n independent random variables 
each having the standard type 1 extreme value distribution, then the probability density 
function of Y,'(l 5 T 5 n) is 

pydy)  = (' - l)!(n , - - 0 3 < y < ~ .  (1.34) 
- T ) !  j=o 

From (1.34) the kth moment of Y,' can be written as 

(1.35) 
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where 

Extreme Value Distributions 

m 

= 1 ( logu)ke-c" du (with u = e-") 
-, (1.36) 

The functions gI(.) and gz(.) required for the expressions of the first two moments of order 
statistics are 

gl(c) = -?!a + - r (1)  logc = -(y + logc) (1.37) 
1 

and 

gz(c) = - - + (y + logc)2 ; :{: I (1.38) 

as above (here y is Euler's constant). 

to be 
Proceeding similarly the product moment of K' and Y,' (1 5 T < s 5 n) can be shown 

n! E[Yr'Y,'] = 
(T - l)!(s - T - l)!(n - s)! 

x l$(T + i , s  - T - i + j )  , (1.39) 

where the function 4 is the double integral 

4(4 u) = 1: 11 xyez-te"ey-ue'dx dy , t ,  u > 0 .  (1.40) 

Lieblein (1953) derived an explicit expression for the 4 function in (1.40) in terms of Spence's 
function which has been tabulated by Abramowitz and Stegun (1965) and other handbooks. 

Balakrishnan and Chan (1992a) presented tables of means, variances and covariances of 
all order statistics for sample sizes n = 1(1)15(5)30. Complete tables for all sample sizes up 
to 30 have also been prepared by Balakrishnan and Chan (1992~). Mahmoud and %gab 
(1975) and Provasi (1987) have provided further discussions on order statistics. 

Suppose that Y1, Yz, . . . is a sequence of i.i.d. standard type 1 extreme value random 
variables and that YL(~) = Yl, YLQ), . . . are the corresponding lower record values. That is, 
L(1) = 1 and L(n) = min{j : j > L(n - l ) ,  y3 < YL(~-~)} for n = 2,3, .  . . , {Y,qn)}Fl form 
the lower record value sequence. Then the density function of YL(,), n 2 1, is given by 

(1.41) 

This is the density function of the so-called log-gamma population when the shape parameter 
K = n. It will be discussed below in the section on Related Distributions. 
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Thus, for n = 1 , 2 , .  . . , 

and 

(1.42) 

(1.42a) 

- - 1 e-mVi(e-ya - e-yi)n-m-le-yze-e-u2 , 
(m - l ) ! (n  - m - I)! 

-m  < yz < y1< co. (1.43) 

Upon writing the joint density of Y L ( ~ )  and YL(~) ,  1 5 m 5 n, in (1.43) as 

(1.44) 1 e-nyz -e-"2 e , -co<y2<y1<00, x- 
(n  - I)! 

we observe that Y L ( ~ )  - Yqn) and YL(,) for (1 5 m 5 n) are statistically independent. As a 
result, we get 

(1.45) 

These properties are similar to those of order statistics arising from standard exponential 
random variables. In fact, it follows from (1.44) that Y L ( ~ )  - YL(~)  is distributed as the 
(n-m)th-order statistic in a sample of size n- 1 from the standard exponential distribution, 
say Zn-m:n-l. For the special case when m = 1, we then have Y L ~ )  - YL(~) = Y1 - Y~c.1 = 
Zn-pn-1. Suppose that X& is the ith-order statistic in a random sample of size j from 
a distribution F(.) .  If the distribution function of (X;:j - uj ) /b j  converges weakly to a 
nondegenerate distribution function G(.) as j + co for sequences of constants uj and positive 
b j ,  then Nagaraja (1982) showed that the joint distribution function of (X;-i+l:j - uj ) /b j  

1 5 i 5 n, converges to that of XL(~) ,  1 5 i 5 n. 
Recurrence relations for the single and product moments of the lower record values were 

obtained by Ahsanullah (1994). A useful result is the following: 

F o r n 2 1  and r = O , 1 , 2  , . . . ,  
r f l  

E(X$+,)) = E(X$t,f) - TE(XL(~))  (compare with (1.42a)) 
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As mentioned earlier, X has a type 1 extreme value distribution if and only if ex has a 
Weibull distribution, and ex/“ has an exponential distribution, and exp {(X - p ) / c }  has a 
standard exponential distribution. 

Some characterization theorems for exponential distributions may also be used for type 1 
extreme value distributions, simply by applying them to ex/“, or exp {(X - p)/u}. Dubey 
(1966) characterized this distribution by the property that Y, = min(X1, Xz, . . . , Xn) is a 
type 1 random variable if and only if XI, Xz, . . . , X, are independent identically distributed 
type 1 random variables. 

Sethuraman (1965) has obtained revealing structural characterizations of all three types 
of extreme value distributions, in terms of “complete confounding” of random variables. 
If X and Y are independent and the distributions of Z, given Z = X, and 2 given Z = Y are 
the same [e.g., Z might be equal to min(X, Y) as in the case described in Sethuraman (1965)], 
they are said to completely confound each other with respect to the third. Sethuraman showed 
that if all pairs from the variables X, Y and 2 completely confound each other with respect 
to the third and if Y ,  2 have the same distributions as a l X  + b l ,  azX + bz, respectively [with 
(al, b l )  # (az, bz)], then the distribution of X is one of the three extreme value (minimum) 
distributions (provided we limit ourselves to the cases when Pr[X > Y] > 0; Pr[Y > XI > 0, 
etc.). The type of distribution depends on the values of al, a2, bl, bz. 

There are a number of characterizations of the type 1 distribution in the framework 
of extreme value theory. The most prominent one is that the type 1 distribution is the 
only max-stable probability distribution function with the entire real line as its support; 
see e.g. Theorem 1.4.1 in Leadbetter, Lindgren, and Rootzkn (1983). The concept of max- 
stability is of special usefulness especially for the multivariate extreme value distributions; 
see Chap. 3. In addition to the characterizations of the type 1 distribution itself, there are 
several characterization results available for the maximal domain of attraction of the type 1 
distribution; de Haan (1970) is a good initial source of information on this as well as on 
characterizations for type 2 and type 3 distributions. 

Tikhov (1991) has characterized the extreme value distributions by the limiting infor- 
mation quantity associated with the maximum likelihood estimator based on a multiply 
censored sample. 

1.6 Generation, Tables, Probability Paper, 
Plots and Goodness of Fit 

Collection of tables cited below are of more than just historical interest. 
The following tables are included in Gumbel (1953): 

(a) Values of the standard cumulative distribution function, F = exp (-e-Y), and prob- 
ability density function, exp(-y - e-”, to seven decimal places for y = -3(0.1) 
- 2.4(0.05)0.00(0.1)4.0(0.2)8.0(0.5)17.0. 

(b) The inverse of the cumulative distribution function (percentiles), y = - log (- log F )  
to five decimal places for 

F = 0.0001(0.0001)0.0050(0.0001)0.988(0.0001)0.9994(0.00001)0.99999. 
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In Owen’s tables (1962) there is a similar table, to  four decimal places for 

F = 0.0001(0.0001)0.0010(0.0010)0.0100(0.005)0.100(0.010)0.90(0.005) 

o.99o(o.ooi)o.999(o.oooi)i - 10~(’)~, 1 - 1/2 . 10-~(’)~. 

The special interest in very high value of F ,  by both Gumbel (1953) and Owen (1962), is 
associated with the genesis of the distribution. 

From (1.1) it follows that 

- log (- log Pr[X < z]) = (z - p ) / u .  (1.46) 

As it has already been pointed out, but repeated here due to practical importance, if 
the cumulative observed relative frequency F, - equal to (number of observations less than 
or equal to z)/(total number of observations) - is calculated, and -log (- log F,) plotted 
against 2, an approximately straight line relation should be obtained, with slope (T-‘ and 
intersecting the horizontal (z) axis a t  x = p. In using graph paper with a vertical scale 
that gives - log (- log F,) directly, it is not necessary to refer to  tables of logarithms. Such 
graph paper is sometimes called extreme value probability paper or Gumbel paper. Equally it 
is also common to use such paper with the z-axis vertical, and for practical purposes it is 
sometimes convenient to have the -log (- log F )  marked not with F, but with the “return 
period” (1 - F,)-’; see e.g. Gumbel (1949a) and Kimball (1960). Such a paper is called 
extreme probability paper. 

Evidently, pseudorandom numbers from the standard type 1 distribution may be gener- 
ated easily either through the inverse cdf method along with an efficient uniform random 
generator or through the relationship with the exponential distribution along with an ef- 
ficient exponential random generator. Sibuya (1967) has discussed the latter. Landwehr, 
Matalas, and Wallis (1979) have advocated the use of the Lewis-Goodman-Miller algorithm 
for generating pseudorandom numbers from the uniform distribution for this purpose. In a 
similar manner, the Frkchet distribution can be generated from the Pareto distribution and 
the Weibull from the power function distribution. 

Due to the prominence and significance of the extreme value distributions, considerable 
work has been done with regard to testing whether an extreme value distribution is appropri- 
ate for the data at hand. The book by D’Agostino and Stephens (1986) provides an elaborate 
account of various goodness-of-fit tests developed for the extreme value distributions. 

Consider type 1 extreme value distribution: 

Pr[Y 2 y] = F(y ;  p, u) = 1 - exp [ - exp (59, - m < y I m ,  

where (p ,  n) = (location, scale) parameter. 

relationship 
As already mentioned on several occasions, taking the logarithm we obtain the linear 

y = p + u In [- In (1 - F ( y ;  p, o))] 

for plotting the observed data on type 1 extreme value (or Gumbel) paper. 
If yl, i = 1 , .  . . , n, is a set of ordered observations and p, ,  i = 1 , .  . . , n, is a set of 

plotting positions given by a plotting method, then the plotted points, (y,, In [- In (1 - p i ) ] ,  
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i = 1 , .  . . , n) should be approximately distributed on a straight line on a type 1 extreme value 
probability paper (provided the data reasonably fit a type 1 extreme value distribution). 

Shimokawa and Liao (1999) examined three plotting methods, the so-called graphical 
plotting techniques (GPT): 

(a) Median ranks. Here pi is defined by 

(b) Mean ranks: 

i 
Pi = n+l 

(c) Symmetrical sample cdf ranks: 

i - 0.5 pi = - 
n 

The authors combine the least square method (LSM) and the plotting procedure to 
estimate p and c. Specifically let ci = In [- In ( l -pi)]  and p and c be obtained by minimizing 

T = x(yi - ji - 6ci)' for given yi and q , 
i=l 

yielding 

where 

Montecarlo simulation was used to obtain critical values for the Kolmogorov-Smirnov 
statistics (K-S), Cram&-von Mises statistics (C-M) and the Anderson-Darling (A-D) statis- 
tics for goodness-of-fit tests when population parameters are estimated from complete sam- 
ples by graphical plotting techniques. 

lo6 sets of samples for each sample size of 3(1)20, 25(5)50 and 60(10)100 were generated. 
The power was investigated for the 3 GPTs and for maximum likelihood estimator (MLE). 
The simulation provided power results using lo4 repetitions for each sample size of 5, 10, 25 
and 40. 

Let: 

(a) x1 < x2 < . . . < x, be order statistics for a sample of size n from a population defined 

(b) &(x; 0) be a specified family of models that contain a set of parameters 0. 
by a continuous cdf F ( x ) .  
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A goodness-of-fit test is used to test the null hypothesis 

Ho F ( z )  = Fo(z; 8 ) .  

The K-S statistic for a goodness-of-fit test is based on 

where 

o ) ,  Fo(zi; 8)  - - . i-’l n 
The C-M statistic is represented by: 

i - 0.5 
n 

2=1 

A computational formula of the A-D statistic is: 

Since,*in practice, Fo(z; 8) often depends on unknown parameters, it must be modified to 
FO(:; 8) )y using parameter estimates. Then, the K-S, C-M and A-D statistics are modified 
to D,, W,Z, A:, respectively. 

Conclusions of the study by Shimokawa and Liao (1999) as applied to type 1 distribution 
are: 

(a) Among the three GPTs, the symmetrical ranks give more powerful results than the 
median and mean ranks for the K-S, C-M and A-D statistics. Symmetrical ranks 
provide more powerful results than the MLE for the K-S and A-D statistics. For the 
C-M statistic, the MLE provides more powerful results than the three GPTs. 

(b) Generally, the A-D statistic coupled with the symmetrical ranks and the least square 
method of estimation (LSM) is most powerful among the competitors in this study 
and is recommended for practical use. 

One of the easiest goodness-of-fit tests is the “correlation coefficient” test for the type 1 
extreme value distribution. This test is based on the product-moment correlation between 
the sample order statistics and their expected values. Since E[X,’] = p + gE[Y,’], one may 
as well use the correlation between the sample order statistics X,’ and the expected values 
of standard order statistics E[Y,‘], for the type 1 extreme value distribution. Naturally large 
values (close to 1) of this correlation will support the assumption of the type 1 extreme value 
distribution for the data at hand. Smith and Bain (1976) discussed this test and presented 
tables of critical points; tables were also provided by these authors for the case when the 
available sample is Type-I1 censored. A more extensive table of points for n(1-  R’), where 
~ R is the sample correlation coefficient, has been constructed by Stephens (1986). Kinnison 
(1989) discussed the same correlation test for the type 1 extreme value distribution and 
presented tables of smoothed values of the percentage points of R (in the case of complete 
samples) for n = 5(5)30(10)100, 200. 
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As aptly mentioned by Lockhart and Spinelli (1990) even though the correlation test 
is simple to use and has an intuitive appeal, its power properties are undesirable. Indeed, 
McLaren and Lockhart (1987) have shown that the correlation test has asymptotic efficiency 
equal to 0 relative to K-S, C-M and A-D tests discussed above. 

Earlier, Stephens (1977) presented goodness-of-fit tests based on empirical distribution 
function statistics W 2 ,  U 2  and A2 given by 

2 i - 1  1 
2 n  } +12n 

(cf. above), 

(1.47) 

(1.48) 

1 
and 

A' = -- c ( 2 i  - 1)[ logFx(X,l) + log (1 - Fx(XL-i+l)}] - n (1.49) 
n i  

(cf. above). 
This author discusses the asymptotic percentage points of these three statistics for the 

three cases when one or both of the parameters p and (T need to  be estimated from the 
data (using the MLEs). He also suggested slight modifications of these statistics in order to 
enable the usage of the asymptotic percentage points in case of small sample sizes. 

Along similar lines, Chandra, Singpurwalla and Stephens (1981) considered the K-S 
statistics D+, D- and D and the Kuiper statistic V given by: 

(1.50) 

(1.51) 

D = max(D+, D-) (1.52) 

and 
v = D + + D -  (1.53) 

They determined some percentage points of these statistics for the three cases when one or 
both of the parameters p and F need to be estimated from the data (using the MLEs). A 
stabilized probability plot proposed by Michael (1983) is to plot 

with respect to 

2 . i - 0.5 ' I 2  
ri = -sin-' 7r ( y )  . 

(1.54) 

In this way the unequal variance problem of the plotted points can be avoided, since Si in 
(1.54) have approximately equal variance, as the asymptotic variance of f i S i  is the constant 
( l/7r2). A goodness-of-fit statistic that arises naturally from the stabilized probability plot is 

D,, = m v  Iri - Si I . (1.55) 
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Kimber (1985) presented critical values for the statistic D,, in (1.55) for selected choices of n. 
Van Montfort (1973) dealt with testing goodness-of-fit for the type 1 distribution of largest 
extremes, where Pr(X < x) = exp (-x - p) /o with unknown location parameter p (-CXJ < 
p < +co) and scale parameter u (0 < u < CXJ). The proposed test is intended to  have a high 
power against the alternative distribution, Pr( log (X - v) < x) = exp (- exp (-(z - p) /o) ) ,  
where v is the lower bound of the support of X. The statistic is a function of standardized 
spacings. Critical values and power are approximated by means of Montecarlo methods. 

Tsujitani, Ohta and Kase (1980) proposed a test based on the sample entropy, presented 
its critical points for some sample sizes determined through Monte-Carlo simulations, and 
showed that it has desirable power properties compared with some of the tests mentioned 
above. Oztiirk (1986) considered the Shapiro-Wilk W test and presented some percentage 
points determined through Monte-Carlo simulations (see below). A modification of the W 
statistic has been considered by Oztiirk and Korukoglu (1988) in which the test statistic has 
been obtained as the ratio of two linear estimators of the parameter. These authors have 
determined percentage points of this statistic through Monte-Carlo simulations and have 
also shown by means of an empirical comparative study that this test possesses good power 
properties. 

With the normalized spacings 

i = r + 1, .  . . , n -  s - 1, zi = X:+l -x: 
E(y+l) - E(y,') ' 

where y,' are order statistics from the standard distribution, and 

Pi 0 

Lockhart et al. (1986b) focus on the A-D statistic 

A' = -(n - r - s - 2) 

(1.56) 

discussed above and compare its performance with the S-statistic introduced by Mann, 
Scheuer and Fertig (1973) and the 2' statistic introduced by Tiku and Singh (1981). Here, 
T = 1 - Zt, where 

n - r - s - 1  
if n - r - s is odd , 

and 
- 1 n-s-2 

2' = n - r - s - 2 ,  c z,t 
a=r+l 

(1.58) 

(1.59) 

In agreement with the more recent conclusions of Shimokawa and Liao (1999), Lockhart e t  al. 
(1986b), based on their comparative study, recommend overall the A' test, and they also 
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mentioned that while the 2* test gives good power in many situations, it may occasionally 
be inconsistent. 

Hasofer and Wang (1992) proposed a statistic to test the hypothesis that a sample comes 
from a distribution in the domain of attraction of the type 1 distribution. It is based on the 
top k order statistics and is a generalization of the well-known Shapirc-Wilk goodness-of-fit 
statistic (W) .  The critical region of the test and its power against the alternative that the 
sample comes from a distribution in another domain of attraction are studied theoretically 
and by simulation. 

Suppose that F ( z )  is in the domain of attraction of the Gumbel distribution; i.e. there 
are two sequences {a,} and {b,} such that 

lim F,(a,a: + b,) = exp{-exp{-z}}, -M < z < M. 
n+m 

Let xl, 2 . . .  2 xk, 2 . . .  2 x,, be the order statistics of a sample of size n from F ( z )  
and Z,, = (Xz, - b,)/a,. Consider now the random vector ZL, = (Zl,, . . . , zk,), where k 
is a fixed number. It has been shown that as n + 03, the random vector ZL, converges 
in distribution to the limit random vector UL = (U1,. . . , uk), where the Uz’s have the joint 
density function h(ul , .  . . , uk) = exp {- exp {-uk} - Cz=l ui}, u1 2 . . . 2 uk. Hasofer 
and Wang (1992) showed that under the null hypothesis that the joint distribution of zk is 
h(u1,. . . , uk), the above-mentioned classical goodness-of-fit criterion 

k 

i=l 

proposed by Shapiro and Wilk (1965) for testing normality is, in this case, a simple function 
of the so-called Greenwood statistic Gz introduced over 50 years ago (Greenwood (1946)) 
based on differences of order statistics. (See also Moran (1947), (1953).) The authors have 
shown that the distribution of W for this mod61 shifts to the left for the Frkchet (Type 2) 
distributions and towards the right for the Weibull (Type 3) distributions. 

Utilizing Kimball’s (1956) simplified linear estimators j i  and 6 to  be discussed in the next 
section, Aly and Shayib (1992) proposed the statistic 

M , = - ~ { ( y y l o g  i=l [-log(l-&)]}z 

x (1 - &) log (1 - &) (1.60) 

for testing the validity of the type 1 extreme value distribution for the minimum. They deter- 
mined the critical points of M, for selected sample sizes through Monte Carlo simulations. 
Aly and Shayib (1992) also compared the power of this test with some other tests including 
the A’ test in (1.57). From their brief power study it seems that the M, test outperforms 
the A2 test for skewed alternatives; however, in the case of symmetric alternatives, the A’ 
test seems to be considerably better than the M, test. 

Tiago de Oliveira (1981) discussed the statistical choice among the different extreme value 
models. Vogel (1986) discussed further the probability plot and the associated correlation 
coefficient test. Cohen (1986, 1988) presented detailed critical discussions on the large-sample 
theory for fitting extreme value distributions to maxima. 



Univariate Extreme Value Distributions 23 

1.7 Methods of Inference 
This section is rather lengthy. We follow E. J. Gumbel’s (1958) dictum that “no distribu- 
tion should be stated without an explanation of how the parameters are estimated even at 
the risk that the methods used will not stand up to the present rigorous requirements of 
mathematically minded statisticians”. 

Let XI, XZ, . . . , X, be a random sample of size n from the type 1 extreme value distri- 
bution in (1.21). Then as Downton (1966) has shown, the Cram&-Rao lower bounds of 
variances of unbiased estimators of p and u are given by 

(1 + 6(1- y)2~-2}u2n-’ = 1.10867u2n-’, 

6 ~ - ~ ~ ~ n - ~  = 0.60793u2n-l, 
(1.61) 

respectively. 

function 
As has already been mentioned, if 2 has a Weibull distribution with probability density 

(1.62) 

then log (2 - p )  has a type 1 extreme value distribution. Consequently, if p is known, the 
methods of estimation discussed in this section for the type 1 extreme value distribution can 
also be used for estimating the parameters u and c of the Weibull distribution (1.62) and 
vice versa. 

1.7.1 Moment Estimation 
This is one of the most popular methods of estimating parameters. Let X and S denote 
the sample mean and the sample standard deviation. Then using Eqs. (1.25) and (1.27), we 
simply obtain the moment estimates of p and a as 

= X - 0.4500415 

(see Lowery and Nash (1970), Landwehr et al. (1979)). 
Tiago de Oliveira (1963) has shown that 

and that 
UZ 

var(5) = -(p2 - I), 4n 

(1.63) 

(1.64) 

(1.65) 

where and 
for their values, we get 

are the coefficients of skewness and kurtosis as given in (1.28). Substituting 

1.1678~’ 1.12 
n n 

var(,i) 21 ~ and var(5) N ~. (1.66) 
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A comparison of the variance formulas in (1.66) with the CramBr-Rao lower bounds in (1.61) 
readily reveals that the moment estimator ii has about 95% efficiency while the moment 
estimator 6 has only about 55% efficiency. The estimators and 6 are both 6-consistent; 
i.e. 6 (/I - p )  and 6 (6 - u) are bounded in probability. 

Tiago de Oliveira (1963) has shown that the joint asymptotic distribution of ii and 6 is 
bivariate normal with mean vector (p ,  u)', variances as given in (1.65) and the correlation 
coefficient given by 

Using this asymptotic result, asymptotic confidence regions for ( p , u )  can easily be con- 
structed. 

Christopeit (1994) showed that the method of moments provides consistent estimates of 
the parameters of extreme value distributions, and used it for estimation of the distribution of 
earthquake magnitudes in the middle Rhein region. The method of mixed moments (MIX) 
uses the first moment of the type 1 distribution and the first moment of its logarithmic 
version. (See Jain and Singh (1987).) 

1.7.2 Simple Linear Estimation 
Noting that the likelihood equations for p and u do not admit explicit solutions and hence 
need to be solved by numerical iterative methods, Kimball (1956) suggested a simple modi- 
fication to the equation for u (based on the equation for p )  that makes it easier to solve the 
resulting equation. The equation for u given by 

c e-x,la 
i=l 

used in conjunction with the equation for p given by 

can be rewritten as 
- n  

1 "  
= x + - c xi log FX(Xi) , 

i=l 

(1.68) 

(1.69) 

(1.70) 

where as above kx(Xi) is the estimated cumulatLve distribution function. Replacing 
log&(X,') in (1.70) with the expected value of logFx(X,'), Kimball (1956) derived a sim- 
plified linear estimator for p as 

(1.71) 
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which may be approximated as 

6 ’ = x + g x : l o g  (3) 
i=l 

(1.72) 

The estimator in (1.71) or in (1.72) is a linear function of the order statistics, and hence its 
bias and mean square error can be determined easily from means, variances and covariances 
of order statistics. Since the linear estimator in (1.72) is biased, Kimball (1956) presented a 
table of corrective multipliers; from the table it appears that for n 2 10 the estimator 

6*(1 + 2.3n-’)-’ (1.73) 

is very nearly unbiased. Furthermore a simplified linear estimator of p may then be ob- 
tained as: 

Estimator of p = X - y x (Estimator of CT) . (1.74) 

Due to the linearity of the estimator of CT, it is only natural to compare it with the best 
linear unbiased estimator of CT and with its approximations proposed by Blom (1958) and 
Weiss (1961). (See Tables below.) 

Table 1.2: 
distribution. 

Efficiencies (%) of linear unbiased estimators of p for the extreme value 

n 2 3 5 6 co 

Best linear 84.05 91.73 95.82 96.65 100.00 
Blom’s approximation 84.05 91.72 95.68 96.45 100.00 
Weiss’s approximation 84.05 91.73 95.82 96.63 - 

Kimball’s approximation 84.05 91.71 95.82 96.63 - 

Table 1.3: 
distribution. 

Efficiencies (%) of linear unbiased estimators of CT for the extreme value 

n 2 3  5 6 co 

Best linear 42.70 58.79 72.96 76.78 100.00 
Blom’s approximation 42.70 57.47 70.47 74.07 100.00 
Weiss’s approximation 42.70 58.00 71.04 74.47 - 

Kimball’s approximation 42.70 57.32 69.88 73.25 - 

The location parameter p can be estimated with quite good accuracy using simple linear 
functions of order statistics; however, the situation is unsatisfactory should one use such 
simple linear functions of order statistics to estimate the scale parameter CT. See Tables 1.2 
and 1.3. 
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r = <  

For the case of Type I1 right-censored sample X i ,  Xi,. . . , XA-s from the type 1 extreme 
value distribution for minima with cdf Fx(z) = 1 - e-e(=-p)’u, Bain (1972) suggested a 
simple unbiased linear estimator for the scale parameter a. This estimator was subsequently 
modified by Engelhardt and Bain (1973) to the form 

I 

n - s  

n f o r n - s = n ,  n < 1 5 ,  

n - 1  f o r n - s = n ,  1 6 < n < 2 4 ,  

[0.892n] + 1 

for n - s 5 0.9n, 

for n - s = n, n 2 25. 
\ 

where 

n-s 

1 
kn-s,n = - n EIY: - X’l, 

2=1 

(1.75) 

(1.76) 

as 
b = x,’ - E(y,‘)&. (1.78) 

Using the estimators and 
estimator for the pth quantile p p  can be derived as 

in Eqs. (1.75) and (1.78), respectively, a simple linear unbiased 

.. 
f i p  = fi  + Blog (- log (1 - p)) , 0 < p < 1 .  (1.79) 

Confidence intervals for the parameters p and u based on the linear unbiased estimators 
,?L and b have also been discussed by Bain (1972) and Mann and Fertig (1975). 
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As pertinently pointed out by Mann and Fertig (1975), for n - s 5 0.90~1, 

-- 
U 

is approximately a sum of weighted independent chi-square variables. 
Thomas and Wilson (1972) also investigated point estimation for the scale and location 

parameters of the extreme-value (type 1) distribution by linear functions of order statistics 
from Type I1 progressively censored samples. 

1.7.3 
Let X:+l 5 Xi+z 2 . . .  5 XA-s be the available doubly Type-I1 censored sample from a 
sample of size n where the smallest r and the largest s observations have been censored. De- 
note 

Best Linear Unbiased (Invariant ) Estimation ( B L  UE ) 

x = (X+l, x+,, ‘ .  ’ , XAAT, 

1 = (111, ’ ‘ .  , l)L(n-r-s), 
CL = (JW+ll, E[Z+,I, ’ ’ ’ , E[y;-sI)T 

and 

C = ((cov(x’, kj’))) , r + 1 5 i , j  5 n - s . 
Minimizing the generalized variance 

(X - p1- ap)Tx-l(X - p1- u p ) ,  

we derive the best linear unbiased estimators (BLUES) of p and u as [see e.g. Balakrishnan 
and Cohen (1991, pp. 80-Sl)]: 

pTC-lp1TE-1 - pTE-11pTC-l 
(pTC-1p)(lTC-l1) - (pTC-’l)Z 

and 

n--s 

= biX,! 
i=r+l 

(1.80) 

(1.81) 

In Table 1.4 the coefficients ai and b, are presented for n = 2(1) 7. 
Observing that these estimators are minimum variance estimators in the class of all 

linear unbiased estimators, Mann (1969) considered the larger class of all linear estimators 
and derived improved estimators by minimizing the mean square error. These estimators are 
termed the best linear invariant estimators (BLIEs) by Mann (1969); they are particularly 
useful when either the sample size is very small or there is a substantial censoring in the 
sample. 
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Table 1.4: Coefficients for the BLUES of p and n for complete samples. 
(Balakrishnan and Cohen (1991)) 

n i a, bs 

2 1 0.91637 -0.72135 
2 2 0.08363 0.72135 

3 2 0.25571 0.25582 
3 3 0.08797 0.37473 

4 2 0.26394 0.08590 
4 3 0.15368 0.22392 
4 4 0.07138 0.24880 

5 2 0.24628 0.00653 
5 3 0.16761 0.13045 
5 4 0.10882 0.18166 
5 5 0.05835 0.18448 

3 1 0.65632 -0.63054 

4 1 0.51100 -0.55862 

5 1 0.41893 -0.50313 

6 1 0.35545 -0.45927 
6 2 0.22549 -0.03599 
6 3 0.16562 0.07320 
6 4 0.12105 0.12672 
6 5 0.08352 0.14953 
6 6 0.04887 0.14581 
7 1 0.30901 -0.42370 
7 2 0.20626 -0.06070 
7 3 0.15859 0.03619 
7 4 0.12322 0.08734 
7 5 0.09375 0.11487 
7 6 0.06733 0.12586 
7 7 0.04184 0.12014 

Denoting the BLIEs of p and n by 

n-8 n--9 

(1.82) 
t=r f l  i=r+l 

Mann (1967a) in a Technical Report and Mann, Schafer and Singpurwalla (1974) in the by 
now classical volume on Reliability have presented tables for various sample sizes and different 
levels of censoring. In Table 1.5, the coefficients a: and b; are presented for n = 2(1)7 for 
the case of complete samples (i.e. r = s = 0). 

Analysis of BLIEs reveals that while there is only a slight improvement in the estimation 
of p, there is a significant gain in using the BLIE of LT, particularly when n is small. 
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Table 1.5: Coefficients for the BLIEs of p and u for complete samples. 
(Mann, Schafer and Singpurwalla (1974)) 

2 
2 
3 
3 
3 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 

1 
2 
1 
2 
3 
1 
2 
3 
4 
1 
2 
3 
4 
5 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
7 

0.88927 
0.11073 
0.66794 
0.25100 
0.08106 
0.52681 
0.26151 
0.14734 
0.06434 
0.43359 
0.24609 
0.16381 
0.10353 
0.05298 
0.36818 
0.22649 
0.16359 
0.11754 
0.07938 
0.04483 
0.31993 
0.20783 
0.15766 
0.12097 
0.09079 
0.06409 
0.03874 

-0.42138 
0.42138 

0.19024 
0.27867 

0.07011 
0.18275 
0.20305 

0.00560 
0.11182 
0.15571 
0.15813 

-0.46890 

-0.45591 

-0.43126 

-0.40573 
-0.03180 

0.06467 
0.11 195 
0.13210 
0.12881 

-0.38202 
-0.05472 
-0.03263 

0.07875 
0.10357 
0.11348 
0.10832 

1.7.4 
Optimal linear estimation of the parameters p and u based on k selected order statistics, 
using the theory of Ogawa (1951, 1952), has been discussed by a number of authors. Suppose 
that 0 < A 1  < X2 < . . . < Xk < 1 is the spacing that needs to be determined optimally, and 
let XO = 0 and X k + l  = 1. X;,:% is called the sample quantile of order Xi, where ni = [.Xi] + 1. 
Then it can be shown that the asymptotic variances and covariance of the BLUES, and 
3, based on the k selected sample quantiles are given by 

Asymptotic Best Linear Unbiased Estimation 

(1.83) 

(1.84) 
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and 
U' K12 COV(b*, 5*) = -- . 
n K ~ ~ K z z  - Kf2  ' 

In the equations above 

and 

(1.85) 

(1.86) 

(1.87) 

(1.88) 

where G, = F;'(X,) and the quantities 

Py(Go) 9 GoPy(Go), Py(Gk+i), Gk+lPy(Gk+l) 

vanish. 
Appropriate functions involving Kll ,  KZ2 and Klz need to be optimized, subject to the 

constraint 0 < A1 < < . . . < X k  < 1 in order to determine the k optimal quantiles for the 
asymptotic BLU estimation of the parameters p and u. Numerical results for this problem 
have been provided by Hassanein (1965, 1968, 1969, 1972) and Chan and Kabir (1969). As 
an example the optimal spacing (,Il, X 2 , .  . . , Xk) that maximizes Kll in (1.86) is presented in 
Table 1.6 for k = 1(1)7. These values provide the optimal sample quantiles to be used in a 
sample of size n for the asymptotic BLU estimator of p (when u is known) since its variance 
in this case is given by 

(1.89) Val-@*) = - . 

Tests of hypotheses about the equality of p's from several extreme value populations 

2 
nK11 

based on asymptotic BLU estimators are discussed by Hassanein and Saleh (1992). 

Table 1.6: Optimal spacing for the asymptotic best linear unbiased estimator of p (when 0 

is known) for k = 1(1)7. 

k xi A2 A3 A4 A5 A6 A7 

1 0.2032 
2 0.0734 0.3615 
3 0.0345 0.1701 0.4705 
4 0.0190 0.0933 0.2581 0.5486 
5 0.0115 0.0566 0.1566 0.3329 0.6069 
6 0.0075 0.0369 0.1021 0.2171 0.3958 0.6521 
7 0.0052 0.0254 0.0703 0.1494 0.2723 0.4487 0.6880 
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1.7.5 Maximum Likelihood Estimation 
Maximum likelihood estimation of extreme values distributions is a subject to which numer- 
ous studies are devoted. This method will be efficient in any of the following cases: 

(i) The distribution is of Gumbel type (type 1) with coefficients of location and dispersion 
unknown; 

(ii) The distribution is of Fr6chet (type 2) or of Weibull (type 3) type, with known pa- 
rameter of location (in that case, for a type 2 distribution, log (Xi - A) has a type l 
distribution, or equivalently -log(X-Xi) for a type 3 distribution (x = X being in both 
cases the origin of the distribution), and unknown parameters of shape and dispersion; 

(iii) The distribution is of FEchet (type 2) type, with three parameters (location, shape 
and dispersion) unknown; 

(iv) The distribution is of Weibull (type 3) type, with three parameters (location, shape 
and dispersion) unknown, k being restricted to be 2 2. 

The main difficulties thus appear for the Weibull distribution with unknown shape pa- 
rameter. 

Below we shall discuss exclusively the maximum likelihood estimation for the type 1 
(Gumbel) extreme value distribution. 

Gumbel (1958) argued over forty years ago - that the method of maximum likelihood 
estimation (MLE) was very complicated and required numerical work normally prohibitive 
in that time for routine use and favored the method of moments (MOM). Lettenmaier and 
Burges (1982) showed some 25 years later that the MLE method gave better parameter 
estimates than those by the MOM method, especially for large return periods and small 
sample sizes. 

A Fortran 77-Program GEMPAK developed by A1 Abbasi and Fahmi (1991) estimated 
parameters of type 1, type 3 and the so-called mixture upper earthquake magnitude ex- 
tremal asymptotic distributions by means of the maximum likelihood method with numerical 
maximization utilizing the Newton-Raphson procedure. The subprogram calculates return 
periods at magnitude classes regarded as risky. 

Complete Data Case 
Based on a random sample XI, Xz, . . . , X,, the maximum likelihood estimators p and 0 
satisfy the equations 

and 
i=l 

(1.90) 

(1.91) 

The asymptotic variances of fi  and 6 are given by the Cram&-Rao lower bounds in (1.61). 
The asymptotic correlation coefficient between ,G and 6 is 

(1.92) 
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Equation (1.90) can be rewritten as 

this, when used in Eq. (1.91), yields the following equation for 5: 

(1.93) 

(1.94) 

It is necessary to solve (1.94) by an iterative method for 8; Eq. (1.93) will then give F.  If 5 
is large compared to Xi's, then the right-hand side of (1.94) is approximately 

x - {  I--.- ;;}. (1.95) 

This will provide an approximate solution to (1.94) which can be used as an initial guess 

The asymptotic confidence intervals at significance level a are given by 
for the iterative method to solve Eq. (1.94). 

(Q)' - 2(1- y) (9) (5) + {; + (1 - y)'} (5)' 
n 

i.e. 

(Q) ' - 0.84556 (e) (5) + 1.82367 (5) ' 5 -2 n log a .  

Evidently, these are ellipses in the ( p ,  u) plane. For the estimator 

p p  = p - log (- l0gp)b 

of the pth percentile of the distribution, the asymptotic variance is 

log(-logP))2 ' 

n 1 
Tiago de Oliveira (1972) has shown that the best asymptotic point predictor of the maximum 
of (the next) m observations is 

p + (y + log m)& 

with the asymptotic variance 

n 1 
If the scale parameter o is known, the maximum likelihood estimator of p is obtained from 
(1.90) to be 

(1.96) 
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This estimator is not unbiased. In fact Kimball (1956) has shown that (when u is known) 

(1.97) 

and 
(1.98) 

While fillu is a biased estimator of p,  e-fille/‘ is an unbiased estimator of e-”lU. This is so 
because e-x/u has an exponential distribution with expected value e--ILlu. 

Posner (1965), when applying the extreme value theory to error-free communication, 
estimated the parameters p and u for the complete sample case by the maximum likelihood 
theory and justified its use on the basis of its asymptotic properties. Observing that the 
asymptotic theory needs not be valid for Posner’s sample size (n  = 30), Gumbel and Mustafi 
(1966) showed that in fact a modified method of moments gives better results for Posner’s 
data. 

Censored Case 
Suppose that the available sample is a doubly Type-I1 censored sample X:+l, X:+z,. . . , X,!-s. 
Then the log-likelihood function based on this censored sample is 

n-s 7L-S 

log L = logn! - logr! - log s! - c y: - c e-Y’ 
i=r+l i=r+l 

- (n-r -s ) logu+rlogFy(Y:+, )  f s l o g ( 1  - F y ( Y L J } ,  (1.99) 

where y,’ = ( X l  - p ) / u  are the order statistics from the standard type 1 extreme value 
distribution with density (1.22) and Fy(y) is the corresponding cdf. From (1.99), we obtain 
the likelihood equations for p and u to be 

and 

(1.101) 

Harter and Moore (1968a) and Harter (1970) have discussed the numerical solution of the 
above likelihood equations. The asymptotic variancecovariance matrix of the maximum 
likelihood estimates, fi  and 6, determined from Eqs. (1.100) and (1.101) is given by [Harter 
(1970, pp. 127-128)]: 

r 

(1.102) 
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where ((Kj)) is the inverse of the matrix ((V")) with 

1 1% {--log (1 - q 2 ) )  x 2 +  log{-log(l-q2)}+ log(1-qz) [ QZ 
and 

In the equations above: 
q1 = T / n ,  q2 = s /n ,  r ( p ;  a)  = J," e-ttP-' dt, r ' ( p ;  a)  = (d/du)I'(u; a)u=p. 
Harter (1970) has tabulated the values of XI, K2 and f i 2  for q1 = 0.0(0.1)0.9 and 

Phien (1991) has discussed further the maximum likelihood estimation of the parame- 
ters p and based on censored samples. He carried out an extensive simulation study and 
observed the following concerning the effects of Type I censoring on the estimation of param- 
eters and quantiles of the type 1 extreme value distribution using the maximum likelihood 
method: (a) light censoring on the right may be useful in reducing the bias in estimating 
the parameters; (b) the bias in estimating the parameters and quantiles is very small; (c) for 
complete samples the MLE of p overestimates p, while the MLE of o underestimates o 
slightly; and (d) censoring introduces an increase in the variances of the estimates. 

q2 = 0.0(0.1)(0.9 - 41). 

For the distribution 

F,(~) = e - e - ( - A / c ,  

with Xl and X, as the left- and right-censoring time points and with T lowest and s largest 
observations censored (doubly Type1 censored data), the likelihood function is proportional 

{FX(XJ)+ n Px(Xi){l- FX(X7))". (1.101a) 

In this case that T and s are random variables while X, and X, are fixed. The log-likelihood 
function is 

n-s 

i=r+l 

n-s 

logL = const - (n - T - s) logo - C {x + e-Y,) - rd + slogq.  
i=r+l 
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Here 

d = e - x ,  

= 1 - e-e-% 

35 

X = e, and similarly for Y, and Y,  
U 

The maximum likelihood estimators of p and u satisfy the equations 

where 

G = P + P i + P ,  and H = Q + Q 1 + Q ,  

with 
n-8 n--s n--s 

P = n - r - s -  C Y,+ C xe-'., ~ = - ( n - r - s ) +  C e-x,  
i=r+l i = T + l  i=r+l 

s e K ( 1  - q)x 

se-'Y( 1 - q )  

P, = 1 

Qr = 

4 

4 

Phien (1991) recommended solving these equations using Newton's iterative process. Simu- 
lations carried out by Bugaighis (1991) show the ML estimator for c t o  have a slight edge 
over the BLU, particularly for very small (n  < 10) samples and heavy censorship. However, 
this slight advantage of the ML estimator of u dissipates with increasing the sample size. 
This is particularly noticeable in the case of moderate to  light censorship. The situation 
is reversed when it comes to estimating the location parameter p .  In this case, the BLU 
estimator of p is the more efficient of the two. Recall that similar results were reported 
by Mann et al. (1974), when considering moderate forms of Type I1 censorship. (Type I1 
censorship is considered moderate when, in reliability terminology, at least 50% of the tested 
items are actually observed to fail.) Evidently, further investigations are desirable. 

An alternative approach was taken by Balakrishnan and Varadan (1991), who approxi- 
mated the likelihood equations by using appropriate linear functions and derived approzzmate 
maximum likelihood estimators of p and u. They derived these estimators for the type 1 
extreme value distribution for the minimum. [The estimators for the type 1 extreme value 
distribution for the maximum in (1.21) can be obtained simply by interchanging r and s 
and replacing p by - p  and X,l by -XA-i+l.] A simulation study, Balakrishnan and Varadan 
(1991), demonstrates that their estimators are as efficient as the maximum likelihood esti- 
mators, BLU estimators, and BLI estimators (even for samples of size as small as 10). 

Estimators of this type based on multiply Type-I1 censored samples have also been dis- 
cussed by Balakrishnan, Gupta, and Panchapakesan (1992) and Fei, Kong, and Tang (1994), 
among others. 
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1.7.6 Method of Probability- Weighted Moments ( P  WM) 

Another method popular in extreme value investigations (especially in environmental sci- 
ences) is the PWM method. Landwehr, Matalas and Wallis (1979) proposed this method of 
estimation of the parameters p and u based on probability-weighted moments defined as: 

M(k) = E[X{1 - F ( X ) } k ] ,  k = 0,1 ,2 , .  . . . 

An unbiased estimator of M(k, is given by 

By making use of the explicit expressions of M(,) and M(l), equating them to sample 
estimators k(q and k(1) and solving for the parameters p and u, these authors derived the 
probability-weighted moments estimators to be 

They compared the performance of these estimators with the moment estimators and the 
maximum likelihood estimators in terms of bias and the mean square error. Their extensive 
simulation study indicated that this method of estimation is simple and also highly efficient 
(in terms of the efficiency relative to the maximum likelihood estimates). See Table 1.7. 

