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Preface to the Soft Cover Edition

I always thought books should be like kids: you prepare them as well as you
can and then send them out into the world and observe the interactions with pride
and affection but without much interfering. However, despite my reluctance to
write, Springer insisted I put some perspective on this new soft cover edition.

I am not sure when the first printing of Extremes Values, Regular Variation
and Point Processes became unavailable for purchase, but I have become increas-
ingly conscious in the past few years of people telling me they could not obtain a
copy. There is usually a vague undercurrent to the comment as if I have let some-
one down. So I inquired about the status at Springer and was told that in this era
of new technologies books do not go out of print.

Of course, in October 2006 Springer published my book Heavy-Tail Phenom-
ena, Probabilistic and Statistical Modeling and it is fair to wonder what is the
difference between the two books. There is some overlap but I labored to keep
the overlap minimal. This older text holds up rather well as an account of ba-
sic, foundational, mathematical material on extreme value theory. It describes
the interplay between the analytical theory of regularly varying functions and
extremes, and also the probabilistic interplay between point processes, extremes
and weak convergence. It presents an approach to the study of extremes that is
still quite current and useful. The interplay between regular variation, point pro-
cesses and extremes is a clear theme leading to a coherent view of the subject.
The book is a rather mathematical treatment and for the most part proofs are pre-
sented completely and in a self-contained manner. Applications are hinted at but
not explicitly discussed. In particular, no explicit treatment of statistical topics is
present.

In the heavy-tails book, the viewpoint is similar in that point processes and
random measures are basic but some mathematical foundational details have been
omitted and referred to either in the 1987 book or to other sources such as the 2006
Springer book by de Haan and Ferreira entitled Extreme Value Theory: An Intro-
duction. The focus in Heavy-Tail Phenomena is on a subset of extreme value the-
ory which I find particularly intriguing and which is critical to applied probability
modeling in finance, networks, queues and insurance. Some of this heavy-tailed
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applied probability modeling is presented in my 2006 book. Heavy-Tail Pheno-
mena also surveys semi-parametric statistical inference methodology, something
which the 1987 book did not attempt. Both the 1987 and 2006 books advance the
point of view that much of the subject is dimensionless if viewed in the correct
framework.

So I hope people will continue to have access to Extremes Values, Regular
Variation and Point Processes, and that they will continue to find it companion-
ably useful.

Ithaca, NY Sidney Resnick
August, 2007



Preface to the Hard Cover Edition

Extreme value theory is an elegant and mathematically fascinating theory as
well as a subject which pervades an enormous variety of applications. Consider
the following circumstances:

Air pollution monitoring stations are located at various sites about a city.
Government regulations mandate that pollution concentrations measured
at each site be below certain specified levels.

A skyscraper is to be built near Lake Michigan and thus will be subject to
wind stresses from several directions. Design strength must be sufficient
to withstand these winds. Similarly, a mechanical component such as an
airplane wing must be designed to withstand stresses from several sources.

Dams or dikes at locations along a body of water such as a river or sea must
be built high enough to exceed the maximum water height.

A mining company drills core samples at points of a grid in a given region.
Continued drilling will take place in the direction of maximum ore con-
centration.

Athletic records are frequently broken.

A common feature of these situations is that observational data has been
or can be collected and the features of the observations of most interest depend
on Jargest or smallest values; i.e., on the extremes. The data must be modeled
and decisions made on the basis of how one believes the extreme values will
behave.

This book is primarily concerned with the behavior of extreme values of
independent, identically distributed (iid) observations. Within the iid frame-
work there are surprising depth, beauty, and applicability. The treatment in
this book is organized around two themes. The first is that the central analytic
tool of extreme value theory is the theory of regularly varying functions, and
the second is that the central probabilistic tool is point process theory and
in particular the Poisson process. Accordingly we have presented a careful
exposition of those aspects of regular variation and point processes which are
essential for a proper understanding of extreme value theory.

Chapter 0 contains some mathematical preliminaries. Some authors might
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relegate these to appendices, but I believe these should be read first, before
plunging into the following sections, in order that readers can get used to my
way of doing things. Chapter 0 also contains a derivation of the three families
of classical, Gnedenko limit distributions for extremes of iid variables and an
account of regular variation and its extensions.