Table 1.7: Bias, mean square error and relative efficiency of the moment estimators, PWM 
estimators, and ML estimators p and u based on a complete sample of size n. (Landwehr 
et al. (1979)) 

U 

Method n Bias MSE Relative Efficiencv 
P 

Bias MSE Relative Efficiency 

M 
PWM 
ML 
M 
PWM 
M 
PWM 
ML 

5 0.18 0.37 
0.15 0.34 
0.00 0.44 

9 0.11 0.30 
0.09 0.26 

49 0.02 0.14 
0.02 0.11 
0.00 0.13 

0.83 
1 
0.74 
0.74 
1 
0.60 
1 
0.77 

-0.10 0.49 
-0.08 0.49 

0.01 0.48 
-0.06 0.36 
-0.04 0.36 
-0.01 0.15 

0.00 0.15 
0.00 0.15 

0.97 
1 
1.05 
0.96 
1 
0.96 
1 
1.00 

More details on this method, its drawbacks and advantages, are given in Chap. 2, in 
the section dealing with estimation of parameters in the case of generalized extreme value 
distributions. 
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1.7.7 Ranked Set Estimation 
Bhoj (1997), Barnett and Moore (1997) and Barnett (1999) investigated ranked set sample 
design for various distributions including the type 1 extreme value distribution with the cdf 

GX (T) x-P = exp [-exp [- (y)] . 

Consider Xp), X ( 2 ) ,  . . . , X(,), the order statistics of a sample of size n, and let U(%) = 

(X,,) - p ) / u .  Define a, = E(U(,)) and vz = Var(U(,,). Suppose the ranked set sample 
x1(1), x2(2), . . . , z,(,) is obtained as the set of smallest, second smallest, up to largest, ob- 
served values in n conceptual samples x,1,z22,. . . , x,, (i = 1 , 2 , .  . . , n) under the assumption 
that correct ordering has taken place (zncorrect ordering can also be allowed for; see Barnett 
and Moore (1997)). We shall use the ranked set sample for estimation of p and u. The usual 
estimator of E ( X )  is the ranked set sample mean 

1 ,  x= = - c xi(i) 
n 

(1.102a) 

which is known to be unbiased, with variance u2 Cvi/n2. 
We have: 

u2 C(ai - a)’/n2 
- 

(which confirms the fact that the ranked set sample m e a n x ,  cannot be less efficient than 
the sample mean, X). The relative eficiency is then: 

(1.103) 

There is no reason why, as in (1.102a), we should adopt equal weights for each Xi(i). Optimally 
chosen weights should (by definition) provide a gain in efficiency of estimation of E ( X ) .  
Barnett and Moore (1997) obtained the ranked set best linear unbiased estimators (ranked 
set BLUEs) of p and u in G{(x - p) /o }  and hence of E ( X ) .  The BLUEs of p and u are of 
the form: 

u* = v ~ X , ( ~ )  for some -yi and qi which depend on ai and vi . 

For the type 1 extreme value distribution, the reduced variable U = (X - p)/u has the 
mean y (Euler’s constant) and variance r 2 / 6 .  Hence 

P X = p + v  

u; = r2u2/6  

Barnett (1999) found, inter alia, that the relative efficiencies e ( 2 , X )  in the case of the 
Gumbel type 1 distributions are as follows: 

(cf. Sec. 1.2). 

n 2 3 4 5 6 8 1 0 1 5 2 0  

e ( g , X )  1.41 1.79 2.15 2.50 2.83 3.47 4.08 5.53 9.59 

The efficiency gains are thus 150%, 250%, 450% and 860% for n = 5, 10, 15 and 20 respec- 
tively! 
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1.7.8 Conditional Method 
The conditional method of inference for location and scale parameters, first suggested by 
Fisher (1934) and discussed in detail by Lawless (1982), has been used effectively for the 
type 1 extreme value distribution by Lawless (1973, 1978) and Viveros and Balakrishnan 
(1994). These developments are described here for the type 1 extreme value distribution for 
minimum with the cdf 1 - e-e(z-’)’u, 

Suppose that X i  5 X J  5 . . . 5 XA-s is the available Type-I1 right-censored sample. The 
joint density function of X = ( X i ,  X;l, . . . , XA-s) is 

where F ( . )  and p ( . )  are the cdf and pdf of the standard form of the type 1 extreme value 
distribution for minimum given by 

Fy(y) = 1 - e-ear and p y ( y )  = eyepeY . (1.105) 

The joint density in (1.104) preserves the location-scale structure since from (1.104) the 
standardized variables, ( X ;  - p ) / g , .  . . , (XAps - p ) / g  have a joint distribution functionally 
independent of p and 0. Suppose that ,ii and 6 are the maximum likelihood estimates of p 
and u (or some equivariant estimators like BLUES or BLIEs) which jointly maximize the 
likelihood of (p,u) that is proportional to (1.104). Then, 21 = (a - p) /u and 2, = 8/u 
are the pivotal quantities so that their joint density involves neither p nor c. With Ai = 
( X i  - ,ii)/6 ( i  = 1,2 , .  . . , n - s), A = (Al, Az, . . . , An-s) forms an ancillary statistic, and 
inferences for p and u may thus be based on the joint distribution of 2, and 22 conditional 
on the observed value a of A. 

Using p(z1, zzlu), Lawless (1973, 1978) applied algebraic manipulations and numerical 
integration techniques to determine the marginal conditional densities p(zlIu) and p(zzla) 
that can be used to carry out individual inferences on the parameters. 

Viveros and Balakrishnan (1994) have developed a similar conditional method of inference 
based on Type-I1 progressively censored data when one or more surviving items may be 
removed from the life-test (or progressively censored) at the time of each failure occurring 
prior to the termination of the experiment. The complete sample case or the Type-I1 right- 
censored sample case are, of course, special cases of this scheme. 

1.7.9 Tolerance Limits 
Dasgupta and Bhaumik (1995) proposed the following direct approach to construction of 
tolerance limits for extreme value distributions. 

(1) Consider type 3 distribution: 

(a negatively skewed distribution) 
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It is required to determine z ( l )b (p ,  t ,  a), where 6 is a positive function of p, [ and a, and 
zp) = min(z1,. . . , zn), where xi's are i.i.d. with distribution F, such that 

PZ,,,[PF{Y 2 z(1)%, t! 0)) 2 PI = Y 

for preassigned probabilities /3 and y. (Here Y is a future observation from F and we search 
for a lower bound such that loop% of the future observations will be above that bound with 
a very high probability 7 . )  Equivalently, 

P[I - Fb(1)6(PL, t ,  c)) 2 PI = Y 

or 

P[z(i) > F-'(D)/J(p, t ,  a)] = 1 - Y. 

Denoting G = 1 - F ,  we obtain 

GnlF-'(D)16(PL, t ,  a)] = 1 - Y 

or 

F[F- ' (p) /S(p ,  E ,  a)] = 1 - (1 - Y)'/~. 

Thus 

S(p, t ,a )  = F-yp)/F-'(l- (1 - Y)q. 

F - ' ( y ) = z = p - o ( - l o g y )  115 

Since for the type 3 distribution 

we have 

The next step is, of course, to estimate the parameters p,  a and t. 
range: 

2) Similar arguments for the type 1 distribution (positively skewed) with the infinite 

show that 

F-'(y) =p-slog(-logy) and 

6(p, a) = ~ - l ( p ) / ~ - l ( i  - (1 - ; 
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thus, in this case, 

Extreme Value Distributions 

p - alog (- log p) 
= p - o log { - log (1 - (1 - ?)I/,)} ’ 6(/J1 

and z(1)6(p*, a*) serves as an approximate lower tolerance limit where ,LL* and a* are some 
consistent estimators of p and a. 

3) For a type 2 distribution 

there exists no finite lower bound for the variable. Here an upper p-content tolerance limit is 
required. One requires an upper bound such that a large percentage of future observations 
will be below that bound with high probability (for example, an excessive concentration 
of ozone causes rise in global temperature ~ the so-called “greenhouse effect”). We thus 
consider upper tolerance of the type 

“(n) 6 I 

where qn) = max(z1,. . . , z,) and 6 > 0. We need to have 

where, as before, Y is a future observation from F ;  namely at least loop% of the future 
observations would be below z(,)6 with a high probability y. 

Similar arguments show that 

Pz(,,[F(z(n)4 2 PI = 7 

P,(,)[Z(,) < m P ) / 6 1  = 1 - Y 

6(p, a,  5) = F-l(p)/F-l[(l - y)’/”]. 

F-’(y) = y + a(- logy)-( 

or 

and 

Since for a type 2 distribution 

and 
p+a(-logP)-C 

p + a[+ log ((1 - 7)l-t ’ @L, E ,  5) = 

( 1.106) 

(1.107) 

z(,)6(p*, [*, a’) is an approximate upper tolerance limit where p*, [* and o* are sample 
estimates of p, E and a respectively. 

Observe that for the type 1 distribution we also have for the upper tolerance limit: 
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and the approximation is 

qn)6(P* ,  u*) ‘ 

A slightly different, more flexible approach, popular in engineering applications (using a more 
common notation) is as follows: based on a complete sample (or Type-I1 censored sample) 
observed from the distribution, the lower a tolerance limit for proportion 1 - y is b + k,6 
satisfying the equation 

Pr[Pr[X 2 b + k,G] 2 1 - 4 = a ; ( 1.108) 

similarly the upper a tolerance limit for proportion 1 - y is ji + ku6 satisfying the equation 

Pr[Pr[X 5 f i +  ku6] 2 1-71 = a .  (1,109) 

The constants k ,  and k ,  are referred to as the lower and upper tolerance factors respectively. 
In the case of the type 1 extreme value distribution for the minima with the cdf 

e ( z - # ) l a  Fx(z)  = 1 - e- 

Eqs. (1.108) and (1,109) become 

and 

respectively. Rewriting Eqs. (1.110) and (1.111) as 

and 

U 

(1,110) 

(1.111) 

(1.112) 

(1.113) 

we observe that k~ and ku are the upper and lower 100% a points of the distributions of the 
pivotal quantities 

U b - P  PI = T log [- log (1 - r)] - ~ 

& ’  U 

and 

U b - P  Pz = T log (- logy) - - 
6 ’  U 

(1.114) 

respectively. The distributions of these two pivotal quantities are not derivable explicitly 
and their percentage points need to be determined either through Montecarlo simulations 
or by approximations. 

Mann and Fertig (1973) used the best linear invariant estimators to prepare tables of 
tolerance factors for Type11 right-censored samples when n = 3(1)25 and n - s = 3(l)n, 
where s is the number of largest observations censored in the sample. Thomas et al. (1970) 
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presented tables that can be used to determine tolerance bounds for complete samples up to 
size n = 120, and Billman et al. (1972) provide tables which can be used to determine toler- 
ance bounds for samples of sizes n = 40(20)120 with 50% or 75% of the largest observations 
censored. Johns and Lieberman (1966) presented tables that can be used to get tolerance 
bounds for sample sizes n = 10, 15, 20, 30, 50 and 100 with Type-I1 right censoring at  four 
values of s (the number of observations censored) for each n. Using the efficient simplified 
linear estimator given in Bain (1972), Mann et al. (1974) derived approximate tolerance 
bounds based on an F-approximation. This F-approximation turns out to be quite effective 
and can also be utilized with the best linear unbiased estimators p* and u*; in fact the ap- 
proximation turns out to be adequate even in the case of moderate sample sizes with heavy 
censoring. 

An alternative F-approximation was proposed by Lawless (1975) for the lower a confi- 
dence bound on the quantile X,. It is based on the fact that, at least in the case when the 
censoring in the sample is quite heavy, the estimators b and 5 are almost the same as the 
maximum likelihood estimators j2 and 6. This F-approximation is also quite accurate over 
a wide range of situations. Lawless noted that the quantity 

(1.115) 

is also a pivotal quantity, since Z, = {log (- logy)/Zz} - Z1 where Z1 = (F  - p)/6 and 
Z, = 6/u are pivotal quantities [cf. (1.114)] and can be used to construct tolerance bounds. 
For example, 

Pr[Z, 2 z,,,J = a + Pr[z,,,& + j i  5 X,] = a ,  (1.116) 

and hence ~ , , ~ 6 + f i  becomes a lower a confidence bound on the quantile X,. The percentage 
points of the distribution of Z, in (1.115) therefore yield upper tolerance limits. 

Mann and Fertig (1977) discussed the correction for small-sample bias in Hassanein's 
(1972) asymptotic best linear unbiased estimators of p and u based on k optimally selected 
quantiles. They presented tables of these bias-correction factors for complete samples of sizes 
n = 20(1)40. These tables will allow one to obtain estimates based on the specified sets of 
order statistics that are best linear unbiased estimates or best linear invariant estimates, and 
can also be used to  determine approximate confidence bounds on X, and the related tolerance 
limits using the approximation approaches mentioned above. Using the conditional method 
of inference (Sec. 1.7.8), Lawless (1975) has shown that the conditional tail probability of 
the distribution of Z, in (1.115) is given by 

Pr[Z, 2 21.1 = (n  - s - l)!Cn-s(a) 

where a is the ancillary statistic described in Sec. 1.7.8, I?&) is the incomplete gamma 
function and 

(1.118) 1 .  h(t, z )  = - logy .  e-tz { ea't + sea0-S' 

The integral in (1.117) is rather complex and needs to  be evaluated numerically. The 
normalizing constant Cn-s(a) is determined numerically by using the condition that 
Pr[Z, 2 -w1 a] = 1 (in which case h( t , z )  = 00 and I'h(t,z)(n - s) = r(n - s)). Once 
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the percentage points of 2, are determined from (1.117) by numerical methods, tolerance 
limits can be obtained as described above. 

Gerisch, Struck and Wilke (1991) used a different approach and discussed the determi- 
nation of one-sided tolerance limit factors for the exact extreme value distributions from a 
normal parent distribution. In their opinion, one-sided tolerance limits for the asymptotic 
extreme value distributions cannot be regarded as sufficient approximations of one-sided 
tolerance limits for the corresponding exact extreme value distributions. 

A Remark on Prediction 
A way of using extreme value theory is, after achieving confidence in a probabilistic model, 
to use it for prediction of the extreme values which are supposed to  occur, in the near or far 
future. This is naturally of a substantial interest, when the problem is to  build equipment 
which has a limited life before failure, and when it is not possible to eliminate completely 
the possibility of having it being destroyed by some exceptional events. 

As Galambos (1981) convincingly demonstrated, this approach is, in most cases, highly 
unreliable. In fact, very slight variations in the model, accounting for mutual dependence of 
the random variables or their marginal distributions, may often have dramatic consequences 
on the prediction of extremes. It seems that prediction of extremes is in general a risky field, 
in which serious statisticians should be very cautious before taking responsibilities. 

1.7.10 Minimum Distance Estimation of the Gumbel 
Distribution for Minima 

Consider the cdf 

Go(z) = 1 - exp (- exp (x - p) /u )  ; x 2 p ,  u > 0 .  (1.119) 

As indicated above the distribution Go(x) plays a central role as a limiting distribution of 
the minima m, of a sequence of i.i.d. random variables Y,, i 5 n, as n + 00. Let I?,(.) 
be the empirical cdf. The minimum distance estimators of ( p ,  u) minimize the unweighted 
CramBr-von-Mises distance 

If the minimum of the Cramkr-von-Mises distance exists, p* and u* are called the mini- 
mum distance (MD) estimators of the location and scale parameters respectively. They are 
solutions of the equations 

(Go (y) - i) = 0 
i<n 

and 
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with ko(z) = J:m ygO(y)dy, where go is the density of Go and constant ck = -(y + ln2)/2. 
(Here y denotes Euler's constant.) Moreover, f i ( ( p * ,  a*) - ( p ,  a)) + N(0, E*), where the 
covariance matrix C* is given by 

Dietrich and Husler (1996) have also shown that 

ARE (p* ,  F )  = 0.9395, 

ARE (a*, i?) = 0.7644, 

where (fi,i?) are maximum likelihood (ML) estimators. Thus the MD location estimator 
p* is quite efficient but the MD scale estimator a* is less so. However, MD estimators are 
robust and have bounded influence function; consequently the very extreme values have less 
influence on the MD estimators as compared with the ML ones. In fact, Dietrich and Husler 
(1996) have shown that the breakdown point of the MD estimator of the location parameter 
is 0.5 and of the scale parameter is 0.2026. Thus it is expedient to use MD estimators if 
there is suspicion that the data may be contaminated. (Compare with the section on Robust 
Estimation in Chap. 2.) 

1.8 Distributions Related to the Classical 
Ext remal Distributions 

There is clearly a close connection between the three types of extremal distributions. The 
standard type 1 extreme value distribution is a transitional limiting form between type 2 
(F'rcichet) and type 3 (Weibull) distributions. Furthermore, a logarithmic transformation of 
a Weibull random variable results in a type 1 extreme value random variable. Also, as noted 
earlier, if Y is a standard type 1 extreme value random variable with density (1.22), then 
e-' has a standard exponential distribution. 

A rather unexpected relation holds between the logistic and type 1 distributions. If two 
independent random variables each have the same type 1 distribution, their difference has a 
logistic distribution given by F ( z )  = 1- [I+ exp ( (z-p) /u)] - '  with a > 0. [Gumbel (1961)]. 
Gumbel (1962c, d) has also studied the distribution of products and ratios of independent 
variables having extreme value distributions. We shall return to this topic in the sequel. 

1.8.1 Limiting Distributions of the r th  Greatest (Least) Value 

Limiting distributions of second, third, and so forth, greatest (or least) values may be re- 
garded as being related to extreme value distributions. Gumbel (1958) has shown that under 
the same conditions as those leading to the type 1 extreme value distribution, the limiting 
distribution of the r th  greatest value YA-T+l = (XA-r+l - p) /a  has the standard form of 
probability density function 

~ ~ ~ - ~ + ~ ( y )  = ~ ' [ ( r  - I)!]-' exp [-ry - re-y] .  (1.120) 
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100a% points of this distribution are given by Gumbel (1958) to five decimal places for 

r = 1(1)15(5)50, 

CY = 0.005,0.01,0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975,0.99,0.995. 

The moment-generating function of distribution (1.120) is 

The cumulant-generating function is 

t logr + log r(r - t )  - log r ( r )  , 

and the cumulants are 

(1.121) 

It is important to note that the limiting distribution (1.120), which corresponds to a fixed 
value of r ,  should be distinguished from distributions obtained by allowing r to vary with 
n (usually in such a way that r / n  is nearly constant) or keeping r constant but varying 
the argument value. Borgman (1961), for example, has shown that if z, be defined by 
Fx(z,) = 1 - w / n ,  for given fixed w [where Fx(z )  is the cdf of the population distribution], 
then 

lim Pr[X;-,+, 5 z,] = 1 - [(r - I)!]-' t'-le-tdt. (1.122) 
fl+W LW 

Note that the right-hand side of (1.122) can also be written in terms of a x2 distribution, as 
Pr[x& > 2w]. 

1.8.2 
The asymptotic distribution of range is naturally closely connected with extreme value dis- 
tributions. If both the greatest and least values have limiting distributions of type 1, then 
[Gumbel (1947)] the limiting distribution of the range, R,  is of the form 

The Asymptotic Distribution of Range 

Pr[R 5 r] = 2e-'/2K1(2e-'/2) , r > 0 ,  (1.123) 

with probability density function 

p R ( r )  = 2 e - ' ~ ~ ( 2 e - ' / ~ ) ,  r > 0 ,  

where KO, K1 are modified Bessel functions of the second kind of orders zero, one, respec- 
tively. Explicitly: 

+ (l+;) w+ (1+:+:) 2 3 q+ (3!) 
. . .  , 

(2!)2 
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where 

and 

Kl(2) = (y - log2 + logz) ~ ; v!(v+ l)! (TV+' 2 

+--E- z l o o  l (7J - 1 l)!v! (y 2 (. - &) , 
where 

V 

s, = c 1/x 
k l  

Note that Kl(z) = -KA(z). 
Gumbel (1947) gave the values 

E[R] = 27 = 1.15443, 

median R = 0.92860, 

modal R = 0.50637. 

Also 

772 
var(R) = - = 3.2899 

3 

In Gumbel (1949b), there are tables of Pr[R 5 r ]  and pR(r )  to seven decimal places for 

r = -4.6(0.1) - 3.3(0.05)11.00(0.5)20.0, 

and of percentile points R, to four decimal places for 

(Y = 0.0002(0.0001)0.0010(0.001)0.010(0.01)0.95(0.001)0.998 

and to three decimal places for 

Ly = 0.0001,0.999(0.0001)0.9999. 

Further details on the asymptotic distribution of range are given in Gumbel's book (1958) 
and in Galambos (1987). 

1.8.3 Extremal Quotient 

Let M, = max{X1,. . . , Xn} and m, = min{X1,. . . ,Xn} where {Xn : n 2 1) is a sequence 
of i.i.d. random variables. 

The extremal quotient is defined by 
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(see Gumbel and Herbach (1951)). Gumbel (1958) defined this quotient M,/m, under the 
assumption that m, < 0. One of the earlier uses is in climatology (Carnard (1946)). The 
quotient is scale-invariant. Gumbel and Herbach (1951) derived the exact form of the cdf of 
this statistic. The cdf Hx(q) of the extremal quotient is 

where 

Pr[M,, <_ z] = G,(x) converges to exp (-e(z-pn)/un) (for large n)  , 

and X = exp (p,/a,) is a function of the initial distribution and the size n of the sample 
from which the quotient was drawn. The parameter X is dimensionless. For large X the 
distribution function becomes 

The distribution of the extremal quotient rapidly becomes concentrated with increasing 
sample size. The concentration is about the median, which is unity. In order to  compensate 
for this concentration, the difference Q - 1 is multiplied by p, and g,. Thus we have the 
variable 

~ ~ ( Q - 1 ) l o g X .  

It was shown by Gumbel and Keeny (1950) that the distribution of 7 approaches the logistic 
distribution as X tends to infinity; i.e. for all x, 

It should be noted, however, that while a logistic variate has all the moments, 7 has none 
(since Q has none). Gumbel and Pickand (1967) traced the extremal quotient on logarithmic 
normal paper for X = 2, 5, 10, 20, 100 and 492.7 (see Graph 1). 

The curve for X = 1,000 is indistinguishable from that for X = 492.7. The distribution 
function of the extremal quotient plots nearly as a straight line for large values of A, although 
the moments of the extremal quotient do not exist. 

The asymptotic distribution function when the initial distribution function is of exponen- 
tial or Cauchy types were studied by Gumbel and Keeny (1950). Tables of the distribution 
of “extremal quotient” were published by Gumbel and Pickands (1967). 

Recently, Bakarat (1998) obtained necessary and sufficient conditions for the weak con- 
vergence of sample extremal quotient of i.i.d. random variables as n + 00. For type 1 
(Gumbel) and type 2 (Frkchet) limit distributions of M, and m, the extremal quotient Q, 
properly normalized, converges weakly to distribution function 

where ZA(.) is the indicator function of the set A and 
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Graph 1 
Distribution function of the extremal quotient 

9 

Probability HA (4) 

where a and p are positive constants appearing in the definitions of type 1 distributions: 
(exp - y-0) (y 2 0); 1 - exp (-(--z)-OL) (x < 0) and type 2 distributions: exp (-(--y)O) 
(y < 0); 1 - exp ((-z).) (x 2 0). 

Gumbel and Keeney (1950) proposed to estimate the parameter X by comparing the 
expected proportion of the sample for which 1/2 < Q < 2, with the observed proportion. 
However, unless X is extremely small, all of the sample will lie in this range with very high 
probability. So the method is not always applicable. 

The cumbersome nature of the distribution function makes it plain that even on a modern 
computer, maximum likelihood estimation would not be easy. But since Q has no moments, 
and the median is I, independent of A, neither quantile nor moment methods will be apprc- 
priate. A further study of this basic statistic is desirable. 

1.8.4 Log-Gamma Density 
The standard log-gamma density function 

can be viewed as a generalization of the standard type 1 extreme value density. 

-Y is distributed as a standard type 1 extreme value random variable. 
Specifically, if Y has the density function in (1.124), for the case when K = 1 the variable 

We note that 
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for integral values of K ,  density (1.124) is related to the density (1.120). The cumulative 
distribution function corresponding to  the density (1.124) is 

FY(Y) = I , v ( K ) ,  -co < y < 00 ,  K > 0 ,  (1.125) 

where  it(^) is the incomplete gamma function ratio 

For integral values of K ,  therefore, we have 

(1.126) 

(this well-known relation can easily be verified by successive differentiation). The moment- 
generating function corresponding to the density (1.124) is 

in particular, we have 

E[Y] = $ ( K )  and var(Y) = $'(n). (1.127) 

Since the digamma function $ ( K )  N log& and $ ' ( K )  N 1 / ~  for large K ,  Prentice (1974) 
suggested a reparametrized log-gamma density function 

(1.128) 

which tends to the standard normal density functibn as IC + 03. By introducing a locating 
parameter p and a scale parameter u in the density (1.124) we obtain a three-parameter 
log-gamma density function as 

(1.129) 

This is evidently a generalization of the type 1 extreme value density function (1.21). Law- 
less (1980, 1982) has illustrated the usefulness of the three-parameter log-gamma density 
(1.129) as a life-test model and discussed maximum likelihood estimation of the parameters. 
Balakrishnan and Chan (1994a, b, c, d) have studied order statistics from this distribution 
and also the BLU and, the asymptotic BLU estimations, as well as the maximum likelihood 
estimation of the parameters based on complete and Type11 censored samples. Young and 
Bakir (1987) have discussed the log-gamma regression model. 

1.8.5 

SEV regression model has received special attention in reliability applications in particular in 
accelerated life testing. This model uses the smallest extreme value distribution to describe 
the variability in product's (1og)lifetime at a particular stress level and assumes a linear 
relationship between (1og)life and the transformed stress variable. 

Smallest Extreme Value ( S E V )  Regression 
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Specifically the model states that for a given value x of independent (response) variable, 
the r.v. Y follows a SEV distribution with parameter p(x) = 70 + y1x and scale parameter 
u > 0. (Evidently 7 0  and y1 are respectively the intercept and slope parameters.) 

Hence, 

with 

- C O < Y < C O ,  - C O < ~ O < O O ,  - O O < ~ I < O O  and u > O .  

Here, 7 0 ,  71 and u are estimated from sample data which may include complete (as well as 
censored) observations of Y .  The q quantile at a given value of x, say zD,  is 

Yq(”D) = p(%D) + { log [- log (l - 4?)1). ? 

= 70 + Y1”D + { 1% I- 1% (1 - dlb‘ 
It is known that the location parameter p(x~) is also the 0.632 quantile of the SEV distri- 
bution at  ZD (the so-called nominal (1og)life of the product at ZD). 

As mentioned above, in accelerated life-testing applications, the SEV distribution is used 
to describe the scatter in the product’s (log) lifetimes at a particular stress level. F’urther- 
more, many accelerated live models which are of the form p(x) = 70+ylx express the nominal 
(1og)life p(x) as a linear function of a (possibly transformed) stress variable x. For example, 
the inverse power law states that x = log(V) where V is the voltage. In the Arrhenius 
relationship x = 1/T where T is the absolute Kelvin temperature. The scale parameter u is 
assumed constant for all x. 

Doganaksoy and Schmee (1991) constructed and compared various approximations to 
confidence intervals for the SEV distribution simple linear regression model under time cen- 
soring. Intervals based on the asymptotic normality of MLE are “anti-conservative’’ and 
caution is needed in using them. On the other hand, uncorrected likelihood ratio intervals 
are remarkably accurate in situations with heavy censoring. 

Distributions related to  the generalized extreme value distributions are discussed at the 
end of Sec. 2. 

1.9 Applications of the Classical Extreme 
Value Distributions 

The range of applications of extreme value distributions is extremely (no pun intended) wide, 
and it is a daunting task to list all of them without subjecting our readers to  a boring experi- 
ence. We appeal to their patience, curiosity and perseverance to carefully review the next few 
pages. To highlight the applications we just indicate such diverse areas as break frequency 
of paper, horse racing, network design, queues in supermarkets, synthetic membranes, sizes 
of bush fires, not to mention the obvious topics such as high temperatures, earthquakes, 
risk management, winds, floods, ozone concentration, insurance and more recently, financial 
matters. The list below, being a substantially updated (and in a sense condensed) version 
of Section 14 of the Chapter on Extreme Value Distributions in Johnson, Kotz and Balakr- 
ishnan’s book on Continuous Univariate Distribution (J. Wiley, 1995) attempts to provide 
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a meaningful and hopefully coherent picture. Additional applications are mentioned in the 
section on generalized extreme value distributions and in the second part of the monograph 
dealing with the multivariate extreme value distributions. Unavoidable coloring of choice by 
personal taste may have done injustice - omitting worthwhile contributions. 

As mentioned earlier, E. J. Gumbel played a pioneering role during the 40s and 50s in 
bringing out several interesting applications for the extreme value data and developing sound 
statistical methodology. We shall briefly describe below some outstanding applied papers in 
a more or less chronological order. 

Probably the first paper that described an application of extreme values in flood flows was 
by Fuller (1914). Griffith (1920) brought out an application while discussing the phenomena 
of rupture and flow in solids. Next, Gumbel (1937a, b) used the extreme value distribution 
to model radioactive emissions and human lifetimes. The use of the distribution to  model the 
rupture in solids was discussed by Weibull (1939). Weibull effectively advocated the use of 
reversed type 3 distributions which have now become widely known as Weibull distributions. 

Gumbel (1941) applied the distribution to analyzing data on flood flows, and in subse- 
quent works he continued his discussion on the plotting of flood discharges, estimation of 
flood levels, and forecast of floods [Gumbel (1944, 1945, 1949a)l. The application to study 
earthquake magnitudes was pointed out by Nordquist (1945). Velz (1947) used the distribu- 
tion to model microorganism survival times. Epstein (1948) applied the theory of extreme 
values to problems involving fracture data. Rantz and Eggs (1949) illustrated an applica- 
tion while analyzing the magnitude and frequency of floods in the Columbia River Basin 
measured in the course of a U.S. Geological Survey. An interesting new application of the 
extreme value distribution was used by Potter (1949) to study rainfall data. Weibull (1949) 
emphasized the role of extreme value distributions to represent fatigue failures in solids and 
advocated once again the use of the Weibull distribution in place of the type 1 extreme value 
distribution. 

In meteorology, the popularity of the type 1 distribution is due mainly for the following 
six reasons: 

(1) The EV1 distribution results from an initial (unlimited) distribution of exponential 
type which converges to an exponential function; 

(2) under certain assumptions, the extreme values in a sample follow this distribution; 

(3) it is simple and has only two parameters; 

(4) from a statistical viewpoint, it may be preferable to apply even when the sample 
size is small; 

(5) because it is available in closed form, it is easier to determine the extreme value for 
a specified value of probability or return period; and 

(6) in a Monte Carlo study, the EV1 random variables can be easily generated. 

The so-called Gumbel method has been applied successfully to both regular-type events 
(e.g., temperature and vapor pressure) and irregular-type events (e.g., rainfall and wind). 
Thom (1954) emphasized that the sparse sampling in time of extreme events obscures much 
of the information in a rainfall process. Methods of analysis of extreme hydrological events 
have changed gradually since the publication of Gumbel(l941) on asymptotic theory dealing 
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with flood discharges by streams. Until quite recently basic assumptions of the theory were 
that the frequency distribution of extremes within successive intervals remains constant and 
that observed extremes may be viewed as being independent samples from a homogeneous 
population. 

Gumbel (1954, 1958) presented consolidated accounts of the statistical theory of extreme 
values and several practical applications. These works may be studied in conjunction with 
his later works [Gumbel (1962a, b)] to gain a deeper understanding and better knowledge of 
extreme value distributions. 

Longuet-Higgins (1952) contribution is one of the earliest works on heights of sea waves 
in the framework of extreme value analysis. Thom (1954) (mentioned above) applied the 
distribution while discussing the frequency of maximum wind speeds. Numerous papers by 
Thom scattered in diverse publications on wind and waves applications appeared in the late 
'60s and early '70s. Aziz (1955, 1956) applied the extreme value theory to  an analysis of 
maximum pit depth data for aluminum. Kimball (1955) ~ mentioned above - explained 
several practical applications of the theory of extreme values and also described some aspects 
of the statistical problems associated with them. Jenkinson (1955) followed Potter (1949) by 
applying the extreme value distribution to model the annual maximum or minimum values 
of some meteorological elements. Lieblein and Zelen (1956) carried out an extensive study 
related to inference based on the extreme value distribution and applied their methods to 
investigate the fatigue life of deep-grove ball bearings. Eldredge (1957) discussed an analysis 
of corrosion pitting by extreme value statistics and applied it to  oil well tubing caliper 
surveys. King (1959) summarized developments on extreme value theory and explained their 
implications to reliability analysis. Metcalfe and Smith (1964) investigated applications to 
glass fibers. Clough and Kotz (1965) presented some queuing model applications for the 
extreme value distributions. Posner (1965) - mentioned above - detailed an application of 
the extreme value theory to communication engineering; see also the comments by Gumbel 
and Mustafi (1966) on this paper. In a series of reports Simiu and Filliben (1975, 1976) 
and Simiu et d. (1978) used extensively the extreme value distributions in the statistical 
analysis of extreme winds. Regional flood frequency analysis based on the type 1 (Gumbel) 
distribution using Bayesian estimation was carried in 1971 by Cunnane and Nash (1974). 

Shen et al. (1980) applied the distributions for predictions of flood. Watabe and Kitagawa 
(1980) demonstrated an application while discussing the expectancy of maximum earthquake 
motions in Japan. Okubo and Narita (1980) used the extreme value distribution to model 
the data on extreme winds in Japan. Wantz and Sinclair (1981) carried out a similar anal- 
ysis on the distribution of extreme winds in the Bonneville power service area. Metcalfe 
and Mawdsley (1981) applied extreme value distribution to  estimate extreme low flows for 
pumped storage reservoir designs. The use of the distribution in regional flood frequency 
estimation and network design was illustrated by Greis and Wood (1981). Roldan-Canas, 
Garcia-Guzman, and Losada-Villasante (1982) constructed a stochastic extreme value model 
for wind occurrence. A comprehensive application of the extreme value distribution in 
rainfall analysis was provided by Rasheed et al. (1983). Henery (1984) presented an in- 
triguing application of the extreme value model in predicting the results of horse races. 
While Pericchi and Rodriguez-Iturbe (1985) used the extreme value distribution in a statis- 
tical analysis of floods, Burton and Makropoulos (1985) applied it in an analysis of seismic 
risk of circum-Pacific earthquakes. The usefulness of this distribution to  model time-to- 
failure data in reliability studies has been discussed by Canfield (1975) and Canfield and 
Borgman (1975). 
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A two-component extreme value distribution was proposed by Rossi et al. (1986) for flood 
frequency analysis; also see the comments on this paper by Beran et al. (1986) and Rossi's 
(1986) subsequent reply. J. A. Smith (1987), Jainand Singh (1987), and Ahmad, e t  al. (1988) 
provided further discussions on the application of the type 1 extreme value distribution for 
flood frequency analysis. Achcar et al. (1987) discussed the advantages of transforming 
a survival data to a type 1 extreme value distribution form before analyzing it. Nissan 
(1988) demonstrated an early application of the type 1 distribution in estimating insurance 
premiums. The role of statistics of extremes in climatological problems was discussed by 
Buishand (1989). A seminal paper by Smith (1989) is devoted to trend detection in ground 
level ozone. 

Cockrum et al. (1990) and Taylor (1991) applied the extreme value distributions in 
modelling and simulation involving product flammability testing. Wiggins (1991) displayed 
an earlier application in stock markets. A mixture of extreme value distributions was used by 
Fahmi and Abbasi (1991) to study earthquake magnitudes in Iraq and conterminous regions. 
Tawn (1992) discussed the estimation of probabilities of extreme sea levels, while Hall (1992) 
discussed further on flood frequency analysis. Tawn's numerous pioneering applications 
are discussed in the sections on generalized extreme value distribution and multivariate 
extreme value distributions. Bai et al. (1992) demonstrated an application of the extreme 
value distribution in predicting the upper percentiles that are of interest in environmental 
quality data. 

Hopke and Paatero (1993) discussed the extreme value estimation in the study of air- 
borne particles. Kanda (1993) considered an empirical extreme value distribution to model 
maximum load intensities of the earthquake ground motion, the wind speed, and the live 
load in supermarkets. Goka (1993) applied the extreme value distribution to model ac- 
celerated life-test data to tantalum capacitors for space use and to on-orbit data of single 
event phenomenon of memory integrated circuits in the space radiation environment. Rajan 
(1993) stressed on the importance of the extreme value theory by providing experimental 
examples where significant deviations from the average microstructure exist in pertinent 
materials physics (in particular pore size distributions in synthetic membranes). Scarf and 
Laycock (1993) and Shibata (1993) have demonstrated applications of extreme value theory 
in corrosion engineering. Applications of extreme values in insurance have been illustrated 
by Teugels and Beirlant (1993) in their pioneering paper and a subsequent monograph co- 
authored with Vynckier (1996). Diebold et al. (1999) provide a balanced assessment of the 
use of extreme value theory in risk management. 

Dasgupta and Bhaumik (1995) discussed lethal effects of the ozone depletion and com- 
puted the upper and lower p-content confidence limits for an extreme value distribution 
showing that these can be used to calculate the upper and lower tolerance limits to the 
level of atmospheric ozone layer. Their methodology was described earlier in the section 
on tolerance limits. They use the data of Pallister and Tuck (1983) as presented in Pyle 
(1985) consisting of percentage deviation from midnight values of ozone concentration for a 
diurnel cycle. 

Sizes of bush fires observed in Australia in 1986-1987 reported by the Environmental 
Protection Agency (EPA) were analyzed by Smith (1993). Both F'rkchet and Gumbel type 
distributions were fitted. Only fires that burned an area of 1 hectare or more were recorded. 
Thus 75 recorded fires should be viewed as the largest observations from a sample of a 
large size. 
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The data for annual maximal winds for Jacksonville, Florida (stored in the file em- 
jwind.dat) was recorded by Changery (1982) (and discussed in Kinnison (1985)) for the 
years 1950-1979. The range of the data is maximal wind speed between 34-74 mph (in 
the years 1959 and 1964 respectively) with a pronounced mode of 42 mph. The data was 
subdivided into tropical and non-tropical storm years with seven observations in the latter. 
The Gumbel model yielded MLE estimators 

(p ,  u) = (43.6,6.7) for the tropical 

and 

(p ,  u) = (44.1,g.O) non-tropical storm data .  

Viewing the tropical maximum annual wind speeds as randomly left-censored by non-tropical 
ones, Reiss and Thomas (1997) observed that the distribution is now shifted to the left and 
tropical wind speeds are now better described by a Fr6chet density indicating a heavier upper 
tail, which may mislead forecast of catastrophic tropical storms. 

Some most recent applications as of this writing include: 

(1) Transforming point rainfall into areal rainfall to  obtain relationships known in meteo- 
rology as intensity-duration frequency curves (Sivapalan and Bloschl (1998)) (type 1 
distribution), 

(2) extreme occurrences in Germany’s stock index (Broussard and Booth (1998)), 

(3) behavior of solar proton peak flnxers (Xapsos et al. (1998)) (type 2 distribution), 

(4) probabilities of grant freak waves in areas surrounding Japan’s seacoast (Yasuda and 
Mori (1997)), 

( 5 )  discussion of pitfalls and opportunities in the use of extreme value theory in risk 
management (Diebold et al. (1999)). 

A more detailed list of the most recent application is provided by Nadarajah (2000). Prc- 
ceedings of the Gaithersburg (MD, U.S.A.) Conference edited by J. Galambos et al. (1994) 
and the Conference on Stochastic and Statistical Methods in Hydrology and Environmental 
Engineering edited by K. W. Hisel (1994) constitute a most valuable collection of inves- 
tigations devoted to applied aspects of extreme value analysis. The book by Embrechts 
e t  al. (1997) is an excellent source for theory and applications in insurance and finance - 
the currently most glamorous fields of extreme value analysis. Data examples provided in 
Castillo (1988) are most valuable for applications. 

Appendix to Chapter 1 

A. Some Comments on Gnedenko’s Results 
For the readers - experts in probability theory - we note that Gnedenko’s condition for 
the type 2 extreme value distribution discussed in section 1 is equivalent to the condition 
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that the sum S, = X1 + . . . + X, belongs to the domain of attraction of a stable law with 
characteristic exponent a, where 0 < a < 2, with the characteristic function given by: 

d(u) = exp ( iyu - clula{l + i,B(t/ltl)w(u, a ) } ) ,  where 

w(u,  a)  = (2/.rr) log (u) w(u,  a)  = tan(.rra/2) for a # 1, 

Here y, c and p are appropriate constants. 

for a = 1. 

(Recall that a necessary condition for type 1 limiting distribution is that, for any c > 0, 

lim { ( - F ( z )  ) } = 0 provided zo  = max{t; F ( t )  < 1) = 00.) 
z-+m 1 - F ( c z )  

The Poisson distribution satisfies neither limz+m{(l - F(z))/(l - F ( u ) ) }  = 0, c > 0, 
nor the condition lirnz+-{(l - F(z) ) / ( l  - F ( m ) ) }  = ck, i.e. it does not belong to the 
domain of attraction of an extreme value distribution. The same is true for some other 
discrete distributions. See Anderson (1970) who discusses conditions for a class of discrete 
distributions. 

For a normally distributed sequence, XI, Xz, . . . , X, of i.i.d. random variables N(0 , l )  
with Y, = max{Xi}, i = 1, .  . . , n, we have (see, e.g., Cram& (1946), p. 475). 

lim P[-{Y, - -+ ((log logn+ log4~)/2=)} < z] = C-". 
n+m 

The result implies that 

lim {Y, - G} = 0 in probability. 
n+m 

(This is an example of the so-called stability of {Y,} sequence.) 
The interrelation between the respective domains of attraction of Y,, 2, = 

min(X1,. . . , X,) and S, was investigated in detail by Rosengard (1962) and Tiago de Oliveira 
(1962), among others. In the case when Var(X,) < 00, Y,, 2, and S, are asymptotically 
independent. 

For many well-known distributions (including the normal), the limiting distribution of 
P{(Y, - b,)/a, 5 z} = Fn(a,z + b,), is of type 1. (Here, as usual, Y, = m w X i ,  where 
XI,. . . , X, are independent random variables with a common c.d.f. F.)  This property is 
sometimes used as a theoretical justification for the adoption of type 1 rather than types 2 
or 3. However, for the case of normal extremes, in which F = @, the distribution function of 
a standard normal variable, Fisher and Tippett (1928) showed empirically that the type 3 
approximation is closer to P ( z )  than the (limiting) type 1 approximation. 

It should also emphasized that a priori there is no reason to  believe that empirical 
distributions ought to have tails such that the distribution of normed maxima should converge 
to some stable type. In fact, maxima can have any distribution and, for the same underlying 
distribution, the distribution of maxima for a certain sample size may be completely different 
from that for some other sizes. 

In fact, Green (1976) has showed that tails of distributions do not have to be such that the 
maxima of the random variables they govern will approach some stable limiting distribution. 
(This "anti-extreme-value" sentiment has not, however, deterred applied researchers from 
applying the theory described in this book to a multitude of types of empirical data.) 
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Fisher and Tippett (1928) called the approximation of the form 

exp{-(-Ax + Az < B ,  I 

where A, B and k are sequences of parameters depending only on n and Ak > 0, the 
penultimate approximation. 

Cohen (1982a) provided bounds on supz IW(z) - P,(z)I for special choices of k ,  A and B 
and their relation to a, and b, and shows that the sup is O(a2). He also proves rigorously 
that the penultimate approximations provides substantially better approximations than the 
type 1 approximation A{(z - b,)/a,} where A(z) = exp (-e-.), even for small n. Cohen’s 
(1982) proof is very delicate and involves several refined inequalities. 

Hall (1980) in an equally important paper shows essentially that approximations to V(z) 
based on inequalities for the normal tail function are much closer than the penultimate 
approximation. Thus if the Xi’s are indeed independent and identically normally distributed 
and if n is known, then Hall (1980) provides better estimates of the distribution of Y, = 
mw{Xi} than the approximations based on extreme value theory. However, in practice we 
are very often uncertain of the normality, the independence and also the value of n. Since 
the three limit laws apply to a large class of initial distributions, and quite often in certain 
dependent cases, extreme value theory approximations are more robust than the alternatives 
suggested by Hall (1980). 

In a subsequent paper [Cohen (1982b)l the author extended the above result and reached 
the somewhat controversial conclusion that there are very good theoretical reasons in certain 
statistical situations for fitting type 2 and type 3 extreme-value distributions to the observed 
extremes, even if it is suspected that the limiting form is type 1, unless the amount of data 
available is small. Similar, independent results were obtained by Gomes (1984). 