Chapter 1 discusses thoroughly questions of domains of attraction. If iid
random variables have common distribution F, what criteria on F or its
density F’ guarantee that suitably scaled and centered extremes have limit
distributions as the sample size gets large? What are suitable scaling and
centering constants? These results provide a theoretical underpinning to
statistical practice as discussed, for example, in Gumbel (1958): Suppose
data are obtained such that each observation is an extreme. For example, our
data may consist of maximal yearly flow rates at a particular site on the
Colorado River over the last 50 years. Suppose by stretching the imagination,
one believes the data to be modeled adequately by the iid assumption. The
underlying distribution of the model is unknown, so the parametric assump-
tion is made that the data comes from a limiting extreme value distribution.
Usually it is the Gumbel, also called double exponential, distribution A(x) =
exp{—e~*} that is chosen, and the estimation problem reduces to choosing
location and scale constants; this is sometimes done graphically using loglog
paper. The underlying distribution may not be extreme value, but we robustly
hope it is at least in a domain of attraction, so that the distribution of extremes
is close to a limiting extreme value distribution.

By the end of Chapter 1 much analytic technique has been developed and
this is exercised in the specialist Chapter 2. If normalized extremes of iid
random variables have a limit distribution, when do moments and densities
of normalized extremes have limits? We also discuss rates of convergence
to the limit extreme value distributions and large deviation questions which
empbhasize sensitivity to the quality of the approximation of the right tail of
the distribution of the maximum of n iid random variables by the tail of the
limit extreme value distribution.

Chapter 3 shifts the focus from the analytic to the probabilistic, and is a
thorough discussion of those aspects of point processes (and in particular the
Poisson process) which are essential, in my view, for a proper understanding
of the structural behavior of extremes. The core of the probabilistic results is
in Chapter 4, which views records and maxima of iid random variables as
stochastic processes. In a sequence of iid observations from a continuous
distribution, the records (i.e., those observations bigger than all previous ones)
form a Poisson process, and the indices when records occur are approximately
a Poisson process. Several extensions to these ideas are discussed.

Also in Chapter 4 is an account of extremal processes. If maxima of n iid
random variables are viewed as a stochastic process indexed by n, there is a
continuous parameter process called an extremal process, which is a useful
approximation. The structural properties of such processes are studied and
the uses for weak convergence problems are detailed. We also give an account
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in Sections 3.5, 4.4, and 4.5 of a weak convergence technique called the point
process method, which has proved invaluable for weak convergence problems
involving heavy tailed phenomena. If it is necessary to prove some functional
(say the maximum) of n heavy tailed random variables converges weakly as
n— oo, it is often simplest to first prove a point process based on the n
variables converges (n — o0) and then to get the desired result by continuous
mapping theorems. The power of this technique is illustrated in Section 4.5,
where it is applied to extremes of moving averages.

The last chapter examines some multivariate extreme value problems. In
one dimension notions such as maximum and record have unambiguous
meanings. In higher dimensions this is no longer the case. The maximum of
n multivariate observations could be the convex hull, or it could be the vector
of componentwise maxima depending on the application. We concentrate on
the latter definition, which seems most natural for the applications mentioned
at the beginning of the introduction. We discuss characterizations of the
limiting multivariate extreme value distributions and give domains of attrac-
tion criteria. A theory of multivariate regular variation is needed, and this is
developed. Criteria for asymptotic independence are given, and it is proved
that a concept of positive dependence called association applies to limiting
extreme value distributions.

Notation will ideally seem clear and simple. One quirk that needs to be
mentioned is that if a distribution F has a density, it is denoted by F’ (even in
the multivariate case) and never by f. The symbol f is reserved for the auxiliary
function of a class I monotone function. Sometimes, in the completely separate
context of point processes, f denotes a bounded, continuous real function, but
the important point to remember is that f is not the density of F; rather F' is
the density of F.

Extreme value results are always phrased for maxima. One can convert
results about maxima to apply to minima by using the rule

— max — = min.