The speed of convergence of F“(a,z + b,) (with optimal normalizing constants a,, b,) 
towards the type 1 extreme value distribution A(z) has been evaluated by Hall (1979). He 
showed that there exist contains (71, Cz (independent of n)  such that 

cz 
~ < SUP IFn(a,z + b,) - h(z)l < ~. c1 
logn z log n 

This result shows that in the normal case, convergence to Gumbel’s A type 1 extreme 
value distribution is rather slow. This phenomenon occurs frequently enough to become a 
drawback to a careless use of extreme value distributions when it is known that they are 
generated by small samples. 

Cheng et al. (1998) investigated almost sure convergence in extreme-value theory. Let 
G(.) be one of the extremevalue distributions and as usual Y, = maxX,, where Xi (i = 
1,2, . . . , n) are independent random variables with a common cdf F .  

for x E R .  

Assume F E D(G), i.e. there exist a, > 0 and b, E R such that 

P{(Y, - b,)/a,) 5 z} + G(z) , 
Let 1(-,-4(.) denote the indicator function of the set ( -m,z]  and S(G) =: 
{z : 0 < G(z) < l}, the support of G. Obviously l(-m,z~ ((Y, - b,)/a,) does not converge 
almost surely for any z E S(G). 
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The same authors also proved that: 

Barakat (1997) discussed continuation of weak convergence of suitably normalized extremes 
from a finite interval [a,b] to the whole real line. The weak convergence of the extremes 
to a limiting type is, in some sense, stronger than what could be expected. It was shown 
by Pickands (1968), that if (Y, - bm)/a, did converge to a limiting extreme value distribu- 
tion, then the moments of (Y, - b,)/u,, provided they exist, converge to the corresponding 
moments of the limiting distribution. 

Lucen6 (1994) investigated the speed of convergence of the distribution of normalized 
maximum of a sample of i.i.d. random variables to its asymptotic distribution measuring the 
difference on the double log-scale graph paper. The convergence to  the asymptotic distribu- 
tion may not be uniform on this scale and the difference between the actual and asymptotic 
distributions, on the probability plotting paper, may be a logarithmic, power, or even an 
exponential function in the upper tail when the latter distribution is of Gumbel type 1, but 
that difference is a t  most logarithmic in the upper tail for type 2 and 3 distributions. 

Gnedenko’s (1943) results were generalized by Smirnov (1949). For every k (1 5 k 5 n) 
denote by x k n  the r.v. that assumes the kth value in descending order of magnitude among 
the values assumed by XI,. . . , X,. (For example X I ,  = max(X1,. . . , X n ) . )  

Smirnov (1949) has shown that the class of all proper limit distributions for normalized 
r.v. Xk, consists of the following: 

i f z < O ,  

if z 2 o ; 
k - 1  

S=O (“ k-1  

exp ( - 2 - a )  C z-sa/s!  
eO(z; k )  = 

where a > 0. 
The limit distributions for the maximal term are obtained by putting k = 1. Smirnov has 

shown that the domain of attraction of any cdf above does not depend on k ,  i.e. it coincides 
with the domain of attraction of the corresponding cdf which is obtained by putting k = 1. 

Mejzler and Weissman (1969) generalized Smirnov’s result for the case where the initial 
r.v.’s are not necessarily identically distributed. 

Galambos (1978) has shown that exchangeability plays an important role for extreme 
values. He has extended Smirnov’s result to the case of exchangeable variables. A typical 
non-trivial example of exchangeable sequence are random spacings: 

If XI,  X,, . . ., is a sequence of i.i.d. r.v. uniformly distributed on [0,1], if 0 = X p )  < 
X p )  < . . . < X:, < X p ’  = 1 are the order statistics corresponding to 0,1,  X I , .  . . , Xn-l ,  
then the random spacings of order n are defined by 
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and the maximal uniform spacing MA is defined by 

The study of spacings has been the object of many publications (see, e.g., Pyke (1965), 
for general references). Levy (1939) has obtained its limit distribution: 

lim P(nMA/ logn < x) = exp ( e F )  . 
n+m 

This result has been extended by a number of authors in the early '80s. 
If X1, Xz,  . . . are i.i.d. random variables, Y, = max(Xl,. . . , X,), and if N ( n )  is a positive 

integer valued random variable, independent of X I ,  X,, . . ., it is of interest to evaluate the 
distribution of YN(,). 

If it is assumed that N ( n ) / n  + T ,  n + 00, where 7 is a (positive) random variable, 
and if there exist sequences a, > 0 and b, such that (Y, - b,)/a, converges weakly to a 
nondegenerate distribution function H ( . )  (belonging to  one of the three basic types) then, 
asn-oo ,  

lim P((YN(,) - b,)/a, < x) = 1 ~ ~ ( x ) d ~ ( . r  < y) . 
+m 

n+m 

Extensions can be made to the kth extremes in a similar manner. First results in this 
field have been obtained, among others, by Barndorff-Nielsen (1964). 

Finally it should be noted that the maximum deviation between density estimates and 
the density has (when the density is smooth enoughj a limiting type 1 (Gumbel) distribution. 

In view of the importance of the limiting distributions discovered by Gnedenko, we con- 
clude these comments by providing a summary and several examples of determining from 
the limiting type of an extremal distribution the given the initial distribution (the so-called 
"domain of attraction" introduced in Sec. 1.3). 

Summary of Univariate Extreme Value Limiting Distributions 

For Maxima (Standardized Form) 

Hl(x) = exp [- exp (-z)~], Gumbel (Type 1) -00 < x < 00, 

2 2 0  

exp [-(-x)~] x < o 
Weibull (Type 3) H ~ ( z )  = 
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For Minima (Standardized Form) 

Ll ( z )  = 1 - exp [- exp (-z)], Gumbel (Type 1) -co < x < m, 

(The Frkchet type is sometimes referred to as the Cauchy-Fre'chet type.) 
For the initial uniform distribution F ( z )  = x, 0 5 z 5 1, it follows immediately by 

checking the validity of the condition presented in Sec. 1.3 that the limiting distribution for 
maxima in this case is the type 3 (Weibull) distribution. 

For the initial Cauchy distribution, F ( z )  = (1/2) + (arctanz/.ir), --M < x < 03, direct 
calculations applied to the condition presented in Sec. 1.3 show that the limiting distribution 
for the maxima in this case is the FrCchet distribution and by symmetry the same conclusion 
holds for the minima. 

Similarly, recalling that for an exponential cdf F ( z )  = 1 - exp(-"/A), z > 0, the 
percentiles = alog (ne)  respectively, after some simple 
calculations we arrive at 

are -a log ( l /n)  and 

lim n{ exp [-( logn - 
n+cc 

z)]} = e-" 

This shows that the limiting distribution for maxima for the initial exponential distribution 
is the type 1 (Gumbel) distribution. The fact that for the initial exponential distribution, 
the limiting extreme value distribution is of type 1 is easily deduced from von Mises' (1936) 
sufficient conditions recalling that for this distribution the hazard rate r ( z )  = f(z)/I - F ( z )  
is constant. In Table A.l we summarize the forms of limiting distributions for maxima and 
minima for seven most widely used continuous distributions. 

Table A.l: 

Initial Distribution LimitinE Distribution for Extremes 

Maxima Minima 

1. Exponential Type 1 (Gumbel) Type 3 (Weibull) 
2. Gamma Type 1 (Gumbel) Type 3 (Weibull) 
3.  Normal Type 1 (Gumbel) Type 1 (Gumbel) 
4. Log-normal Type 1 (Gumbel) Type 1 (Gumbel) 
5. Uniform Type 3 (Weibull) Type 3 (Weibull) 
6. Pareto Type 2 (FrCchet) Type 3 (Weibull) 
7. Cauchy Type 2 (Frkchet) Type 2 (FrAchet) 
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B. Dependent Variables 
Buishand (1985), among others, investigated the limiting distribution of maxima of sequences 
of dependent random variables. He points out that the classical results related to type 1 
Gumbel distribution remain valid if the sequence X I ,  X,, . . . is a mixing sequence. This 
condition requires that: (1)  the various terms in the sequence are “weakly dependent when 
their separation is large”. For example in the mixing sequence 

P ( x I  < X , x z  < X,Xk < x )  P ( x 1  < x,xZ < x )  ‘ P ( x k  < x )  

a s k - t m .  
( 2 )  P(X,+I, 2 rlX, 2 r )  -t 0 as x + 00 for every k # 0 (the right tail asymptotic 

independence). This implies no local clustering of exceedances of a high-level x. Details are 
given in Galambos (1987, Chap. 3) and Leadbetter et al. (1983, Chap. 3) .  For sequences 
of 1-dependent random variables namely for which the events { X I  < X I , .  . . , X ,  < 2,) and 
{X,+I, < x,+I,,.. . , X,, < 2,) are dependent for k = 1 and are independent for k > 1, the 
limiting distribution of Y, = max(X1, . . . , X n )  may not coincide with the Gumbel distribu- 
tion. 

Greig (1967) provides an illuminating example involving the normal distribution. 
For m-dependent sequences (where the events are independent if they are separated by 

more than m units), m > 1, it is possible that exceedances of high level x may occur in runs 
and also the runs may occur in “bunches”. In that case the asymptotic Gumbel distribution 
is also not valid. Specifically for the distribution of the maximum, the number of clusters 
rather than the number of runs of individual exceedances has to be taken into account. (See, 
e.g., Rootzkn (1978).) This is especially relevant for the extreme value distribution of rainfall 
data (Buishand (1985); Marshall (1983)). 
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F x ( x )  = ’ 

Generalized Extreme Value 
Distributions 

I 

e-(1+t((z-~)/n))-” ‘  -W < x 5 p - a/[  for 6 < 0; 

for 6 > 0; 

- c o < x < c c  for 6 = 0 .  

p - u/< 5 x < co (2.1) 

e-e-(=-l’)/.7 

2.1 Basic Properties 

P A X )  = { 

The generalized extreme value (GEV) distribution was first introduced by Jenkinson (1955). 
The cumulative distribution function of the generalized extreme value distributions is 
given by 

I 

e-(’+t(2-LL”)/“))-t - 1 + [ 5 
U 

U 

Y ( 0 r1 
-co < x 5 p - - for 6 < 0 ; 

(2.2) E 
U 

p - - < x < c c  f o r < > O ;  t -  

- c o < x < o o  for < = 0 .  e-e-(=-l.)/r $ - p ) / u  

\ U 
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The standard form of the generalized extreme value distributions has the cdf 

and the pdf 

We shall often use the abbreviation GEV (p, u, E ) .  
The parameter E is called the shape parameter and may be used to model a wide range of 

tail behavior. The case ( > 0 is that of a polynomially decreasing tail function and therefore 
corresponds to a long-tailed parent distribution. The case E = 0 is that of an exponentially 
decreasing tail, while < < 0 is the case of a finite upper endpoint and is therefore short-tailed. 

Maritz and Munroe (1967) studied order statistics from this generalized extreme value 
distribution, and presented tables of means of order statistics from sample sizes 5 to 10 for 
the choices of the shape parameter E = -0.4(0.05)0.10. These authors have also discussed 
the estimation of all three parameters by the use of order statistics. 

There are a number of non-regular situations associated with E :  when < -1 the 
maximum likelihood estimates do not exist, when -1 < E < -1/2 there may be problems, 
and when 6 > 1/2 the second and higher moments do not exist. A recent method proposed 
by Castillo and Hadi (1997) circumvents some of these problems: it provides well-defined 
estimates for all parameter values and performs well compared to any of the existing methods. 
(Fortunately, the experience with real-world data suggests that the condition -1/2 < t < 1/2 
is almost always satisfied in practical applications - in particular in environmetrics.) 

Suppose XI, X2, . . . are i.i.d. random variables with common cdf F E D(G) where G is 
GEV (p ,  u, [) for some p ,  u and I. Let A42' denote the ith largest of the first n random 
variables, i = 1 , 2 ,  . . . , r. The limiting joint distribution for the r largest order statistics for 
XI 2 22 2 . . .  2 x, is: 

Mi2) - b, M f )  - b, < 5 2 , .  . . , ~ 

an 

Here 7, = - log G(x,; 0, 1, I )  and {a,}, {b,} are normalizing constants. (The related problem 
of the joint limiting distribution (n  - T )  smallest order statistics was also considered.) 
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Practical applications of (2.5) proceed by assuming that n is sufficiently large for the 
limit law to hold exactly. We can also express the joint density of (Mi'), Mi2),  . . . , M?)) in 
the generalized form: 

f(x1,x2,. . . , x,) = P e x p  [-{ 1 + f ( x l - P ) } - l ' (  

- (; + 1) g log { 1 + f  (y)}] 
valid over the range x1 > x 2  2 . . . 2 x, such that 1 + f ( x j  - p)/u > 0 for j = 1 , 2 , .  . . , r. For 
the asymptotic approximation of (2.5) to be valid, r has to be small by comparison to n. As 
r increases, the rate of convergence of the limiting joint distribution decreases sharply. The 
choice of r is therefore crucial. Wang (1995) proposed a method for selecting r based on a 
suitable goodness-of-fit statistic. 

From Eqs. (2.3) and (2.4), we deduce the characterizing differential equation 

(1 + EY)rn(?/) = - ~ Y ( Y ) / l o g w Y ) .  (2.7) 
Balakrishnan, Chan, and Ahsanullah (1993) have exploited the differential equation (2.7) 
to establish recurrence relations satisfied by the single and the product moments of lower 
record values. See also Ahsanullah (1994). 

2.2 Statistical Inference (Classical Approach) 
Ahsanullah and Holland (1994) have discussed the estimation of the location and scale 
parameters of the generalized extreme value distribution (when f is known) based on the 
record values. 

The maximum likelihood estimation of the parameters p ,  u and f have been studied by a 
number of authors including Jenkinson (1969), Prescott and Walden (1980, 1983), Hosking 
(1985), and Macleod (1989). Based on a complete sample of size n from the generalized 
extreme value distribution (2.1), the Fisher expected information matrix is given by [Prescott 
and Walden (1980)]: 

E [-%I = $ p ,  

8 2  log L E [ -- af2 ] =;{;+ 
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and, as above, $(.) is the digamma function ($(r) = dlogr(r) /dr) .  
As mentioned above, the regularity conditions are satisfied when < > -1/2 and in this 

case the asymptotic variances and covariances of the maximum likelihood estimators are 
given by the elements of the inverse of the Fisher information matrix whose elements are 
presented above. 

Hosking (1985) has provided a FORTRAN subroutine MLEGEV that facilitates the 
calculation of the maximum likelihood estimates of the parameters p,  IJ and E (by the 
Newton-Raphson method) and the variancecovariance matrix of the estimated parameters. 
Macleod (1989) has suggested an adjustment that should be applied to Hosking's algorithm. 

Otten and van Montfort (1980) consider the generalized extreme-value distribution of 
the form 

exp [-(I - Bz)'/'] 1/6' < z < +m 

-m < z < 1/6' 

-m < z < +m 

for 0 < 0; 

for 6' > 0 ;  

for 6' = 0 .  exp [- exp ( - z ) ]  

Fx(z)  = Pr(X 5 z) = 

(the parameter < is replaced here by -6'). 

with 0 < IJ < +m and 6' is a shape parameter with -m < 6' < +m. 
Here z = ( z -p ) /u ;  p is a location parameter with -m < p < +m; IJ is a scale parameter 

The inverse z = F-'(p) is given by: 

p + IJIl - exp (-6'Y)l/6', 6' # 0 
x=( 

P + IJY, 6' = 0, where y = - log [- log ( p ) ] ,  0 < p < 1. 

Note that the e-l-point of this distribution is p for any IJ and 6'. 
Given a sample of n observations XI, Xz, . . . , X,, denote t = 6'2 and 

y = -0-l log (1 - t )  = z(1 + t / 2  + t 2 / 3  + . . .) (for small t )  . 

Then F ( z )  = exp [- exp (-y)]. Observe that t < 1 unless z = p + a6' which is the finite 
bound of the support of the distribution. The log (density) is given by 

-log (0) - (1 - 6')Y - exp (-Y) 7 

and the log(like1ihood) is: 
n 

L = C[- log (IJ) - (1 - 0 ) ~ ~  - exp (-Y%)] . 
i=l 

To maximize L,  Otten and van Montfort (1980) utilized the vector of first derivatives L' 
and the matrix of second derivatives L" with respect to the parameters. For numerical 
calculations, for small t ,  series expansions of y and the derivatives and yes are required. 
We shall briefly sketch the procedure. 
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is the contribution of an observation to L'. 
Let itj be the j t h  estimate of the parameter T = (p,  o, 6')T. Then, in the obvious notation, 

(2.8a) .ir,+l = i?j + (-L;)-%;, 
and, in the case of convergence, the maximum likelihood estimator .ir = .irm. The anticipated 
improvement when passing from itJ to .ir,+l can break down if L" has negative eigenvalues. 

The starting value TO is the ML-estimator of p and ~7 for 0 = 0 (the type 1 extreme value 
distribution). 

A popular stopping rule is determined by: 

with p = 0.01, 0.50, 0.99, iP being the estimated ppoint of the distribution, and stopping 
at, e.g., W 8 .  

Otten and van Montford (1988) recommended halving the first correction when L is not 
well approximated by a second-degree polynomial in the neighborhood of .ire. 

Table of approximate values of (-L;)-' was provided by Jenkinson (1969) and reproduced 
in Flood Studies Report (1975). However, Otten and van Montfort recommended working 
without approximations. As mentioned above, regularity conditions are satisfied for 6' < 1/2, 
and in this case asymptotic variances and covariances are given by the elements of L"-' 
(-E(L") exists only for 6' < 1/2). Details of application of the iterative procedure (2.8a) are 
provided in a technical report by Prescott and Walden, University of Southampton, England 
(1985), and in Prescott and Walden (1980) discussed above. 

Hosking, Wallis, and Wood (1985) have also discussed the method of probability-weighted 
moments (PWM) for the estimation of the parameters p, o and E .  What the PWM estimators 
would seem to have in their favor is that their evaluation is simple and guaranteed for in 
the range [-1/2,1/2] whereas convergence of the maximum likelihood estimates is erratic 
for E close to -1/2. As described in Chap. 1 in this approach, one considers the moments 

= E[X{F(X)}'], r = 0,1,2, .  . . , (2.9) 

and sets up the necessary number of moment equations by using the sample statistics 

(2.10) 

which are unbiased estimators of the moments pT. One may instead use the simplified 
estimates 

(2.11) 

where pi,n is a plotting position [a distribution-free estimate of F(X,')] that may be taken as 
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or 
1 1 _ _  i - a  

n + 1 - 2 a ’  2 < a < - .  2 P i p  = 

For the generalized extreme value distribution. Hosking et al. (1985) derived 

pr=(7.+1)- l  p - -  1-- r ( l - [ )}]  E < 1 ,  E f O .  (2.12) [ ; { (1+r)-5 ’ 
They used (2.12) to show the following relations between the simplified estimators needed 
to determine an estimator of [. 

(2.13) 

(2.14) 

U bo = p0 = p - -{I - r(i - E ) } ,  E 
2P1 - po = 2p, - po = - - r ( i  - ()(I - 25), 

U * A  

I 
and 

~- 3b2 - i j o  - 3pz -pa - 1 - 35 
2b1 - bo 2p, - po 1 - 25 

(2.15) 

The exact solution for [ from Eq. (2.15) requires iterative methods. However, since the 
function (1 - 3‘)/(1 - 25) is almost linear over the range of interest (-1/2 < E < 1/2), the 
following approximate low-order polynomial estimator is used: 

-{ = 78590~ + 2.9554c2, (2.16) 

where 
2 j I  - ,& ln2 
3,& - B0 ln3 ‘ 

c = - - -  

The error due to using (2.16)-is less than 0.0009 throughout the range -1/2 < [ < 1/2 
(Hosking et aL, 1985). Given (, the scale and location parameters can be estimated success- 
fullv as: 

(2.17) 

The PWM estimate of the bound is thus j i  - 3/{, where j i ,  B and t are as in (2.16) and 
(2.17). Note, however, that the use of PWM estimators does not guarantee that 

U 
x i < f i - T ,  t/zi, i = l ,  . . . ,  n, for ( < o  

E 
or 

3 
z i > f i - -  V X ~ ,  i = l ,  . . . ,  n, for { > o .  

Consequently, PWM (like the Method of Moments) have no built-in feature to ensure fea- 
sibility and can yield non-feasible parameters estimates. For given p, u, t and n, we are 
interested in the probability that PWM estimators are not feasible and wish to  compute 

i’ 

(2.18) 
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where X N GEV (p,  0, E ) .  (We are assuming that E is negative.) Simulations showed that 
the probability (2.18) has the following properties: (1) for a fixed n, it decreases with E and 
(2) for a fixed < it increases and then decreases as n + co. 

Consider the random vector (Bo, B1, B z ) ~  where realizations PO, PI, Pz are 

and 21:" 5 . . . 5 xnZn is the ordered sample. Then the upper bound ,C - t?/( is a realization 
of the random variable 

dBo, B1, &) = Bo + (2B1 - Bo)/(l - 2 9 ,  

where [ is given in (2.16). 
We seek an estimate of the mean and the variance of g(B0, B1, Bz). The distribution of 

g(B0,  B1, Bz) is quite involved and Dupuis (1996) obtained an approximation by means of 
simulation in terms of a lognormal random variable. 

While there is no analytical solution to Dupuis' (1996) approximation (expressed in a 
form of an integral), the integrand is well-behaved and numerical integration provides very 
accurate results. Numerical results of Dupuis (1996) investigations show that nonfeasibility 
is less than 1% for all n when ( > 0. Nonfeasibility is also low for large negative ( and it is 
only for [ 5 -0.2 that we observe an appreciable nonfeasibility as high as 20%. Also, for a 
fixed [, the probability of obtaining PWM estimates which are not feasible increases with n, 
before eventually decreases to 0. The author strongly advises practitioners to  use the more 
numerically intensive and difficult maximum likelihood procedure to  assure feasibility. 

Chen and Balakrishnan (1995) also observed that the PWM method when estimating 
parameters of the generalized extreme value distribution can lead to  infeasible estimates (in 
the sense that the estimated distribution has an upper bound and one or more of the data 
values lie outside this bound). The authors propose a modification which alleviates this 
problem except for small sample sizes (n  = 15 or 25) when - based on their calculations - 
probabilities of obtaining infeasible parameter estimates are almost always greater than 5%. 

Hosking (1986) also noticed this problem and suggested the following ad hoc method to 
overcome the difficulty. 

Let x denote 51:" or xnrn; if the boundary condition is found to  be violated by the PWM 
estimators of the parameters, he recommends equating x to p - and solving for [. This 
leads to { = ln{(2bl - z)/(bo - z)}/ln2 for the generalized extreme value distribution and 
the other parameters are estimated as before. Recall that b, are defined in (2.10). 

Using standard arguments, Hosking et al. (1985) have shown that the asymptotic var- 
iance-covariance matrix of PWM estimates ( f i ,  i?, ()T is given by 

(2.20) 

where the w's depend only on <. The asymptotic efficiency of the individual PWM estimators 
and the overall efficiency are presented in Fig. 2.1 [from Hosking et al. (1985)]. 
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Figure 2.1: Asymptotic efficiency of PWM estimators of parameters of the GEV distribution: 
~ (. ~~~~ fl. ~ _ _ - - - -  f i ;  . . .  overall efficiency (ratio of the determinants of asymptotic 
covariance matrices of ML and PWM estimators). 

In defining partial probability-weighted moments, Wang (1990) discussed the estimation 
of the parameters of the generalized extreme value distribution based on censored samples. 
Prescott and Walden (1983) have discussed the maximum likelihood estimation of the pa- 
rameters based on a doubly Type I1 censored sample X:+l,. . . , x;-* (where the smallest 
r and the largest s observations are censored in a sample of size m) from the generalized 
extreme value distribution (2.1). They have also presented expressions for the asymptotic 
variancecovariance matrix of these MLEs. 

T. E. Smith (1984) has discussed a choice probability characterization of generalized ex- 
treme value models. Testing whether the shape parameter < is zero in the generalized extreme 
value distributions for the data a t  hand was addressed by Hosking (1984). Some goodness-of- 
fit tests for the generalized extreme value distributions have been examined by Chowdhury 
et al. (1991). They have calculated critical points for the Kolmogorov-Smirnov test for the 
values of the shape parameter [ = -0.20(0.50)0.25 and the scale parameter c = 0.01,0.05 
and 0.10. An excellent discussion on the models for exceedances over high thresholds by 
Davison and Smith (1990) provides further insight into issues related to these distributions. 
By using a predictive likelihood that approximates both Bayesian and maximum likelihood 
predictive inference, Davison (1986) has applied it to the prediction of extremes by means 
of the generalized extreme value distribution. 

2.3 Bayesian Inference 
The distribution function for the generalized extreme value family can be written as 

(2.21) 

The parameters ,u and 0 are location and scale parameters and < is a shape parameter 
determining the weight of the tail of G and thus of the initial distribution function F of the 
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series Xl, X,, . . . , X,. Recall that as E -+ 0, we have the Gumbel (type 1) model with 

~ ( 2 )  = exp [-exp {-?}I . 

Much of Bayesian modeling of extremes has focused on the latter family. 
The series M,  = max(X1, . . . , X,) is often restricted in application to  annual maximum 

data while in fact the series XI, X,, . . . , X, may contain other data informative about the 
tail of F .  This leads to the distribution of “threshold exceedances” 

y, = x, - U I X i  > u 

which is taken as 
H(y) = 1 - (1 + Ey/c?);”‘, 

where c? = ~7 + ( (u  - p) and p, ~7 and < are the GEV parameters. If the interest is in the 
lower tail, we apply similar argument to the series 

m, = min(X1, X,, . . . , X,} 

leading to the asymptotic distribution of minima of the form 

G ( z ) = l -  exp {- b+<(?)];} 
This model (which includes Weibull distribution in the case < < 0) is often used for modeling 
failure time data. 

There are relatively few papers linking directly the themes of extreme value modeling 
and Bayesian inference. In the reliability literature, there are substantially more references, 
presumably because there are fewer conceptual problems in formulating assessment in this 
context. (See Coles and Powell (1996) for a review.) 

The difficulty in utilizing the Bayesian approach in extreme value problems is that the 
value of additional prior information is likely to be substantial, while the plausibility of 
formulating this kind of prior knowledge may be questionable for extremal behavior. 

When applying Bayesian methodology we ought to strive to employ Bayesian procedures 
as a means to incorporate genuine scientific belief in data analysis rather than use Bayesian 
approach as simply as a formal technical inferential device. Nevertheless, it is the second 
approach that is often taken in applications. Unfortunately, the model 

admits in general no conjugate priors. In the restricted situation of a single parameter case: 
location parameter (when < = 0) or scale parameter, Engelund and Rackwitz (1992) obtained 
conjugate priors. The drawback here is that < is the most restrictive parameter. Ashour and 
El-Ad1 (1980) considered the distribution of the minima 
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in the case when [ + 0, i.e. when the data is left-censored. In this case the joint conjugate 
prior is 

with parameters D,  G, H and 6. Based on a simulated data example comparison between 
Bayesian and maximum likelihood approaches in this case, one may conclude that Bayesian 
estimators are more efficient but possess substantial bias. 

Pickands (1994) suggested non-conjugate prior for the model (already mentioned above) 

H(y) = 1 - (1 + Ey/5):”‘ (which is the distribution of Y, = X, - uIX1 > u)  

given by f(5,E) 0: ;115>0) (this is equivalent to specifying priors for log (5) and < that are 
independent and uniform on (-co, co)). Note, however, that 6 depends on the threshold u 
chosen in = X, - uIX2 > u. Beirlant e t  al. (1999) recommend the so-called maximal data 
information prior: n(E, 5) = $e-(’+E), 

Achcar et al. (1987) modeled a sequence of survival times T I ,  Tz, . . . , T,, where Y has the 
distribution of the minima: 

and 

y = [ y  for X # 0 

1ogT for x = o 
(the well-known Box-Cox transformation). Using the Jeffrey priors for p and and an 
improper uniform prior for the Box-Cox parameter A, they obtain the posterior marginal 
distribution for X and assess the quality of the transformation by a simple probability plot. 

Coles and Powell (1995) modified the Archcar et al. procedure (using their data). 
In their study the maximum likelihood approach has failed due to clustering of data 

close to the start of the experiment causing unboundedness of the likelihood function. In 
principle, however Bayesian analysis is not affected by unboundedness - only complexity 
of computations increases. Coles and Powell (1995) chose almost flat prior distribution; 
marginal posterior distributions for 1.1, u and [ are presented in Fig. 2.2. 

Figure 2.2(c) shows that [ < -1 almost certainly. Skewness in the posterior densities 
may indicate that the posterior mean is outside the parameter space, namely there is a value 
of observed failure time t < /I + b/f for a t  least one t. Coles and Powell (1995) chose an 
estimator corresponding to the modes of the marginal distributions: 

(b, 5 , t )  = (84.3,151.0, -1.77). 

Based on this estimator, the transformation 

Y = l / [ l o g  (l-[.(%)) 

ought to produce variables with standard Gumbel distribution for minima. Standardized 
order statistics y(q calculated from the original order statistics t(i) show, by means of a 
probability plot, that the GEV model is indeed adequate in this case. 
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Figure 2.2: Posterior distributions of GEV parameters. (Coles and Powell (1995)) 

Predictive density function is quite appropriate for Bayesian analysis of extreme value 
distributions since in many applications the role of an extreme value analysis is to characterize 
the extremal behavior of the past history in order to be able to design against extreme 
excursions of future values. 

For the GEV, Davison (1986) provided approximation to predictive density function 

(here z is historical data, y is a future observation and f(yl0) and f(0lz) are respectively, 
the likelihood and posterior distribution of 0 given z). 

Engelund and Fbckwitz (1992) - already mentioned above - calculated the exact form 
of predictive distributions for one-parametric cases of the general GEV model with the 
distribution function 

Specifically, let 2~ be the location parameter in the extreme value Gumbel distribution 

Fx(zlu) = exp [- exp [-a(. - u) ] ]  . 

Motivated by the fact that 
n 
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is a sufficient statistics for this parameter (see e.g. Schrupp and Rackwitz (1984)), Engelund 
and Rackwitz (1992) proposed the following family of priors: 

f’(u) rx exP (PQU)  

where p is a constant. These priors are improper in the sense that they integrate to infinity. 
They correspond to noninformative priors (see, e.g., Box and Tiao (1962)) when p = 0. Note 
that even the first moment of these priors fails to exist. For type 1 (Gumbel) extreme value 
distribution, the predictive density function with this prior is 

and the cdf 

See the figures below. 

1.00 AF 
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Predictive function. n=Z 
Predictive function. n=10 

Predictive function. n=2 
Predictive function. n=lO, 
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(4 (b) 
Predictive distribution function for the Gumbel distributions for two sets of parameters 
(a ,u ,p)  and n = 2,lO. (a): (1.0, 0.0, 0.0); (b): (1.0, 0.0, 0.46). 

It is seen that the predictive distribution function for the Gumbel distribution decreases 
as the number of experiments increases even for large values of Fy(.) .  A similar behavior 
can be observed for the Frhchet distribution. On the contrary, for the Weibull distribu- 
tion of minima, the predictive distribution function increases as the number of experiments 
increases. 

Engelund and Rackwitz (1992) pointed out that this makes no sense if Gumbel (or 
Frhchet) distributions are used to model loads, while a Weibull model is adopted for resistance 
in structural reliability. They quote the well-known statement by Berger (1980): 

‘I. . . even unanimously acclaimed noninformative priors (such as those for location 
parameters or scale parameters) can lead to inferior decision rules.” 

Using the least informative prior, these authors succeeded in showing that such a choice 
corresponds to the value p = 0.46 and, in this case, the conjugate prior leads to a reasonable 
predictive decision as far as a function of the number of observations is concerned. 

Lingappaiah (1984) investigated predictive probabilities of extreme order statistics under 
a sequential sampling scheme. 
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Smith and Naylor (1987) chose priors for the family 

(the three-parameter Weibull distribution mentioned above) with [ < 0 in an arbitrary 
manner so as to reflect a range of potential scientific hypotheses. The main purpose is 
to demonstrate the computational feasibility - within various extreme value models - of 
dealing with priors that may be analytically intractable but scientifically motivated. 

Coles and Tawn (1996) express the opinion that it is unlikely that prior beliefs on extremal 
behavior could adequately be elicited directly in terms of the GEV parameters. Even having 
marginal priors for each parameter it is still unclear how to use them for construction of joint 
priors. One ought always remember that long range extrapolation is sensitive to  the weight 
of the tail. These authors recommended eliciting prior information within a parametrization 
which corresponds to a scale on which the expert has familiarity and within which a natural 
dependence between the prior specifications is constructed. Starting from family (2.21) they 
invert the equation, to obtain the 1-p quantile of the annual maximum distribution: 

Q = p + .[-log (1 - p)-( - 11r (2.22) 

and elicit prior information in terms of ( q p l ,  qpz, qp3)  for specified values of pl > p2 > p3.  
They choose the joint prior for qp% of the form 

Substituting the quantile expression (2.22) into (2.23) and multiplying by the appropriate 
Jacobian of the transformation 

( 9 1  ? 4p2  9 0 3 )  --f (P> g> 0 
leads to expression for the priors in terms of the GEV parameters. Multiplication by the 
appropriate likelihood gives the posterior distribution of ( p ,  CT, t). It turns out that in an 
example of extreme rainfall data (based on 54-year series of daily rainfall aggregates measured 
at a location in the Southwest England), analytical calculations of the marginal distributions 
are intractable. Nevertheless, the recently attained power and simplicity of Markov chain 
Monte-Carlo (MCMC) techniques suggest that direct simulation from a Markov chain whose 
equilibrium distribution is the prior 7r is straightforward. The authors’ analysis is based on 
a Gibbs sampler, successively updating the individual parameters p,  g and [ from the prior 
7r, conditionally on the current values of the other parameters. See Coles and Tawn (1996) 
for details. The results arc summarized in Fig. 2.3. The authors observed that marginally, 
the location and scale parameter priors are almost non-informative: the prior for p is very 
flat, whereas that for ~7 resembles l /o .  The marginal prior for E carries most information 
since we are dealing here with a distribution possessing an infinite upper end point. There 
is physical reasoning why the prior information for the location parameter should be highly 
diffused relative to that of the other parameters: the location parameter tends to be strongly 
dependent on localized sitespecific characteristics which arc difficult to  calibrate without 
reference to data. In contrast, the scale (and, especially, the shape) parameters are governed 
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Figure 2.3: Univariate marginals of prior and posterior distributions of each of the GEV 
parameters. (Coles and Tawn (1996)) 

mainly by regional characteristics of a rainfall process, about which prior information is more 
easily assessed. (This reverses the situation from a likelihood-based analysis in which the 
relative precision of estimation of the location parameter is much greater than that of the 
scale or shape parameters.) 

As to utility of Bayesian approach to the spatial modeling of extreme wind speeds, the 
observations and investigations due to Coles and Powell (1996) revealed that Bayesian anal- 
ysis is quite suitable for spatial data exploration since it is quite reasonable to adopt the 
information acquired spatially as a prior belief, and, as data becomes available, we can either 
reinforce our faith in the prior or to modify our beliefs, accordingly which is in a harmony 
with the Bayesian paradigm. Their investigations of annual maximum wind speeds for 106 
sites throughout the U.S.A. have shown that using the three-parameter GEV model relatively 
few data were required to calculated the posterior distribution of the location parameter p, 
while the scale and shape parameters r and E ,  respectively, necessitate much more data. As 
already mentioned above for short data records (5-10 years) maximum likelihood estimators 
are unreliable and possess low precision - having a tendency to oscillate as additional data 
become available - while the corresponding Bayesian estimates seem to be quite consistent 
with the estimates based on long-term data, having acceptable levels of precision and are 
by far more stable, especially when dealing with the shape parameter E. As it has already 
been mentioned this parameter affects significantly the long-term extrapolation. It should 
be observed that for “complete” data records Bayesian estimators are not inconsistent with 
maximum likelihood ones. 

A special feature of Bayesian analysis of extreme-value data is related to  the primary 
concern about the behavior beyond the range of the observed data, namely here the prior 
may fail to dominate data. Moreover, since the likelihood here is itself an asymptotic approx- 
imation, an optimal procedure may not be necessarily to include more data in the likelihood 
but perhaps to raise the threshold u in the distribution of “threshold exceedances”. 

2.4 Robust Estimation 
Again consider the GEV distribution function Ho involving a three-dimensional parameter 



Generalized Extreme Value Distributions 75 

here 1 + > 0, o > 0, but E and p are arbitrary. ( E  is the shape parameter which as 
already mentioned above, in practice, usually lies in the range -1/2 < E < 1/2.) Both MLE 
and PWME of this parameter 0 have unbounded influence function and hence provide poor 
robustness behavior. For E # 0, the score function 

can easily be calculated explicitly. Here he(z) is the density corresponding to Ho. 
Given an estimator of 0, T, = T,(zl, 2 2 , .  . . , z,), it can be viewed as a functional 

of the empirical distribution function H(n) (which puts mass 1/n on each observation); 
Tn(zl,. . . ,z,) = T(H(n)). The basic tool to  assess robustness is the influence function 

where A, is a point mass at z. The IF describes the effect of a small contamination &A, at 
the point z on the estimate (standardized by the mass of the contamination). In fact, the 
linear approximation &IF(z; T ,  Ho) measures the asymptotic bias of the estimator caused by 
the contamination. A desirable robustness property for an estimator is that it has a bounded 
IF. Such an estimator is called B-robust (bias-robust). 

Dupuis and Field (1998) constructed Optimal Biased - Robust estimators (OBRE) and 
compared them with Probability Weighted Moment Estimators (PWME) originated by 
Hosking (1986). 

Definition of OBRE is rather involved and is related to M-estimators, which are in turn 
a generalization of the maximum likelihood estimators. 

An M-estimator is the solution T, of the equation 

i=l 

for some function .J, : X x RP + RP ( p  = 3 in the case of GEV distributions), X is the 
space of observations, RP is the space of parameters. There are several versions of the 
OBRE differing in the way they bound the influence function (IF). Dupuis and Field used 
the standardized OBRE for a given bound c (the robustness constant) on IF and the OBRE 
is implicitly defined by 

n n c +(G; 0) = c{S(zi;  0) - a(e)>wc(z,; 0) = 0 ,  

where s(z; 0) is the score function and Wc(z; 0) is the weight function 

(2.24) 
i=l i=l 

( 1 .  ( 1  denotes the Euclidean norm. In turn, the p x p matrix A(0) and the p x 1 vector a(0) 
are defined implicitly by 

(2.25) 
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Dupuis and Field (1998) provided a detailed algorithm for OBRE estimation of parame- 
ters of GEV distribution. The basic idea is to start with the score function and modify it in 
such a manner that the influence function will be bounded and satisfy Eq. (2.25). Note that 

J 4z, e)Wc(z, e)d&(z) a(0) = J Wc(z,  @)dHe(z )  
and 

where 
A ~ A  = M ; ~ ,  

The weight function W, multiplies the score function s(zi, 0) and after subtracting a(0) it 
has been made to satisfy (2.24) (the so-called Fisher consistency). The weights will always 
be less than or equal to I and will be less than 1 when the norm of the appropriately 
standardized score function exceeds the cutoff c. This downweights observations which are 
not close to the working values of the parameters in the given score-function metric. For 
observations which are consistent with the current values of 0, the weights are one and the 
score function is that of the maximum likelihood estimate. This ensures that the OBRE is 
efficient, since it is as similar as possible to the MLE for the bulk of the data. 

In a simulation experiment carried out by Dupuis and Field (1998), the most robust 
estimator was at c = J'rs and the most efficient (the maximum likelihood one) was obtained 
at c = co. The constant c acts as regulator between robustness and efficiency. The authors 
also provide an illuminating example to illustrate the behavior of OBRE and contrast it 
with the PWM estimator. The data consist of 40 annual maximum one-day rainfalls at 
Fredericton, New Brunswick, Canada and correspond to the years 1951-1990. The estimates 
with their asymptotic standard deviations are as follows: 

Table 2.1: 

Method j i  U E 
OBRE (C = 4) 44.07(3.3) 15.29(2.9) -0.146(0.13) 
PWME 45.3(2.4) 13.1(1.9) O.lO(0.13) 

As can be seen, the estimates of j i  and u are quite similar for the two methods and lie 
within 95% confidence intervals of the other estimate. On the other hand, the estimates 
of E differ substantially. It is also noteworthy that the sign of < has changed, indicating 
a lower bound of -146.8 for the OBRE and an upper bound of 85.7 for the PWME. If 
we look at the weights assigned by OBRE, we see that the largest observation, 146.8, has a 
weight of 0.00014, indicating that this observation is not well fitted by the GEV distribution. 
This point is reinforced by the quantile-quantile plot using the OBR estimates, where 146.8 
clearly lies some distance from the least-median-of-squares line drawn through the data. The 
OBRE gives estimates very similar to the PWME when the data are well fitted by a GEV 
distribution, but OBRE also provides a good indication of the lack of fit through the weights. 
Also the OBRE tends to be more efficient than PWME for the model when E > 0 and less 
efficient when [ < 0 which corresponds to the situation in which the observations have an 



Generalized Extreme Value Distributions 77 

upper bound. There is loss of efficiency relative to the MLE; it becomes more pronounced 
as ( becomes negative. 

2.5 Zempl6ni’s Test of Hypothesis for the 
GEV Distribution 

For testing the hypothesis that a cdf F E GEV against the general alternative of F being 
an arbitrary continuous cdf, Zemplkni (1991) proposed the test statistic 

dn(X) = &rn!smy IFn(z) - F,2(az + b ) ] ,  (2.26) 

where 
l n  

Fn(z) = - Iim,zi(Xt), X = ( X I , .  . . , X n )  is the sample. 
1=1 

The motivation is that the GEV distribution fulfills the so-called max-stability property, 
i.e. for any integer m there exist a,, b, such that 

F ( z )  = Fm(a,z + b,) for all z E R .  

To evaluate the maximum in (2.26), it is sufficient to consider the points X ,  and X,- 
(i = 1,. . . , n). Zemplkni (1991) provided algorithms to optimize in b for a fixed a, and the 
second step is to find the optimum value of a. Both algorithms have the same features: first 
the optimal value is approximated by an iterative procedure and then the exact solution is 
achieved via simple calculations. Zemplhni also shows that: 

Pr(d,(X) > 5 Pr f i m i n  max 1un(s) - ~:(za)l> r )  , 

where U, denotes the empirical d.f. of the uniform sample. Note that U ( z )  = U2(&) for 
the uniform distribution U; thus the value of a converges to 0.5 as n + 03. Based on this 
result, Zemplkni constructed (by simulation) critical values of the & statistic (Table 2.2). 

The ZemplBni test is conservative. In the regular case ([ 2 -l), the rejection of the hy- 
pothesis is less frequent than desired, but as the scale parameter increases the estimates be- 
come more accurate. The distribution of & depends on the shape parameter, implying that 

( n ZEIX1,. . ,X}  

Table 2.2: The quantiles of the estimator &(.) 

0.1 
0.2 
0.5 
0.8 
0.9 
0.95 
0.99 
0.999 

n = 50 

0.583 
0.636 
0.775 
0.919 
1.015 
1.078 
1.226 
1.43 

n = 100 

0.604 
0.664 
0.800 
0.956 
1.044 
1.125 
1.282 
1.46 

n = 200 

0.616 
0.676 
0.808 
0.976 
1.065 
1.147 
1.303 
1.49 

n = 5 0 0  n =  1000 

0.630 0.635 
0.693 0.699 
0.826 0.834 
0.988 0.997 
1.088 1.094 
1.174 1.177 
1.338 1.350 
1.53 1.54 
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the test is not similar with respect to E .  It is also quite unlikely that 4, has a distribution-free 
limit. 

The power of the test - as the calculations by Zemplhni show - is adequate. The 
results indicate a very strong dependence on the shape of the distribution. Distributions 
with a shape similar to the GEV distribution need about five times more observations for a 
high probability of the correct decision. But even then n = 500 is a large enough sample to 
render a correct decision at  the level a = 0.05 in only 50% of the samples. Fortunately, in 
environmental applications samples of size 500 and larger are very often available. The test 
is not consistent; there exists a distribution F which is not GEV such that F ( x )  = F2(ax+b) 
for suitably selected a and b. Evidently, additional studies are required. 