For example, 2 = min{2,3} = —max{—2, —3} = —(—2) = 2. We denote
max{x;: 1 <i < n} by \/I-, x; and similarly min is denoted by /\. Also it is
usually clear how to adapt weak convergence results for maxima so that they
apply to the kth largest of a sample of size n (k fixed, n — o). The point
process method usually makes this adaptation transparent. See, for instance,
Section 4.5.

The best plan for reading this book is to start from the beginning and read
each page lovingly until the end. There is only one section that is tedious. The
second best plan is to start from the beginning and go through, passing lightly
over certain material depending on background, taste, and interests but
slowing down for the important results. Chapter 2, parts of 3, 4.4.1, and part
of 4.6 may be skimmed, but the motto to be kept in mind is “skim; don’t skip.”
This includes the exercises, which contain complementary material and alter-
native approaches. The extent to which readers will actively attempt the
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exercises will determine the extent of their progress from observer to practi-
tioner. If plans 1 and 2 seem too ambitious, readers could consider making a
module of Chapters 0, 1, and 5 and another module of a skimmed Chapter 3
and a heavily studied Chapter 4.

There are a number of things this book is not. It is not an encyclopedia and
it is not a history book. Using a literary analogy, think of this as a novel. There
is a story to be told, and readers should pay attention to matters of style and
exposition and to how cosmic themes and characters relate. This book provides
excellent coverage of problems arising from iid observations and offers good
grounding in the subject, but does not pretend to offer comprehensive coverage
of the whole subject of extreme values. This is now so broad and vast that it
is doubtful that one book would do it justice. Consequently, a reader needing
a rounded view of the whole subject is encouraged to consult other books and
sources, as well as this one. For instance, with the exception of Section 4.5 on
extremes of moving averages, I do not give attention to the important case of
extremes of dependent variables. Fortunately, there is already a superb book
on this subject by M.R. Leadbetter, G. Lindgren, and H. Rootzen, entitled
Extremes and Related Properties of Random Sequences and Processes. It is very
well written and elegant and is highly recommended.

Chapters 0, 1,and 2 bear the intellectual influence of my colleague and friend
Laurens de Haan, with whom I have had the privilege and pleasure of working
and learning since 1972. Professor de Haan has had enormous influence on
the subject, and his 1970 monograph remains, despite the huge quantity of
research it stimulated, an excellent place to learn about the relationship of
extreme value theory and regular variation.

Now the acknowledgments. It is customary at this point for authors to
make a maudlin statement thanking their families for all the sacrifices which
made the completion of the book possible. This may be rather out of tune in
these pseudo-quasi-semiliberated eighties. I will merely thank Minna, Nathan,
and Rachel Resnick for a cheery, happy family life. Minna and Rachel bought
me the mechanical pencil that made this project possible, and Rachel gen-
erously shared her erasers with me as well as providing a back-up mechanical
pencil from her stockpile when the original died after 400 manuscript pages.
I appreciate the fact that Nathan was only moderately aggressive about
attacking my Springer-Verlag correspondence with a hole puncher.

Robyn Kelley (with timely assistance from Waydene Casey and Pat Key)
provided excellent typing worthy of a raise, and cheerfully coped with sub-
standard penmanship, transatlantic mailings, the differences between 8% x 11
inch and A4 paper, European hole punchers that punch in the wrong places
for U.S. binders, and a professor who though on leave of absence kept sending
her work.

The U.S. National Science Foundation has been magnificent in its continuing
support. As a young pup I was allowed to schnor from other people’s grants,
and then at a crucial stage in my career NSF made me co-principal investigator
of a series of grants that continue to the present. Other institutions which have
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generously provided support which has generated time away from teaching
for thinking and learning are Erasmus University, Rotterdam; University of
Amsterdam; Mathematics Center, Holland; Lady Davis Fellowship Trust;
Technion, Haifa, Israel; United Kindgom Science and Engineering Research
Council (SERC). The first two-thirds of the book were written while I was on
sabbatical support—gratefully acknowledged—from Colorado State Uni-
versity. Duane Boes has been an enlightened and supportive chairman at
CSU. Sussex University, Brighton, United Kingdom, provided a hospitable
and pleasant environment, where the last third was finished while I was being
supported by the SERC Fellowship.

As they have been so often in the past, Joe Gani and Chris Heyde were very
helpful and encouraging during the preparation of this book.

Fort Collins, Colorado Sidney 1. Resnick
April 1987
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CHAPTER 0

Preliminaries

Some of the topics discussed here are sometimes relegated to appendices.
However, since these topics must be well understood before arriving at the
core of the subject, it seems sensible to discuss the preliminary topics first. The
reader is advised to skim 0.1, 0.2 according to taste and background, but slow
down for 0.3, which discusses the possible limiting distributions for nor-
malized maxima of independent, identically distributed (iid) random variables.
Section 0.4 treats the basic facts in the theory of regular variation and some
important extensions. Regular variation is the basic analytical theory under-
pinning extreme value theory, and its importance cannot be overemphasized.

0.1. Uniform Convergence

If f,, n >0 are real valued functions on R (or any metric space) then f,
converges uniformly on 4 < R to f; if

sup | fn(x) — fo(x)| = O

xe A

asn— oo.

If U,, n > 0 are nondecreasing real valued functions on R then it is a well
known and useful fact that if U, is continuous and U,(x) —» U,(x) as n - oo
for all xe R then U, — U,locally uniformly; i.e, for any a < b

sup |U,(x) — Up(x)| - 0. (0.1)
xefa,b)

One proof of this fact is outlined as follows: If U, is continuous on [a, b],
then it is uniformly continuous. For any x there is an interval-neighborhood
in [a,b], 0, containing x, on which U oscillates by less than . This gives an
open cover of [a,b]. Compactness allows us to prune {0,, x € [a,b]} to obtain
a finite subcover. Using this finite collection and the monotonicity of the
functions leads straightaway to the desired uniform convergence.

Another proof of (0.1) is obtained by using the concept of continuous
convergence (Kuratowski, 1966). Suppose &, # are two complete, separable
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metric spaces and f,: £ — %, n = 0. Then f, converges to f continuously if
whenever x,eZ, n > 0 and x, — x, we have f,(x,) = fo(xo).

The connection with uniform convergence is this: If & is compact and f, is
continuous then f, — f, continuously iff f, — f, uniformly on Z'. This equiva-
lence sometimes provides a convenient way of proving uniform convergence
since it allows us to prove convergence of a sequence of points in % rather
than having to deal with functions.

The equivalence of the two concepts is seen readily: Let d be the metric on
%.If f, - f, uniformly on & and x, — x, then we have

d(fn(xn),fo(xo)) < d(f;:(xn)’fo(xn)) + d(fo(xn)afo(xo))
< sup d(fu(x), fo(x)) + d(fo(xn), fo(Xo)).

The first term goes to zero as n — oo by uniform convergence and the second
term vanishes by continuity. Conversely suppose f, — f, continuously but not
uniformly. Then there is a subsequence {n(k’)} and ¢ > 0 such that for all n(k’)

Sug d( fuwr(X), fo(x)) > 2e.

Using the definition of sup we find points {x,.} = 2 such that
d(fager(xx), fo (X)) > e. 0.2)
Since & is assumed compact there is a limit point x, and a subsequence

{x,} = {x:} with x, > x,. Continuous convergence and continuity of f,
require

A(fugy (%)s fo(xi)) < d( Sy (X, fo(X0)) + A(fo(xo0), fo(xi)) = 0

in violation of (0.2). The contradiction occurs because we supposed f, did not
converge to f, uniformly.

We now check (0.1) by using continuous convergence: Suppose {x,,n > 0} <
[a,b] and x,, — x,. We check U,(x,) — Uy(x,). It suffices to consider two cases:
(@) x, > xo. (b) x, < x,. (If necessary, partition {x,} into two subsequences.)
We consider only (a). The following are evident: There exists # > 0 such that

[Uo(xo + 1) — Ulxo)l <& 0.3)

because U, is continuous. Furthermore there is n, such that if n > n,

|x, — xol <1 0.4)
and
[Un(x + 1) — Up(xo + Ml v [Uy(x0) — Upl(xo)l < & (0.5)
since U, — U, pointwise. We then have for n > n, on the one hand
U,(x,) < Uy(xg + 1) (from (0.4))

< Uplxg +n)+¢ (from (0.5))
< Uy(xq) + 2¢ (from (0.3))
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and on the other hand
U,(x,) = U,(xo) (monotonicity)
> Uyl(xp) — ¢ (from (0.5)).