The test also needs an iterative estimation procedure, which can however be completed on 
a PC for sample sizes of some hundreds in a few seconds. For larger samples faster computers 
(or more effective languages) are helpful. By using a simple FORTRAN algorithm on a SUN 
workstation, Zemplbni was able in early nineties to analyze samples up to 5000 elements. 
An interesting application of this test is discussed in Sec. 2.8. 

2.6 Estimation of Tail Index of a Distribution 
Techniques for drawing inferences about the tail behavior of a distribution are by now well 
developed, and most of them are based on the extreme value limit distributions or related 
families. These methods could roughly be divided into two types: procedures worked out by 
Hill (1975), Pickands (1975), Weissman (1978), and others based on extreme order statistics 
and procedures advocated by Smith and Weissman (1985), R. L. Smith (1987), and Davison 
and Smith (1990) based on observations above a high threshold utilizing the generalized 
Pareto distribution. 

The distribution to be discussed is: 

G t ( x )  = exp - (1 + J x ) - ' / t ,  

where E is a real parameter and x is such that l + ( x  > 0. (For E = 0, we interpret ( I + [ X ) - ~ / ~  
as e P . )  Compare with (2.21) in Sec. 2.3. 

As stated above, this distribution is one of the extreme value distributions such that for 
some constants a, > 0 and b, and some.[ E (-m, m): 

(2.27) 

for x E R. 
The parameter E (in the case when E > 0) is often referred to as the tail-index of a 

distribution and is usually denoted by the letter Y . ~  Much attention has been paid to its 

"In this text the Greek letter y is used in several contexts: 

(a) y denotes the Euler's constant: 
m 

y = (i - In?) = 1' (A - &) = 0.57726. 
k=l 

(b) 7 denotes a particular quantile (0 < y < 1). 
(c) y denotes (occasionally) the shape parameter of an extreme value distribution. 
(d) y denotes the tail index of a generalized extreme values distribution (almost identical with c) 
(e) y denotes parameters in a linear regression. 
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estimation. It is based on the pioneering works of Pickands (1975) and Hill (1975) which 
appeared almost simultaneously in the same journal. Let X(l,n) 5 X(z,n) 5 . . . 5 X(n,n) be 
ascending order statistics of XI, .  . . ,Xn. For y E R and 1 5 k 5 [n/4], Pickands (1975) 
proposed the estimate 

x(n-k,n)  - X(n-Sk,n) 
= (log 2)-1 log 

X(n-zk,n) - X(n-dk,n) 
(2.28) 

and proved its weak consistency. However, the Pickands estimator is very sensitive to the 
choice of the intermediate order statistics which are used for estimation: even a small al- 
teration of k can yield a considerable change in the estimate. Dekker and de Haan (1989) 
provided a natural and general conditions under which &(?$’) -7) is asymptotically normal. 
Among these conditions are k = k ( n )  -+ co and k / n  -+ 0 as n -+ co. 

For positive y we have the Hill (1975) estimator 

(2.29) 

which uses k + 1 upper order statistics; note that Pickands estimator uses X+A,~) ,  X + Z ~ , ~ )  
and X(n-4k,n) only. Mason (1982) showed that A&) is a weak consistent estimator provided 
the sequence k = k ( n )  -+ co and k(n) /n  -+ 0 as n -+ 03. Deheuvels et al. (1988) showed 
that Mi1) is a strong consistent estimate provided k ( n )  is such that k /  log log n -+ co and 
k(n)/n -+ 0 as n -+ co. They have proved asymptotical normality of &(M?’-y) with mean 
0 and variance yz. Asymptotic normality of the Hill estimator was also studied by Beirlant 
and Teugels (1989). For asymptotic normality to be valid some additional conditions are 
needed. See, e.g., the comprehensive paper by Dekkers et al. (1989) and R. L. Smith (1987) 
to be discussed below. Cheng and Pan (1995) showed that under certain assumptions on the 
underlying distribution: 

holds uniformly on z E R for kn satisfying 

kn -+ co and kn = O(n‘), 

where E E (0 , l ) .  
(Here @(z) and $(z) are the c.d.f. and the density of the standard normal distribution 

respectively.) 
Marohn (1997) proved that the Hill estimator is asymptotically efficient in the sense of 

Fisher and Wolfowitz and is asymptotically minimax. He also discusses joint estimation of 
the scale parameter with the tail index. 

Berred (1992) constructed from record values two estimators of y in case y > 0. Define, 
as usual, sequences of record times and record values, ~ ( n )  and X ( n ) ,  by 

n 2 1 ~ ( 1 )  = 1, ~ ( n  + 1) = min{j : X ,  > X,,,)}, 

and 
X ( n )  = X.(n,, n L 1 .  
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Berred's (1992) estimators can then be written as 

1 
k 

RL,, = -( logX(n) - logX(n - k ) ) ,  

where the integers k = k ( n )  involved in R;,, satisfy k ( n )  + 03 and + 0 as n + 03 and 
in Ri,n, 1 5 k < n is fixed. Berred (1992) proved that both RL,, and RE,, are consistent and 
under very mild conditions are asymptotically normal. Qi (1998) extended Berred's result 
for y E R. 

As it was stated earlier, the basic idea of Pickands is that the conditional distribution 
function of X-p given X > p can be approximated by a generalized Pareto distribution 
(GPD) and the shape parameter of this GPD is an estimator of y. 

Let X1,. . . , X, be i.i.d. random variables with continuous cdf F and let XI, 2 . . . 2 X,, 
be their order statistics. Consider k upper extremes Xln, .  . . , Xk,. Let zo = {z : F ( z )  < 1) 
be the upper end point of F .  

Denote 

0 < y < 20 - u, u < 20 (the conditional distribution function of X - u given X > u). 

due to Pickands (1975) is: 
Let G(y; 0, y) be the generalized Pareto cdf G(y; 0, y) = 1 - (1 - yy/a)'/Y. A basic result 

lim sup IFu(y) - G(y; 0, y)l = 0 .  
u+xo o<y<xo-u 

This fact was utilized by R. L. Smith (1987) in proving the asymptotic normality of estimators 
of y for the case y > -1/2. 

Other estimators of y are given by the so-called kernel estimators (Csorgo e t  al. (1985), 
Beirlant et al. (1996)): 

where K denotes a non-negative nonincreasing kernel defined on (0, 1). The Hill estimator is 
obtained from C D M  by taking K(u)  = l(o,l)(u). Csorgo et al. (1985) derived the asymptotic 
normality and the bias of the kernel estimators. In finding efficient estimators, the adaptive 
choice of the number k of extreme order statistics used in the estimation procedure is of 
specific interest. (This problem is similar to the choice of a bandwidth in nonparametric 
density estimation methods.) In extreme value problems bias disappears for small values of 
k .  Due to high volatility of the estimators under consideration, the choices of the number of 
order statistics to use in estimation is, however, difficult. 

Beirlant et al. (1996) showed that tail index estimators can be considered as estimates 
of the slope at the right upper tail of a Pareto quantile plot using weighted least squares 
algorithms. They suggested algorithms for searching the order statistic to the right of which 
one obtains an optimal linear fit of the quantile plot. The weighted least squares estimation 
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meth* the slope of the Pareto quantile plot leads back to the class of kernel estima- 
tors C D M .  

The estimators mentioned above all have one common property. When the number of 
upper order statistics used in estimating y is small, the variance of the estimator is large. 
On the other hand, the use of large number of upper order statistics introduces bias in 
estimation. The object is to balance bias and variance to arrive at an optimal choice of k.  
The basic tool is the function 

U ( z )  = inf{y(F(y)-' 2 z} .  

De Hann (1984) has shown that for y > 0, F E D(G,) (i.e. the limiting relation (2.27) is 
may be, valid for F )  if 

(for all z > 0, namely U is regularly varying with index y). This is a first-order regular 
variation condition. 

Dekkers and de Haan (1993) and de Haan and Stadtmiiller (1992) introduced second 
order regular variation conditions, which are by far more complicated. All these conditions 
imply that F E D(G,) for an appropriate y and are explicitly given in Dekkers and de Haan 
(1989). Dekkers et al. (1989) concentrated on estimation of y for general y E R. Their 
estimate is 

where is the Hill estimator (2.29) and 

- k-1 

provided z * ( F )  = sup{zlF(z) < 1) > 0. (This can always be achieved by a simple shift.) 
This estimator is known as the moment estimator. 

With the second-order regularly varying tail conditions one could determine for y > 0 
alto = ko(n) such that for the estimator 9iM) the asymptotic second moment of TiM) - y is 
minimal and the corresponding estimator satisfies 

where b denotes the asymptotic bias. [Dekkers and de Haan (1989).] An analogous result is 
valid for the cases y < 0 and y = 0. 

For generalized extreme value distribution 

G,(z) = exp - (1 + yz)-'/"/, 
we have 

1 U ( t )  = -[-log (1 - t-l)]-, - 1, r f 0 ,  

and for y = 0: U ( t )  = - log (- log (1 - t - I ) )  = log t - (2t)-'  + o(t-') t + 03. 
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In this case the optimal value ko(n), n --f 00, is 

There are many equivalent forms of second-order regular variation; for y > 0 one of the 
forms is that the function log U ( t )  - ylogt - logc or equivalently t P U ( t )  - c is regularly 
varying with index -yp for some p > 0 and c > 0. 

(Check that for the GVE distribution (with y > 0) 

log (t-'U(t)/c) = -yt-y/2 - t Y  + o(t-2 + t - 2 y  t --f 0O 

so that the above condition is fulfilled for c = l/y and p = min(l,y-').) 
Comparing Pickands (1975) and Dekker et al. (1989) estimators, it becomes clear, upon 

graphing the estimators for varying k ,  that the moment estimator behaves in a much more 
stable way and conclusions can be drawn more easily. The moment estimator is based on an 
average whereas the Pickands estimator uses only a few order statistics. Also, the moment 
estimator uses the extreme order statistics whereas the Pickands estimator does not. 

An averaged Pickards estimator: 

has been suggested. However this estimator has asymptotic variance of the same order as 
that of Pickands estimator and larger than the Dekkers et al. moment estimator and its 
behavior with k is as unstable as that of Pickands'. 

Drees (1995) constructed a mixture of Pickands estimators and introduced a bias correc- 
tion term which results in an estimator robust against an unsuitable choice of the fraction 
of largest order statistics used in its formation. 

2.7 Other Forms of Generalized Extreme 
Value Distributions 

Some forms of generalized and compound type 1 extreme value distributions have been con- 
structed by Dubey (1969). He generalizes the distribution by introducing an extra parameter 
r ,  defining the cdf by the equation 

However, since 

Pr[X 5 x] = exp --7a exp -- [ { "3- (2.31) 
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with p’ = p+u log TU, it can be seen that X still has an ordinary type 1 distribution discussed 
in Chap. 1. This generalized distribution is, however, introduced only as an intermediate 
step in the construction of a compound (convoluted) type 1 extreme value distribution, which 
formally can be denoted as: 

“Generalized” type 1 extreme value (p ,  0, T)? Gamma ( p ,  p). 
Here T is supposed to have the pdf 

The resulting compound distribution has the cdf 

= [l+aP-’exp {-?}I-’. 
This distribution can be regarded as a generalized logistic distribution originally cited by 
Hald (1952). In fact it is often termed type 1 generalized logistic distribution. By considering 
the cdf 

(2.32) 

and using a similar gamma compounding, Balakrishnan and Leung (1988a) derived the cdf 

Pr[X 5 x] = 1 - exp 

(2.33) 

This distribution has been termed a type 2 generalized logistic distribution. The type 1 
and type 2 generalized logistic distributions are related by a simple negation of the random 
variables. Balakrishnan and Leung (1988a) also considered the exponential-gamma density 
function 

- 03 < z < 0 3 , K  > O,a > 0 ,  (2.34) 

and compounded it with a gamma density function for T to derive the density function 

(2.35) 

-03 < x < 03, IC > 0,  p > 0, u > 0. 
The density function in (2.35) has been termed a type 4 generalized logistic density. 

For the special case when p = K, the type 4 generalized logistic density function in (2.35) 
becomes symmetric about x = p and has been referred to  as a type 3 generalized logistic 
density. (There is indeed some confusion in the terminology!) 
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A two-component mixture of extreme value distributions with the density function 

- - 0 3 < x < c o ,  O < a < l ,  U > O ,  U * > 0 ,  (2.36) 

and the cdf 

, --oo<z<co, (2.37) 
+ (1 - a)e-e-(.-r*)/= F ~ ( ~ )  = ae-e-(z-”) /u 

has also been used in some applied problems. The moment-generating function of this 
distribution is 

n/lx(t) = a e t p r ( l  - ot) + (1 - a ) e t p * r ( i  - d t ) ,  JtJmax(o, a*) < 1. (2.38) 

In particular, the mean and the variance are 

E [ X ]  = {a(p - pa)  + p*}  + y{a(fJ - U*) + U * }  (2.39) 

and 
7r2 

6 
var(X) = -{ac2 + (1 - a)a*’} + CY(I - a ) { ( p  - p* )  + + y ( ~  - c*)}’. (2.40) 

Rossi et al. (1986) have made use of this two-component extreme value distribution for flood 
frequency analysis; also see Beran et al. (1986) for additional comments. 

Revfeim (1984a) introduced the following extension of the type 1 (Gumbel) extreme value 
distribution: 

Let the events occur in a Poisson process a t  a rate p. If the sizes of the events are 
distributed independently of their occurrences and of each other (with distribution function 
F ( z ) ) ,  then the maximum sizes within unit time interval have asymptotically the distribution 
function 

G(z) = (exp { - p [ l  - F ( z ) ] }  - e-”)/(l- e P ) .  

For large p (say larger than 5), e-p is negligible and if F ( z )  = 1 - e-“/p (an exponential 
distribution) then 

G(z) = exp {-pe-”/p} (2.41) 

(an alternative parametric form of the Gumbel distribution usually written as 
exp {-e-”(”-P)}).  The cumulants of distribution are 

K1 = p ( l n p + y )  

K2 = t P 2  

I E ~  = 2(3p3 cx 2 . 4 0 4 ~ ~  

n4 = -7r2p4/60 (a negative quantity), 

here y is the Euler constant (0.5772) and <” = CEl k-” are the Riemann zeta functions. 
Revfeim (1984b) generalized the distribution (2.41) by assuming 
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(a family of Gamma  distribution^).^ In that case 

(2.42) 

The raw moments of (2.42) are 

with y = e-x/@. 
The integral is somewhat complicated for large i and j having a singularity at y = 0. The 

mean value s shows a near log-linear form for all i and can be approximated by up( In p + b)  
with a = 1.00, b = 0.58 for i = 1 and u = 1.13, b = 1.82 for i = 2. 

Maximum likelihood estimators of p and p when the shape parameter i is known are 
given by 

where 

with 

Scarf (1992) proposed a modification of GEV when the location parameter is of the form 
p = potP, u = uotp leading to a power law dependence of the mean of the GEV distribution 
on time. (The observations here are pairs (xi, t i) ,  i = I , .  . . , k ,  where xi is observed at time 
ti independently of xj at time t j . )  We shall denote this distribution by GEV (ptp, atP, (). 

The second modification is when only the location parameter is a function of time to  be 
denoted by GEV (ptP, u, 6). For model 1, the log-likelihood is 

n n 

where gt = -i log(1 + $(xzt;P - p) } ,  (xltLP > p( + a, i = 1,. . . , n. 
The likelihood equations have to be solved iteratively as in the case of the three-parameter 

GEV distribution. Scarf (1992) described the procedure in detail. He also discussed PWM 
estimation for his model. The difficulty here is that the power law parameter cannot 
be associated with any particular probability weighted moment of the distribution GEV 
(ptP,  utp, () or GEV (p tp ,  a, 0. He, therefore, suggests finding the PWM estimator of the 
distribution of the transformed variable 2 = Xt-0 which would allow to obtain estimates 
of the variancecovariance matrix of ( p ,  a, () and also an estimate of the variance of p from 
regression. 

For Scarf's model 2 if the observations can be presented in the form: xz3 : j = 1, . . . , n, 
at time t, for each i = 1,. . . , n and n, > 2 for at least two distinct values of i, one can 
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then estimate p,  n, E at  two distinct points in time and thus estimate p. Unfortunately, the 
method of PWM estimation does not allow estimation of the full variancecovariance matrix 
for the four-parameter GEV distribution. 

A motivation for Scarf’s four-parameter distribution is found in applications to metallic 
corrosion where zi is the depth of the largest pit penetration over a standard area a of metal 
surface exposed to a corrosive environment for time t,, and n is the number of such areas of 
size a. The separate areas could either be distinct “coupons” (i.e. the metallic specimens) 
from a designed experiment, or else a random sample of areas, at various times, from regions 
of the metal surface that are representative of the whole metal surface under inspection. See 
the next section for additional details. 

2.8 Some Selected Applications 

The GEV distribution was recommended for flood frequency analysis in the U.K. (United 
Kingdom) Flood Studies Report (Natural Environment Research Council, 1975), and, since 
the introduction of the index-flood procedure based on PWM estimation by Wallis (1980) 
and Greis and Wood (1981), it has gained much interest (see e.g. Hosking et al. (1985a); 
Wallis and Wood (1985); Lettenmaier et al. (1987); Hosking and Wallis (1988); Chowd- 
hury et al. (1991); and Lu and Stedinger (1992)). It is used to model extremes of natural 
phenomena such as river lengths, sea levels, stream flows, rainfall and air pollutants to ob- 
tain distributions of daily or annual maxima. In reliability context analogous analyses are 
performed when the interest is in sample minima of strengths and failure times. 

During the last decade de Haan and, especially, Tawn and his associates have written 
numerous pioneering papers on application of the generalized extreme value methodology 
to environmental sciences. It is beyond our scope to cover ~ however briefly - all the 
publications by these prolific writers and other contributors. The brief descriptions below 
should therefore be viewed as a hopefully representative sample of their valuable contribu- 
tions ingenously blending theory and practice - the ultimate goal of the modern statistical 
science. For additional applications, up to late eighties, with emphasis on engineering, the 
reader is advised to consult Castillo (1988). 

de Haan (1990) (cf. also de Haan and Dekkers (1990)) presents the results of estimating 
parameter [ in the distribution 

exp(-(l+(s)-I/E), for 1 + E z > 0  { exp (-e-.) for E = 0 
Gdx) = 

based on 1577 high-tide water levels observed at the Dutch station Hoek van Holland during 
the winters from 1887/1888 until 1984/1985. 

Coles amd Tawn (1991) investigated sea wave, wave period and surge data for Newlyn, 
Cornwall, measured in years 1971-1977. The data was reduced to 15-hourly maximum of each 
component. Zampl6ni (1991) was interested to find out whether the component variables 
are GEV using his test described in Sec. 2.6. 

Coles and Tawn (1990) developed the spatial annual maxima method. The approach is 
to model the joint distribution of the annual maxima over sites accounting for dependence 
between the sites, and to model the changes in each of the parameters of the GEV distribution 
over sites. 
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Dixon and Tawn (1992) employed the spatial annual maxima method to  study trends in 
extreme sea-levels for data from 62 U.K. coastal sites. The measurements were the height 
of the ocean surface relative to the adjacent land. For many sites the series of annual 
maximum data appears to have non-stationary features such as trends. The trends are 
found to have two principal components: changes in eustatic mean sea-level and in land level. 
(Management authorities are usually concerned with observed trends while climatologists and 
oceanographers with eustatic ones.) The former appears to be homogeneous over the entire 
open coastline; whereas the latter has significant spatial variation in the form of north-south 
tilting of the U.K. Finally, there is some evidence to suggest that estuary sites (at rivers 
mouths) have different trends from sites along the neighboring open coastline. 

In a later publication, Dixon and Tawn (1998) compared direct and indirect methods for 
estimation of extreme sea-levels depending on whether or not knowledge of tide is exploited. 
The simplest direct method is fitting of the GEV distribution to observations of annual 
maximum hourly sea-level - referred to as the annual maximum method (AMM). Pugh and 
Vassie (1980), Tawn and Vassie (1989) and Tawn (1992) developed an indirect method - 
referred to as the joint probability method (JPM) - by exploiting the decomposition of sea 
level into tide and surge components. Indirect methods, which exploit spatial dependencies, 
were also developed (Dixon and Tawn, 1995). Comparing the two methods for three U.K. east 
coast sites as well as through a simulation study, it is found that direct methods are biased 
and underestimate return levels for long return periods. On the whole, the JPM performs 
substantially better for many U.K. sea-level data sites. 

The JPM can also be used to model extreme sea currents by exploiting the decomposition 
of sea current into tide and surge components. Robinson and Tawn (1997) extend the JPM 
to handle directionality, temporal independence and tidal non-stationarity that are present 
in sea current extremes. This involves using the multivariate extreme value model due to 
Coles and Walshaw (1994) - see Sec. 3.4.6. They demonstrate their methodology for sea 
current data from Inner Dowing Light Tower in the North Sea. 

A recent joint report by J. M. Vassie, D. L. Blackman, J. A. Tawn and M. J. Dixon 
(1999) described spatial extreme value analysis of largest annual event data combined with 
historical annual maxima over 14 sites in the Humber estuary. For each site the extremal 
data set consists of years containing one of the following: 

(a) the 7-largest independent annual events 
(b) the annual maximum. 

Certain sites cover over 60 years; some sites fewer than 15 years; 5 cites provide no data 
on the 7-largest independent annual event; and other sites provide no data on the annual 
maximum, the distances in miles along the estuary reference axis range from 11.2 up to 60 
miles. 

Spatial extreme value methods - delicate procedures - exploit the spatial coherence 
of the extremal still water level process up the estuary by estimating spatial parameters 
using simultaneously all the data from each site. The methodology proposed by Vassie 
et al. (1999), cited above, assumes (incorrectly) the independence between the sites. Smith 
(1993) proposes a complex procedure to adjust the standard errors for spatial dependence 
(a procedure which is widely used in other statistical areas). 

Robinson and Tawn (1995) - in a fascinating contribution - utilize the GEV distri- 
bution to investigate whether an athletic record falls within the support of the distribution 
of possible performances, i.e. whether the record is better than the ultimate performance 
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predicted from previous data. Specifically, the performance of the Chinese athlete Wang 
Jnnxia in Beijing national championship (September, 1993) who ran a record time of 486.11 sec 
in women’s 3000 m flat track is analyzed (to determine, inter alia, whether her performance 
was drug enhanced). The data considered were the annual minima for the women’s 3000 m 
race over the years 1972-1992 together with Wang’s time in 1983. The simplistic analysis 
- using annual minima only - of constructing a confidence interval on the ultimate mini- 
mum possible time is insufficient to reach conclusions on Wang’s time. Robinson and Tawn 
(1995) therefore incorporate data on other international standard performances over 3000 m 
and similar distances within each year. Incorporating the five best annual times for 3000 m 
results in a conclusion that the associated confidence interval on the ultimate time with 90% 
confidence is (430.1, 493.8) sec and thus Wang’s value (486.11 sec) is - strictly speaking - 
within the interval. Incorporating relative performances in 1500 m events results in a tighter 
90% confidence interval of (478.4, 495.0) sec. Incorporating specifically Olympic and World 
championship years the expected improvement gives an interval of (483.6, 497.0) sec. Finally, 
including Wang’s time with the 1993 1500 m world record time results in a wider shifted 
interval of (445.3, 483.3) sec with a longer lower tail but leads to a suspicion of presence of 
outliers! The authors’ conclusion is that no legal case (presumably based on the British law) 
can be made that her time is from a different population as it is within a 90% confidence 
interval for the ultimate time. (The authors inform us that they have at present (1999) some 
additional results related to this problem which are awaited with great anticipation.) 

Coles and Pan (1996) analysed extreme pollution levels focusing on Milan (Italy) where a 
highly sophisticated network of recording stations has been constructed to monitor pollutant 
levels. The data collected over a period of 11 years in Milan is examined. The authors model 
extremal behavior of the NO2 process, taking into account temporal dependence and non- 
stationarity in the series. The models point to some very strong “qualitative” aspects of 
NO2; in particular, the increased rate of occurrence of extreme levels of NO2 in conditions 
of calm winds. 

Scarf and Laycock (1996) reviewed a number of extreme value models which have been 
applied to corrosion problems. Special attention is paid to behavior of corrosion extremes 
such as the largest pit, thinnest wall, maximum penetration, etc. The models are demon- 
strated on data from laboratory experiments as well as data collected in industrial settings. 
Emphasizing that corrosion data are inherently of an extreme nature, the authors claim 
that statistical considerations may be the only means of determining numerical values for 
predictions of maximum pit and other corrosion characteristics. 

Coles and Powell (1995) considered the utility of a simple Bayesian approach to spatial 
modelling of extreme wind speeds. As it was already noted, they find Bayesian estimates to 
be much more stable than maximum likelihood estimates especially for the shape parameter 
which has the greatest influence on long-term extrapolation. Also Bayesian analysis performs 
favorably for short data sets. 

Revfeim distribution (see Sec. 2.7) was applied by Revfeim and Hessel (1984) to model 
extreme wind gusts and by Zelenhasic (1970) (who independently derived this distribution 
in a Technical Report) to river flow exceedances. 

In a pioneering paper R. L. Smith (1989) applied ideas of extreme value theory to the 
study of ozone in Houston, Texas. He points out that ground level ozone is a topic of 
considerable environmental concern since excessive levels of ozone are an indication of high 
air pollution. His data were hourly readings of ozone in Houston from April 1973 to December 
1986. Houston is a city in which the legal threshold (12 parts per 100 million) is exceeded 
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very frequently and magnitudes of exceedances are of importance. Smith (1989) produces 
evidence to indicate strong seasonal pattern of extreme ozone levels with a peak in the 
summer months extending through to October. The author mentions that ozone analyses 
at other sites in Texas yielded far more clear-cut evidence of a downward trend. 

Niu (1997) investigated - using extreme value theory for non-stationary times series 
- tropospheric ozone data in the Chicago area. Probabilities of monthly maximum ozone 
concentrations exceeding some specific levels are estimated, and the mean rate of exceedances 
of daily maximum ozone over the U.S. national standard 120 ppb - mentioned above - is 
also assessed. 
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Appendix: 
Graphs of the three basic types 
(1) Gumbel distribution (standard) 

CDF: 

PDF: 

Transformation: g(x) = -In (- In (G(x)): 

G(x) = ePe-* 

f (x)  = exp(-x- exp(-x)) 

!Ax) = 2 

X I 

-5 0 5 

X 

Figure 2.4: Graphs related to the Gumbel distribution. 

(2) Frkchet distribution (standard) 
CDF: 

e-"-k x > o  
{o x < o .  

F(x, k) = (2.44) 

PDF: 
k2 k 
2 2  5 2  

f (x ,  k) = -x ( -~ )  . - . exp [-&')I - x ( - ~ )  . - exp [-x(-')] 

k2 
2 2  

+ [x(-k)]2 . - . exp [-x'-~)],  x > o 
Transformation: g(x) = - In (- In (F(x))): 

g(x, k) = k In (x) (a convex function) . 
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x 

5 10 

x 

0 5 10 

X 

Figure 2.5(a): k = 2. 

0 5 10 

x 

Figure 2.5(b): k = 0.5. 
Graphs related to the Gumbel distribution. 
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Weibull distribution (standard) 

CDF: 

Extreme Value Distributions 

(2.45) 

PDF: 

Transformation: g(z) = - In (- In (W(z) ) ) :  

f(z, k )  = -(-l)kz(k-')kexp [-(--I)~. 21. 

g(z, k )  = -k . In (-z) (a concave function) 

W(X) 0.5 ;nl 
-6 -4 - 2 0  

X 

8(x) ' O F \  0 

-1 
-6 -4 7 0  

-6 -4 7 0 

X 

X 

Figure 2.6(a): k = 2. 
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-10 -20 0 

I 

Figure 2.6(b): k = 0.5. 
Graphs related to the Weibull distribution. 





Chapter 3 

Multivariate Extreme Value 
Distributions 

The theory of multivariate extreme value distributions is a relatively novel but rapidly grow- 
ing field. It is somewhat more involved and requires additional concentration. Special effort 
has been made to provide an organized account of the current state of research. This chap  
ter, consisting of eight sections, presents details of the theory and statistical inference for 
multivariate extreme value distributions and provides a selective survey of some recent ap- 
plications. 

3.1 Limit Laws for Multivariate Extremes 

By analogy with the univariate case the traditional approach to define multivariate extremes 
is to base it on componentwise maxima. If {(Xi,l,. . . , X,,p) ,  i = 1, .  . . , n}  are iid pvariate 
random vectors with joint df F and 

M, = (M,J, . . . , IV,,~) = max Xi,,, . . . , max Xi,p 
l s i s n  l<z<n 

is the vector of maxima of each component, then we seek normalizing constants an j  > 0, 
b,j, j = 1, .  . . , p  such that as n t co 

Pr{(Mn,l - bn,i)/a,,i I xi , . .  . , (Mn,p - b,+,)/ang 5 x p }  

= Fn(a,,lxl + bn,l,. . . , a,,pxp + bn,p) -+ G ( ~ I , .  . . , xp) ( 3 4  

for a pvariate distribution G with nondegenerate marginals. If this holds for suitable choices 
of a, and b,, then we say G is a multivariate extreme value distribution and F is in the 
domain of attraction of G, written as F E D(G).  By setting all xj but one to  co in (3.1) we 
see that Fj E D(Gj) ,  j = 1,. . . , p ,  i.e. 

F,”(a,,jxj + bnJ) -+ Gj(zj), j = 1 , .  . .,XI (3.2) 

where Fj and Gj are the j t h  marginal distributions of F and G respectively. It follows by 
the Extremal Types Theorem in Chap. 1 that Gj is a type I, I1 or I11 distribution and hence 
the norming constants a,,j, b , j  are precisely those in (1.15)-(1.17). 

95 
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The two extreme forms of the limiting multivariate distribution correspond to the case 
of asymptotic total independence between the componentwise maxima for which 

G(zi , .  . . , zp) = Gi(zi) . . . Gp(zp) (3.3) 

and the case of asymptotic total dependence between the componentwise maxima for which 

G(z1,. . . ,zp) = min{Gl(zl), . . . , Gp(zp)}. 

Asymptotic total independence arises if and only if (3.2) holds and there exists an x = 
(21,. . . , zP) E %P such that 0 < G,(z,) < 1, j = 1, .  . . , p  and 

Fn(an,izi + bn,i,. . . , an,pzp + bn,p) + Gi(zi) .  . .Gp(zpCp) 

as n -+ 03 (Takahashi, 199413, Theorem 2.1). Moreover, (3.3) holds for any (zl, . . . , xp) E %p 

if and only if 

G(0, . . . ,  0) =Gl(0)...Gp(O) =exp(-p), 

provided that G3 are Gumbel-type with Gj(zj) = exp{-exp(-z3)}, j = 1, .  . . , p ;  or, 

G( l , . .  . ,1) = G1(l) . . .Gp(l)  = exp(-p), 

provided that G, are FrBchet-type with Gj(zj) = exp{-ziaJ}, a3 > 0, j = 1,. . . , p ;  or, 

G(-1, . . . , -  1) = G1(-l).. .Gp(-l) =exp(-p), 

provided that G3 are Weibull-type with G,(z,) = exp{-(-z,)aJ}, a, > 0, j = 1,. . . , p  
(Takahashi, 1987, Theorems 2.2-2.4). Asymptotic total dependence arises if and only if (3.2) 
holds and there exists an x = (XI,  . . . , zP) E %P such that 0 < G1(zl) = . . . = Gp(zp) < 1 and 

Fn(an,izi + & , I , .  . . , an,pzp + bn,p) -+ Gi(zi) 

as n + 03 (Takahashi, 199413, Theorem 3.1). 
To isolate dependence aspects from marginal distributional features it is convenient to 

transform components of both F and G so that they have a standard marginal distribu- 
tion. For technical convenience we choose the margins to be described by the unit FrBchet 
distribution with df exp{-y-'}, y > 0 denoted by @l(y). This standardization does not 
pose difficulties, as shown by the following propositions (Resnick, 1987, Proposition 5.10). 
Throughout we use the notation Y or y to denote random variables that have the unit 
FrCchet distribution. 

Suppose G is a multivariate df with continuous marginals. Transform 

G*(Yl, ' ' ' ,Yp)  = G((1/(-logGl))+(Yl), . ' ' , (1/(-1OgGp))+(Yp)), Y1 2 0, .  ' . ,Yp 2 0 

(t denotes the inverse of the function in parentheses). Then G, has marginal distributions 
Gt3(y) = @l(y) and G is a multivariate extreme value distribution if and only if G, is also. 
This proposition standardizes the marginal distributions of a multivariate extreme value df to 
unit RBchet margin but yet preserves the extreme value property. The following proposition 
justifies the standardization by showing that F E D(G) if and only if F, E D(G,). 
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Define Uj  = -l/logF, and y3 = Uj(X,) for 1 5 j 5 p .  Let F, be the df of (Y1, . . . , y P )  
so that 

F*(Yl, ' ' ' ,YP) = F(Ul+(Yl), ' ' ' , U,t(YP)). 

If F 6 D(G), then F, E D(G,) and 

max Uj(Xi,j)/n 5 y j , j  = 1,. . . , p  = FF(ny1,. . . ,ny,) l<i<n 

+G* (Yl,...,YP) 

as n 3 m. Conversely if F, 6 D(G,), (3.2) holds and G, has nondegenerate marginals then 

In the next two sections we provide several fundamental results which characterize the 
domain of attraction condition, F E D(G) or equivalently F, E D(G,), and the form of the 
multivariate extreme value df G.. These results have been crucial as theoretical underpin- 
nings to recent developments of statistical models for multivariate extremes (see Secs. 3.4- 
3.7) and their practical applications. 

F E D(G) .  

3.2 Characterizations of the Domain of Attraction 
The concept of domain of attraction received attention in Chap. 1 for the classical univariate 
extreme value distributions. The concept is less straightforward for the multivariate case as 
we shall see from the several characterizations of the domain of attraction that follow. The 
characterizations are classified into those that are just necessary (Sec. 3.2.1), those that are 
just sufficient (Sec. 3.2.2) and those that are both necessary and sufficient (Sec. 3.2.3). 

3.2.1 Necessary Characterizations 
These characterizations are especially useful for statistical modelling of multivariate extreme 
values. We begin with the point process characterization due to de Haan (1985). 

Suppose (Xi,,, . . . , Xi,,), i = 1,. . . are iid pvariate random vectors with common joint df 
F E D(G).  Define 

and let 
P-1 

{ j=1 
sp= (Wl, . . . )  wp-l): c w j  5 1,wj > o , j =  1 , . . . )  p -  1 

denote the ( p  - 1)-dimensional unit simplex. Then the point process 

P, = {(Ul(Xi,l)/n,. . . , Up(Xi,,)/n),i = 1, .  . . ,n} -+ P (3.5) 

p, o T c ( d r ,  d w )  = r - 'drH,(dw) ,  r > 0,  w E S, (3.6) 

as n --t oc) where P is a nonhomogeneous Poisson process on E!,. with intensity measure p, 
satisfying 
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(0 denotes composition of the functions on either side of it) and H, is a non-negative measure 
on S, with 

r 

H,(S,) = p and wjH,(dw) = 1, j = 1, .  . . , p  - 1. J, 
An immediate consequence is that we can write 

G*(Yl, ' . . I Yp) = exP{-v(Yl, ' ' ' , Yp)), 

where 

V(Y1, ' ' ' 7 YP) = P*(([O, Y l l  x . . ' x 10, YpDC) 

H, (dw). 
= ~ ~ m a x  ($, ...,  1 - x7:; wj 

YP 

We refer to V as the exponent measure function. 
The intuitive content of (3.5) for p = 2 can be described as follows. As n + 03, the 

scaling by 1/n drags down to the origin all points except those with unusually large values 
of either X,,1 or Xi,z or both. Points with unusually large Xs,l but not large Xi,z, will move 
under the scaling to the horizontal boundary of IR:, and those with unusually large Xi,Z but 
not large X,,l will move to the vertical boundary of SZ:: only points with both components 
unusually large will survive in IR: away from the boundaries. 

The limiting intensity measure p* describes the dependence structure between unusu- 
ally large values of X,,J, j = 1, .  . . , p  after standardization by Uj  to  have the unit Frhchet 
distribution. However, under the transformation T ,  which maps the standardized vector 
(Ul(Xj,l), . . . , &(Xi,,)) E IR: into pseudo-polar coordinates in (0, m) x S,, the measure 
p* factorizes into a known function of the radial component, T ,  and a measure H, of the 
angular component, w. Thus, essentially, the measure H, on S, embodies the dependence 
structure of the extremes. If it concentrates its mass in the interior of S,, then we have strong 
dependence structures, e.g. total dependence between the extremes of Xi,j, j = 1, .  . . , p  cor- 
responds to H, having all its mass a t  {(l/p, . . . , l/p)}, i.e. H*({(l/p,. . . , llp)}) = p. If it 
concentrates its mass near the boundary of S,, then we have weak dependence structures, 
e.g., total independence between the extremes corresponds to H, having all its mass a t  the 
vertices, i.e. H*({(l/p,. . . ,O)}) = .. .  = H,({(O,. .., l/p)}) = 1. 

Although an arbitrary finite non-negative measure, the standardization of Xi,? constrains 
H, to have unit means with respect to each dimension of S,. Since these are the only 
constraints on H,, no finite parametrization exists for the measure. 

We now discuss two technical tools for generating parametric models for H, that will be 
useful later. This requires some terminology. For a given (wl,. . . , w,-~) E S,, define 

H(wi,. . . , wp-1) = H*([O, W] x . . . x [O,  wP-i]), 

the measure function associated with H,, and construct w* = (wf, . . . , wi), a pdimensional 
vector, by setting w; = wj, j = 1, .  . . , p  - 1 and wi = 1 - x;z; wj. Decompose the measure 
function H into a hierarchy of densities hm,c defined on subspaces Sm,c = {w E S, : w; = 
0, k j$ c} where c = {jl, . . . , j m }  is an index variable over the subsets of size m of the set 
cp = (1,. . . , p } .  The subspace Sm,= is isomorphic to the (m - 1)-dimensional unit simplex 
S, and hm,= is the (m - 1)-dimensional density of H on the subspace Sm,c. The density hm,c 
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describes the dependence structure between the extremes of Xi,k for k = j1, j z ,  . . . , jm.  When 
m = p and c = cp, we shall simplify the notation by h = hp,cp. 

The first tool relates the exponent measure function, V, to  H, by expressing the den- 
sity hm,= for c = {jl,. . . ,jm} in terms of derivatives of V (Coles and Tawn, 1991, Theo- 
rem 1). Namely, 

on {y E 8; : yk  = 0,k c} where we assume differentiability of V. The importance of 
this result is that densities of all orders for the measure function H may be obtained for 
any closed form multivariate extreme value df. For p = 2 the result shows the following: H, 
a function on the unit interval [0,1] = SZ, decomposes into density hz,{l,z) defined in the 
interior, (0, l), and “densities” hl,{l) and hl,{z) defined respectively at the end points, (1) 
and (0). The two latter “densities” (these are actually atoms of mass, H,({l}) and H,({O})) 
are independent components of H in that they are associated with those (X,,l, X,,,) which 
are extreme in only one component. The density h ~ , { ~ , z )  is the dependence component in 
that it describes the dependence between the extremes of both components. 

The second tool generates a form for H, by transforming an arbitrary density ht in the 
interior of S, into hp,cp (Coles and Tawn, 1991, Theorem 2). Specifically, if ht is an arbitrary 
density in the interior of S, with positive first moments: 

mj = lp w;ht (wl, . . . , ~ ~ - ~ ) d w 1  . . . dw,-l, j = 1, . . . , p ,  (3.10) 

then a measure H, on S, defined by 

where mo = xy=l m,w;, is a valid measure satisfying the constraints (3.7). Hence this result 
is useful in generating a rich class of parametric models for H, in the interior of S,. 

The characterization, (3.5), assumes max-stable dependence between the extremes of 
(X~J,  . . . ,Xi,,). A generalization of this characterization to cover weaker forms of dependence 
structures including total independence and negative association is described below (Ledford 
and Tawn, 1997, Theorem 1). We provide the result for p = 2 to the best of our knowledge. 
As yet it is not known how it generalizes to the multivariate case. 

Let (Y,,,, Y,,,), i = 1, .  . . be independent random vectors with both Y1 and Yz having the 
unit Frechet distribution. Suppose that for y1 and yz simultaneously large 

pr(Y1 > y1, YZ > 312) = ~ l ( y 1 ,  yz)yl;cly;c* + ~Z(y1 ,  y z ) y ~ ( ~ l + ~ l )  Y2 - (cz+dz)  + . . . ,  (3.12) 

where c1f  c~ = l /v ,  0 < 7 5 1, dk 2 0 and Lk(y1, yz) 9 0 denotes a bivariate slowly varying 
function. Suppose also that Lz(ty1, t yz )  = o(Ll(ty1, t y z ) }  as t + cc if dl = dz = 0 and 
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is differentiable for all w E (0 , l ) .  Choose b, to satisfy 

Pr{b;’ max(min(K,l, K,z), . . . , min(K,l, Y,,z)) I Y} exp (--Y-”~) 

as n --f 03 and define T(y1, YZ) = ((YI + Yz)/b,, d ( Y 1  + YZ)). Then 

P,={(Y,,i/bn,Y,,z/b,),i=l,...,n} +P (3.13) 

as n + 00 where P is a nonhomogeneous Poisson process on (0, co) x (0, m) with intensity 
measure p, satisfying 

p, o Tt(dr, dw) = r-(’+q)/VdrXo(w)dw, r > 0, w E (0, l ) ,  

where Xo(w) is a rather formidable function: 

clCzg*(w) + w(1 - w)g:(w)(2w - 1 + c1 - c2) - g:’(w)wZ(l - w)2 

Xo(w) = wl+cl ( l  - w)l+cz 

An immediate consequence is that we can generalize the form of (3.8) by 

= exp [ - 7 ~ X 0 ( w ) { m a x ( ~ , ~ ) } ” ~ d w ] ,  

where the integration is over the open interval 0 < w < 1. 
As for the point process characterization the intensity measure p* factorizes into radial 

and angular components. But here both terms influence the dependence structure with q 
playing a fundamental role: the r-(’+q)/q term describes the main decay of probability due 
to dependence while the Xo(w) term embodies less important features of the dependence. 
If the common df of (Y,,1, Y,,z) belongs to the domain of attraction of G,, it is then easily 
verified that c1 = cz = 1/2, dl = dz = 1/2, 7 = 1 and 

1 - V{(l - w)-1, w-1 1 
g*(w) = (2 - V(l , l )}{w(l-  w)}1/2’ 

Thus, b, = n and (3.13) reduces to (3.5). 
Ledford and Tawn (1996) refer to 7 as the coeficient of tail dependence as it provides 

a measure of the dependence between the marginal tails of Yl and Yz. For example, if 
1/2 < 7 I 1 the marginal variables are positively associated; when the marginal variables are 
independent, then 7 = 1/2; if 0 < 7 < 1/2 the marginal variables are negatively associated. 
Also if the marginal variables are asymptotically dependent then 7 = 1, and if 17 < 1 then 
there is asymptotic independence. 

Peng (1999) proposes the following consistent estimator for 7: 

where Y,,l,j I . . . I Y,,,,j denote the order statistics of Yl,j, . . . , Y,,j for j = 1,2. Peng also 
establishes asymptotic normality of this estimate by considering the cases 7 < 1 and 17 = 1 
separately. Assume the following variant of (3.12): 
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uniformlyon{(yl,yz) : $ + y $ = l , y 1  > O , y z > O } a s t - + O w h e r e q E  (0,1] , ,B>Oand 
c(y1, yz) # 0 for some y1, yz > 0. Assume also that c(y1, yz) has continuous first-order partial 
derivatives denoted by 

Then for 17 < 1 

asn+co.  F o r q = l  
2(log2)c(l, l)h(?j" - 1) j d  N(0,a2) ,  (3.14) 

where 

The next result provides another generalization of the point process characterization, by 
considering the case where the marginal variables are linearly ordered (Nadarajah et al., 
1998, Theorem 2). 
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Suppose that the joint df F of (Xl,Xz) belongs to  the domain of attraction of G. If 
X1 5 X2 5 mX1, m > 1 then the limit measure H, in (3.6), defined on Sz = [0,1], is 
concentrated in the subinterval 

with 

where g(y) = Uz{U,t(y)} and Z(y) = Ul{m-lUl(y)}. Consequently, linear ordering between 
the marginal variables has the effect of reducing the domain of H, to [a, b] with a 5 1/2 
and b 2 1/2.  The construct described below provides a simple way of generating parametric 
models for H ,  that are concentrated on a given subinterval [a, b] of [0,1] (Nadarajah et al., 
1998, Theorem 3) .  

Let H i  be an absolutely continuous positive measure on [0,1] satisfying the constraints 
(3.7). Let ht denote the density of H i .  Given a subinterval [u, b] of [0,1] with a 5 1/2 5 b, 
define a measure H ,  on [a, b] as follows: let H ,  have atoms of mass 

H*({a))  = 71, 

H*({b))  = 7 2  

at a and b, where 

2b - 1 
05715-  b - a '  

1 - 2a 
0 5 7 2 5 -  b - a '  

and let H, be absolutely continuous in the interior (a ,  b) with density 

( b  - .)(ffW a(w - a) 
{a (w  - u)  +,B(b- w)}"' { a ( w  - a)  + P ( b -  w) h(w)  = 

where a = 2b - 1 + ~ l ( a  - b)  and p = 1 - 2a + 7z(a - b) .  Then H, satisfies the constraints 
(3.7). 

3.2.2 Suf ic ient  Characterizations 
Sufficient characterizations enable one to examine whether a given df F, belongs to the 
domain of attraction of a multivariate extreme value df G, and to  identify the form of G,. 
We provide three sufficient conditions for F, E D(G,). The last two results, in particular, 
have wide applicability since knowing the limits of some densities enables one to construct 
the limiting multivariate extreme value distribution. 

The first one is based on canonical series expansion of F, (Campbell and Tsokos, 1973). 
Suppose F,(yl, yz) satisfies 
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Suppose also that F, admits an expansion of the form 

I 00 

dF*(Yl,VZ) = dQl(Yl)dQl(YZ) 1 + CPkAk(Yl)Bk(YZ) , { k=l 
where {Ak(yl)} and {&(yz)} are the so-called canonical variables defined on Ql(y1) and 
Ql(y2) respectively, and { p k }  are the canonical correlations defined by 

M M  

P k  = 1, Lw Ak(Yl)Bk(YZ)dF*(Yl, YZ),  k = 192, . . . . 

In general, Ak(y1) and Bk(y2) are kth order orthonormal polynomials in y1 and y2, respec- 
tively. (By convention, Ao(y1) = &(yz) = 1.) Then, if F, belongs to the domain of attraction 
of G, it must be of the form 

G, (YI, YZ) = Q1 (YI)% (yz)ev*(Y1'Yz), 

where 
m 

V*(yi,yz) = j i ~ t C p k E [ A k ( X ) l Y i  I tyiIE[Bk(Yz)IYz I tyz]. 
k=l 

The second result uses regular variation of the joint density of F, (De Haan and Resnick, 
1987). Suppose F, has joint density f which is regularly varying with limit function A, i.e. for 

lim tp+lf(tul,. . . , tup) = x(ul , .  . . ,up).  

Evidently X satisfies A(tu) = @X(u) for u E %:\{(O,. . . , O ) } .  Suppose further that X is 
bounded on B = {u E R: : llull = 1) and that the following uniformity condition holds: 

= (u1, ' ' .  ,up) E %$\{(O,. . . , O ) ) ,  

t+m 

Then, for any E > 0, 

lim sup Itp+lf(tul,. . . , tup) - x(ul,.  . . , up)l = 0. 
t+m IIUII>L 

Also X is integrable on [O,y]", y > 0 and F, E D(G,) where 

The final result supposes absolute continuity of F, (Yun, 1997). For any c = {jl < . . . < 
j k }  C (1,. . . , p }  with k 2 2, let fj,~,, ,..., 3k-1(yjklyjl,. . .,yjk-l) denote the conditional density 
of the jkth component of F, given values of the ( j l , .  . . ,jk-l)th components. If, for any 
c c (1,. . . , p }  with k 2 2, 

~j ,131 , . . . , j , -~(u j~ ;u31 ,  . ' . > " j k - I )  = ~ i ~ t f 3 k l j l  ,...,jk_l(tujbItujl, . . . > t u j k _ l )  < O3 

and if, in addition, for every fixed ujl, .  . . , 
that the class 

there exists a t*(uj,, . . . , ujk- l )  < 03 such 
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of functions of uj, is locally uniformly integrable over (0, co), then F, E D(G,) with 

where 

3.2.3 Necessary and Suficient Characterizations 
Here we give three results, all necessary and sufficient for F, E D(G,). 

The first result is due to Marshall and Olkin (1983) and expresses G, as the limit of 
the conditional distribution of Y given that a t  least one component of Y has exceeded t. 
Namely, F, E D(G,) if and only if 

- W ? ( t y l ,  . . > typ) ~ -logG*(y,, . . ., ~ p )  (3.15) 
-logF,(t, , . . , t )  -lOgG,(l,. . . ,1) 

as t + 00 for each yi > 0, j = 1, . . . , p .  

intensity measure p,. Namely, F, E D(G,) if and only if 
The second result appears in Resnick (1987, Proposition 5.17(ii)) and involves the limiting 

tPr(t-'Y E B )  -+ ,u,(B) (3.16) 

as t -+ co for all relatively compact B for which the boundary of B has p, measure equals 
to 0. 

The third result (Takahashi, 1994a, Propositions 2.1 and 2.2) is in terms of 

DF,(ul,. . . ,up) =F*(Q.t(ul),...,@.t(up)), (ul , . . . ,up)  E (0,1)' 

and 

Dc.(ui,. . . ,up) = G * ( @ r ( u ~ ) ,  . . . , @y(up)), (ui , .  . . ,up) E 

which are the copulas of F, and G, respectively. It says that F, E D(G,) if and only if 

lim t [ l  - DF. (u''~)] = -log&, (u) 
t+m 

for all u E (0,l)P; or, equivalently, 

for all u E (0, l )p;  or, equivalently, 
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for all u E (0,l)P; or, equivalently, 

dil ,..., jk(u) = lim nF,(O,. . . , n@f(u j l ) ,  . . . ,n@;(ujk), . . . ,0)  < 00 
n+m 

for all 1 5 j 1  < . . . < jk 5 p and for all u E ( 0 , l ) P  where F* is the joint survivor function of 
F.. If any of these statements is satisfied, then we can write 

3.3 Characterizations of Multivariate Extreme 
Value Distributions 

Some of the characterizations in the above section also provided characterizations on the 
form of G. In this section we consider some more characterizations on the form of G. 

The earliest known characterization is that due to  Gumbel (1962e). Let G B ~ ,  G B ~ ,  . . . , 
Gg, be known bivariate extreme value distributions with unit Frechet margins. Then, their 
geometric mean 

Ggl(yl, yz)Gg(y1, yz). . . G~~’1”2-’’’-pm-1 ( Y l ,  Yz) 

is again a bivariate extreme value distribution with unit R-e‘chet margins. 
We can directly generalize the stability postulate in (1.5) to obtain the following. Multi- 

variate extreme value dfs, G, in (3.1) are those dfs for which there exist norming constants 
anj > 0, /3n,j, j = 1, . . . , p  such that 

Gn(xlr . .  . , xp)  = G(an,lxl +Pn,l,. . . , an,pxp + n 2 1. (3.17) 

By setting all xi but one to 00 we see that 

G;(xj) = Gj(a,,3~j +A,,), j = 1,. . . , p .  

Hence, the norming constants an,j, Pn,j are precisely those for the stability postulate in (1.5). 
A characterization due to Tiago de Oliveira (1958) is 

G*(yi, YZ) = { @ i ( ~ i ) @ i ( ~ z ) } ” ~ ’ ” ~ ~ ~ ~ ’ ~ ~ ~ ~ ~ ,  

where v is the so-called dependence function. Obretenov (1991) shows that v is related to 
H, through 

For more than two variables the characterization generalizes to  
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with 

where S, is the ( p  - 1)-dimensional unit simplex and wj* is as defined in Sec. 3.2.1. 

(Pickands, 1981). Considering the case p = 2, we can write 
An alternative way of writing the point process characterization in (3.8) is as follows 

(3.18) 

where A is also referred to as a dependence function and is related to H, through 

It can be verified that A has the following properties: A(0) = A(1) = 1; -1 5 A’(0) 5 0; 
0 5 A’(1) 5 1; A”(w) 2 0 and max(w, 1 - w) 5 A(w) 5 1, 0 5 w 5 I; A(w) = 1 implies 
that f i  and yZ are totally independent; A(w) = m a ( w ,  1 - w) implies that Y1 and Yz are 
totally dependent; A is convex, i.e. A[Xy1 + (1 - X)yz] 5 XA(y1) + (1 - X)A(yz); and, if Ak 
are dependence functions, so is EL, akAk, where LLk 2 O and EL1 CYk = 1. 

The next result is a special case of a spectral representation for ma-stable processes 
(De Haan, 1984). There exist non-negative Lebesgue integrable functions fj(s), 0 5 s 5 1 
satisfying 

f j ( S ) d S  = 1, j = 1 , .  . . , p  
1 . 1 1  

fds) (3.19) max ( m7 . . . -) d s }  . 
such that 

G*(yl, . . . , yp) = exp {- 
[OJI Y1 YP 

In the next two sections we demonstrate the characterizations described in Secs. 3.2 
and 3.3 to develop flexible parametric families for bivariate and multivariate extreme value 
distributions. 

3.4 Parametric Families for Bivariate Extreme 
Value Distributions 

The nine families discussed in this section represent the bulk of the distributions for modelling 
bivariate extremes. No doubt that additional models will be discovered. 

3.4.1 Logistic Distributions (Tawn, 198813) 

The df G, takes the form 



Multivariate Extreme Value Distributions 107 

O L  

0.0 0.4 0.8 

m 

W 

?-. - 
1 

N 

0 

0.0 0.4 0.8 

W 

W 

q>2andyi >yi 

m 

W 

P 
z v  

N 

0 -1 
0.0 0.4 0.8 

W 

m 

0.0 0.4 0.8 

W 

Figure 3.1: Possible forms for h(w) for the logistic distribution. 

where 0 5 qhl, $2 5 1 and q > 1. Applying (3.9), we have 

and H,({O}) = 1 - $2, H,({l}) = 1 - $1. Thus, this family has mass both in the interior 
and at the end points. It allows for asymmetry and nonexchangeability through $l and &: 
symmetry and exchangeability arises if and only if il = $2. Total independence corresponds 
to $1 = 0 or $2 = 0 or the limit q -+ I f ,  whereas total dependence corresponds to  g1 = 
$2 = 1 and the limit q + m. 

A special case for $1 = $2 = 1 is the symmetric logistic distribution having all its mass 
in the interior: 

G*(yl, YZ) = exp {-(Y;~ + Y;~)”~}. (3.21) 

This distribution appears in the survival analysis literature; see, for example, Hougaard 
(1986). Alternative parametrizations for this distribution are possibly advisable: for example 
s = l / q  (0 5 s 5 1). The variables of this distribution are exchangeable and have correlation 
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(q2 - l ) /q2.  Also the Fisher information matrix for this distribution has been derived by 
Oakes and Manatunga (1992). 

If $1 = $2 we get a mixture of symmetric logistic and independence. If q -+ m, we have 

1 1 - $ 2  1 - $ 1 + 1  - + - - 
Y1 Yz ' Y1 yz 

with Pr(&$z = %$I) = $i$z/($i + $2 - $I&). When $1 = 1 and $2 = a, we have the 
biextremal (a)  distribution: 

whereas when il = a and $z = 1 we have the dual of the biextremal (a)  distribution 

which corresponds to Y1 and Yz being exchanged. If $1 = $2 = a we have the Gumbel 
distribution (Gumbel and Mustafi, 1967): 

Yz 

3.4.2 

The df G, takes the form 

Negative Logistic Distributions (Joe, 1990) 

where 0 541, $2 5 1 and q < 0. Applying (3.9), we have 

and H,({O}) = 1 - $2, H,({l}) = 1 - $1. This family is similar in structure to the logistic 
family with the special case $1 = $2 = 1 giving a symmetric version of the family and the 
limiting cmes q + 0- and q + -m reducing the family to being totally independent and 
totally dependent respectively. 

3.4.3 Bilogistic Distributions (Joe et al., 1992) 

This family is motivated by the max-stable representation (3.19). Setting fl(s) = (1 - 
q1-')s-'/q1 and fz(s) = (1 - q;')(l - s)-'/qz into (3.19), we get its df as 

for q1 > 1 and qz > 1. Applying (3.9), we have 
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Figure 3.2: Possible forms for h(w)  for the negative logistic distribution. 

where z = z(w; q1, qz )  is the root of 

and H,({O}) = H,({l}) = 0. Thus, this family has all its mass in the interior and is an 
asymmetric generalization of the logistic family in that setting q = q1 = qz gives the sym- 
metric logistic distribution with the two variables being exchangeable. Total independence 
and total dependence correspond to taking both q1 and qz to 1+ and 00 respectively. 

It is possible to think of (ql + qz)/2 as a dependence parameter, measuring the strength 
of dependence between the extremes of the two variables, and (ql - qz) as an asymmetry 
parameter, the case 41 - qz = 0 being one in which the two variables are exchangeable. Joe 
e t  al. (1992) apply this distribution to estimate likely combinations of sulphate and nitrate 
levels in acid rain. 
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Figure 3.3: Possible forms for h(w) for the bilogistic distribution. 

3.4.4 

This family has the same df as the bilogistic distributions except that q1 < 0, q2 < 0. 
Applying (3.9), we have 

Negative Bilogistic Distributions (Coles and Tawn, 1994) 

and H,({O}) = H,({l}) = 0 where z = z(w;ql ,qz)  is as defined in (3.22). This family is 
similar in structure to the bilogistic family and again setting q = q1 = q2 reduces it to a 
symmetric and exchangeable version; namely, the symmetric negative logistic family. Now 
limiting both q1 and qz to 0- and -m correspond to total independence and total dependence 
respectively. Coles and Tawn (1994) find this distribution most suitable for estimating the 
dependence between the extremes of surge and wave height. 
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Figure 3.4: Possible forms for h ( w )  for the negative bilogistic distribution. 

3.4.5 Gaussian Distributions (Smith, 1991) 

The standard Normal distribution is the most prominent distribution in all applications of 
probabilistic and statistical methodology and it is therefore only natural to find its applica- 
tions among bivariate extreme value distributions. The joint df has the form: 

where fo is the pdf of the Normal(0, c) distribution. This can be rewritten as 

where s(w) = {uz + 2 logw - 21og(l - w)}/(2a), u = {(tl - t ~ ) / c } ~  and @ is the cdf of the 
standard Normal distribution. Smith (1991) uses this family to model spatial variation of 
extreme storms at locations corresponding to tl and t z .  This family also appears in Husler 
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and Reiss (1989) as the limit distribution of componentwise maxima of independently and 
identically distributed bivariate Normal vectors; namely, if {(Xi,], Xi,z)} are iid standard 
Normal random vectors and pn is the correlation coefficient between Xi,l and Xi,z then 

as n + 00. Here we suppose that (1 - p,)logn -+ a2/4 as 71 -+ 00. The normalizing 
constant b, is given by b, = n exp (-b:/2)/&. See also Hooghiemstra and Husler (1996) 
for a similar characterization based on maxima of the projections of iid bivariate Normal 
vectors with respect to two arbitrary directions. An expression for the measure density h 
can be derived by applying (3.9) as usual. The resulting form has all its mass in the interior. 
The value of a controls the amount of dependence with the limits a + 00 and a + 0 
corresponding to total independence and total dependence respectively. 

3.4.6 

This family serves as yet another motivation of (3.19). The joint df 

Circular Distributions (Coles and Walshaw, 1994) 

where 

is the pdf of the well-known von Mises circular distribution with I,, denoting the modified 
Bessel function of order 0. Coles and Walshaw (1994) use this distribution to  model the 
dependence between the extremes of wind speeds CorrespondingJo directions 81 and 02. 
Suppose without loss of generality that eZ 2 el, Q2 - el I T and 0 = (0, - 01)/2. Routine 
calculations then show that we can rewrite 

where 

B = {w E (0,2.rr] : sinw > y(w)}, B = ( 0 , 2 ~ ] \ B ,  

and -y(w) = {logw - log(1- w)}/(2(sin8). An expression for h can be obtained by straight- 
forward application of (3.9). Like the Gaussian distributions, this family has the mass of 
h confined to the interior. Here both and angular separation, 8, control the dependence. 
The strength of dependence increases with C while decreasing with 0. The limits C = 0 and 
C -+ 00 give total dependence and total independence respectively. 

3.4.7 
The pdf of Beta(q1, qz) distribution is 

Beta Distributions (Coles and Tawn, 1991) 
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Figure 3.5: Possible forms for h(w)  for the Beta distribution. 

This distribution is widely used in modelling of hydrological variables (see e.g. Johnson et al., 
1995, Vol. 2, p. 236). By eq. (3.10) mj = q j / ( q l  + qz), and from eq. (3.11) it follows that 

is the density of a valid measure H, on [0, I] that satisfies the constraints (3.7) with H,({O}) = 
H,({l}) = 0. Like the two bilogistic families this is asymmetric, nonexchangeable and has 
the mass confined to the interior. For the symmetric and exchangeable version (which arises 
when q = q1 = qz )  both total independence and total dependence are attained as limiting 
cases by taking q + O+ and q + 03 respectively. 

Applying eq. (3.8), we have the corresponding df 

11 ( QlYl +my2 
- -Be ql,qz + 1; 

‘lY1 

Yz 
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where 

Extreme Value Distributions 

a normalized incomplete beta function. 

3.4.8 Polynomial Distributions (Nadarajah, 1999a) 
This distribution encompasses the structure of all known bivariate extreme value distribu- 
tions. A possible motivation is as follows. 

One common feature of the distributions in Secs. 3.4.1-3.4.7 is that their structure is 
governed by the behavior of h near the end points of [0,1]. For example, for the bilogistic 
distribution we have h(w) = 0(wq2-') and h(1 - w) = O(wql-') as w -+ 0, and knowing 
these gives an idea of the whole structure of h and hence that of G,. In general we can write 
h(w) = O(w') and h(1- w) = O(ws) as w + 0 (Nadarajah, 1994). Thus, a natural choice 
for h that has all the flexibility of the known distributions is: 

for 0 E (0,l)  with 

To ensure non-negativity of h and its continuity at 0 we take a 2 0, /? 2 0 and impose the 
requirement a0' = p(l - 0)". To ensure validity of the unit-mean condition (3.7) we take 
r > -1, s > -1 and parametrize the atoms at  the end points as: 

with 0 5 yo, y1 5 1 and 0 5 70 5 min{O-l, (1 - 0)-'}. The resulting distribution has, in 
total, five free parameters. The parameters a and p represent coefficients of the amount of 
dependence put by h on either side of 8. Large values of them are associated with strong 
dependencies. The parameters r and s represent the structure of dependence exhibited by h 
on either side of 0. Negative values of them are associated with weak dependence structures 
as in that case h puts most of its mass near the end points. The parameter 0 represents 
asymmetry of the dependence structure exhibited by h and also enables accommodation 
of atoms of mass in the interior. The parameter -yo is a measure for the mass of H, to 
be concentrated at  a single point in the interior (for total dependence the mass of H, is 
concentrated at  the point w = 1/2 with probability one). Finally, 7 0  and 71 are measures 
for the mass of H, to be concentrated at  the end points 0 and 1 respectively (for total 
independence the mass of H, is concentrated at each end point with probability half). 

It is easily checked that the forms of H and V associated with the distribution are: 

if 0 < w < 0 

if 0 5 w < 1 P 2-71 - -(I - w)'+l 
s + l  

H(w) = 
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Figure 3.6: Possible forms for h(w) for the polynomial distribution. 
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and for y1 > 0, yz > 0 
1 7 0  1 a r+l 

1 71 1 
Yz Y1 y1 (s+ l ) ( s + 2 )  y1 +yz 

-+ -+-  
Y1 yz yz (r + 1)(r + 2) (A) if Yl/(Yl+ Yz) < 0 

S+l 

( L) if Yl/(Yl + yz) 2 e -+ -+ -  
UYl, Yz) = 

where 70, 71 are given by (3.23). 
The distribution has the requirement that h is continuous at 0, i.e. a0' = p(l - 0)' and 

this admits valid solutions for 0 for all possible signs of r and s (the solution is unique when r 
and s have the same signs). Thus, continuity of h at 0 is a sensible requirement. However, we 
find that further requirements for the smoothness of h limit applicability of the distribution. 
For example, h is differentiable at 0 only if 0 5 0 = r / ( r  - s) 5 1. 

We find that symmetry arises if and only if either a = p and r = s when 0 = 1/2 or a = /3 
and T = s = 0 when 0 # 1/2. Thus, asymmetry of dependence structure for the distribution 
can be attributed to 0 not being equal to 1/2, the polynomial coefficients not being equal 
or the polynomial powers not being equal. Exchangeability is equivalent to symmetry when 
0 = 1/2; otherwise, in addition to symmetry, we must have 7 0  = 0. Total independence 
arises as the special case for a = 0, ,O = 0 and 7 0  = 0 while total dependence arises as the 
special case for a = 0, ,B = 0, 0 = 1/2 and 7 0  = 2. 

Two further special cases of interest are 70 = 71 = 7 0  = 0, where H, has no atoms of 
mass, and a = /3 = 0, where H ,  has no mass in the interiors (0,0) and (0, l ) .  In the first 
case, using conditions (3.23), we can parametrize 

with 0 2 s/{2(s + 1)) to ensure a 2 0 and 

with 0 5 ( r  + 2)/{2(r + 1)) to  ensure /? 2 0. Then the continuity requirement on h reduces 
to the following quadratic equation: 

2(r - s)02 + s2 - 3rs - 2r 
(r + 2) ( r  + l)(s + 1) 

e + S = o  
s + 1 

which admits valid solutions for 0 for all possible signs of r and s (the solution is unique when 
r and s have the same signs). The resulting distribution has, in total, two free parameters. 
In the second case, the mass of H, is distributed only at the end points and 0. From (3.23) 
we see that 70 = 1 - (1 - @)ye and 71 = 1 - 070. Thus, total independence and total 
dependence arise when the mass at 0 takes the values 0 and 2 (with 0 = 1/2) respectively. 
Exchangeability arises when the mass at both the end points are equal which occurs if and 
only if 0 = 1/2 or the distribution is totally independent. The end point 0 has no mass if 
and only if 7 0  = 1/(1 - 0) and y1 = (1 - 20)/(1 - 0) with 0 5 1/2. The end point 1 has no 
mass if and only if 7 0  = l /0  and -yo = (20 - 1)/0 with 0 2 1/2. 

Since, under weak dependence structures H, concentrates most of its mass near the end 
points of [0,1], natural measures of weakness of dependence are: 



Multivariate Extreme Value Distributions 117 

for the mass in [0,0] and 

for the mass in (0,1]. Since, under strong dependence structures H, concentrates most of its 
mass in the interior of [0,1], natural measures of strength of dependence are: 

for the mass in [0,0] and 

P M4 = l1 k-?! H,(dw) = -(l - 19)~" 
1 - 0  s + 2  

for the mass in (0,1]. It follows that Ml + Mz = 2 - 0-'(1- 0)-l+ V(0 , l -  0) is the measure 
of overall weakness of dependence with values of 2 and 0 for total independence and total 
dependence respectively. Similarly M3 + M4 = &'(l - S)-l - V(0, l  - 0) is the measure 
of overall strength of dependence with values of 0 and 2 for total independence and total 
dependence respectively. If 0 = 1/2, then (Ml+M2)/2+1 = V(1, l )  is the extremal coefficient 
developed by Coles and Tawn (1994) to measure dependence. Clearly larger values of the 
polynomial coefficients a and P have the effect of strengthening dependence while larger 
values of the polynomial powers r and s have the reverse effect. Note further that Ml + M3 

and Mz+M4 are the total mass of H, in [0,0] and (0,1] respectively. Clearly the total mass in 
each segment becomes inflated and deflated respectively with larger values of the polynomial 
coefficient and power associated with that segment. Note too that Ml + Mz + M3 + M4 = 2, 
the total mass of H,. 

Some obvious measures of asymmetry are 0, Ir - sI, la - PI, r / ( r  + s )  and a/(. + P). 
Additional measures based on the dependence measures above are ( M l - M z ( ,  (M3-M4-7& 
M I / ( M ~ + M z )  and (M3-78)/(M3+M4-78).  We have MI = MZ if and only if 0 = 1/2 or the 
distribution is totally independent while M3 - 7 0  = M4 if and only if 0 = (T + 2)/(r + s +4). 

3.4.9 
These are analogous to the above distributions, but formulated in terms of the A( . )  function 
in (3.18). Take 

Polynomial Distributions (Kluppelberg and May, 1999) 

has (m - 2) parameters. Applying eq. (3.9), we have 
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and H,({O}) = H,({I} )  = 0. Setting m = 5, a5 = @1/20, a4 = q2/12, a3 = -($1 +?I, 2)/6 
and a2 = 1/2, we have as a special case 

h(w)  = 7b1w3 + i 2 w 2  - (g2 + + 1, 

the measure density of the asymmetric mixed distribution due to Tawn (198813). 

3.5 Parametric Families for Multivariate Extreme 
Value Distributions 

The five specific models of multivariate extreme value distributions discussed here do not 
of course exhaust all possible configurations. Section 3.5.6 provides tools for constructing 
further multivariate extreme value distributions subject to constraints on their marginals. 

3.5.1 Logistic Distributions (Tawn, 1990) 

The logistic families (Secs. 3.4.1 and 3.4.2) have direct generalizations to the multivariate 
case. They have been among the most applied multivariate extreme value distribution in 
the literature. One possible way to motivate the generalization is as follows. 

Let C be an index variable over the set B ,  the class of all nonempty subsets of (1 , .  . . , p } .  
Let be the size of the i th  realization at site j ,  of the extreme spatial storms of the 
type which occur only at the collection C of sites. Here Z$(z = 1 , .  . . , Nc) are assumed 
to be conditionally independent given Nc, where the random variable Nc is taken to have 
a Poisson distribution of mean TC. Also 'YC denotes the unrecorded covariate information 
variable, which has a positive stable distribution and characteristic exponent 0 < l/q, 5 1. 
The crc are assumed to be independent. 

We say that a storm affects site j only if an observation at site j exceeds a high threshold, 
t j ,  during that storm. Hence 23'8 > t j  for all j E C and Zjz& 5 t j  for all j $ C. As discussed 
in Chap. 2, exceedances of a high threshold have the Generalized Pareto distribution, so for 
all i we take 

for N c  > 0 then it follows that, for z > t j ,  

Pr(Nc = n) + Pr(Nc = 0) 

(3.24) 
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Figure 3.7: Possible forms for h(wl, w2) for the trivariate logistic distribution. 

As we are interested only in large z, that is z > t j ,  there is no loss of generality in taking 
(3.24) to apply for all z such that 1 + &(z - t j ) / c j  > 0. Hence Zj,c has a Generalized 
Extreme Value distribution (see Chap. 2). 

Here interest is in the joint behavior of XI,. . . , X,, where for j = 1,. . . , p 

x3 = cy$pc ) j  (3.25) 

where B(j) is the subclass of B containing all nonempty subsets which include j. Thus, here 
maximization is over all spatial storms of the type that affect site j. For fixed i, the Z$, 
j E C, are dependent Generalized Pareto random variables and hence Zj,c, j 6 C, are 
dependent Generalized Extreme Value random variables. However, we take Zj,clac, j E C 
to be independent. From Feller (1971, Chap. 13, Sec. 6) and (3.24) this implies that the 
conditional distribution can be taken as 
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Therefore, given the covariate information, the maximum of each type of extreme spatial 
storm has a Generalized Extreme Value distribution with parameters different from those of 
unconditional distribution, (3.24). From univariate extreme value theory, (3.26) is a highly 
realistic form for the conditional distribution. 

The joint df, G, for the X ' s  cannot immediately be obtained, but conditionally on the 
total unrecorded covariate information the X ' s  are independent. From (3.25) and (3.26) 
we have 

Now, integrating over (YC for all C E B gives 

Letting 6 = (ETc)- '{~  + & ( X j  - t j ) / g j } ' / c j ,  where the summation is over C E B(j), the 
marginal distribution of 6 is unit FrCchet for j = 1, .  . . , p .  Also, Y1, . . . , Y, have joint df 

where QC 2 1 and gJ,c = rc/ CTC, the summation being over C E With &,c = 0 if 
J $ C, then for = 1,. . . , p ,  0 5 $ J , ~  5 1 and CCEB &,c = 1. It can be shown easily that 
$J,c is the probability that the maximum value at site j is due to a spatial storm of the type 
that occurs only at the collection C of sites. 

The derivation of (3.27) shows that it is a valid joint df. As (3.27) satisfies (3.17) for 
= n and /3n,J = 0, it follows that (3.27) is a multivariate extreme value distribu- 

tion with unit Frkchet margins. Applying (3.9) to (3.27), we have the associated measure 
densities: 

which have 2P-'(p + 2) - (2p + 1) parameters. Thus, there is mass in the interior of S, 
and on each lower dimensional boundary. For p = 2, this distribution reduces to (3.20), the 
bivariate logistic distribution; hence, (3.27) is indeed a multivariate extension of the logistic 
distribution. Special cases of the distribution include those in Marshall and Olkin (1967), 
Johnson and Kotz (1972, Chap. 41) and McFadden (1978), which are obtainable as limits 
of (3.27) as qc --t co for all C E B. In addition, by letting only certain QC + oa, (3.27) can 
then handle cases where only some variables have singular components to their dependence 
structure. 

Setting $j,cp = 1, j = 1, .  . . , p  and qcp = q into (3.27), we have the symmetric logistic 
distribution: 

(3.28) G&,. . . , yp) = exp {-(yTq + . . . + ypq)) ' /q} .  
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Because of its simplicity, this distribution has been studied extensively. Its characteristic 
function has been given by Shi (1995a). After transforming margins of G, to Generalized 
Extreme Value with parameters (pi, uj, 0), 

where y, t, p, u denote pdimensional vectors with j t h  components yj, t j ,  pi and uj respec- 
tively. Shi also computes the product moments of the distribution using properties of the 
characteristic function. Letting P&,J denote the ( a  + b + c + d)th order moment 

Pabed = E(Y, - El Y k  - EYk)*(X - EX)'(Y, - JYY,)~, 

E(Y,) = + Y a j ,  

T2U2 
PZOOO = 2, 6 

ujuk(q2 - l)7? 

6q2 ' PllOO = 

113000 = 24773, 

2 4 4 q 3  - 1)773 

q3 

20;gkui(q~ - 1 ) ~  
q3 

3a"4 
20 ' 

112100 = 

111110 = , 

114000 = 

+(gq2 + 4)(q2 - 1)r4 

u;u;(27q4 - 2 0 ~ 2  - 2q4)T4 

+kgi(27q2 + 2)(q-2 - q T 4  

~jukuLu,,,(gq2 - - 1).rr4 

60q4 p3100 = , 

180q4 112200 = I 

180q4 P2110 = , 

60q4 111111 = 

where y = 0.5772.. . is the Euler's constant, and vS = CEl l/k" is the Zeta function (see 
Abramowitz and Stegun (1964)). Some special values of the Zeta function are 72 = ?/6, 
773 = 1.20205690, 174 = r2/9O and 175 = 1.03692776. It follows that the correlation coefficient 
between U, and Yk is (q2 - l)/q2. Here the parameter q represents the amount of dependence 
between the two variables and has a simple interpretation as l / q  = 1 -T ,  where T is Kendall's 
coefficient of concordance. 
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Shi (199513) derives the Fisher information matrix of the symmetric logistic distribution 
(3.28), assuming Generalized Extreme Value margins with parameters (p i ,  ~ i ,  ti). For a 
single observation from the distribution, the log-likelihood function is: 

dPG(x1,. . . ,zp) 
1 = log 

8x1 . . . axp 

where 

and Qp(z, q )  is a ( p  - 1)th order polynomial in z satisfying: 

Qp(z, q )  = { q ( p  - 1) - 1 + Z)Qp-1(Z, 4 )  - zaQp-l(z, q ) / a Z ,  QI(z, q)  = 1. 
The derivation of the matrix uses the result that z is distributed independently of 
{ ( z - ' ~ 1 ) ~ ,  . . . , (z-'up)q} according to a mixed gamma distribution with pdf 

Define 
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where 

Fi(E;p)  = (1 + "2 + 0(2bl+E - bz+d - (1 - P d l  +Pq + 2E)b€, 

Pz(t;p) = (1 - Pd{(l  - P ) q  + t c d  - ( 1  + t){(l -P)q + (1 + E)Cl+E)bl+E 

Here A;(O;p) denotes 8Al((;p)/8( evaluated at t = 0 and so on. Obviously, these results 
apply only when p > 1 and all the ( j  < 1/2. 

3.5.2 

Here we discuss a further generalization of the logistic distribution (3.27). Again we motivate 
it physically, following the same terminology. 

It is possible that for a spatial storm that affects the collection C of sites, the values 
at a subset of sites D ,  D c C, will be more dependent than at others. Thus, sites in D 
may be relatively closely grouped. Then twc-stage conditioning is required: the first stage 
represents coarse information sufficient to account for dependence between relatively widely 
spaced sites in C\D, and the second stage represents finer covariate information which 
accounts for dependence within D. Hence, we first condition on ac which is taken to give 
conditional independence within C\D and between C\D and D ,  but leaves D conditionally 
dependent. We then condition on ~ D , C  to give conditional independence within D. 

For each j E C,  C E B and D c C let Z j p , ~  be the size of the maximum, of ND,C 
observations at site j ,  of storms which affect the collection C of sites where a stronger 
dependence exists between sites of the subset D. Here ND,C is taken to be Poisson with mean 
Q,C. Hence if a is the total covariate information and ac and ~ D , C  are independent positive 
stable variables with respective characteristic exponents 0 < l/qc 5 1 and 0 < l / q D , C  5 1, 
we have for D c C 

Two-Level Logistic Distributions (Tawn, 1990) 
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where a, = (1 + & ( z  - t,)/g,}-'/c~. In each case this distribution is Generalized Extreme 
Value. In the most general case, we are interested in the joint distribution of XI,. . . , X, 
where, for j = 1, .  . . , p ,  

X - max max Z,,D,C ' - CEB(,)  D€C* 

and D is an index variable over the set c*, the class of all nonempty subsets of C. Then, by 
an analogous approach to the derivation of (3.27), the joint distribution of XI,. . . ,Xp is 

Transformation of the margins to unit Frkchet form give a multivariate extreme value dis- 
tribution with joint df 

(3.30) 

so 0 5 $,,D,c 5 1 and from (3.30) the $J'S satisfy a summation restriction. If q D , c  = 1 for all 
D c C, then (3.29) reduces to (3.27). Other special cases include distributions in McFadden 
(1978) and Joe and Hu (1996, Sec. 5.2). Because of the hierarchical form of the conditioning 
we call (3.29) the multivariate two-level logistic distribution. Clearly, in theory it is possible 
to extend this distribution to any hierarchical level. 

A special case of (3.29) that has been studied to a great extent is the nested logistic 
distribution (Coles and Tawn, 1991) with df 

G&, YZ, 9 3 )  = exp [-{(y;"' + Y;'~* ) ' I 9  * + Y;q)1 /41 ,  (3.31) 

where q, q, 2 1. Note that the symmetric logistic distribution in (3.28) is a special case of 
this for q. = 1. After transforming margins of (3.31) to  Generalized Extreme Value with 
parameters (p , ,~ , ,  0), Shi and Zhou (1999) derive its characteristic function as 

where y, t ,  p, u denote 3-dimensional vectors with j t h  components y,, t,, p, and nj respec- 
tively. Shi and Zhou also compute the product moments of (3.31) using properties of the 
characteristic function. Let 
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The second order moments are found to be: 

0 1 a 2 ( q 2 d  - 1)T2 
6 q 2 d  

a1a3(q2 - l)7? 

0 2 a 3 ( q 2  - 1)7? 

6q2 

Pll0 = 1 

6q2 ' PlOl = 

poll = 

Thus, the correlation coefficient between Yl and yZ is (q2q: - l ) / ( q 2 q z )  and that between Yl 
and Y3 (or Yz and Y3) is (q2 - l ) /q2.  The third order moments are: 

pjjlet = 24:.;.;(1 - X3)773, j + k + I = 3, 0 5 j ,  k ,  I 5 3. 

Here 9s = CEl l /k" is the Zeta function and X takes the following values: 0 if there are two 
zeros among j ,  k ,  I ;  l / q  if I # 0 and one or both of j, k are nonzero; and, l / ( q q , )  if I = 0 and 
both of j ,  k are nonzero. Similarly, some fourth order moments are: 

4a;a;(9q2q: + 4)(q2q: - i).rr4 

60q4q: 
P310 = P130 = 

and 

3.5.3 

This has joint df 

Negative Logistic Distributions (Joe, 1990) 

with parameter constraints given by qc 5 0 for all c E C, $j,, = 0 if j $! c, $j,c 2 0 for all 
c E C and ~ c G c ( - l ) ~ c ~ $ ~ , c  5 1. Again by (3.9), 

Evidently this has structure similar to the logistic family with the special case for $j,cp = 1, 
j = 1, . . . , p  and qc, = q giving a symmetric version that has all its mass in the interior of S,. 

The two bilogistic families discussed earlier are asymmetric generalizations of the logistic 
families, but it is not yet known how they generalize to the multivariate case. However, the 
family of Beta distributions generalizes to the following. 
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-1 < q < O a n d v  = w  =w q < - 1  andv = w  =I 
1 2 3  1 2 3  

1 

0 

0 W 1 0 W 1 
1 1 

1 

ZN 

0 

0 W 1 0 W 1 
1 1 

Figure 3.8: Possible forms for h(w1, wp) for the trivariate negative logistic distribution. 

3.5.4 

The pdf of Dirichlet(q1, . . ., q,) distribution is 

Dirichlet Distributions (Coles and Tawn, 1991) 

By eq. (3.10) mi = q i / (q l  + . . . + q,), and from eq. (3.11) it follows that 

is the density, in the interior of S,, of a valid measure H, that satisfies the constraints (3.7). 
This has structure similar to the Beta family, the special case for p = 2, with symmetry 
arising when ql = . . . = qp. 
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o < q  = q  = q  < 1  
1 2 3  

0 W 1 
I 

0 W 1 
1 

1 

0 W 1 0 W 1 
I 1 

Figure 3.9: Possible forms for h(w1, wz) for the Dirichlet distribution. 

The corresponding form for G, is complicated although numerical computation is feasible. 
This distribution has been found most suitable for estimating in continuous space the spatial 
dependence within rainfall storms (Coles, 1993) and for estimating the dependence between 
the extremes of surge, wave height and wave period (Coles and Tawn, 1994). 

3.5.5 Time Series Logistic Distributions (Coles and Tawn, 1991) 

Let Y,, . . . , Yp be a first-order Markov process representing a time series such as observations 
of a propagating sea storm at sites ordered along a coast. Suppose without loss of generality 
that y3 have the unit F'rkchet distribution. Let f(j) denote the joint density of (y3,y3+1). 
Then the joint density of Y1, . . . , Yp is 
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0 W 1 
t 

q = q  > 2  
1 2  

0. 

0 W 1 
1 

\ 

0 W 1 0 W 1 
1 1 

Figure 3.10: Possible forms for h(w1, w2) for the time series logistic distribution. 

Evaluating (3.16) at B = [0, yl] x . . . x [0, y,] and then differentiating it with respect to 
yl, . . . , g,, we have 

Hence if we assume that the joint df of ( y 3 ,  q+l) belongs to the domain of attraction of a 
logistic bivariate extreme value df with qhl = qhz = 1 and qj = q then 

for qJ 2 1. 
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An extension of this family, not examined here, is based on a higher order Markov 
sequence with the associated joint density of consecutive values taken as multivariate extreme 
value with unit FkCchet margins. 

3.5.6 Distributions Closed Under Margins 
Here we discuss a few technical tools for constructing multivariate extreme value distributions 
that arc closed under margins. We begin with one communicated by Nadarajah (1999~). 

Let GA, GB and GC be known bivariate extreme value distributions with respective 
exponent measure functions VA, VB and V,. Assume as usual that all univariate margins 
are unit F’rCchet. The following steps construct a trivariate extreme value distribution that 
has GA, GB and G c  as its bivariate margins. 

Partition the two-dimensional unit simplex, S3, into three disjoint sets B,, j = 1 , 2 , 3  
chosen as 

B1 = {(wl, w ~ )  E S, : w1 2 wz and 2wl + wz 2 I}, 

Bz = ( ( ~ 1 ,  W Z )  E S3 : ~2 2 ~1 and 2 ~ 2  + ~1 2 l}, 

B3 = {(wI, WZ) E S3 : 2wl+ w2 5 1 and 2wz + w1 5 l}. 

Define H, : B3 -+ !J?+ and 6, : 9; + S3 to satisfy 

L, wdHl(w1,wz) = 

Then, 

where 

is a trivariate extreme value distribution. It is easily checked that 

Gt(Yiryzrm) = G A ( Y ~ , Y z ) ,  G * ( Y I , ~ , Y ~ )  = GB(YI ,Y~)  and G * ( ~ , Y z , Y ~ )  = Gc(Yz,Y~).  

The second construct that we discuss is due to Marco and Ruiz-Rivas (1992). Suppose 
that we can express 

Gj  = ~ j ( F j ) ,  j = 1,2 
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where Fj is an nj-variate df and v3 : [0,1] + [0,1] is continuous to the right and satisfies: 

V j ( 0 )  = 0, v3(1) = 1, v3()le) 2 0, 1 5 k 1. nj. 

a j k  = v;k)(0)/k!, k = 1 , .  . . , nj - 1, j  = 1,2, cj = 1 - c a j k .  

Let 
nj-1 

k=l 
Define 

v(sl, sz) = I" I" ( s1 1 - u 1  - "')"1-1 (-)n2-1dD(ul,uz), 1 -u2 

where D(u1, uz) is any df in [0,1]' with marginal densities: 

It is then easily verified that 

G(xi,xz) = v(Fi(xi), FZ(XZ)) 
is a df with G1, Gz as marginals. 

We now discuss three more specialized constructs (due to  Joe (1994)) that are closed 
under margins. Let Vm denote the exponent measure function of an m-variate extreme value 
distribution. Take Vz(yl,yz) = (yTq + yTq)'/q and, for m 2 3, define V, to satisfy the 
recurrence relation 

V,(y,, . . . , y,) = [{VLl(Yl,. . . ,ym-l)}ql." + yj--41,m]l/ql,m, m (3.32) 

where q1,2 2 q1,3 2 . . . ql,, 2 1. Then V, corresponds to a multivariate logistic distribution 
that is closed under margins. With v k  as given by (3.32), define 

1 1 
Y1 

v;(yl, . . . , ym) = - + . . . + - - c (Yjlql , jz + Y;q~21z)l/ql,j2 
ym j 1< jz  

where q1,2 5 . . .  5 ~ 1 , ~  5 0. Then Vz corresponds to a multivariate negative logistic 
distribution that is closed under margins. For the final construct, take 

1 
Vz(Y1,Yz)=--@ +-log- +-@ - + - l o g -  , 

Y1 (i : 3 :z (; d ;:) 
the exponent measure function corresponding to the bivariate extreme value Gaussian dis- 
tribution (where @ denotes the cdf of the standard Normal distribution). Let Pjkl = 
(a& + a; - ai,)/(2akjalj) for j ,  k ,  1 distinct and, for m 2 3, define Vm recursively by 

Vm(Y1,. ' ,  ~ r n )  = Vm-1(Yl?. . . j~m-1) 

a1,m log(y1s) am-1,rn I log(Ym-ls) ds, 

2 am-l,m ) a) -+- I " ' ,  

Here @() denotes the cdf of a multivariate Normal distribution with means 0, correlations 
&,,kl(l 5 k < 1 < m - l ) ,  and variances 1. This construct ensures that Vm corresponds to a 
multivariate extreme value Gaussian distribution that is closed under margins. 