Continuous convergence follows.

If F,, n>0 are distribution functions on R (always understood to be
nondefective) then F, — F, pointwise and F, continuous imply uniform con-
vergence on R. Local uniform convergence comes from (0.1), and off a large
interval [a, b] there is not much possibility of oscillation. Given ¢ pick b such
that Fy(b) > 1 — ¢ and there exists ny such that for n > n,

|Fy(b) — Fo(b)l < &
whence for x > b

|[Fy(x) — Fy(b)] < 1 — F,(b) < 1 — Fo(b) + |Fo(b) — F,(b)| < 2¢
and therefore for n > n,

sup | F,(x) — Fo(x)| < SEEIF,.(X) — F,)|

x>b
+ | F,(b) — Fo(b)| + | Fo(b) — Fo(x)|
<2 +e+e

Similarly for x < a. Combined with uniform convergence on [a, b] this gives
convergence uniformly on R.

Alternatively since F,(o0) = 1, F,(—o0) = Ofor all n > 0 we may compactify
R and work on [ —o0, 00]. If F, = F, pointwise on [ —o0, 0] and F, is con-
tinuous, local uniform convergence coincides with uniform convergence.

EXERCISES

0.1.1. Suppose U¥, n > 0 are real valued functions on R and as n — o
U'si) - U'si)
locally uniformly on R for i = 1, 2. Prove
(a) UM + UP - U + UE?
locally uniformly.
(b) U~ U — U Ug?
locally uniformly.
(c) If g:R— R is bounded and continuous then g(UM)— g(UM) locally
uniformly.
Use continuous convergence.

0.2. Inverses of Monotone Functions

Suppose H is a nondecreasing function on R. With the convention that the
infimum of an empty set is +o0o we define the (left continuous) inverse of H as

H* (y) = inf{s: H(s) > y}.
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To check H* is left continuous at x € R, suppose x, T x but H (x,) t H (x —) <
H* (x). Then there exist 6 > 0 and y such that for all n

H (x,) <y < H"(x) - 4.

The left inequality and the definition of H™ yield H(y) > x, for all n, and hence
letting n — oo we get H(y) > x whence again by the definition of H- we
get y > H"(x), which coupled with y < H"(x) — § leads to the desired
contradiction.

In case the function H is right continuous we have the following interesting
properties:

A(y):= {s: H(s) = y} is closed (0.6a)
HH"(y) =y (0.6b)

H-(y) < tiff y < H(t)
{t <H-()iffy > H(). (0.6¢)

For (0.6a) observe if s,€ A(y) and s, | s then y < H(s,) | H(s) so H(s) > y
andse A(y).Ifs,Tsand s,c A(y)theny < H(s,) 1 H(s—) < H(s)and H(s) > y
so se€ A(y) again and A(y) is closed. Since A(y) is closed, inf A(y)e A(y), i.e.,
H* (y)e A(y), which means H(H* (y)) > y. Last, (0.6¢c) follows from the defini-
tion of H.

The probability integral transform follows: Let ([0, 1], #[0, 1], m) be the
Lebesgue probability space; m is Lebesgue measure. Suppose U is the identity
function on [0,1]: i.e., U is a uniformly distributed random variable. If F is
a distribution function (df) then F*(U) is a random variable on [0, 1] with
df F. This is readily checked: For te R

m[F-(U)<t]=m[U < F(t)]  (from (0.6¢))
= F().

A slight variant of this involves an exponential distribution rather than the
uniform: Let X be a real random variable with distribution F. Set R =
—log(1 — F). If P[E > x] =%, x > 0 then R"(E) and X have the same
distribution which we write as

R-(E) £ X.
To check this is simple: For xe R
P[R“(E) > x] = P[E > R(x)]
= exp{—R(x)} = 1 — F(x).

We now discuss convergence of monotone functions. For any function H
denote

%(H) = {xeR: H is finite and continuous at x}.

A sequence {H,,n > 0} of nondecreasing functions on R converges weakly to
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H,ifasn— o
H,(x) - Ho(x)

for all xe¥(H,). We will denote this by H, - H,, and no other form of
convergence for monotone functions will be relevant. If F,, n > 0 are (non-
defective) df’s then a myriad of names give equivalent concepts: complete
convergence, vague convergence, weak* convergence, narrow convergence. If
{X,,n > 0} are random variables and X, has df F,, n >0 then

X, =X,
means

F, - F,.

Proposition 0.1 (cf. Billingsley, 1979, page 287). If H,, n > 0 are nondecreasing
functions and H, — H,, then H,” — Hy .

ProOF. Fix ¢ > 0 and te ¥(H¢ ). Since the discontinuities of the monotone
function H, are at most countable, there exists xe(Hy (t) — &, Hg ()) and
x€¥(H,). Since x < Hg (t) we have by definition of Hy™ that H,(x) < t. Since
xe¥(H,) entails H,(x) - Hy(x) we have for large n H,(x) < t, and again using
the definition of inverse we get x < H, (¢) for large n. Thus

Hy(t) —e<x < H7(t)
for large n implying, since ¢ > 0 is arbitrary, that

liminf H: (f) > HY (o).

n—w

(Note this half did not use te ¥(Hy ).)
For areverse inequality note that whenever ¢’ > ¢t we may find ye ¥(H,) and

Hy(t)<y<Hg(@t)+e 0.7)
The left-hand inequality in (0.7) and the definition of the inverse give
Hy(y) =t >t

Since ye€(H,) we have H,(y) - Hy(y), and so for large n, H,(y) >t and
therefore y > H, (t). From (0.7)

Hyt)Y+e>y=>H;(t)
for large n and hence

limsup H, (t) < Hg (t')

n—w
since ¢ is arbitrary. Let ¢’ | t and use the continuity of Hy at ¢ to get

limsup H, (t) < Hy (¢).

n—*ao

This completes the sandwich and gives the desired result. O
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Proposition 0.1 allows us to prove easily the one-dimensional version of
Skorohod’s (1956) theorem relating convergence in distribution to almost sure
convergence.

Skorohod’s Theorem. For n > O suppose X, is a real random variable on
(Q,, B,, P,) such that X, = X,. Then there exist random variables {X,,n > 0}
defined on the Lebesgue probability space ([0, 1], [0, 11, m) such that

(i) X, < X, for eachn > 0 and
(i) X, — X, almost surely with respect to m.

By changing spaces and ignoring dependencies between X’s we get almost
sure convergence. Note it is not true that {X,,n>0}2 {X,,n>0} as
random elements of R*.

Proor. Let U be the identity function on [0, 1], so that U is uniformly
distributed with respect to m. Suppose the distribution of X, is F,, n > 0 and
define

X, = F (U).

The probability integral transform discussed previously shows X, Lx -
n > 0 giving (i).
For (ii) note that F, — F, entails F,- — F; by Proposition 0.1. Therefore

12m{0<u<!1:X,u)- Xw)
= m{u: F;" (u) > Fg (u)}
>mu:ueb(Fy )} =1

since the discontinuities of Fy~ are at most countable. O

EXERCISES
0.2.1. For a monotone function U, check
U (y) = inf{s: U(s) > y}

is right continuous. If U is uniformly distributed on [0, 1], check F,~(U) 4

X where X is a random variable with distribution F(x).
0.2.2. If U is monotone define

U*(x) =1lim U(y)
yix

U™ (x) =lim U(y).

ytx
Verify:
@@ (U7)"=U"
(b) (UT) =U"

(c) If U,, n > 0 are monotone then U, — U, implies Ut — Ugt.