+ 6'I"" ( 2 al,, 
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3.6 St at ist ical Estimation 

3.6.1 Parametric Estimation 
As with the univariate approach based on the Generalized Extreme Value distribution any 
approach for modelling multivariate extremes directly based on the componentwise maxima 
M, is wasteful of data (Coles, 1991). A further weakness is that M, may not correspond to 
an observed event, so any approach based on M, may give misleading results in small sam- 
ple applications (Coles, 1991). In this section we describe two likelihood-based parametric 
approaches for estimation which circumvent these drawbacks. 

The first approach is based on the limiting point process result (3.5) and is due to  the 
independent efforts of Coles and Tawn (1991) and Joe et al. (1992). In (3.5), they assume, for 
large n, that P, in a region B, bounded away from ((0, . . . , 0)) by a distance dependent on 
the rate of convergence, is approximately a nonhomogeneous Poisson process with intensity 
satisfying eq. (3.6). Take {n-'(Ul(Xi,l), . . . , U,(Xi,,)),i = 1 , .  . . , ng} to be the points of P,, 
in B. Then the likelihood over B,  Lg, is 

i=l 

where 8 are parameters for H, and ( ~ i ,  wi) = T(Ul(Xi,l), . . . , U,(Xi,,)) are the pseudo-polar 
transforms given by (3.4). 

Now consider the general likelihood for {Xi, i = 1, . . . , n}. This involves simultaneous es- 
timation of the marginal parameters for Uj and the dependence parameters for H,. Hence we 
require an appropriate choice for the region B and a model for the marginal transformations 
U, to be included in eq. (3.33). 

Coles and Tawn (1991) and Joe et al. (1992) regard the region B = !R:\{(O, u1) x . . .  x 
(0, up)} for high thresholds uj as a sensible choice as it contains all observations which are 
large in at least one margin. It also ensures that points in B are invariant to the model for 
marginal transformations, (3.34), chosen below. 

The marginal transformations above a high threshold, tj (say), are determined by the 
conditional distribution of threshold exceedances. As noted in Chap. 2 these have a Gen- 
eralized Pareto distribution form: Pr(Xj > zIXj > t j )  = {I + [j(z - tj)/cj}-'/CJ, uj > 0, 
1 + &(z - ti)/.? > 0. Thus, for X, > t, 

Here Xj  = Pr(Xj > t3 )  is obtained as the proportion of points exceeding t j .  Points below 
the threshold are relatively dense, so we transform these components using the empirical df. 
Hence, the model for the marginal transformation is: 

-(log[l - X,{I + tj(xj - tj)/uj}-'/C~])-' if xj > t j  

if Xi 5 ti 
(3.34) { -[log{R(X,)/(n + 1)Il-l 

U,(Xj) = 

where R(X,) denotes the rank of Xj. 
Hence, the thresholds for the limiting process are given by uj = n-'Uj(Xj), though 

checks are required to ensure that these are sufficiently high for eq. (3.6) to be valid in B - 
see Nadarajah (1994, Chap. 4) for diagnostics that ensure this. Incorporating eqs. (3.6) and 
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where u = (c lr . .  . , q,), 6 = ( [ I , .  . . , &,) and h(w) is a parametric form for the density of H, 
in the interior of S,. 

Generally maximum likelihood estimators behave regiilarly provided that marginally < j  > 
-1/2, j = 1,.  . . , p  (Smith, 1985). However, in some cases dependence parameters are super- 
efficient. For example, for the symmetric logistic distribution there is discontinuity in h as 
q 4 1: thus within the logistic distributions any vertex mass implies q = 1, corresponding to 
independence of the variables. Tawn (198813, 1990) discusses this problem further. 

Ledford and Tawn (1996) and Smith et  al. (1997) have developed an alternative approach 
based on (3.15): 

In using this result, they assume that (3.35) holds as an identity for some fixed large t = t ,  
say. Since t,yj needs to be large for each j it is imposed that y(, = t,yj is above some high 
threshold. This gives 

V(Y;ltcl . ' ' , Y#c) 
V(1,. . . , l )  log F*(Yi, . . . , y;) = log F*(t,, . . . , te) 

Now, by (3.8), V is a homogeneous function of order -1, and the y' terms are just dummy 
variables, so 

for some K ,  when each y j  is above some suitably high threshold. Ledford and Tawn (1996) 
take this threshold as the 1 - X j  quantile of the unit Fr6chet distribution, where X j  is some 
small probability. Thus, yj  2 -I/ log(1 - Xj )  for j = 1, . . . , p .  

To evaluate the constant K ,  set y1 = -1/ log(1- XI), yz = . . = yp = m into (3.36) and 
note that 

F*{-l/log(l - X1),m,. . .,a} = exp[V{-1/log(l - X1),m,. . . ,m}K] .  

This implies that 1 - A1 = exp{-Klog(1 - XI)}, and so K = -1. Thus, combining (3.36) 
with the definition of F., we have 

F(z1,. . . , z p )  = exp[-V{-l/logFi(z1), . . . ,  - 1 / 1 0 g F ~ ( ~ ~ ) } ] ,  
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valid for each z j  2 t j  say, where the t j  are chosen so that, for each j ,  Fj(t j )  = 1 -A?. Further, 
assuming that Fj for Xi 2 t j  has the Generalized Pareto distribution with parameters 
(uj, 6, X j )  , we have 

F(z1,. . . ,zp) = exP{-V(U1(d,. . . , U,(zp))), (3.37) 

valid for each xj 2 t j ,  j = 1,.  . . , p .  This derivation simply amounts to assuming that for 
joint exceedances of a set of suitably high thresholds, the dependence structure of the df 
F is that of an exact multivariate extreme value distribution. The approach due to Smith 
et al. (1997) slightly differs from this in that they assume 

F(z1,. . . , z,) = 1 - V(I/[1 - exp{-1/U1(zl)}], . . . ,1/[1- exp {-l/Up(zp)}]) (3.38) 

which is a first-order approximation of (3.37) for small Xj. 
To develop a likelihood based on (3.37), Ledford and Tawn (1996) consider marginal 

observations below their respective thresholds as censored at the threshold. Thus, the con- 
tribution to the likelihood of a typical point (zl,.  . . , zp) for which the margins j1 , .  . . , j ,  
attain or exceed their thresholds is given by 

d m F ( z l , .  . . , z,) 
d X j ,  . ' ' d X j _  

' (3.39) 

with F given by (3.37), evaluated at 2 1  = max(t1, XI), . . . , zp = max(t,, Xp). 
We construct the explicit form of the likelihood for the case p = 2 as follows. For high 

marginal thresholds tl and t z ,  divide the (XI, Xz) plane into four regions based on whether 
each margin is above or below its respective threshold. Label these regions with i j  = 0 
if Xj  < t j  and i j  = 1 if Xi 2 ti, for j = 1 ,2 .  Let Lili2 ( z 1 , ~ ~ )  denote the likelihood expression 
corresponding to a point (21 ,  z2) falling in region Bili2. Write rj = -1/ log(1- A,) and define 

a 
K(Y1,YZ) = --V(y1, dY1 yz), 

d 
VZ(Y1,YZ) = --V(!A,yz), 8YZ 

Then (3.39) gives that 

where 
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for j = 1 ,2 .  Thus, the likelihood contribution from a typical point 
parameters 0 and marginal parameters u = (gl, c,), i$ = (El, Ez), A = (Al, A,) is given by 

xi,,) for dependence 

Li(0,  u> E ,  A) = C Lrs(zi,lj zi,z)lrs(zi,1, Ti,,), 

T,sE(O,1) 

where IvS(z,,1, xi,,) = I{(zi,1,zi,2) E Ers} with I the indicator function. Writing the likeli- 
hood for a set of n independent points as L(n)() ,  we thus have 

We noted earlier that problems arise with the point process approach when the marginal 
variables are independent. Nadarajah (1994, Chap. 3) shows that these problems remain 
for the approach due to Smith et  al. (1997). But the approach of Ledford and Tawn (1996) 
overcomes these problems. To test for exact independence of the marginal extremes, they 
consider, for a typical point ( z ~ ,  z,,,), the behavior of the score at independence defined by 

d 
a - d 0  u - -logL,(e,u,€,A)Ie=e,, 

where 01 is the vector of dependence parameters corresponding to total independence and 
(u, 6 ,  A) is the vector of the marginal parameters which jointly maximizes L(n)(O~,  b, 6, A). 
Evaluating this for the possible forms in (3.40) shows that the score depends on the marginal 
parameters only through the unit F'rkchet variables, U3(z3 ) ,  and the transformed thresholds, 
r J ,  for = 1,2. Thus, 

ut = C ~rs(zt,1, zt,Z)Irs(za,l, z,,z), 
.T,SE(OJ) 

where 

TOO(zi,lr xi,,) = r;' logr;' + r;'logr;' - (r;'+ r;') log(r;'+ r;'), 

T01(2,,1, Xi,,) = r;'logr;' + (u;' - 1) logu,' - (r;' + u;' - 1) 10g(r;' + u;')l 

TlO(Zi,l, Xi,,) = (u;l - 1) logu;' + r;' logr;' - (u;' + r;' - 1) 1og(u;' + 
Tll(zi,l,z,,z) = (u;' - 1) logu;' + (u;' - 1) 10gu;l 

- (u;'+ u;' - 2) 10g(u;' + u;') - (u;1+ u;')-', 

where uj = Uj(zj) for j = 1,2. Defining the total score of a set of n independent points as 

Ledford and Tawn show, under the assumption of independence of the margins, that 

-u(n)/(2-'n 1ogn)"Z --f N(0, l )  

as n --f 00, with departures from independence producing large positive variates. They also 
give a table of critical points relevant for testing, obtained by simulation. 
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3.6.2 Semiparametric Estimation 
The parametric approaches discussed above are based on the use of asymptotically justified 
approximations for both the marginal distributions, F,, and the dependence structure in 
the joint tail of F .  Models derived from these approximations are fitted to a region of the 
observed joint tail which is determined by suitably chosen high thresholds. A drawback with 
this is the necessity for the same thresholds to be taken for the convergence of both marginal 
and dependence aspects which can result in inefficient estimation. Dixon and Tawn (1995a) 
provide an extension which removes this constraint. The resulting model is semiparametric 
and requires computationally intensive techniques for likelihood evaluation. 

We provide an outline of the arguments leading to the likelihood for p = 2. Consider the 
parametric model, (3.38), due to Smith et  al. (1997). In (3.38), both the limiting marginal 
aspects, where 

(3.41) F,(x,) = 1 - X,[1 +[,(x, - t,)/c~~];'"', j = 1,2,  
and the limiting dependence aspects, where 

are assumed to hold for all x ,  2 t , .  In contrast, Dixon and Tawn (1995a) assume that the 
dependence structure Convergence is slower than the marginal convergence. They introduce 
thresholds for the dependence structure, t d l ,  such that (3.42) holds for x3 2 t ,  = tdl, and 
thresholds for the margins, tml (< td,), such that (3.41) holds for xl 2 t, = t ,  . Correspond- 
ingly the sample space is partitioned into nine regions 

where the boundaries are bk, -1  = -w, bk,O = t,,, bk , l  = td, and bk,2 = 00, k = 1,2. Based 
on this partition, let 

Then. 

0 in 0 2 ,  (3.41) and (3.42) hold with t j  replaced by t,, . Thus, the likelihood contribution 
from an observation x E R2 is 

(3.43) 

with F given by (3.42). 
in i23, the assumptions do not provide a complete model as only one marginal form 
is specified. Consequently, following Smith et al. (1997), the likelihood is obtained by 
censoring observations below the marginal thresholds. Thus, for x E Bzo, 

(3.44) 
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and, for x E Boz, 
(3.45) 

d 
8x2 

LBO, (x) = -F(tml, x2), 

where F is given by (3.42). 
in R1, as above, the joint distribution is not completely specified. A solution is devel- 
oped using a combination of both parametric and censoring approaches which leads to 
a semiparametric model. Let Lg! denote the likelihood of an observation conditional 
on it being in R1. Then the unconditional likelihood can be written as 

h ( x )  = F(tdl, tdz)Lg!(x), (3.46) 

where F is given by (3.42). Let F(') denote the corresponding conditional joint distri- 
bution in 01. Since the marginal distributions of F are given by (3.41) above ti = tmJ, 
the marginal distributions of F(') are 

F,(')(zl) = F(zl, t d z ) / F ( t d l ,  id, ) ,  tm, 5 2 1  5 tdl (3.47) 

with F,(") given similarly. Despite knowing its marginal distributions, _we do not have 
an explicit model for F(").  Thus, it is estimated empirically with f(")(x) denoting 
a kernel density estimate of f(')(x), the joint density of F('), and fi(') denoting the 
corresponding estimate of F(') obtained by integrating f''). The derivation of Lgi, is 
equivalent to the problem of obtaining the joint distribution with the required marginal 
form given by (3.47) and a dependence structure consistent with interaction form of a 
non-parametric estimate within the region. A general solution to  this type of model 
generation problem is given by iterative proportional fitting algorithm (Bishop et al., 
1975; Whittaker, 1990). Given two marginal densities el and e2 and a joint density 
g(O)(x), the sequence of densities g@)(x), with j t h  marginal g,!")(xj), given by the two 
stage updating procedure 

( 2 k - 2 )  
g(2k-1)(X) = g(2k-2) (x)e1(21 )/Sl (4 1 

g(2k)(X) = g(2k-') (x)e2(x2)/g2 (XZ), 
(2k-1) 

k = 1,2, .  . . converges pointwise to  a limiting density g"(x). Here, g"(x) has marginal 
densities e j ( j  = 1,2), and a dependence structure which is equivalent to that of g(O)(x) 
in the sense that 

@logg(O) (x)/dxl asz = d210gg(") (x)/dx1dz2. 

Thus, taking 

with FP) given by (3.47), and 

m t m l ,  tm, ) if x E Boo 

dF(C)(zl, tm,)/axl 

df i (c ) ( tm,  , z2)/dz2 

f(') (x) 

if x E B~~ 

if x E B,,~ 

if x E Bl1, 

p ( X )  = 
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the iterative procedure gives the conditional likelihood contribution for an observation 
for x E R1 as 

(3.48) 

By combining the calculations, the likelihood for an iid sample {K, i = 1, . . . , n} is 
given by 

n 

q e ,  u, E ,  A) = ~ { L ~ ~ ( x ~ ) ~ { ~ ~ ~ ~ z } L ~  oa 20 ( x , ) ~ { ~ * E ~ ~ ~ ) L ~ ~  ( X , ) r { x * E n l )  1, 
$=I 

where I is the indicator function, and Ln,, L B ~ ~ ,  L B , ~  and Lol are given by eqs. (3.43)-(3.45) 
and (3.48) respectively. Here 8 are dependence parameters and u = (.I, gz), E = ([I, &), X = 
(A1, A,) are the six marginal parameters. Since obtaining the contribution to  the likelihood of 
points in the region 01 requires the convergence of the iterative proportional fitting algorithm, 
evaluating the likelihood at  a particular value of the parameters is computationally intensive. 
Also the fitting algorithm involves many one-dimensional integrals in order to obtain the 
margins of g(". 

3.6.3 Non-Parametric Estimation 

Non-parametric estimation of multivariate extreme value distributions concerns estimation 
of the dependence measure H ,  or its equivalent A, the dependence function. 

The work started with Pickands (1981). If {(XJ, ~ Z J ) }  come from (3.18) then he observes 
that l /max{Y,~(l  - w),yZ,~w} has an exponential distribution with mean l/A(w), for each 
w E [0,1]. Hence, with a sample {(XJ, y Z , z ) } ,  1 5 i 5 n, an obvious consistent estimator of 
A(w) is 

(3.49) 

Besides being non-convex and non-differentiable, this estimator does not satisfy A,(O) = 
A,(1) = 1. However, the simple modification 

1 -I 
An(w) = n [ 2 I/ max{x,1(1- w), ~ , z w >  - (1 - w) 2 1/x,z - w 2 l /X,l  + n 

%=I Z=1 

may be used to overcome this defect. Pickands proposes a method of making it also convex 
by replacing A, by its convex minorant. But the construction is rather involved and leads 
to a function having a complicated implicit dependence upon the data. It is thus natural to 
seek other ways of estimating A(.). Motivated by the fact that the sum of convex functions 
is convex, Tiago de Oliveira (1987) proposes the alternative estimate 

n 

An,6,(w) = 1 - n-lR(&) Cmin{Y,f;(l- w), Y,f;w}, 
t=1 



138 Extreme Value Distributions 

where 0 < 6, < 1 is a sequence of exponents such that 6, t 1 as n -+ 00, and where R(6) 
is a function of 0 < 6 < 1 such that R(b) / ( l  - 6) -+ 1 as 6 t 1. Deheuvels and Tiago de 
Oliveira (1989) establish that this estimator is consistent for A if and only if the sequence 
0 < 6, < 1 satisfies the condition that 6, -+ 1 and (1 - 6,) logn -+ 00 as n -+ 00. 

Pickands did not even consider making (3.49) differentiable. Smith (1985) addresses 
this issue. He observes that (3.18) is differentiable if and only if h exists on (0,l). Then 
h(w) = A”(w). This suggests the estimator 

(3.50) 
A,(w + A) + A,(w - A) - 2An(w) 

A2 
h,(w; A) = 

which is a very simple approximation to  the second derivative of A. Here X is an adjustable 
smoothing parameter. Asymptotic arguments in Smith et  al. (1990) show that, for large n 
and small A, 

Bias in h,(w; A) N X2h”(w)/12, 

Variance of h,(w; A) N C(w)/(nX), 
(3.51) 

where 

C(w) = {12A2(w) + 12(1-  2w)A(w)A’(w) - 12w( l -  w)A”(w) 

+ 4w(l  - w)A(w)A”(w)}/{3w2(1 - w)’}). (3.52) 

The assumptions here arc that X 5 w 5 1 - A ,  and that h is twice continuously differentiable 
at w. For w < A, eq. (3.50) is no longer valid and we replace it by 

2{XAn(0) - (A + w)A,(w) + w A ( X  + w)} 
Xw(w + A) 

h,(w; A) = 

with a similar modification for w > 1 - A. 
The bias in (3.51) is of order A’, the variance is of order (.A)-’ and hence the minimum 

mean square error is O(n-4/5) achieved when X = O(W’ /~ ) .  These are the same orders of 
magnitude as arise in ordinary one-dimensional density estimation (Silverman, 1986), under 
the assumption that h is twice differentiable. 

Often a large value of X (in range 0.25-0.5) is needed to obtain h, positive for all w. This 
is because of the roughness of A, and therefore suggests smoothing A, before differentiating. 
The kernel method is widely used for smoothing problems in statistics (Silverman, 1986), so 
it is an obvious possibility to try here. 

In its simplest form, the kernel estimator given in Smith et al. (1990) is 

(3.53) 

where X is a smoothing parameter and K a kernel function, which in most applications is 
taken to be a pdf symmetric about 0. The integral in (3.53) is necessarily over a finite range, 
which creates difficulties when w is near 0 or 1. Differentiating (3.53) and assuming that 
K is twice differentiable, Smith et al. (1990) obtain estimators for A’ and A”. Calculations 
similar to those leading (3.51) then give 
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with C(w)  given by (3.52). 
Calculations based on these approximations show that, using the criterion suggested by 

Silverman (1986, Sec. 3.3), the differencing method is only 1.4% less efficient than that based 
on the theoretically optimal Epachenikov kernel. Thus, from the point of view of mean 
square error, there is nothing in practice to choose between the two methods. Examples 
have shown that the kernel method yields smoother estimates, but behaves badly at  the end 
points. 

A second from of the kernel method suggested in Smith et al. (1990) is for the range of 
the integral to be first transformed from ( 0 , l )  to (--00, m). The transformation adopted is 
w + log(w-’ - 1) and the corresponding estimator is then 

] du. 
1 10g(w-1 - 1) - u 

Anz(w) = /m -m An [E] K [ (3.54) 

As before, Smith et al. (1990) estimate A’ and A” by direct differentiation in (3.54). The 
main practical advantage of (3.54) over (3.53) is that it works much better near the end 
points (w = 0 and 1). 

A third procedure suggested in Smith et al. (1990) is a combination of the kernel method 
with Pickands’ (1981) procedure: first define A:(.) to be the greatest convex minorant of 
A,(.), this is Pickands’ estimator, and then apply (3.54) with A: in place of A,. No asymp- 
totic results have been found for this procedure but it sometimes leads to more satisfactory 
results in practice. 

Some recent work by Einmahl et al. (1993) constructs a non-parametric estimate of the 
dependence memure H, for a random sample from the original distribution F .  The construct 
for p = 2 is as follows. 

Let {(Xz,l, XQ)} be a sequence of independent and positive random vectors with equal 
margins and common df F E D(G).  Here G is a bivariate extreme value df of the form 
(3.8) with marginal dfs exp{-xia}, xi > 0, j = 1,2.  Let (pi = ,/-, Oi = 

arctan(Xi,z/X,,l)) be the pseudepolar coordinates of { ( X Q ,  X Z , ~ ) } .  Let p ( k )  denote the kth 
order statistic from p1, . . . , p, and k, a sequence of positive integers satisfying 

1 5 k, 5 n/2, and k, + co, kn/n + 0 (n -+ m). (3.55) 

Given k,, the non-parametric estimate of H,([O, 1/(1 +tan@)])  = H+(@),  say, is 

(3.56) 
l n  

Hn(Q) = - C ~ { e i  5 8, pi 2 P(n-k,+l)}, 0 5 0 5 ~ / 2  
k, i=l 

which is both weakly and strongly consistent. Moreover, kk”((H, - H+) converges weakly to 
A, a mean zero Gaussian process with covariance structure 

E{N@l)A(@z)} = @(min(@l,&)) - @(81)@(.(82), 0 I @1,@z I ~ / 2 .  

Here @(.) denotes the cdf of the standard Normal distribution. Note also that A =d B o @, 
where B is a Brownian bridge. 

We now outline an extension of the above result, due to Einmahl et  al. (1997), for the case 
where {(X~,J,XQ)} with joint df F E D(G)  have unequal margins and Gj is Generalized 
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Extreme Value with parameters (0, 1, t j ) .  Let a?(.) > 0, b j ( n )  E 8, ( j  = 1 , 2 )  be the 
norming constants for which 

F " ( a l ( n ) z l +  b l (n ) ,  az (n)zz  + h ( n ) )  -+ "(XI, 5 2 )  

as n + 03. With k ,  as defined in (3.55), suppose that Gj(n/k,) ,  & ( n / k n ) ,  ti are any 
estimators of aj (n /k , ) ,  b j ( n / k n ) ,  & ( j  = 1,2) respectively satisfying, 

Gj(n/kn) +p 

a j (n l kn )  aAn /kn )  
G ( n / k n )  - bj (n /kn)  +p  o, cj +p ti 

as n -+ co, k,  + 03 and k,/n -+ 0. For example, some specific estimators studied by 
Dekkers et al. (1989) satisfy these conditions. Finally, define the pseudo-polar coordinates 
as pi = max(Y,, l(n/k,) ,  Y , , z (n / kn ) )  and Oi = arctan(Y,,z(n/kn)/Y,,l(n/kn)) where 

Then the extension of (3.56) is the estimate: 

1 
Hn(0) = - c I { @  5 0, pi > 1). 

kn . 1=1 

This is weakly consistent for H + ( 0 )  and is also strongly consistent under some further mild 
conditions. It is also asymptotically normal. But the expression for the associated covariance 
structure is too complicated. 

The most recent non-parametric estimates are given in Caperaa et al. (1997). The esti- 
mates are based on the following representation. 

Let ( K , Y Z )  be distributed according to (3.18). Let UI = G*l(YI), UZ = G,z(Yz) and 
Z = log(Ul)/ log(U1Uz). Then the df of the random variable Z is given by 

P(z )  = Pr(Z 5 z )  = z + z(1 - z ) D ( z ) ,  

where D ( z )  = A' ( z ) /A ( z )  and A'(z )  denotes the right derivative of A for all 0 5 z < 1. A 
proof of this representation can be found in Ghoudi et al. (1998). As a consequence of this 
representation, one gets 

for arbitrary choices of 0 5 s 5 t 5 1. Since A(0) = A(1) = 1, one may write 

A(t)  = exp { f -dz}  = exp { - 1 - d z } .  P(z )  - 2 

0 41 - 2) z(1 - z )  

Let P, be the empirical df of Zl, . . . ,Z, for a random sample { ( x , ~ ,  Y,,,), i = 1,. . . , n} 
drawn from (3.18). Replacing P by P, in the above expressions yields two possible non- 
parametric estimators for A, denoted by 

A:(t)  = exp { 1 - d z } ,  P,(z) - z AA(t) = exp { - 1 -dz} P,(z) - 2 
z(1 - 2) z(l  - 2 )  
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Caperaa et al. (1997) show that log A: is an unbiased and uniformly, strongly consistent 
estimator of log A, i.e. E(1og A:) = log A for all n 2. 1 and 

almost surely. In addition, the process n'/'(logA: - logA) is asymptotically normal with 
zero mean and covariance matrix 

P(min(u, w)) - P(U)P(V)  
dwdu. 

Since P(min(u, v)) 2 P(u)P(v) ,  it should be observed that ro(t, t )  is monotone increasing 
in t ,  so that, in spite of its attractive properties, logA:(t) is an increasingly unreliable 
estimator of logA(t) as t + 1. A similar analysis by Caperaa et al. (1997) shows that 
n'/2(log A; - log A) is asymptotically normal with zero mean and covariance matrix 

and hence that the variance of logAA(t) is a decreasing function of t. This phenomenon 
suggests that a combined estimator of the following form might be preferable to each of the 
log A:: 

logAn(t) =p(t)logA;(t) + (1 -p(t)}logA;(t), 

where p ( t )  is a bounded weight function on [0,1] that gives comparatively more weight 
to IogA; in the neighbourhood of i. Again, Caperaa et al. (1997) show that logA, is 
unbiased and uniformly, strongly consistent estimator of log A. In addition, the process 
n'/'(logAn - log A) is asymptotically normal with zero mean and variance function 

where 

is the asymptotic covariance of nl/' log A:(t) and nl/' log AA(t). 
minimises the asymptotic variance, r(t), is: 

The choice of p ( t )  that 

We now define the new estimator in terms of A,. If 2(1), . . . , Z(.) stand for the ordered 
Zz's, and if 
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then Caperaa et al. (1997) note that A, can be written in closed form as 

provided that the 2,'s are distinct. This estimator satisfies A,(O) = A"(1) = 1, provided that 
p(0)  = 1 - p(1) = 1. It is an asymptotically unbiased estimator of A and is also uniformly, 
strongly consistent. 

3.7 Simulation 
This section is concerned with methodologies for simulation of bivariate extremes. We dis- 
cuss, in turn, three known approaches due to Shi et al. (1993), Ghoudi et al. (1998) and 
Nadarajah (199913). 

Shi et al. (1993) describe a scheme for simulating (Yl, Yz) from the bivariate symmetric 
logistic distribution, (3.21). Defining the transformations l/Y1 = Zcos2/'V and 1/yZ = 
2sin2/*V, they note that the joint density of (2, V) factorizes as 

(q-'z + 1 - q-')e-'sin2v, o < v < n/2, o < z < co 

which shows that 2 and V are independent. It is easily characterized that V may be 
represented as (arcsin U'/ ') ,  where U is uniform on (0, l ) ,  while 2 is the 1 -q-' : q-' mixture 
of a unit exponential random variable and the sum of two independent unit exponential 
random variables. Hence this suggests an easy way of simulating from (3.21). 

Ghoudi et al. (1998) describe a scheme that is applicable for all bivariate extreme value 
distributions. To begin with note that the copula, i.e. the df with uniform margins, associated 
with (3.18) is 

Ghoudi et  al. show that the joint df of 2 = Yz/(Yl + Yz) and V = D(exp(-l/Yl), 
exp (-l/Yz)) is 

It follows from this that the marginal df of 2 is 

G z ( z )  = z + ~ ( l  - 

and that the conditional df of VlZ = z is 

(3.57) 
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where 
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z(l - z)A”(z) 
’(’) A(z)gz(z) 

and gz is the derivative of Gz. Thus, given 2, the law of V is uniform on [0,1] with 
probability p ( 2 )  and equal to the law of the product of two independent uniforms on [0,1] 
with probability 1 - p ( Z ) .  Hence, to simulate (Y1, Yz) from (3.18), one can use the following 
procedure: 

simulate 2 according to the distribution given by (3.57); 
Having 2, take V = U1 with probability p ( 2 )  and V = UIUz with probability 1 -p(Z) .  
Here Ul and Uz are independent uniforms on [0,1]; 
Set yl = Vz/A(z)  and yz = V(l-z)/A(z). 

The most recent method is due to Nadarajah (199913). It differs from the two schemes 
above in that it does not simply simulate from a bivariate extreme value distribution, but uses 
the limiting point process result, (3.5), as an approximation to  simulate bivariate extreme 
values. In ( 3 . 5 ) ,  we assume, for large n, that P, coincides with the Poisson process with 
intensity satisfying eq. (3.6) for a region B C { [ O , c o )  x [O,co)}\{(O,O)} sufficiently away 
from { ( O , O ) } .  Thus, simulation of (K,  Yz) in B, under this model, reduces to  simulation of a 
Poisson process restricted to B. There are standard procedures to simulate from a Poisson 
process, we consider a simple one. Take B = BO = ((y1,yz) : y1 + yz > r o , y ~  2 0 , y ~  2 0) 
with T O  sufficiently large so that the assumption is valid; see below for simulation over 
general forms of B. The conditional pdf of (R ,  W )  = T(Y1, Yz) = (Y1 + yz, Yl/(yl + K)) 
over T(B0) is: 

using eq. (3.6). Since this conditional density factorizes, i.e. R and W are independent, we 
can simulate the radial and angular coordinates independently of each other. The procedures 
for these are as follows: 

We simulate r by the inversion principle: set ST’, r&ds = ‘u. for ‘u. N U(0, l )  and invert 
to obtain r = r0/(1 - u) ;  
Since H, is a composition of the density h in the interior, (0, l), and the atoms, 
H,({O}) and H,({l}), at the end points, simulation of w can be performed by the 
method of composition (see e.g. Ripley, 1987, Sec. 3.2) in two steps. Firstly, set w as 
0, belonging to (0 , l )  or 1 with probabilities Z-’H*({O}), 1 --Z-lH*({O}) -Z-lH*({l}) 
and 2T1H*({l}), respectively. Then, if w is set to be in (0, l ) ,  simulate its specific 
value from the pdf 

using the rejection method (see e.g. Ripley, 1987, Sec. 3.2). To apply the rejection 
method to simulate from h*(w) we need to determine a probability density g(w), from 
which it is easy to simulate, and a constant M such that h*(w)/g(w) 5 M for all 
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w E (0 , l ) .  The density g is referred to as the envelope. Under mild conditions on h*, a 
form for the envelope g is easily established by the following result: if h* is a continuous 
probability density over ( 0 , l )  and there are some constants qo > -1, q 1  > -1 such 
that W(w) = O(wqo) and h’(1- w) = O(wql) hold as w -+ 0 then the beta density 

where 

satisfies h*(w)/g(w) 5 M < 00 for some constant M .  Nadarajah (1994) shows that 
each currently known model for H ,  (including those discussed in Sec. 3.4) satisfies 
the conditions of this result for particular choices of qo, q1 and M .  Hence, using the 
rejection method of simulation for w reduces, for each model, to simulation from a 
Beta(qo + 1, q1 + 1) distribution for which routines are widely available. 

To simulate (Y1, Yz) over a region B not having the form Bo we follow the usual practice: 
first apply these procedures to simulate (Y1, Yz) over an Bo for which B c Bo and then delete 
those points falling outside of B. 

3.8 A Selective Survey of Applications of Multivariate 
Extreme Value Distributions 

This is the third separate section in this book devoted to applications of extreme value 
distributions. The rationale behind having individual sections on applications of classical 
nnivariate extreme value distributions, generalized (univariate) extreme value distributions 
and now on multivariate ones is to minimize the overall pressure on the reader and reduce 
the amount of information to be absorbed in a single setting. Also since most of the readers 
will, hopefully, be studying this monograph in an organized manner, it is indeed more con- 
venient to have the section of the theory of multivariate extreme value distributions to be 
immediately supplemented by the examples of practical applications of this theory. Indeed 
- as in the previous applications sections - we shall provide only examples rather than 
attempting a complete survey which is beyond the scope of the book. Again recent contri- 
butions by J. Tawn and his associates will receive special attention since - in the opinion of 
the authors - this work contains laudable achievements and examples of combining impor- 
tant theoretical results with efficient utilization of modern computer technology and recent 
inference procedures based on it. 

3.8.1 Some Earlier Applications 

In his survey of applications of multivariate extremes, Tawn (1994) points out that many 
problems that involve applications of extreme value methodology are “inherently multivari- 
ate by nature”. Indeed, observations of a number of different physical processes observed at  
one site, or a number of summarizing features of behavior of a single process at a particular 
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location, or consecutive observations during extreme events of one process, or most promi- 
nently a spatial process observed at  a finite number of sites are all examples of observations 
leading naturally to multivariate extreme value distributions. 

First, however, we shall comment on an earlier contribution by Gumbel and Goldstein 
(1964) involving the most popular, almost classical, topic of extreme value theory: ages a t  
death classified according to sex. The well-known fact that the oldest ages of women are 
higher than those for men, requires testing of the natural hypothesis of independence of 
oldest ages at death. The authors, using the data of the oldest ages at death for men (zl) 
and for women ( ~ 2 )  in Sweden for the period 1905-58 (n  = 54), perform a classical X2-test 
of independence. Let y, denote the transform of xj to the Gumbel margin ( j  = 1,2). Under 
the hypothesis of independence, the bivariate asymptotic df of (yl, yz) is 

To apply the X2-test, the authors enumerate the number of data in the five intervals, given 
by G(y1, yz) < 0.2; AG(y1, yz) = 0.2; G(y1, yz) > 0.8. The expected number in each interval 
is 54/5 = 10.8. The observed numbers for the oldest ages are given in the table below. 

Interval Observed Number of 
Oldest Ages 

11 
12.5 
7 
9.5 
14 
54 
2.266 
0.69 

The number of degrees of freedom is four which leads to the pvalue given in the last line. 
Thus, the conclusion is that the hypothesis of independence should be accepted. 

We extended the above analysis to the years 1967-97 (thanks to  Statistics Sweden and 
to Dr. Eva Elver for providing the relevant data). The new data showed an increasing gap 
between the ages of men and women and a somewhat erratic slow increase in the values of 
the maxima. But the hypothesis of independence was found t o  be valid for the new and 
combined data. 

Gumbel and Goldstein (1964) also carried out a similar analysis to floods data from the 
Ocmulgee river in the State of Georgia, U.S.A. The data were annual maximum discharges 
and came from two different stations: one upstream (21) and the other downstream (Q). The 
analysis (again involving the Xz-test) leads to rejection of the assumption of independence 
between the upstream and downstream floods. 

As pointed out by Tawn (1994), the paper by Gumbel and Goldstein (1964) reviewed 
above and the subsequent one by Gumbel and Mustafi (1967) in which annual maximum 
river flows of the Fox river at two sites in the State of Wisconsin (U.S.A.) were studied seem 
to be the only papers in sixties which demonstrated applicability of the theory of bivariate 
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extremes. To the best of our knowledge, there are indeed no descriptions of work dealing 
with application of the theory of bivariate or multivariate extreme values (with a possible 
exception of McFadden (1978)) until mid eighties. After that we encounter a flood of papers 
on multivariate applications by de Haan, Smith, Tawn and their associates. This burgeoning 
activity is the result of advances in probabilistic results (see e.g. de Haan (1985)) and new 
approaches to estimation of the dependence structure of multivariate extremes (see e.g. Smith 
(1994)) the latter being the main aspect of multivariate extreme value methodology. 

3.8.2 Directional Modelling of Wind Speeds 
Coles and Walshaw (1994) investigate directional modelling of wind speeds based on data 
collected at the University of Sheffield for the U.K. Meteorological Office. The data consist 
of hourly maximum wind gust speeds recorded in knots, together with the gust direction, 
recorded to the nearest 10". 

The authors emphasize the importance of dependence of extreme winds across directions 
because extreme storms tend to change direction providing successive extreme values in 
several directions. They suggest the following model for the joint distribution of annual 
maximum wind speeds for any set of directions 0 C (0,27~]: 

where 

and fo is the von Mises circular density. This is the so-called circular max-stable model. 
A special case of this model is the bivariate circular extreme value distribution discussed 
in Sec. 3.4.6. The model can be used to calculate probabilities of joint events across entire 
sectors. 

For the Sheffield data the authors model directions within each of the four quadrants 

( O O ,  go"], (go", 180"], (180", 270"] and (270", 360'1 

separately. They find some indication that the mechanisms of dependence in quadrants 1 
and 3 are different, dependence being generally weaker in quadrant 1 than in quadrant 3. 
This may have a physical explanation. The figure below graphs the return level curves for 
each quadrant as a function of plotting quantiles 

p = 1 - Pr{& 5 2, V B  E O }  

on the scale - log(- log(1 - p ) ) .  The substantially different extremal behavior within each 
quadrant demonstrated by these plots is the kind of information which could usefully be 
applied in engineering design. 

3.8.3 Applications to Structural Design 
As it was no doubt observed from previous chapters, one of the aims of extreme value analysis 
is to model the extreme tail to estimate probabilities of failure of some structure. Coles and 
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Figure 3.11: Annual maximum return levels, for exceedance probability 1 - p ,  for wind 
speeds within each quadrant: , quadrant 1; .- .-, quadrant 2; __ 
~, quadrant 3; ~ . . .-, quadrant 4. 

Tawn (1994) assert that many forms of structure fail owing to a combination of various 
processes a t  extreme levels. Thus, multivariate extreme value methodology is an adequate 
tool for quantifying the risk of failure due to extreme levels. 

Let XI,. . . , X, be random variables corresponding to the constituent processes that affect 
some structure. Coles and Tawn (1994) express the concept of failure in terms of the value 
which is exceeded by an appropriately chosen function of the univariate random variables. 
Postulating the existence of structural parameter v, it is assumed that structural failure 
occurs if 

X = ( X 1 ,  . . . ,  X,) 

belongs to some failure region B, in 92,. Explicitly, 

B, = {X E 8’ : b(x ,v )  > 0) 

for some “boundary function” b : RP x V -+ R where V is the parameter space for v. For a 
given v it is required to determine 

p = P r ( X E B , )  

or conversely to determine a value of v which gives rise to a specified value of p .  Imposing 
further optimization criteria can lead to unique solutions for v. 
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Numerous practical problems relating to extremes especially in environmental setting can 
be stated in the above manner. Coles and Tawn (1994) cite examples in offshore engineer- 
ing ( e g  oil-rigs), in assessment of extremal total volume of rainfall from a discrete set of 
sites and in structural failures of river banks (where the corresponding failure region has a 
componentwise structure). In the rest of section we provide some details of two far-reaching 
examples studied in this context. 

The first example concerns reservoir flood safety (Anderson and Nadarajah, 1993; Ander- 
son et al., 1994). It arises from a project sponsored by the U.K. Department of Environment 
involving researchers from the University of Sheffield and the Institute of Hydrology at 
Wallingford with the aim to provide a basis for the reassessment and modification of current 
British design recommendations for reservoirs. 

If a reservoir receives a sudden inflow of water during a very violent storm then it is 
conceivable that the provision for outflow at  the reservoir’s dam could prove inadequate, 
resulting in an unplanned overflow. Such overflows could cause serious damage to the dam 
structure, and it could possibly lead to catastrophic failure, with serious economic and 
environmental consequences, and perhaps even loss of life. Using the above terminology, 
a plausible boundary function is 

b(R, W, S ;  V) = A(R, W, S;  V) - 1 

where 

R and S are total rainfall and total snowmelt during the storm over the area draining 
into the reservoir; 
W is the wind speed at some time after the onset of the storm when the i d o w  to the 
reservoir has had time to raise the water level; 
A is a function that computes the peak water level at the dam wall during the storm. 
It will be a complicated deterministic function, depending on specific characteristics 
such as reservoir size, drawoff rate and orientation; 
and, I is the height of the dam wall. 

The probabilities, p ,  of structural failure are computed by modelling the joint extremes 
of (R, W, S )  by a trivariate extreme value distribution and thus inducing a probability dis- 
tribution on A(R, W, S ) .  Figures 3.12 and 3.13 show typical probabilities associated with 
rare water levels for a number of different settings of the reservoir characteristics. The 
probabilities are expressed in terms of return periods, the mean interval (in years) between 
exceedances of the levels. 

The second example concerns the safety of sea dikes in the Netherlands (Brunn and 
Tawn, 1998; de Haan and de Ronde, 1998). It arises from the European Union undertaking 
“Neptune” which involved three institutions from the U.K. (British Maritime Technology, 
Lancaster University and the University of East Anglia), three institutions from the Nether- 
lands (National Institute for Coastal and Marine Management, Delft Hydraulics and Erasmus 
University Rotterdam) and the GKSS Forchungszentrum Geesthacht in Germany. Needless 
to say that the project has a substantial practical value for the Netherlands (40% of the 
country is below the mean sea level and is protected by dikes). In 1953, the sea dikes broke 
in part of the country and the subsequent flooding claimed nearly 2000 lifes. The aim of 
the “Neptune” project was to estimate the probability of failure of a dike called “Pettemer 
zeedijk” which protects a gap in the natural coast protection formed by sand dunes near the 
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Figure 3.12: Effects of drawoff rate and reservoir size on probabilities of rare water levels. 

town of Petten. The failure was taken to occur if 2% runup level exceeded the crest height 
of the dike. This 2% runup level is a function of the onshore sea state, involving variables 
such as wave height ( H m O ) ,  wave direction (0) and still water level (SWL). To simplify 
analysis wave direction, 0, was taken fixed perpendicular to the dike. A possible boundary 
function is that 

b ( H m 0 ,  SWL) = 0.3NmO + SWL - 7.6. 

The estimation of p entails modelling of the joint tail of ( H m O ,  SWL) using bivariate 
extreme value distributions. The work by the Dutch team, L. de Haan and J. de Ronde, 
gave the estimate 

p = 1.14 x 10-3 

with the 95% confidence interval 

(0,8.75 x 

They noted also that zero probability is a real possibility. The results of investigation (on the 
same problem) by the British team, J. Brunn and J. Tawn, can be summarized as follows: 

the 100-year return level of H m O  is 7.62m with 95% confidence interval (6.34, 9.03); 
a the 100-year return level of SWL is 2.88m with 95% confidence interval (2.42, 3.47); 
a the 100-year return level for the stmcture variable, 0.3 H m O  + SWL, is 5.17m. Since 

the height of the sea dike under consideration is 7.6m high this estimate suggests that 
flooding is not likely (consistent with the result noted by the Dutch team). In fact, 
the return period associated with 7.6m is estimated to be 10,800 years. 
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Figure 3.13: Effects of orientation on probabilities of rare water levels. 

Other applications of multivariate extreme values (not discussed above) include: study 
of the dependence between the extreme concentrations of a pollutant at several monitoring 
stations in a region (Joe et al., 1992; Joe, 1994); modelling of periods of extremely cold 
temperatures (Coles et  al., 1994; Bortot and Tawn, 1998); estimation of extreme sea levels 
in coastal engineering (Dixon and Tawn, 1994); estimation of the extremal behavior of 
the rainfall regime within a specified area, such as a catchment region, using pointwise 
measurements of rainfall from a network of sites (Coles and Tawn, 1996a); estimation of 
the probability of coastal flooding at an existing flood defence structure and for aiding the 
design of a new structure (Morton and Bowers, 1996; Bruun and Tawn, 1998; Zachary e t  al., 
1998); flood frequency analysis (EscalanteSandoval, 1998); and, estimation of rainfall-depth- 
frequency curves (Nadarajah et  al., 1998). 



Bibliography 

Abdelhafez, M. E. M. and Thomas, D. R. (1990). Approximate prediction limits for the 
Weibull and extreme value regression models, Egyptian Statist. J .  34, 408-419. 

Abdelhafez, M. E. M. and Thomas, D. R. (1991). Bootstrap confidence bands for the Weibull 
and extreme value regression models with randomly censored data, Egyptian Statist. J. 
35, 95-109. 

Abramowitz, M. and Stegun, I. A. (eds.) (1964). Handbook of Mathematical Functions with 
Formulas, Graphs and Mathematical Tables, Dover. 