0.3. Convergence to Types Theorem and Limit Distributions of Maxima 7

0.2.3. Extend Proposition 0.1 to show U, —» U, iff U, — Uy

0.2.4. When is it true that
(@ U(U" (1) =t
®) U~ (U@) =17

0.3. Convergence to Types Theorem and Limit
Distributions of Maxima

Two distribution functions U(x) and V(x) are of the same type if for some
A>0,BeR
V(x) = U(Ax + B)

for all x. For instance, N(0, 1, x) (normal df with mean 0 and variance 1) is
normal type as is N(y,02,x) = N(0,1,6 'x — 67 ') for ¢ > 0 ueR. Affine
transformations, weak convergence, and types are related as follows.

Proposition 0.2. Suppose U(x) and V(x) are two distributions neither of which
concentrates at a point.
(a) Suppose for n >1 F, is a distribution, a, > 0, b,e R, a, > 0, f,€ R and

F(a,x +b) > U(x),  F(o,x + f,) - V(x) (0.8)
weakly. Then
a,/a,— A >0, (B, — b,)/a, — BeR (0.9)
and
V(x) = U(Ax + B). (0.10)

An equivalent formulation in terms of random variables:
(@) Let X,, U, V, n > 1 be random variables such that neither U nor V is
almost surely constant. If

(Xn - bn)/an = U’ (Xn - Bn)/an =V (08’)

then (0.9) holds and a
V = (U - B)/A. (0.10")

(b} If (0.9) holds then either of the two relations in (0.8) (or (0.8')) implies the
other and (0.10) (or (0.10")) is true.

PRrOOF OF (b). Suppose (0.9) holds and Y, := (X, — b,)/a, = U. We must show
(X, — B.)/a, = (U — B)/A. By Skorohod’s theorem there exist ¥,, U, n > 1,
defined on ([0,1], 2[0,1],m)such that ¥, £ ¥, n> 1,02 Uand ¥, » T as.
Define X, :=a,Y, + b,so X, £ X,. Then
(Xn - ﬁn)/“n g (Xn - ﬂn)/an = (an/an)yn + (bn - ﬂn)/an
- A0 - B4 £ (U - BY/A
so that (X, — B,)/a, = (U — B)/A.
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PROOF OF (a). Using Proposition 0.1 the relations in (0.8) can be inverted to give
() -=b)a,—»U"(y), (FF()—BYu—=>V"(y) (011

weakly. Since neither U(x) nor V(x) concentrates at one point we may find
points y,, y, satisfying

Y1, V2€6UT)NEVT),  yi <y,
U™(y)) <U"(y2) and V7(y) <V (y2)
Therefore from (0.11) we have fori = 1,2
(F () —b)a,»U"(y), (F- ()~ B, =V (y) (0.13)
and by subtraction
(Fy (y2) = Ky (31))a, = U™ (y2) = U (y4) > 0,

0.12)

0.14)
(Fy (y2) — B (01))an = V= (y2) — V= (y1) > 0.
Divide the first relation in (0.14) by the second to obtain
/@y > (U (y2) = Uy )V (y2) = V() = 4> 0.
Using this and (0.13) we get
(Fy () = b)a,»U(y,),  (F(y) = B)a,» V- (y)A™?
and so subtracting we obtain
(Bo = b)/a, > U (y,) = V" (y)A™! = B.
This gives (0.9) and (0.10) follows from (b). O

A nice by-product of this proofis that from (0.13) and (0.14) a suitable choice
of the normalizing constants is

a, = Fn‘-(yz) - Fn‘_(yl)
b, = F,(y1).

One of the nicest applications of the convergence to types result is to the
derivation of the class of possible limit distributions for normalized maxima
of iid random variables, and we now focus our attention on this result, which
is one of the most basic in classical extreme value theory. Suppose {X,,n > 1}
is an iid sequence of random variables with common distribution F(x). Set
M, = \/1-; X;. The distribution function of M, is F"(x) since

P[M, < x] = P{ﬂ [X, < x]} - U PLX, < x] = F"(x).

i=1

If we set
xo = sup{x: F(x) < 1} < oo, 0.15)
then
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lim { M, = x, as. (0.16)
n—ao0
To check this, observe that for x < x,, F(x) < 1 and so
P[M, < x] = F"(x)—0.

Therefore M, 5 Xo. Since {M,} is a nondecreasing sequence, convergence in
probability implies convergence almost surely.