Achcar, J. A. (1991). A useful reparametrization for the extreme value distribution, Comput. 
Statist. Quart. 6, 113-125. 

Achcar, J. A., Bolfarine, H. and Pericchi, L. R. (1987). Transformation of survival data to  
an extreme value distribution, Statistician 36, 229-234. 

Ahmad, M. I., Sinclair, C. D. and Spurr, B. D. (1988). Assessment of flood frequency models 
using empirical distribution function statistics, Water Resources Res. 24, 1323-1328. 

Ahmed, E. (1989). On the probability of selecting extreme value populations with the 
smallest location parameters, Statistician 38, 191-195. 

Ahsanullah, M. (1990). Estimation of the parameters of the Gumbel distribution based on 
the m record values, Comput. Statist. Quart. 5 ,  231-239. 

Ahsanullah, M. (1991). Inference and prediction problems of the Gumbel distribution based 
on record values, Pakistan J .  Statist. B, 7, 53-62. 

Ahsanullah, M. (1994). Records of the generalized extreme value distribution, Pakistan J. 
Statist. A, 10, 147-170. 

Ahsanullah, M. and Holland, B. (1994). On the use of record values to estimate the location 
and scale parameters of the generalized extreme value distribution, Sankhya, B, to appear. 

Aitkin, M. and Clayton, D. (1980). The fitting of exponential, Weibull and extreme value 
distributions to complex censored survival data using GLIM, Appl. Statist. 29, 156-163. 

Al-Abbasi, J. N. and Fahmi, K. J. (1991). GEMPAK: a Fortran-77 program for calculating 
Gumbel’s first, third, and mixture upper earthquake magnitude distribution employing 
maximum likelihood estimation, Comput. Geosci. 17, 271-290. 

151 



152 Bibliography 

Alves, M. I. F. and Gomes, M. I. (1996). Statistical choice of extreme value domains of 
attraction - a comparative analysis, Comm. Statist. Theory and Methods 25, 789-811. 

Aly, E.-E. A. A. and Shayib, M. A. (1992). On some goodness-of-fit tests for the normal, 
logistic and extreme-value distributions, Comm. Statist. Theory and Methods 21, 1297- 
1308. 

Anderson, C. W. (1970). Extreme value theory for a class of discrete distributions with 
applications to some stochastic processes, J .  Appl. Prob. 7 ,  99-113. 

Anderson, C. W. and Coles, S. G. (1997). Approximations for Poisson-like maxima, Ann. 
Appl. Probab. 7 ,  953-971. 

Anderson, C. W., Dwyer, I. J., Nadarajah, S., Reed, D. W. and Tawn, J. A. (1994). Max- 
imum reservoir water levels, in Reservoir Safety and Environment, 200-213. Thomas 
Telford. 

Anderson, C. W. and Nadarajah, S. (1993). Environmental factors affecting reservoir safetx 
in Statistics for the Environment I, 163-182, eds. V. Barnett and K. F. Turkman, John 
Wiley and Sons. 

Angus, J .  E. (1993). Asymptotic theory for bootstrapping the extremes, Comm. Statist. 
Theory and Methods 22, 15-30. 

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992). A First Course in Order 
Statistics, John Wiley and Sons. 

Ashour, S. K. and El-Adl, Y. M. (1980). Bayesian estimation of the parameters of the 
extreme value distribution, Egyptian Statist. J .  24, 140-152. 

Aziz, P. M. (1955), (1956). Application of the statistical theory of extreme values to the 
analysis of maximum pit depth data for aluminum, Corrosion 12, 35-46. See also ibid, 
495-506. 

Bai, J., Jakeman, A. J. and McAleer, M. (1992). On the use of extreme value distribu- 
tions for predicting the upper percentiles of environmental quality data, Math. Comput. 
Simulation 33, 483-488. 

Bain, L. J. (1972). Inferences based on censored sampling from the Weibull or extreme-value 
distribution, Technometrics 14, 693-702. 

Balakrishnan, N., Ahsanullah, M. and Chan, P. S. (1992). Relations for single and product 
moments of record values from Gumbel distribution, Statist. Probab. Lett. 15, 223-227. 

Balakrishnan, N. and Chan, P. S. (1992a). Order statistics from extreme value distribution, 
I: Tables of means, variances and covariances, Comm. Statist. Simulation Comput. 21, 
1199-1 2 17. 

Balakrishnan, N. and Chan, P. S. (1992b). Order statistics from extreme value distribu- 
tion, 11: Best linear unbiased estimates and some other uses, Comm. Statist. Simulation 
Comput. 21, 1219-1246. 



Bibliography 153 

Balakrishnan, N. and Chan, P. S. (1992~). Extended tables of means, variances and co- 
variances of order statistics from the extreme value distribution for sample sizes up to 
30. Report, Department of Mathematics and Statistics, McMaster University, Hamilton, 
Canada. 

Balakrishnan, N. and Chan, P. S. (1992d). Extended tables of best linear unbiased esti- 
mates from complete and type11 censored samples from the extreme value distribution 
for sample sizes up to 30. Report, Department of Mathematics and Statistics, McMaster 
University, Hamilton, Canada. 

Balakrishnan, N., Chan, P. S. and Ahsanullah, M. (1993). Recurrence relations for moments 
of record values from generalized extreme value distribution, Comm. Statist. Theory and 
Methods 22, 1471-1482. 

Balakrishnan, N. and Cohen, A. C. (1991). Order Statistics and Inference: Estimation 
Methods, Academic Press. 

Balakrishnan, N., Gupta, S. S. and Panchapakesan, S. (1992). Estimation of the location 
and scale parameters of the extreme value distribution based on multiply type-I1 censored 
samples. Technical Report, Department of Statistics, Purdue University. 

Balakrishnan, N. and Lenng, M. Y. (1988). Order statistics from the type I generalized 
logistic distribution, Comm. Statzst. Simulation Comput. 17, 25-50. 

Balakrishnan, N. and Varadan, J. (1991). Approximate MLEs for the location and scale 
parameters of the extreme value distribution with censoring, IEEE Trans. Reliab. 40, 
146-151. 

Ballerini, R. (1987). Another characterization of the type-I extreme value distribution, 
Statist. Probab. Lett. 5 ,  83-85. 

Barakat, H. M. (1997). On the continuation of the limit distributions of the extreme and 
central terms of a sample, Test 6, 351-368. 

Barakat, H. M. (1998). Weak limit of the sample extremal quotient, Austral. New Zealand 
J .  Statist. 40, 1, 83-93. 

Barndorff-Nielsen, 0. (1964). On the limit distribution of the maximum of a random number 
of independent random variables, Acta. Math. Acad. Hungar. 15, 399-403. 

Barnett, V. (1999). Ranked set sample design for environmental investigations, Environ- 
mental Ecolog. Statist. 6, 59-74. 

Barnett, V. and Moore, K. L. (1997). Best linear unbiased estimates in ranked set sampling 
with particular reference to imperfect ordering, J .  Appl. Statist. 24, 699-710. 

Beirlant, J. and Devroye, L. (1999). On impossibility of estimating densities in the extreme 
tail, Statist. Probab. Lett. 43, 57-64. 

Beirlant, J., de Waal, D. J. and J. L. Teugels (1999). The generalized Burr-Gamma family 
of distributions with applications in extreme value analysis, Technical Report 262: Dept. 
of Mathematical Statistics, University of the Orange Free State, South Africa. 



154 Bibliography 

Beirlant, J. and Teugels, J. L. (1989). Asymptotic normality of Hill’s estimator, in Lecture 
Notes in Statistics, 51, 148-155, eds. J. Husler and R.-D. Reiss, Springer-Verlag. 

Beirlant, J., Teugels, J. L. and Vynckier, P. (1996). Practical Analysis of Extreme Values, 
Leuven University Press. 

Beirlant, J., Vynckier, P. and Teugels, J. L. (1996). Tail index estimation, Pareto quantile 
plots and regression diagnostics, J.  Amer. Statist. Assoc. 91, 1659-1667. 

Beran, M., Hosking, J. R. M. and Arnell, N. (1986). Comment on “Two-component ex- 
treme value distribution for flood frequency analysis” by Fabio Rossi, Mauro Fiorentino, 
Pasquale Versace, Water Resources Res. 22, 263-266. 

Berger, J. 0. (1980). 
Springer-Verlag. 

Statistical Decision Theory, Foundations, Concepts and Methods, 

Berman, S. M. (1962). Limiting distribution of the maximum term in sequences of dependent 
random variables, Ann. Math. Statist. 33, 894-908. 

Berred, M. (1992). On record values and the exponent of a distribution with regular varying 
upper tail, J .  Appl. Probab. 29, 575-586. 

Bhoj, D. S. (1997). Estimation of parameters of the extreme value distribution using ranked 
set sampling, Comm. Statist. Theory and Methods 26, 653-667. 

Billman, B. R., Antle, C. E. and Bain, L. J. (1972). Statistical inference from censored 
Weibull samples, Technometrics 14, 831-840. 

Bishop, Y. M., Fienberg, S. and Holland, P. (1975). Discrete Multivariate Analysis, MIT 
Press. 

Blom, G. (1958). Statistical Estimates and Transformed Beta- Variables, Almquist and Wik- 
sell. 

Boos, D. D. (1984). Using extreme value theory to estimate large percentiles, Technometrics 
26, 33-39. 

Borgman, L. E. (1961). The frequency distribution of near extreme, J .  Geophys. Res. 66, 
3295-3307. 

Bortkiewicz, L., von (1922). Variationsbreite und mittlerer Fehler, Sitzungsber. Berli. Math. 
Ges. 21, 3-11. 

Bortot, P. and Tawn, J. A. (1998). Models for the extremes of Markov chains, Biometrika 
85, 851-867. 

Box, G. E. P. and Tiao, G. C. (1962). A further look on robustness via Bayes theorem, 
Biometrika 49, 419-432. 

Broussard, J. P. and Booth, G. G. (1998). The behavior of extreme values in Germany’s 
stock index futures: An application to intradaily margin setting, European J .  Oper. Res. 
104, 393-402. 



Bibliography 155 

Bruun, J. T. and Tawn, J. A. (1998). Comparison of approaches for estimating the proba- 
bility of coastal flooding, Appl. Statist. 47, 405-423. 

Buishand, T. A. (1985). The effect of seasonal variation and serial correlation on the extreme 
value distribution of rainfall data, J .  Climate Appl. Meteor. 25, 154-160. 

Buishand, T. A. (1989). Statistics of extremes in climatology, Statist. Neerlandica 43, 1-30. 

Burton, P. W. and Makropoulos, K. C. (1985). Seismic risk of circum-Pacific earthquakes: 
11. Extreme values using Gumbel’s third distribution and the relationship with strain 
energy release, Pure Appl. Geophys. 123, 849-866. 

Campbell, J. W. and Tsokos, C. P. (1973). The asymptotic distribution of maxima in 
bivariate samples, J.  Amer. Statist. Assoc. 68, 734-739. 

Canard, V. A. (1946). Methods in Climatology, Harvard University Press. 

Canfield, R. V. (1975). The type-I extreme-value distribution in reliability, IEEE Trans. 
Reliab. 24. 229-236. 

Canfield, R. V. and Borgman, L. E. (1975). Some distributions of time to failure for reliability 
applications, Technometrics 17, 263-268. 

Caperaa, P., Fougeres, A. L. and Genest, C. (1997). A non-parametric estimation procedure 
for bivariate extreme value copulas, Biometrika 84, 567-577. 

Castillo, E. (1988). Extreme Value Theory in Engineering, Academic Press. 

Chan, L. K., Cheng, S. W. H. and Mead, E. R. (1972). An optimum t-test for the scale 
parameter of an extreme-value distribution, Naval Res. Logist. Quart. 19, 715-723. 

Chan, L. K. and Kabir, A. B. M. L. (1969). Optimum quantiles for the linear estimation 
of the parameters of the extreme-value distribution in complete and censored samples, 
Naval Res. Logist. Quart. 16, 381-404. 

Chandra, M., Singpurwalla, N. D. and Stephens, M. A. (1981). Kolmogorov statistics for 
tests of fit for the extremevalue and Weibull distribution, J .  Amer. Statist. Assoc. 76, 
729-731. 

Changery, M. J. (1982). Historical extreme winds for the United States - Atlantic and Gulf 
of Mexico coastlines. U.S. Nuclear Regulatory Commission, NUREG/CR-2639. 

Chao, A. and Hwang, S.-J. (1986). Comparison of confidence intervals for the parameters of 
the Weibull and extreme value distributions, IEEE Trans. Reliab. 35, 111-113. 

Chen, G. and Balakrishnan, N. (1995). The infeasibility of probability weighted moments 
estimation of some generalised distributions, in Lifetime Reliability: Volume in Honor of 
A. C. Cohen, 565-570, CRC Press. 

Cheng, S. and Pan, J. (1995). Asymptotic expansions of estimators in extreme statistics, 
Procs. of the 50th Session of the I.S.I., Beijing, IP15.1, 593-605. 



156 Bibliography 

Cheng, S., Peng, L. and Qi, Y. (1998). Almost sure convergence in extreme value theory, 
Math. Nachr. 190, 43-50. 

Chiou, P. (1988). Shrinkage estimation of scale parameter of the extreme-value distribution, 
IEEE Trans. Reliab. 37, 370-374. 

Chowdhury, J. U., Stedinger, J. R. and Lu, L.-H. (1991). Goodness-of-fit tests for regional 
generalized extreme value flood distributions, Water Resources Res. 27, 1765-1776. 

Christopeit, N. (1994). Estimating parameters of an extreme value distribution by the 
method of moments, J .  Statist. Planning Inference 41, 173-186. 

Clough, D. J. and Kotz, S. (1965). Extreme value distributions with a special queueing 
model application, CORS J .  3, 96-109. 

Cockrum, M. B., Larson, R. K. and Taylor, R. W. (1990). Distribution modeling and 
simulation studies in product flammability testing, A S A  Procs. Business Econom. Statist. 
Section 387-391. 

Cohen, J. P. (1982a). The penultimate form of approximation to  normal extremes, Adv. 
App .  Probab. 14, 324-339. 

Cohen, J. P. (1982b). Convergence rates for the ultimate and pentulimate approximations 
in extreme value theory, Adv. Appl. Probab. 14, 833-854. 

Cohen, J. P. (1986). Large sample theory for fitting an approximating Gumbel model to 
maxima, Sankhya A, 48, 372-392. 

Cohen, J. P. (1988). Fitting extreme value distributions to  maxima, Sankhya A, 50, 74-97. 

Coles, S. G. (1991). Statistical methodology for the multivariate analysis of environmental 
extremes, Ph.D. Thesis, University of Sheffield. 

Coles, S. G. (1993). Regional modelling of extreme storms via ma-stable processes, J .  Roy. 
Statist. SOC. B, 55,  797-816. 

Coles, S. G. and Pan, F. (1996). The analysis of extreme pollution levels: a case study, J .  
Appl. Statist. 23, 333-348. 

Coles, S. G. and Powell, E. A. (1995). Bayesian methods in extreme value modelling, Procs. 
of the 50th Session of the I.S.I., paper 15.2, pp. 607-627. 

Coles, S. G. and Powell, E. A. (1996). Bayesian methods in extreme value modelling: a 
review and new developments, Internat. Statist. Rev. 64, 119-136. 

Coles, S. G. and Tawn, J. A. (1990). Statistics of coastal flood prevention, Philos. Trans. 
Roy. SOC. London A, 332, 457-476. 

Coles, S. G. and Tawn, J. A. (1991). Modelling extreme multivariate events, J .  Roy. Statist. 
SOC. B, 53, 377-392. 

Coles, S. G. and Tawn, J. A. (1994). Statistical methods for multivariate extremes: an 
application to structural design, Appl. Statist. 43, 1-48. 



Bibliography 157 

Coles, S. G. and Tawn, J. A. (1995). Modelling extremes: a Bayesian approach. 

Coles, S. G. and Tawn, J. A. (1996a). Modelling extremes of the areal rainfall process, J. 
Roy. Statist. SOC. B, 58, 329-347. 

Coles, S. G. and Tawn, J .  A. (1996b). A Bayesian analysis of extreme rainfall data, Appl. 
Statist. 45, 463-478. 

Coles, S. G., Tawn, J. A. and Smith, R. L. (1994). A seasonal Markov model for extremely 
low temperatures, Environmetrics 5, 221-239. 

Coles, S. G. and Walshaw, D. (1994). Directional modelling of extreme wind speeds, Appl. 
Statist. 43, 139-157. 

Cottis, R. A., Laycock, P. J., Holt, D., Moir, S. A. and Scarf, P. A. (1987). The statis- 
tics of pitting of anstenitic stainless steels in chloride solutions, in Advances in Localized 
Corrosion, 117-121, eds. H. Issacs and U. Bertocci, NACE. 

Cram&, H. (1946). Mathematical Methods of Statistics, Princeton University Press. 

Csorgo, S. (1984). Adaptive estimation of the parameters of stable laws. in Colloquia 
Limit Theorems in Probability and Statistics, Mathematical Society Janos Bolyai 36. 

305-386. North-Holland. 

Csorgo, S., Deheuvels, P. and Mason, D. M. (1985). Kernel estimates of the tail index of a 
distribution, Ann. Statist. 13, 1050-1077. 

Cunnane, C. and Nash, J. E. (1974). Bayesian estimation of frequency of hydrological 
events, in Symposium on Mathematical Models in Hydrology, Warsaw, 1971. IAHS-AISH 
Publication No. 100, UNESCO. 

D’Agostino, R. B. and Stephens, M. A. (eds.) (1986). Goodness-of-Fit Techniques, Dekker. 

Daniels, H. E. (1942). A property of the distribution of extremes, Biometrika 32, 194-195. 

Dasgupta, R. and Bhaumik, D. K. (1995). Upper and lower tolerance limits of atmospheric 
ozone level and extreme value distribution, Sankhya B, 57, 182-199. 

David, H. A. (1981). Order Statistics, 2nd edn., John Wiley and Sons. 

Davidovich, M. I. (1992). On convergence of the Weibull-Gnedenko distribution to the 
extreme value distribution, Vestnik Akad. Nauk Belaruss, Ser. Mat.-Fiz., No. 1, Minsk, 
103-106. 

Davison, A. C. (1986). Approximate predictive likelihood, Biometrika 73, 323-332. 

Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with 
discussion), J. Roy. Statist. SOC. B, 52, 393442. 

De Haan, L. (1970). On Regular Variation and Its Application to the Weak Convergence of 
Sample Extremes, Mathematical Centre Tracts 32, Mathematisch Centrum. Amsterdam. 



158 Bibliography 

De Haan, L. (1971). A form of regular variation and its application to the domain of 
attraction of the double exponential, 2. Wahrsch. Geb. 17, 241-258. 

De Haan, L. (1976). Sample extremes: an elementary introduction, Statist. Neerlandica 30, 
161-172. 

De Haan, L. (1984). A spectral representation for max-stable processes, Ann. Probab. 12, 
1194-1204. 

De Haan, L. (1985). Extremes in high dimensions: the model and some statistics, Procs. of 
the 45th Session of the I.S.I., paper 26.3. 

De Haan, L. (1990). Fighting the arch-enemy with mathematics, Statist. Neerlandica 44, 
45-68. 

De Haan, L. (1994). Extreme value statistics, in Extreme Value Theorg and Applications, 
93-122, eds. J. Galambos et al., Kluwer. 

De Haan, L. and De RondC, J. (1998). Sea and wind: multivariate extremes at  work, 
Extremes 1. 7-~46. 

De Haan, L. and Resnick, S. I. (1987). On regular variation of probability densities, Stochas- 
tic Processes and Their Applications 25, 83-93. 

De Haan, L. and Stadtmiiller, U. (1992). Generalized regular variation of second order 
Technical Report 96281A, Erasmus University, Rotterdam. 

Deheuvels, P. (1981). Univariate extreme values - theory and applications, Proc. 43rd 
Session of the I.S.I. 49, 2, Buenos Aires. 

Deheuvels, P., Hausler, E. and Mason, D. M. (1988). Almost sure convergence of the Hill 
estimator, Math. Procs. Cambridge Philos. Soc. 104, 371-381. 

Deheuvels, P. and Tiago de Oliveira, J. (1989). On the non-parametric estimation of the 
bivariate extreme-value distributions, Statist. Probab. Lett. 8 ,  315-323. 

Dekkers, A. L. M. and de Haan, L. (1989). On the estimation of the extreme-value index 
and large quaritile estimation, Ann. Statist. 17, 1795-1832. 

Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L. (1989). A moment estimator for the 
index of an extreme-value distribution, Ann. Statist. 17, 1833-1855. 

Diebold, F. X., Schuermann, T. and Stroughair, J. D. (1999). Pitfalls and opportunities in 
the use of extreme value theory in risk management. Draft Report. 

Dietrich, D. and Husler, J. (1996). Minimum distance estimators in extreme value distribu- 
tions, Com,m. Statist. Theory and Methods 25, 695-703. 

Dixon, M. J. and Tawn, J. A. (1992). Trends in U.K. extreme sea-levels: a spatial approach, 
Geophys. J .  Internat. 111, 607-616. 



Bibliography 159 

Dixon, M. J. and Tawn, J. A. (1994). Extreme sea levels: modelling interactions between 
tide and surge, in Statistics for the Environment 11, eds. V. Barnett and K. F. Turkman, 
221-232, John Wiley and Sons. 

Dixon, M. J. and Tawn, J. A. (1995a). A semiparametric model for multivariate extreme 
values. Statist. Comput. 5 ,  215-225. 

Dixon, M. J. and Tawn, J. A. (199513). Estimates of extreme sea conditions: extreme sea- 
levels at the UK A class sites; optimal site-by-site analyses and spatial analysis for the 
east coast. Proudman Oceanographic Laboratory Internal Document No. 72. 

Dixon, M. J. and Tawn, J. A. (1998). The impact of non-stationarity in extreme sea-level 
estimation, Appl. Statist. 48, 135-151. 

Dodd, E. L. (1923). The greatest and least variate under general laws of error, Trans. Amer. 
Math. SOC. 25,  525-539. 

Doganaksoy, N. and Schmee, J .  (1991). Comparisons of approximate confidence intervals 
for the smallest extreme value distribution simple linear regression model under time 
censoring, Comm. Statist. Comput. Simulation 20, 1085-1113. 

Downton, F. (1966). Linear estimates of parameters in the extreme value distribution, 
Technometrics 8, 3-17. 

Drees, H. (1995). Refined Pickands estimators of the extreme value index, Ann. Statist. 23, 
2059-2080. 

Dubey, S. D. (1966). Characterization theorems for several distributions and their applica- 
tions, J .  Industrial Math. 16, 1-22. 

Dubey, S. D. (1969). A new derivation of the logistic distribution, Naval Res. Logist. Quart. 
16, 37-40. 

Dupuis, D. J. (1996). Estimating the probability of obtaining nonfeasible parameter esti- 
mates of the generalized extreme-value distribution, J.  Statist. Cornput. Simulation 56, 
23-38. 

Dupuis, D. J. and Field, C. A. (1998). Robust estimation of extremes, Canad. J .  Statist. 
26. 199-215. 

Einmahl, J. H. J., De Haan, L. and Huang, X. (1993). Estimating a multidimensional 
extreme-value distribution, J .  Multivariate Anal. 47, 35-47. 

Einmahl, J. H. J., De Haan, L. and Sinha, A. K. (1997). Estimating the spectral measure of 
an extreme value distribution, Stochastic Processes and Their Applications 70, 143-171. 

Eldredge, G. G. (1957). Analysis of corrosion pitting by extreme value statistics and its 
application to oil well tubing caliper surveys, Corrosion, 13, 51-76. 

Embrechts, P., Kluppelberg, C. and Mikosch, T.  (1997). Modelling Extremal Events for 
Insurance and Finance, Springer-Verlag. 



160 Bibliography 

Engelhardt, M. and Bain, L. J .  (1973). Some complete and censored results for the Weibull 
or extreme-value distribution, Technometrics 15, 541-549. 

Engelund, S. and Rackwitz, R. (1992). On predictive distribution functions for the three 
asymptotic extreme value distributions, Stmctural Safety 11, 255-258. 

Epstein, B. (1948). Application to the theory of extreme values in fracture problems, J.  
Amer. Statist. Assoc. 43, 403-412. 

Epstein, B. (1960). Elements of the theory of extreme values, Technometrics 2, 27-41 

Epstein, B. and Brooks, H. (1948). The theory of extreme values and its implications in the 
study of the dielectric strength of paper capacitors, J.  Appl. Phys. 19, 544-550. 

Escalantesandoval, C. A. (1998). Multivariate extreme value distribution with mixed Gumbel 
marginals, J.  Amer. Water Resources Assoc. 34, 321-333. 

Fahmi, K. J. and Abbasi, J .  N. Al. (1991). Application of a mixture distribution of extreme 
values to earthquake magnitudes in Iraq and conterminous regions, Geophys. J. Roy. 
Astron. SOC. 107, 209-217. 

Falk, M. and Marohn, F. (1993). Von Mises conditions revisited, Ann. Probab. 21, 1310- 
1328. 

Fei, H., Kong, F. and Tang, Y. (1994). Estimations for two-parameter Weibull distributions 
and extreme-value distributions under multiple type-I1 censoring, preprint. 

Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. 2, 2nd 
edition, John Wiley and Sons. 

Finkelstein, B. V. (1953). On the limiting distributions of extreme terms of a variational 
series of a two-dimensional quantity, Dok. Akad. Nauk (N.S.) 91, 209-210. 

Fisher, R. A. (1934). Two new properties of mathematical likelihood, Procs. Roy. SOC. 
London A, 144, 285-307. 

Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of 
the largest or smallest member of a sample, Procs. Cambridge Philos. SOC. 24, 180-190. 

Flood Studies Report (1975), see Jenkinson, A. F. (ed.) (1975). 

FrBchet, M. (1927). Sur la loi de probabilitC de 1’6cart maximum, Ann. SOC. Polon. Math. 
Cracovie 6, 93-116. 

Frenkel, J. I. and Kontorova, T. A. (1943). A statistical theory of the brittle strength of real 
crystals, J .  Phys. USSR 7, 108-114. 

Fuller, W. E. (1914). Flood flows, Trans. Amer. SOC. Civil Engineers 77, 564. 

Fuug, K. Y. and Paul, S. R. (1985). Comparisons of outlier detection procedures in Weibull 
or extreme-value distribution, Comm. Statist. Simulation Comput. 14, 895-917. 

Galambos, J. (1981a). Extreme value theory in applied probability, Math. Scient. 



Bibliography 161 

Galambos, J. (1981b). Failure time distributions: estimates and asymptotic results, in 
Statistical Distributions in Scientific Work, 5 ,  309-317, eds. C. Taillie, G. P. Patil and 
B. A. Baldessari, Reidel. 

Galambos, J. (1982). A statistical test for extreme value distributions, in Nonparametric 
Statistical Inference, 221-230, eds. B. V. Gnedenko, M. L. Puri and I. Vincze, North- 
Holland. 

Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics, 2nd edition, 
Krieger (1st edition, John Wiley and Sons, 1978). 

Galambos, J .  et al. (1994). Proceedings of the Gaithersburg Conference, 1993. Vol. I: 
Kluwer; Vol. 2: Journal Research NIST; Vol. 3: NIST Special Publication 866. 

Geffroy, J. (1958). Contribution B la th6orie des valeurs extrbmes, Publ. l’lnst. Statist. 
1’Univ. Paris 7, 37-121. 

Geffroy, J .  (1959). Contribution B la theorie des valeurs extrbmes, 11, Publ. l‘lnst. Statist. 
1’Univ. Paris 8,  3-65. 

Gerisch, W., Struck, W. and Wilke, B. (1991). One-sided Monte-Carlo tolerance limit factors 
for the exact extreme-value distributions from a normal parent distributional, Comput. 
Statist. Quart. 6, 241-261. 

Ghoudi, K., Khoudraji, A. and Rivest, L. P. (1998). Statistical properties of couples of 
bivariate extreme-value copulas, Canad. J .  Statist. 26, 187-197. 

Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie albatoire, 
Ann. Math. 44, 423-453. Translated and reprinted in: Breakthroughs in Statistics, Vol. 
I, 1992, eds. S. Kotz and N. L. Johnson, Springer-Verlag, pp. 195-225. 

Goka, T. (1993). Application of extreme-value theory to reliability physics of electronic 
parts and to on-orbit single event phenomena. Paper presented at the Conference on Ex- 
treme Value Theory and Its Applications, May 2-7, 1993, National Institute of Standards, 
Gaithersburg. 

Goldstein, N. (1963). Random numbers from the extreme value distribution, Publ. l’lnst. 
Statist. 1’Univ. Paris 12, 137-158. 

Gomes, M. I. (1984). Penultimate limiting forms in extreme value theory, Ann. Inst. Statist. 
Math. 36, 71-85. 

Green, R. F. (1975). Consistent estimation based on extremes, Technical Report No. 25, 
University of California, Riverside. 

Green, R. F. (1976). Partial attraction of maxima, J.  Appl. Probab. 13, 159-163. 

Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J .  R. (1979). Probability 
weighted moments: Definition and relation to parameters of several distributions express- 
ible in inverse form, Water Resources Res. 15, 1049-1054. 

Greenwood, M. (1946). The statistical study of infectious diseases, J .  Roy. Statist. SOC. A, 
109. 85-109. 



162 Bibliography 

Greig, M. (1967). Extremes in a random assembly, Biometrika 54, 273-282. 

Greis, N. P. and Wood, E. F. (1981). Regional flood frequency estimation and network 
design, Water Resources Res. 17, 1167-1177. (Correction, ibid. 19 (2), 589-590, 1983.) 

Griffith, A. A. (1920). The phenomena of rupture and flow in solids, Philos. Trans. Roy. 
SOC. London A, 221, 163-198. 

Gumbel, E. J .  (1935). Les valeurs extrkmes des distributions statistiques, Ann. l’lnst. Henri 
Poincare‘ 4, 115-158. 

Gumbel, E. J. (1937a). Les intervalles extrZmes entre les 6missions radioactives, J .  Phys. 
Radium 8, 446-452. 

Gumbel, E. J. (1937b). La dur6e extrZme de la vie humaine, Actualit6s Scientifique e t  
Industrielles, Hermann et Cie. 

Gumbel, E. J. (1941). The return period of flood flows, Ann. Math. Statist. 12, 163-190. 

Gumbel, E. J. (1944). On the plotting of flood discharges, Trans. Amer. Geophys. Union 
25, 699-719. 

Gumbel, E. J. (1945). Floods estimated by probability methods, Engrg. News-Record 134, 
97-101. 

Gumbel, E. J. (1947). The distribution of the range, Ann. Math. Statist. 18, 384-412. 

Gumbel, E. J .  (1949a). The Statistical Forecast of Floods, Bulletin No. 15, 1-21, Ohio Water 
Resources Board. 

Gumbel, E. J. (1949b). Probability tables for the range, Biometrika 36, 142-148. 

Gumbel, E. J. (1953). Introduction, in Probability Tables for the Analysis of Extreme-Value 
Data, National Bureau of Standards, Applied Mathematics Series, vol. 22. 

Gumbel, E. J. (1954). Statistical Theory of Extreme Values and Some Practical Applications, 
National Bureau of Standards, Applied Mathematics Series, vol. 33. 

Gumbel, E. J .  (1958). Statistics of Extremes, Columbia University Press. 

Gumbel, E. J .  (1961). Sommes et diffbrences de valeurs extremes indkpendentes, Comp. 
Rend. I’Acad. Sci. Paris 253, 2838-2839. 

Gumbel, E. J. (1962a). Statistical estimation of the endurance limit ~ an application of 
extreme-value theory, in Contributions to Order Statistics, 406-431, eds. A. E. Sarhan 
and B. G. Greenberg, John Wiley and Sons. 

Gumbel, E. J. (196213). Statistical theory of extreme values (main results), in Contributions 
to Order Statistics, Chapter 6, eds. A. E. Sarhan and B. G. Greenberg, John Wiley and 
Sons. 

Gumbel, E. J. (1962~). Produits et quotients de deux plus grandes valeurs indbpendantes, 
Comp. Rend. 1’Acad. Sci. Paris, 254, 2132-2134. 



Bibliography 163 

Gumbel, E. J. (1962d). Produits et quotients de deux plus petites valeurs indkpendantes, 
Publ. l’lnst. Statist. 1’Univ. Paris 11, 191-193. 

Gumbel, E. J. (1962e). Multivariate extremal distributions, Procs. Session of the I.S.I. 39, 
471-475. 

Gumbel, E. J. and Goldstein, N. (1964). Empirical bivariate extremal distributions, J.  Amer. 
Statist. Assoc. 59, 794-816. 

Gumbel, E. J. and Herbach, L. H. (1951). The exact distribution of extremal quotient, Ann. 
Math. Statist. 22, 418. 

Gumbel, E. J. and Keeney, R. D. (1950). The extremal quotient, Ann. Math. Statist. 21, 
523. 

Gumbel, E. J. and Mustafi, C. K. (1966). Comments to “The application of extreme value 
theory to error free communication”, by Edward C. Posner, Technometrics 8, 363-366. 

Gumbel, E. J. and Mustafi, C. K. (1967). Some analytical properties of bivariate extremal 
distributions, J.  Amer. Statist. Assoc. 62, 569-588. 

Gumbel, E. J. and Pickands, J. (1967). Probability tables for the extremal quotient, Ann. 
Math. Statist. 38, 1541-1551. 

Haeusler, E. and Teugels, J. L. (1985). On asymptotic normality of Hill’s estimator for the 
exponent of regular variation, Ann. Statist. 13, 743-756. 

Hald, A. (1952). Statistical Theory With Engineering Applications, John Wiley and Sons. 

Hall, M. J. (1992). Problems of handling messy field data for engineering decision-making: 
More 0x1 flood frequency analysis, Math. Scientist 17, 78-88. 

Hall, P. (1979). On the rate of convergence of normal extremes, J .  Appl. Probab. 16, 
433-439. 

Hall, P. (1980). Estimating probabilities for normal extremes, Adv. Appl. Probab. 12, 
491-500. 

Harris, B. (1970). An application of extreme value theory to reliability theory, Ann. Math. 
Statist. 41, 1456-1465. 

Harter, H. L. (1970). Order Statistics and Their Use in Testing and Estimation, Vol. 2, 
Washington. 

Harter, H. L. (1978). A bibliography of extreme-value theory, Internat. Statist. Rev. 46, 
279--306. 

Harter, H. L. and Moore, A. H. (1968a). Maximum likelihood estimation, from doubly 
censored samples, of the parameters of the first asymptotic distribution of extreme values, 
J .  Amer. Statist. Assoc. 63, 889-901. 

Hasofer, A. M. and Wang, Z. (1992). A test for extreme value domain of attraction, J.  Amer. 
Statist. Assoc. 87. 171-177. 



164 Bibliography 

Hassanein, K. M. (1965). Estimation of the parameters of the extreme value distribution by 
order statistics. National Bureau of Standards, Project No. 2776-M. 

Hassanein, K. M. (1968). Analysis of extreme-value data by sample quantiles for very large 
samples, J.  Amer. Statist. Assoc. 63, 877-888. 

Hassanein, K. M. (1969). Estimation of the parameters of the extreme value distribution by 
use of two or three order statistics, Biometrika 56, 429-436. 

Hassanein, K. M. (1972). Simultaneous estimation of the parameters of the extreme value 
distribution by sample quantiles, Technometrics 14, 63-70. 

Hassanein, K. M. and Saleh, A. K. Md. E. (1992). Testing equality of locations and quan- 
tiles of several extreme-value distributions by use of few order statistics of samples from 
extreme-value and Weibull distributions, in Order Statistics and Nonparametrics: Theory 
and Applications, 115-132, eds. P. K. Sen and I. A. Salama, North-Holland. 

Henery, R. J. (1984). An extreme-value model for predicting the results of horse races, Appl. 
Statist. 33, 125-133. 

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution, 
Ann. Statist. 3, 1163-1174. 

Hisel, K. W. (ed.) (1994). Extreme Values: Floods and Droughts, Proc. Internat. Conf. on 
Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol. 1, 
1993, Kluwer. 

Hooghiemstra, G. and Husler, J. (1996). A note on maxima of bivariate random vectors, 
Statist. Probab. Lett. 31, 1-6. 

Hopke, P. K. and Paatero, P. (1993). Extreme value estimation applied to  aerosol size 
distributions and related environmental problems, paper presented at the Conference 
on Extreme Value Theory and Its Applications, May 2-7, 1993, National Institute of 
Standards. 

Hosking, J. R. M. (1984). Testing whether the shape parameter is zero in the generalized 
extreme-value distribution, Biometrika 71, 367-374. 

Hosking, J. R. M. (1985). Maximum-likelihood estimation of the parameters of the general- 
ized extreme-value distribution, Appl. Statist. 34, 301-310. 

Hosking, J. R. M. (1986). The theory of probability weighted moments, Res. Rep. PCl22lU, 
IBM Research. Reissued with corrections, 3 April 1989. 

Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation for the 
generalized Pareto distribution, Technometrics 29, 339-349. 

Hosking, J. R. M. and Wallis, J. R. (1988). The effect of intersite dependence on regional 
flood frequency analysis, Water Resources Res. 24, 588-600. 

Hosking, J. R. M., Wallis, J. R. and Wood, E. F. (1985a). An appraisal of the regional flood 
frequency procedure in the UK Flood Studies Report, Hydrol. Sci. J. 30, 85-109. 



Bibliography 165 

Hosking, J. R. M., Wallis, J. R. and Wood, E. F. (198513). Estimation of the generalized 
extreme-value distribution by the method of probability-weighted moments, Technomet- 
rics 27, 251-261. 

Hougaard, P. (1986). A class of multivariate failure time distributions, Biometrika 73, 671- 
678. 

Hiisler, J. and Schuepbach, M. (1986). On simple block estimators for the parameters of the 
extreme-value distribution, Comm. Statist. Simulation Comput. 15, 61-76. 

Hiisler, J. and Reiss, R. D. (1989). Maxima of normal random vectors: between independence 
and complete dependence, Statist. Probab. Lett. 7, 283-286. 

Jain, D. and Singh, V. P. (1987). Estimating parameters of EV1 distribution for flood 
frequency analysis, Water Resources Res. 23, 59-71. 

Jenkinson, A. F. (1955). Frequency distribution of the annual maximum (or minimum) 
values of meteorological elements, Quart. J. Roy. Meteor. SOC. 81, 158-171. 

Jenkinson, A. F. (1969). Statistics of Extremes, Technical Note No. 98, World Meteorolog- 
ical Organization. Chapter 5, 183-227. 

Jenkinson, A. F. (Ed.) (1975). Natural Environment Research Council, Flood Studies Rep. 
1. London: NERC. 

Jeruchim, M. C. (1976). On the estimation of error probability using generalized extreme 
value theory, IEEE Trans. Information Theory IT-22, 108-110. 

Joe, H. (1990). Families of min-stable multivariate exponential and multivariate extreme 
value distributions Statist. Probab. Lett. 9, 75-81. 

Joe, H. (1994). Multivariate extreme value distributions with applications to environmental 
data, Canad. J .  Statist. 22, 47-64. 

Joe, H. and Hu, T. H. (1996). Multivariate distributions from mixtures of max-infinitely 
divisible distributions, J .  Multivariate Anal. 57, 240-265. 

Joe, H., Smith, R. L. and Weissmann, I. (1992). Bivariate threshold methods for extremes, 
J .  Roy. Statist. SOC. B, 54, 171-183. 

Johns, M. V., Jr., and Lieberman, G. J. (1966). An exact asymptotically efficient confidence 
bound for reliability in the case of the Weibull distribution, Technometrics 8, 135-175. 

Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate 
Distnbutions, John Wiley and Sons. 

Johnson, N.  L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, 
Vol. 2, 2nd edition, John Wiley and Sons. 

Juncosa, M. L. (1949). The asymptotic behavior of the minimum in a sequence of random 
variables, Duke Math. J .  16, 609-618. 



166 Bibliography 

Kanda, J. (1993). Application of an empirical extreme value distribution to load models, 
paper presented at the Conference on Extreme Value Theory and Its Applications, May 
2-7, 1993, National Institute of Standards. 

Kase, S. (1953). A theoretical analysis of the distribution of tensile strength of vulcanized 
rubber, J .  Polymer Sci. 11, 425-431. 

Keating, J. P. (1984). A note on estimation of percentiles and reliability in the extreme-value 
distribution, Statist. Probab. Lett. 2, 143-146. 

Kimball, B. F. (1955). Practical applications of the theory of extreme values, J .  Amer. 
Statist. Assoc. 50, 517-528. (Correction: 50, 1332.) 

Kimball, B. F. (1956). The bias in certain estimates of the extreme-value distribution, Ann. 
Math. Statist. 27, 758-767. 

Kimball, B. F. (1960). On the choice of plotting positions on probability paper, J .  Amer. 
Statist. Assoc. 55, 546-560. 

Kimber, A. C. (1985). Tests for the exponential, Weibull and Gumbel distributions based 
on the standardized probability plot, Biometrika 72, 661-663. 

King, J. R. (1959). Summary of extreme-value theory and its relation to  reliability analysis, 
Proc. 12th Annual Conference of the American Society for Quality Control, 13, 163-167. 

Kinnison, R. (1989). Correlation coefficient goodness-of-fit test for the extreme-value distri- 
bution, Amer. Statist. 43, 98-100. 

Kinnison, R. P. (1985). Applied Extreme Value Statistics, Battelle Press, Macmillan. 

Kluppelberg, C. and May, A. (1999). The dependence function for bivariate extreme value 
distributions - a systematic approach. Submitted for publication. 

Landwehr, J. M., Matalas, N.  C. and Wallis, J. R. (1979). Probability weighted moments 
compared with some traditional techniques in estimating Gumbel parameters and quan- 
tiles, Water Resources Res. 15, 1055-1064. 

Lawless, J. F. (1973). On the estimation of safe life when the underlying life distribution is 
Weibull, Technometrics 15, 857-865. 

Lawless, J. F. (1975). Construction of tolerance bounds for the extreme-value and Weibull 
distributions, Technometrics 17, 255-262. 

Lawless, J. F. (1978). Confidence interval estimation for the Weibull and extreme value 
distributions (with discussion), Technometrics 20, 355-368. 

Lawless, J. F. (1980). Inference in the generalized gamma and log-gamma distribution, 
Technometrics 22, 67-82. 

Lawless, J. F. (1982). Statistical Models & Methods for Lifetime Data, John Wiley and Sons. 

Leadbetter, M. R., Lindgren, G. and Rootzh, H. (1983). Extremes and Related Properties 
of Random Sequences and Processes, Springer-Verlag. 



Bibliography 167 

Ledford, A. W. and Tawn, J .  A. (1996). Statistics for near independence in multivariate 
extreme values, Biometrika 83, 169-187. 

Ledford, A. W. and Tawn, J. A. (1997). Modelling dependence within joint tail regions, J.  
Roy. Statist. SOC. B, 59, 475-499. 

Lettenmaier, D. P. and Burges, S. J. (1982). Gumbel’s extreme value 1 distribution, a new 
look, J.  Hydraulics Division, Proc. ASCE 108, 502-514. 

Lettenmaier, D. P., Wallis, J .  R. and Wood, E. F. (1987). Effect of regional heterogeneity 
on flood frequency estimation, Water Resources Res. 23, 313-323. 

Levy, P. (1939). Sur la division d’un segment par des points choisis au hasard, C. R. Acad. 
Sci. Paris 208, 147-149. 

Lieblein, J. (1953). On the exact evaluation of the variances and covariances of order statis- 
tics in samples from the extreme-value distribution, Ann. Math. Statist. 24, 282-287. 

Lieblein, J. (1962). Extreme-value distribution, in Contributions to Order Statistics, 397- 
406, eds. A. E. Sarhan and B. G. Greenberg, John Wiley and Sons. 

Lieblein, J. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-grove 
ball bearings, J .  Res. National Bureau of Standards 57, 273-316. 

Lingappaiah, G. S. (1984). Bayesian prediction regions for the extreme order statistics, 
Biom. J .  26, 49-56. 

Lockhart, R. A., O’Reilly, F. J. and Stephens, M. A. (1986). Tests for the extreme value 
and Weibull distributions based on normalized spacings, Naval Res. Logist. Quart. 33, 
4 13-42 1. 

Lockhart, R. A. and Spinelli, J. J. (1990). Comment on “Correlation coefficient goodness- 
of-fit tests for the extreme-value distribution”. Amer. Statist. 44, 259-260. 

Longuet-Higgins, M. S. (1952). On the statistical distribution of the heights of sea waves, 
J.  Marine Res. 9, 245-266. 

Lowery, M. D. and Nash, J .  E. (1970). A comparison of methods of fitting the double 
exponential distribution, J .  Hydrol. 10, 259-275. 

Lu, L.-H. and Stedinger, J. R. (1992). Variance of two- and three-parameter GEV/PWM 
quantile estimators: Formulae, confidence intervals, and a comparison, J .  Hydrol. 138, 
247-267. 

Lucefio, A. (1994). Speed of convergence to the extreme value distributions on their proba- 
bility plotting papers, Comm. Statist. B, 23, 529-545. 

Macleod, A. J. (1989). Comment on “Maximum-likelihood estimation of the parameters of 
the generalized extreme-value distribution”, Appl. Statist. 38, 198-199. 

Mahmoud, M. W. and Ragab, A. (1975). On order statistics in samples drawn from the 
extreme value distributions, Math. Operationsforschung Statist Series Statist. 6, 809- 
816. 



168 Bibliography 

Mann, N. R. (1967a). Results on Location and Scale Parameter Estimation with Application 
to the Extreme- Value Distribution, Report ARL67-0023, Aerospace Research Laborato- 
ries. 

Mann, N. R. (196713). Tables for obtaining the best linear invariant estimates of the param- 
eters of the Weibull distribution, Technometrics 9, 629-645. 

Mann, N. R. (1969). Optimum estimators for linear functions of location and scale parame- 
ters, Ann. Math. Statist. 40, 2149-2155. 

Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining Weibull confidence bounds and 
tolerance bounds based on best linear invariant estimates of parameters of the extreme- 
value distribution, Technometrics 15, 87-102. 

Mann, N. R. and Fertig, K. W. (1975). Simplified efficient point and interval estimators for 
Weibull parameters, Technometrics 17, 361-368. 

Mann, N. R. and Fertig, K. W. (1977). Efficient unbiased quantile estimators for moderate- 
size complete samples from extreme-value and Weibull distributions: Confidence bounds 
and tolerance and prediction intervals, Technometrics 19, 87-94. 

Mann, N. R., Schafer, R. E. and Singpurwalla, N. D. (1974). Methods for Statistical Analysis 
of Reliability and Life Data, John Wiley and Sons. 

Mann, N.  R., Scheuer, E. M. and Fertig, K. W. (1973). A new goodness-of-fit test for the 
two parameter Weibull or extreme-value distribution with unknown parameters, Comm. 
Statist. 2, 383-400. 

Mann, N. R. and Singpurwalla, N.  D. (1982). Extreme-value distributions, in Encyclopedia 
of Statistical Sciences, 2, 606-613, eds. S. Kotz, N. L. Johnson and C. B. Read, John 
Wiley and Sons. 

Marco, J. M. and Ruiz-Rivas, C. (1992). On the construction of multivariate distributions 
with given nonoverlapping multivariate marginals, Statist. Probab. Lett. 15, 259-265. 

Marcus, M. B. and Pinsky, M. (1969). On the domain of attraction of exp(-e-”), J.  Math. 
Anal. Appl. 28, 440-449. 

Maritz, J. S. and Munro, A. H. (1967). On the use of generalized extreme-value distribution 
in estimating extreme percentiles, Biornetrics 23, 79-103. 

Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution, J .  Amer. 
Statist. Assoc. 62, 30-44. 

Marshall, A. W. and Olkin, I. (1983). Domains of attraction of multivariate extreme value 
distributions. Ann. Probab. 11. 168-177. 

Marshall, R. J. (1983). A spatial-temporal model of storm rainfall, J.  Hydrol. 62, 53-62. 

Mason, D. M. (1982). Laws of large numbers for sums of extreme values, Ann. Probab. 10, 
754-764. 



Bibliography 169 

McFadden, D. (1978). Modelling the choice of residential location, in Spatial Interaction 
Theory and Planning Models, eds. A. Karlqvist, L. Lundquist, F. Snickers and J. Weibull, 
75-96, North-Holland. 

McLaren, C. G. and Lockhart, R. A. (1987). On the asymptotic efficiency of certain corre- 
lation tests of fit, Canad. J .  Statist. 15, 159-167. 

Mejzler, D. G. (1949). On a theorem of B. V. Gnedenko. Sb. h d o w  Inst. Mat. Akad. 
Nauk Ukrain. SSR 12, 31-35 (in Russian). 

Mejzler, D. G. and Weissman, I. (1969). On some results of N. V. Smirnov concerning limit 
distributions for variational series, Ann. Math. Statist. 40(2), 480-491. 

Metcalfe, A. G. and Smith, G. K. (1964). Effects of length on the strength of glass fibres, 
Procs. Amer. SOC. Testing Materials 64, 1075-1093. 

Metcalfe, A. V. and Mawdsley, J. A. (1981). Estimation of extreme low flows for pumped 
storage reservoir design, Water Resources Res. 17, 1715-1721. 

Michael, J. R. (1983). The stabilized probability plot, Biometrika 70, 11-17. 

Mises, R., von (1923). Uber die Variationsbreite einer Beobachtungsreihe, Sitzungsber. 
Berlin. Math. Ges. 22, 3-8. 

Mises, R., von (1936). La distribution de la plus grande de n valeurs, Rev. Math. Union 
Interbalk. 1, 141-160. Reproduced in Selected Papers of Richard won Mises, II(1954), 
pp. 271-294, Amer. Math. SOC. 

Moran, P. A. P. (1947). The random division of an interval, J.  Roy. Statist. SOC. B, 40, 
213-216. 

Moran, P. A. P. (1953). The random division of an interval - Part 111, J.  Roy. Statist. SOC. 
B, 15, 77-80. 

Morton, I. D. and Bowers, J. (1996). Extreme value analysis in a multivariate offshore 
environment, Appl. Ocean Res. 18, 303-317. 

Mustafi, C. K. (1963). Estimation of parameters of the extreme value distribution with 
limited type of primary probability distribution, Bull. Calcutta Statist. Assoc. 12, 47- 
54. 

Nadarajah, S. (1994). Multivariate extreme value methods with applications to  reservoir 
flood safety, Ph.D. Thesis, University of Sheffield. 

Nadarajah, S. (1999a). A polynomial model for bivariate extreme value distributions, Statist. 
Probab. Lett. 42, 15-25. 

Nadarajah, S. (1999b). Simulation of multivariate extreme values, J.  Statist. Comput. 
Simulation 62, 395-410. 

Nadarajah, S. (1999~). Multivariate extreme value distributions based on bivariate struc- 
tures, Unpublished Technical Note. 



170 Bibliography 

Nadarajah, S. (2000). Extreme value models: univariate and multivariate, to appear in 
Handbook of Statistics, eds. C. R. Rao and D. N. Shanbhag, John Wiley and Sons. 

Nadarajah, S., Anderson, C. W. and Tawn, J. A. (1998). Ordered multivariate extremes, J.  
Roy. Statist. SOC. B, 60, 473-496. 

Nagaraja, H. N. (1982). Record values and extreme value distributions, J.  Appl. Probab. 
19, 233-239. 

Nagaraja, H. N.  (1984). Asymptotic linear prediction of extreme order statistics, Ann. Inst. 
Statist. Math. 36, 289-299. 

Nissan, E. (1988). Extreme value distribution in estimation of insurance premiums, ASA 
Procs. Business Econom. Statist. Sec. 562-566. 

Niu, X. F. (1997). Extreme value theory for a class of nonstationary time series with appli- 
cations, Ann. Appl. Probab. 7, 508-522. 

Nordquist, J. M. (1945). Theory of largest values, applied to  earthquake magnitudes, Trans. 
Amer. Geophys. Union 26, 29-31. 

Oakes, D. and Manatunga, A. K. (1992). Fisher information for a bivariate extreme value 
distribution, Biometrika 79, 827-832. 

Obretenov, A. (1991). On the dependence function of Sibuya in multivariate extreme value 
theory, J .  Multivariate Anal. 36, 35-43. 

Ogawa, J. (1951). Contributions to the theory of systematic statistics, I, Osaka Math. J. 3, 
175-213. 

Ogawa, J. (1952). Contributions to the theory of systematic statistics, 11, Osaka Math. J .  
4, 41-61. 

Okubo, T. and Narita, N. (1980). On the distribution of extreme winds expected in Japan, 
National Bureau of Standards Special Publ. 560-1, 12 pp. 

Otten, A. and Montfort, M. A. J., van (1980). Maximum likelihood estimation of the general 
extreme-value distribution parameters, J.  Hydrol. 47, 187-192. 

Owen, D. B. (1962). Handbook of Statistical Tables, Addison-Wesley. 

Oztiirk, A. (1986). On the W test for the extreme value distribution, Biometrika 73, 738- 
740. 

Oztiirk, A. and Korukoglu, S. (1988). A new test for the extreme value distribution, Comm. 
Statist. Simulation Comput. 17, 137551393, 

Peirce, F. T. (1926). Tensile tests for cotton yarns v. ‘the weakest link’ - Theorems on the 
strength of long and of composite specimens, J.  Textile Inst. Tran. 17, 355. 

Peng, L. (1999). Estimation of the coefficients of tail dependence in bivariate extremes, 
Statist. Probab. Lett. 43, 399-409. 



Bibliography 171 

Pericchi, L. P. and Rodriguez-Iturbe, I. (1985). On the statistical analysis of floods, in A 
Celebration of Statistics: The I.S.I. Centenary Volume, 511-541, eds. A. C. Atkinson and 
S. E. Fienberg, Springer-Verlag. 

Phien, H. N. (1991). Maximum likelihood estimation for the Gumbel distribution from 
censored samples, in The Frontiers of Statistical Computation, Simulation, and Modeling, 
1, 271-287, eds. P. R. Nelson, E. J. Dudewicz, A. Oztiirk and E. C. van der Meulen, 
American Sciences Press. 

Pickands, J. (1968). Moment convergence of sample extremes, Ann. Math. Statist. 39, 
881-889. 

Pickands, J. (1971). The two-dimensional Poisson process and extremal processes, J.  Appl. 
Probab. 8,  745-756. 

Pickands, J. (1975). Statistical inference using extreme order statistics, Ann. Statist. 3, 
119-131. 

Pickands, J. (1981). Multivariate extreme value distributions, Proc. 43rd Session of the ISI, 
Buenos Aires, 49, 859-878. 

Posner, E. C. (1965). The application of extreme-value theory to error-free communication, 
Technometrics 7, 517-529. 

Potter, W. D. (1949). Normalcy tests of precipitation and frequency studies of runoff on 
small watersheds, U S .  Department of Agriculture Technical Bulletin, No. 985. 

Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation, 
Biometrika 61, 539-544. 

Prescott, P. and Walden, A. T. (1980). Maximum likelihood estimation of the parameters 
of the generalized extremevalue distribution, Biometrika 67, 723-724. 

Prescott, P. and Walden, A. T. (1983). Maximum likelihood estimation of the parameters 
of the three-parameter generalized extreme-value distribution from censored samples, J.  
Statist. Comput. Simulation 16, 241-250. 

Press, H. (1949). The application of the statistical theory of extreme value to gust-load 
problems, National Advisory Committee on Aeronautics, Technical Note No. 1926. 

Provasi, C. (1987). Exact and approximate means and covariances of order statistics of the 
standardized extreme value distribution (I type), Riv. Statist. Appl. 20, 287-295. (In 
Italian.) 

Pugh, D. T. (1982). Estimating extreme currents by combining tidal and surge probabilities, 
Ocean Engrg. 9, 361-372. 

Pugh, D. T. and Vassie, J. M. (1980). Applications of the joint probability method for 
extreme sea-level computations, Procs. Inst. Civil Engineers 69, 959-975. 

Pyke, R. (1965). Spacings (with discussion), J .  Roy. Statist. SOC. B, 27, 395-449. 

Pyle, J. A. (1985). Assessment models, in Atmospheric Ozone, Chap. 12. NASA. 



172 Bibliography 

Qi, Y. G. (1998). Estimating extreme-value index from records, Chin. Ann. Math. B19, 4, 
499-510. 

Rajan, K. (1993). Extreme value theory and its applications in microstructural sciences, 
paper presented at  the Conference on Extreme Value Theory and Its Applications, May 
2--7, 1993, National Institute of Standards. 

Rantz, S. F. and Riggs, H. C. (1949). Magnitude and frequency of floods in the Columbia 
river basin, U S .  Geological Survey, Water Supply Paper 1080, 317-476. 

Rasheed, H., Aldabagh, A. S. and Ramamoorthy, M. V. (1983). Rainfall analysis by power 
transformation, J.  Climate Appl. Meteor. 22, 1411-1415. 

Reiss, R.-D. (1989). Approximate Distributions of Order Statistics: With Applications to 
Nonparametric Statistics, Springer-Verlag. 

Reiss, R.-D. and Thomas, M. (1997). Statistical Analysis of Extreme Values, Birkhauser. 

Resnick, S .  I. (1987). Extreme Values, Regular Variation and Point Processes, Springer- 
Verlag. 

Revfeim, K. J .  A. (1984a). The cumulants of an extended family of type I extreme value 
distributions, Sankhyii B, 46, 281-284. 

Revfeim, K. J. A. (198413). Generating mechanisms of, and parameter estimators for, the 
extreme value distribution, A,ustral. J .  Statist. 26, 151-159. 

Revfeim, K. J. A. and Hessell, J. W. D. (1984). More realistic distributions for extreme wind 
gusts, Quart. J .  Roy. Meteor. SOC. 110, 505-514. 

Ripley, B. D. (1987). Stochastic Simulation, John Wiley and Sons. 

Robinson, M. E. and Tawn, J. A. (1995). Statistics for exceptional athletic records, Appl. 
Statist. 44, 499-511. 

Robinson, M. E. and Tawn, J. A. (1997). Statistics for extreme sea currents, Appl. Statist. 
46, 183-205. 

Roldan-Canas, J., Garcia-Guzman, A. and Losada-Villasante, A. (1982). A stochastic model 
for wind occurrence, J .  Appl. Meteor. 21, 740-744. 

Rootxbn, H. (1978). Extremes of moving averages of stable processes, Ann. Probab. 6, 
847-869. 

Rosengard, A. (1962). Etude des lois limites jointes et marginales de la mayonne et des 
valeurs extrEmes, Publ. ISUP XI, 1, 1-56. 

Rossi, F. (1986). Reply to “Comment on ‘Two-component extreme value distribution for 
flood frequency analysis”’, Water Resources Res. 22, 267-269. 

b s s i ,  F., Fiorentino, M. and Versace, P. (1986). Two-component extreme value distribution 
for flood frequency analysis, Water Resources Res. 22. 



Bibliography 173 

Scarf, P. A. (1992). Estimation for a four parameter generalized extreme value distribution, 
Comm. Statist. Theory and Methods 21, 2185-2201. 

Scarf, P. A. and Laycock, P. J. (1993). Applications of extreme value theory in corrosion 
engineering. paper presented at the Conference on Extreme Value Theory and Its Appli- 
cations, May 2-7, 1993, National Institute of Standards. 

Scarf, P. A. and Laycock, P. J. (1996). Estimation of extremes in corrosion engineering, J.  
Appl. Statist. 23, 621-643. 

Schuepbach, M. and Huesler, J. (1983). Simple estimators for the parameters of the extreme- 
value distribution based on censored data, Technometrics 25,  189-192. 

Schrupp, K. and Rackwitz, R. (1984). Conjugate priors in extreme value theory, in: 
Pradiktive Verteilungen and ihre Anwendungen in der ZuverlLsigheitstheorie der Bauw- 
erke, Berichte zur Zuverlassigheitstheorie der Bauwerke, LKI, Technical University Mu- 
nich. Heft 71. 

Sen, P. K. (1961). A note on the large-sample behaviour of extreme sample values from 
distributions with finite end-points, Bull. Calcutta Statist. Assoc. 10, 106-115. 

Sethuraman, J. (1965). On a characterization of the three limiting types of the extreme, 
Sankhyii, A, 27, 357-364. 

Shapiro, S. S. and Brain, C. W. (1987). W-test for the Weibull distribution, Comm. Statist. 
B16, 209-219. 

Shen, H. W., Bryson, M. C. and Ochoa, I. D. (1980). Effect of tail behaviour assumptions 
on flood predictions, Water Resources Res. 16, 361-364. 

Shi, D. (1995a). Moment estimation for multivariate extreme value distributions, J .  Appl. 
Math. 10B, 61-68. 

Shi, D. (1995b). Fisher information for a multivariate extreme value distribution, Biometrika 
82, 644-649. 

Shi, D., Smith, R. L. and Coles, S. G. (1993). Joint versus marginal estimation for bivariate 
extremes, Unpublished Technical Report. 

Shi, D. and Zhou, S. (1999). Moment estimation for multivariate extreme value distribution 
in a nested logistic model, Ann. Inst. Statist. Math. 51, 253-264. 

Shibata, T. (1993). Application of extreme value statistics to  corrosion, paper presented at 
the Conference on Extreme Value Theory and Its Applications, May 2-7, 1993, National 
Institute of Standards. 

Shimokawa, T. and Liao, M. (1999). Goodness-of-fit tests for type-I extreme value and 
2-parameter Weibull distributions, IEEE Trans. Reliab. 48, 79-84. 

Sibuya, M. (1967). On exponential and other random variable generators, Ann. Inst. Statist. 
Math. 13, 231-237. 



174 Bibliography 

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman 
and Hall. 

Simiu, E., Bietry, J. and Filliben, J. J. (1978). Sampling errors in estimation of extreme 
winds, J .  Structural Div. National Bureau of Standards 104, 491-501. 

Simiu, E. and Filliben, J. J. (1975). Statistical analysis of extreme winds, National Bureau 
of Standards Technical Note 868, 52 pp. 

Simiu, E. and Filliben, J. J. (1976). Probability distributions of extreme wind speeds, J.  
Structural Div. National Bureau of Standards 102, 1861-1877. 

Singpurwalla, N. D. (1972). Extreme values from a lognormal law with applications to air 
pollution problems, Technometrics 14, 703-711. 

Sivapalan, M. and Bloschl, G. (1998). Transformation of point rainfall to area rainfall: 
Intensity-duration frequency curves, J .  Hydrol. 204, 150-167. 

Smirnov, N. V. (1949). Limit distributions for the terms of a variational series, Trudy Mat. 
Inst. Stekl. 25, 1-60. 

Smirnov, N. V. (1952). Limit distributions for the terms of a variational series, Trans. Amer. 
Math. SOC. Sec. 1, No. 67, 1-64 (English translation). 

Smith, J. A. (1987)." Estimating the upper tail of flood frequency distributions, Water 
Resources Res. 23, 1657-1666. 

Smith, R. L. (1985). Maximum likelihood estimation in a class of non-regular cases, 
Biometrika 72, 67-90. 

Smith, R. L. (1986). Extreme value theory based on the r largest annual events, J.  Hydrol. 
86, 27-43. 

Smith, R. L. (1987). Estimating tails of probability distributions, Ann. Statist. 15, 1174- 
1207. 

Smith, R. L. (1989). Extreme value analysis of environmental time series: an application to 
trend detection in ground-level ozone, Statist. Sci. 4, 367-393. 

Smith, R. L. (1991). Regional estimation from spatially dependent data. 

Smith, R. L. (1992). Introduction to Gnedenko (1943). In Breakthroughs in  Statistics, I, 
185-1 94. 

Smith, R. L. (1994). Multivariate threshold methods, in Extreme Value Theorg and Its 
Applications 249-268, eds. J. Galambos, J. Lechner and E. Simiu, Kluwer. 

Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian 
estimators for the three-parameter Weibull distribution, Appl. Statist. 36, 358-369. 

Smith, R. L., Tawn, J. A. and Coles, S. G. (1997). Markov chain models for threshold 
exceedances, Biometrika 84, 249-268. 

"The reader should note that this bibliography contains 4 different Smiths. 



Bibliography 175 

Smith, R. L., Tawn, J. A. and Yuen, H. K. (1990). Statistics of multivariate extremes, 
Internat. Statist. Rev. 58, 47-58. 

Smith, R. L. and Weissman, I. (1985). Maximum likelihood estimation of the lower tail of a 
probability distribution, J .  Roy. Statist. Sac. B, 47, 285-298. 

Smith, R. M. (1977). Some results on interval estimation for the two parameter Weibull or 
extreme-value distribution, Comm. Statist. Theory and Methods 2, 1311-1322. 

Smith, R. M. and Bain, L. J. (1976). Correlation type of goodness-of-fit statistics with 
censored sampling, Comm. Statist. Theory and Methods 5, 119-132. 

Smith, T. E. (1984). A choice of probability characterization of generalized extreme value 
models, Appl. Math. Comput. 14, 35-62. 

Stedinger, J. R., Vogel, R. M. and Foufoula-Geoorgiou, E. (1993). Frequency analysis of 
extreme events, Handbook of Hydrology, Chap. 18, ed. D. R. Maidment, McGraw-Hill. 

Stephens, M. A. (1977). Goodness of fit for the extreme value distribution, Biometrika 64, 
583-588. 

Stephens, M. A. (1986). Tests based on regression and correlation, in Goodness-of-fit Tech- 
niques, Chap. 5, eds. R. B. D’Agostino and M. A. Stephens, Dekker. 

Stone, G. C. and Rosen, H. (1984). Some graphical techniques for estimating Weibull confi- 
dence intervals, IEEE Trans. Reliab. 33, 362-369. 

Sweeting, T. J. (1985). On domains of uniform local attraction in extreme value theory, 
Ann. Probab. 13, 196-205. 

Takahashi, R. (1987). Some properties of multivariate extreme value distributions and mul- 
tivariate tail equivalence, Ann. Inst. Statist. Math. A, 39, 637-647. 

Takahashi, R. (1994a). Domains of attraction of multivariate extreme value distributions, 
J .  Res. National Inst. Standards Tech. 99, 551-554. 

Takahashi, R. (1994b). Asymptotic independence and perfect dependence of vector compo- 
nents of multivariate extreme statistics, Statist. Probab. Lett. 19, 19-26. 

Tawn, J. A. (1988a). An extreme value theory model for dependent observations, J.  Hydrol. 
101, 227-250. 

Tawn, J. A. (1988b). Bivariate extreme value theory: Models and estimation, Biometrika 
75, 397-415. 

Tawn, J. A. (1990). Modelling multivariate extreme value distributions, Biometrika 77, 
245-253. 

Tawn, J. A. (1992). Estimating probabilities of extreme sea-levels, Appl. Statist. 41, 77-93. 

Tawn, J. A. (1994). Applications of multivariate extremes, in Extreme Value Theory and Its 
Applications, eds. J. Galambos, J. Lechner and E. Simiu, Kluwer. 



176 Bibliography 

Tawn, J. A. and Vassie, J .  M. (1989). Extreme sea-levels: the joint probabilities method 
revisited and revised, Procs. Inst. Civil Engineers, part 2, 87, 429-442. 

Taylor, R. W. (1991). The development of burn time models to simulate product flamma- 
bility testing, A S A  Procs. Business Econom. Statist. Sec. 339-344. 

Teugels, J. L. and Beirlant, J. (1993). Extremes in insurance, Paper presented at the Confer- 
ence on Extreme Value Theory and Its Applications, May 2-7, 1993, NIST, Gaitershurg, 
MD. 

Thom, H. C. S. (1954). Frequency of maximum wind speeds, Procs. Amer. SOC. Civil 
Engineers 80, 104-114. 

Thomas, D. R., Bain, L. J. and Antle, C. E. (1970). Reliability and tolerance limits in the 
Weibull distribution, Technometrics 12, 363-371. 

Thomas, D. R. and Wilson, W. M. (1972). Linear order statistic estimation for the two- 
parameter Weibull and extreme-value distributions from type I1 progressively censored 
samples, Technometrics 14, 679-691. 

Tiago de Oliveira, J. (1958). Extremal distributions, Rev. Fac. Ciencius Lisboa, 2 ser., A, 
Mat., VII, 215-227. 

Tiago de Oliveira, J .  (1962). The asymptotic independence of the sample mean and extremes, 
Rev. Fac. Sci. Lisboa, A ,  VIII, 2, 299-310. 

Tiago de Oliveira, 3. (1963). Decision results for the parameters of the extreme value (Gum- 
bel) distribution based on the mean and the standard deviation, Tkabajos Estadistica 14, 
61-81. 

Tiago de Oliveira, J. (1972). Statistics for Gumbel and Frhchet distributions, in Structural 
Safety and Rehab., 94-105, ed. A. Freudenthal, Pergamon. 

Tiago de Oliveira, J. (1981). Statistical choice of univariate extreme models. In Statistical 
C. Taillie, G. P. Patil and B. A. Distributions in Scientific Work, 6 ,  367-387, eds. 

Baldessari, Reidel. 

Tiago de Oliveira, J. (1983). Gumbel distribution, in Encyclopedia of Statistical Sciences, 3, 
552-558, eds. S. Kotz, N. L. Johnson and C. B. Read, John Wiley and Sons. 

Tiago de Oliveira, J. (1987). Intrinsic estimation of the dependence structure for bivariate 
extremes. Technical Report, 87-18, Dept of Statistics, Iowa State University. 

Tiku, M. L. and Singh, M. (1981). Testing the two parameter Weibull distribution, Comm. 
Statist. Theory and Methods 10, 907-918. 

Tippett, L. H. C. (1925). On the extreme individuals and the range of samples taken from 
a normal population, Biometrika 17, 364-387. 

Tsujitani, M., Ohta, H. and Kase, S. (1979). A preliminary test of significance for the 
extremevalue distribution, Bull. Univ. Osaka Prefecture A, 27, 187-193. 



Bibliography 177 

Tsujitani, M., Ohta, H. and Kase, S. (1980). Goodness-of-fit test for extreme-value distri- 
bution, IEEE Trans. Reliab. 29, 151-153. 

van Montfort, M. A. J. (1970). On testing that the distribution of extreme is of type I when 
Type-I1 is the alternative, J .  Hydrol. 11, 421-427. 

van Montfort, M. A. J. (1973). An asymmetric test on the type of the distribution of 
extremes, Med. Landbouwhogeschool73-18, 1-15. 

Vassie, J. M., Blackman, D. L., Tawn, 3. A. and Dixon, M. J .  (1999). Extreme still water 
levels along the Humber Estuary, Joint Report: Proudman Oceanographic Laboratory 
and Lancaster University. 

Velz, C. J. (1947). Factors influencing self-purification and their relation to  pollution abate- 
ment, Sewage Works J .  19, 629-644. 

Viveros, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from 
progressively censored data, Technometrics 36, 84-91. 

Vogel, R. M. (1986). The probability plot correlation coefficient test for the normal, lognor- 
mal, and Gumbel distributional hypotheses, Water Resources Res. 22, 587-590. 

Wallis, J. R. (1980). Risk and uncertainties in the evaluation of flood events for the design 
of hydraulic structures, in Piene e Siccitci, 3-36, eds. E. Guggino, G. Rossi and E. Todini, 
Fondazione Politecnico del Mediter. 

Wallis, J. R. and Wood, E. F. (1985). Relative accuracy of log Pearson I11 procedures, J. 
Hydraul. Engrg. 111, 1043-1056. 

Wang, J .  Z. (1995). Selection of the k largest order statistics for the domain of attraction of 
the Gumbel distribution, J.  Amer. Statist. Assoc. 90, 1055-1061. 

Wang, Q. J. (1990). Estimation of the GEV distribution from censored samples by method 
of partial probability weighted moments, J.  Hydrol. 120, 103-114. 

Wantz, J. W. and Sinclair, R. E. (1981). Distribution of extreme winds in the Bonneville 
power administration service area, J.  Appl. Meteor. 20, 1400-1411. 

Watabe, M. and Kitagawa, Y. (1980). Expectancy of maximum earthquake motions in 
Japan, National Bureau of Standards Special Publ. 560-10, 8 pp. 

Watson, G. S. (1954). Extreme values in samples from m-dependent stationary stochatsic 
processes, Ann. Math. Statist. 25, 798-800. 

Weibull, W. (1939a). A statistical theory of the strength of materials, Ing. Vet. Akad. 
Handlingar 151. 

Weibull, W. (193913). The phenomenon of rupture in solids, Ing. Vet. Akad. Handlingar 
153, 2. 

Weinstein, S. B. (1973). Theory and application of some classical and generalized asymptotic 
distributions of extreme values, IEEE Trans. Information Theory IT-19, 148-154. 



178 Bibliography 

Weiss, L. (1961). On the estimation of scale parameters, Naval Res. Logist. Quart. 8 ,  
245-256. 

Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest 
observations, J.  Amer. Statist. Assoc. 73, 812-815. 

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics, John Wiley and 
Sons. 

Wiggins, J. B. (1991). Empirical tests of the bias and efficiency of the extreme-value variance 
estimator for common stocks, J .  Business Univ. Chicago 64, 417-432. 

Worms, R. (1998). Proprihth asymptotique des excks additifs et valeurs extrbmes: le cas de 
la loi de Gumbel, C. R. Acad. Sci. Paris, t. 327, Shrie I, 509-514. 

Xapsos, M. A,,  Summers, G. P. and Barke, E. A. (1998). Extreme value analysis of solar 
energetic motion peak fluxes, Solar Phys. 183, 157-164. 

Yasuda, T.  and Mori, N. (1997). Occurrence properties of giant freak waves in sea area 
around Japan, J.  Waterway Port Coastal Ocean Engrg. ~ ASCE 123, 209-213. 

Young, D. H. and Bakir, S. T.  (1987). Bias correction for a generalized log-gamma regression 
model, Technometrics 29, 183-191. 

Yun, S. (1997). On domains of attraction of multivariate extreme value distributions under 
absolute continuity, J .  Multivariate Anal. 63, 277-295. 

Zachary, S., Feld, G., Ward, G. and Wolfram, J. (1998). Multivariate extrapolation in the 
offshore environment, Appl. Ocean Res. 20, 273-295. 

Zelenhasic, E. (1970). Theoretical probability distributions for flood peaks, Hydrol. Paper 
No. 42. Fort Collins: Colorado State University. 

Zelterman, D. (1993). A semiparametric bootstrap technique for simulating extreme order 
statistics. J.  Amer. Statist. Assoc. 88, 422, 477-485. 

Zemplkni, A. (1991). Goodness-of-fit for generalized extreme value distributions, Technical 
Report, University of Sheffield. 



Index on Applications 

Accelerated life-test data, 53 
air pollutants, 86 
airborne particles, 53 
athletic records, 87 
atmospheric ozone layer, 53 

Break frequency of paper, 50 

Circuits in space radiation environment, 53 
climatological problems, 53 
communication engineering, 52 
corrosion 

engineering, 53 
pitting, 52 

Directional modelling of wind speeds, 146 

Earthquake 
magnitudes, 24, 31, 51, 53 
motions, 52 

environmental quality data, 53 
extreme 

pollution levels, 88 
winds, 52, 146 

extremely cold temperatures, 150 

Fatigue 
failures in solids, 51 
life of deep-grove ball bearings, 52 

financial matters, 50 
flood 

discharges, 51, 52 
flows, 2, 51 
frequency, 52, 53, 84 
levels, 51 

fracture data, 51 

Germany’s stock index, 54 
glass fibres, 52 
greenhouse effect, 40 

ground level ozone, 53, 88 

High temperatures, 50 
high-tide water levels, 86 
horse racing, 50 
human lifetimes, 2, 51 

Insurance, 50, 53, 54 
insurance premiums, 53 

Live load in supermarkets, 53 

Microorganism survival times, 51 

Network design, 50, 52 

Oil well tubing caliper surveys, 52 
ozone concentration, 50, 53 

Pit depth data for aluminum, 52 
product flammability testing, 53 

Queues in supermarkets, 50 

Radioactive emissions, 2, 51 
rainfall data, 51, 60, 73 
rainfall-depth-frequency curves, 150 
reservoir flood safety, 148 
river 

flow exceedances, 88 
lengths, 86 

rupture in solids, 51 

Sea 
currents, 87 
dikes, 148 
levels, 53 
waves, 52, 86 

seismic risk, 52 
sizes of bush fires, 50, 53 
solar proton peak fluxers, 54 

179 



180 Index on Applications 

stock markets, 53 
stream flows, 86 
strength of materials, 2 
structural 

design, 146 
failures of river banks, 148 

surge data, 86 
synthetic membranes (pore size distribu- 

tions), 50, 53 

Time-to-failure data, 52 
tropical and non-tropical storm, 54 

tropospheric ozone data, 89 

Vapor pressure, 51 

Wave 
height, 110, 127 
period, 86, 127 

directions, 112 
speeds, 52-54, 74, 88, 112, 146-148 

wind 

women’s track race records, 88 



Subject Index 

A’ test, 21, 22 
absolute continuity, 103 
absolutely continuous positive measure, 102 
almost sure convergence, 11, 56 
amount of dependence, 112, 114, 121 
Anderson-Darling (A-D) statistics, 18 
anti-extreme value sentiment, 55 
applications of extreme value distributions, 

Arrhenius relationship, 50 
asymmetric mixed distribution, 118 
asymmetry, 107 

144 

of dependence structure, 114, 116 
parameter, 109 

best linear unbiased estimator, 30, 42 
covariance, 141 
efficiency, 20, 26, 67, 68 
independence, 100 
normality, 100 
total dependence, 96 
total independence, 96 
variance, 20, 141 
variancecovariance matrix, 67, 68 

dependent, 100 
normal, 140, 141 
unbiased, 142 

asymptotic 

asymptotically 

atoms of mass, 99, 102, 114, 116 

extreme value distribution, 105, 106, 

extreme value Gaussian distribution, 130 
extremes, 105, 129 
logistic distribution, 120 
slowly varying function, 99 
symmetric logistic distribution, 142 

111, 114, 142, 143, 149 

BLIE, 27-29, 38 
BLUE, 27 
bootstrap distribution, 11 
boundary function, 147-149 
breakdown point, 44 
Brownian bridge, 139 

canonical 
correlations, 103 
series expansion, 102 
variables, 103 

Cauchy distribution, 59 
Cauchy-F’rBchet type, 59 
characteristic 

exponent, 118, 123 
function, 121, 124 

X2-test of independence, 145 
circular distributions, 112 
circular max-stable model, 146 
clusters, 60 
coefficient of tail dependence, 100 
componentwise maxima, 95, 96, 112, 131 
conditional distribution of threshold exceedances. 

131 
copula, 104, 142 
correlation, 107, 130 

Beta distributions, 112, 125 
bias, 25, 34, 36, 42, 70, 75, 80-82, 138 
biextremal (a)  distribution, 108 
bilogistic distribution, 108, 110, 114 
bivariate covariance 

coefficient, 22, 24, 31, 112, 121, 125 
coefficient test, 19, 22 

matrix, 141 
structure, 139, 140 

circular extreme value distribution, 146 
extreme value, 139 

181 



182 Subject Index 

Cramkr-Rao lower bound, 23, 24, 26, 31 
Cramkr-von Mises 

distance, 43 
statistics, 18 

degenerate distribution, 5 
dependence 

function, 105, 106, 137 
measure, 137, 139 
parameter, 109, 131, 132, 134, 137 
structure, 98-100, 120, 133, 136 
structure convergence, 135 
structure in the joint tail, 135 
structure of multivariate extremes, 146 
structure of the extremes, 98 

digamma function, 122 
Dirichlet distribution, 126, 127 
distribution of maxima, 55, 60 
distributions closed under margins, 129 
domain of attraction, 4, 7, 95, 97, 100, 102, 

double log-scale graph paper, 57 
doubly Type11 censored, 27, 33 

Engelliardt and Bain estimator, 26 
envelope, 144 
error-free communication, 33 
estimated curnulative distribution function, 

Euler’s constant, 12, 14, 37, 78, 121 
exact extreme value distributions, 43 
exceedances of a high threshold, 118 
exchangeability, 57, 107, 116 
exchangeable, 7, 57, 107, 109, 110, 113 
exponent measure function, 98, 99, 129, 

exponential distribution, 4, 10, 11, 15-17, 

extension of the logistic distribution, 120 
extremal 

128 

24 

130 

33, 44, 59, 84, 137 

quotient, 46-48 
types theorem, 95 

spatial storm, 118, 120 
tail, 146 
value distribution, 1, 3, 4, 50, 61-63, 

65-68, 72, 78, 81, 83, 84, 105, 106, 
118 

extreme 

value probability paper, 17, 18 
value theory, 1-3, 16, 33, 43, 52-54, 56, 

88, 89, 145 
extreme value distributions 

FrCchet-type, 3, 96 
Gumbel-type, 3, 96 
von Mises-Jenkinson-type, 4, 61 
von Mises-type, 4, 61 
Weibull-type, 3, 96 

Fisher information matrix, 108, 122 
FrCchet distribution, 3, 17, 59, 72, 90, 96, 

99 

Gamma distribution, 85 
Gaussian distributions, 111, 112 
generalized 

extreme value, 121, 124, 140 
extreme value distribution, 119, 120, 

extreme value margins, 122 
extreme value random variables, 119 
Pareto distribution (GPD), 9, 78, 80, 

Pareto random variables, 119 
variance, 27 

131 

118, 131, 133 

graphical plotting techniques (GPT), 18 
Greenwood statistic Gz, 22 
Gumbel distribution, 22, 43, 60, 70-72, 84, 

90, 108 
paper, 17 

Gumbel-type, 3, 96 

hazard rate, 59 
heavy censoring, 42, 50 
high threshold, 131-133, 135 
homogeneous function, 132 

intensity measure, 97, 98, 100, 104 
inverse power law, 50 
iterative proportional fitting algorithm, 136, 

137 

joint tail, 135, 149 

Kendall’s coefficient of concordance, 121 
kernel 

density estimate, 136 
estimator, 138 



Subject Index 183 

Kolmogorov-Smirnov statistics, 18 
Kuiper statistic, 20 

l’H6pital rule, 8 
least square method, 18, 19 
Lewis-Goodman-Miller algorithm, 17 
limiting distribution, 4-7, 9, 10, 43-45, 55, 

linear 
57-60, 62 

estimator, 24-26, 42 
unbiased estimator, 25, 26, 30 

locally uniformly integrable, 104 
log-gamma population, 14 
logistic 

bivariate extreme value df, 128 
distribution, 44, 47, 83, 106-109, 118, 

120, 123, 132 
lower tolerance factors, 41 
lower tolerance limit, 53 

M, test, 22 
marginal 

convergence, 135 
parameters, 131, 134, 137 
tails, 100 
thresholds, 133, 135 

process, 127 
sequence, 129 

dependence, 99 
representation, 108 

Markov 

max-stable 

maximum likelihood estimator, 16, 18, 31, 
32, 35, 36, 42, 64, 65, 74, 75, 85, 
132 

ranks, 18, 19 
square error, 25, 27, 36, 138, 139 
zero Gaussian process, 139 

measure, 98, 99, 102, 113, 126 
density, 112, 118, 120 
function, 98, 99 

asymmetry, 117 
strength of dependence, 117 
weakness of dependence, 116 

mean 

measures of 

Median ranks, 18 

method of 
composition, 143 
moments (MOM), 31, 66 

distance estimators, 43 
mean-square-error estimator, 26 
variance estimators, 27 

mixed gamma distribution, 122 
modelling 

bivariate extremes, 106 
multivariate extremes, 131 

minimum 

models for multivariate extremes, 97 
modified Bessel function, 112 
moment 

estimator, 24, 81, 82 
ratios, 12 

Monte-Carlo simulation, 18, 21, 22, 41 
multivariate 

extreme value distribution, 95-97, 99, 
102, 105, 106, 118, 120, 124, 129, 
133, 137, 144, 145 

extreme value Gaussian distribution, 130 
extremes, 95, 144 
logistic distribution, 130 
negative logistic distribution, 130 
normal distribution, 130 
two-level logistic distribution, 124 

necessary and sufficient condition, 2, 7, 8, 

negative 
47 

bilogistic distribution, 110, 111 
logistic distributions, 108, 109, 125 

nested logistic distribution, 124 
Newton-Raphson procedure, 31 
non-parametric estimation, 137 
nonexchangeability, 107 
nonhomogeneous Poisson process, 97, 100, 

normal 
131 

distribution, 2, 60, 79 
tail function, 56 

normalized incomplete beta function, 114 
norming constants, 95, 105, 140 

optimal spacing, 30 
optimally chosen weights, 37 



184 Subject Index 

order statistic, 1-3, 7, 13-15, 18, 19, 21, 
22, 25-27, 29, 33, 37, 49, 57, 62, 
70, 72, 78-82, 100, 139 

parametric estimation, 131 
Pareto distribution, 17 
penultimate approximation, 56 
Pickands' estimator, 139 
pivotal quantities, 38, 41, 42 
point process, 97, 131, 134, 143 

Poisson 
characterization, 97, 100, 101, 106 

distribution, 55, 118 
process, 143 

polynomial distribution, 114, 115, 117 
positive stable 

distribution, 118 
variables, 123 

product moments, 121, 124 
PWM method, 36 

quantile, 12, 26, 29, 30, 42, 48, 50, 77, 146 

ranked set 
BLUE, 37 
sample mean, 37 

reduced values, 5 
regular variation, 103 
rejection method, 143, 144 
return 

level, 146, 149 
period, 17, 31, 51, 87, 148, 149 

runs, 60 

sample 
mean, 11, 23, 37 
standard deviation, 23 

score, 134 
semiparametric estimation, 135 
Shapiro-Wilk goodness-of-fit, 22 
simulation, 142 

of a Poisson process, 143 
of bivariate extremes, 142 

skewness, 12, 23, 70 
Skorokhod topology, 7 
smallest extreme value distribution, 49 
spatial dependence, 127 
spectral representation for max-stable pro- 

cesses, 106 

Spence's function, 14 
stability postulate, 5, 6, 105 
stabilized probability plot., 20 
stable law, 55 
standard 

exponential distribution, 15, 16, 44 
Normal distribution, 111, 130, 139 
type I extreme value distribution, 13, 

26, 33, 44 
standardization, 96, 98 
strength of dependence, 109, 112 
strong dependence structures, 98, 117 
symmetric logistic distribution, 107, 109, 

120, 122, 124, 132 
symmetrical sample cdf ranks, 18 
symmetry, 107, 116, 126 

theoretically optimal Epachenikov kernel, 
139 

thresholds for the 
dependence structure, 135 
margins, 135 

time series logistic distribution, 127, 128 
total dependence, 98, 107, 109, 110, 112- 

total independence, 98, 99, 107, 109, 110, 

totally 

114, 116, 117 

112-114, 116, 117, 134 

dependent, 106, 108 
independent, 106, 108, 116, 117 

extreme value distribution, 129, 148 
logistic distribution, 119 
negative logistic distribution, 126 

trivariate 

two-level logistic distributions, 123 
Type I distribution, 4, 5,  11 
Type I (Gumbel) extreme value distribu- 

Type I1 (Frkchet), 44, 47, 59 
tion, 31, 47, 58, 59 

extreme value distribution, 44, 59 
progressively censored, 27 
right-censoring, 26, 38, 42 

Type I11 (Weibull) extreme value distribu- 
tion, 44, 59 

uniform distribution, 17, 59, 77 
unit, 120, 124, 129, 134 



Subject Index 185 

F'rkchet distribution, 96, 98, 99, 127, 

F'rhchet margins, 96, 105, 120, 129 
simplex, 97, 98, 106, 129 

132 

unit-mean condition, 114 
univariate extreme value 

distributions, 97 
distributions, generalized (univariate) 

extreme value distributions, 144 
theory, 120 

upper tolerance factors, 41 
upper tolerance limit, 40 

von Mises 
circular distribution, 112 
condition, 8, 9 

weak 
convergence, 2, 47, 57 
dependence structures, 98, 114, 116 

Weibull distribution, 3, 4, 10, 16, 23, 31, 

Weibull-type, 96 
weighted independent chi-square variables, 

27 

51, 69, 72, 73, 92 

zero-truncated Poisson, 10 
Zeta function, 121, 125 




	Contents

	Chapter 1

	Chapter 2

	Appendix

	Chapter 3

	Bibliography

	Index

	Subject Index