Analytic expressions for F* can be cumbersome even if F is completely
known; in statistical contexts that is often not the case. Just as the normal
distribution is a useful approximation to the distribution of ) ._; X;, we seek
a limit distribution to act as an approximation to F". The relation (0.16) makes
it clear that a nondegenerate limit distribution will not exist unless we nor-
malize M,. It is customary to use affine normalizations, which are also the
most practical in statistical estimation problems.

Proposition 0.3 (cf. Gnedenko, 1943; de Haan, 1970a, 1976; Weissman, 1975b).
Suppose there exist a, > 0,b,e R, n > 1 such that

P[(Mn - bn)/an < x] = F"(anx + bn) nd G(X), (0'17)

weakly as n — oo where G is assumed nondegenerate. Then G is of the type of
one of the following three classes:

. 0 x<0

) Do) = {exp{—x‘“} x>0
for some o > 0,

. _ fexp{—(—x)"} x<0

(i) W) = {1 oo

for some o > 0;
(iii) A(x) =exp{—e™™} xeR.

We refer to ®,, '¥,, and A as the extreme value distributions.

PRrOOF. For teR let as usual
[t] = greatest integer less than or equal to t.
From (0.17) we get for any ¢t > 0.
FU"Y (@, x + bpy) = G(x)
and also
F"a,x + b,) = (F"(a,x + b,))™" - G'(x).

The convergence to types theorem applies and we are assured of the existence
of a(t) > 0, B(t)e R, t > 0 such that

hm an/a[m] = a(t)’ llm (bn - b[nt])/a[m] = ﬂ(t) (018)

n—-w n—a
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and
G'(x) = G(a(t)x + B()). (0.19)

From (0.18) it is immediately apparent that the functions «, § are measurable.
For instance in the case of & we observe that limits of measurable functions
are measurable so it suffices to check for a fixed n that a,/ay,., is measurable.
But since the range of ay,, is the discrete set {a;} we have (assuming the g; are
distinct)

{t:apy=a;} =[jn”",(j + Hn™")

and this amply demonstrates measurability.
Return to (0.19) and for t > 0, s > O we have on the one hand

G"(x) = G(a(ts)x + B(ts))
and on the other
G*(x) = (G°(x))' = G(a(s)x + B(s)y
= G(a(t){al(s)x + B(s)} + B(®)
= G(a(t)a(s)x + a(t)B(s) + B(r))-

Since G is assumed nondegenerate we therefore conclude for t > 0, s > O (cf.
Exercise 0.3.2):

a(ts) = a(t)a(s) (0.20)
B(ts) = a()B(s) + B() = a(s)B(1) + B(s), 0.21)

the last step following by symmetry. We recognize (0.20) as the famous Hamel
functional equation. The only finite measurable, nonnegative solution is of
the following form (for example, see Seneta, 1976):

a(t) =t feR. O

We now consider three cases: (a) § = 0, (b) § > 0,(c) 8 < 0.
Case (a), 0 = 0. In this case a(t) = 1 and (0.21) becomes
B(es) = B() + B(s),
a simple variant of the Hamel equation. The solution is of the form
p(t) = —clogt, t>0, ceR
and (0.19) is
G'(x) = G(x — clogt). 0.22)

If ¢ were zero, it could not be the case that G was nondegenerate. For any
fixed x, G*(x) is nonincreasing in t, and we conclude therefore that ¢ > 0.
If for some x,, G(x,) = 1 then from (0.22) we get

1 = G(x, — clogt)
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for all t, and changing variables gives G(u) = 1 for all 4, a contradiction.
Therefore G(x) < 1 for all x. Similarly it cannot be the case that G(y) = O for
any y. Substitute x = 0 in (0.22) obtaining for ¢t > 0

G'(0) = G(—clog). (0.23)

Set exp{ —e™?} = G(0)e(0,1) and u = —clogt. Since the range of t is (0, o),
the range of u is (— o0, 00) and changing variables in (0.23) gives

G(u) = exp{—e Pt} = exp{—e """}
= A(c™'u + p).
Case (b), 0 > 0. From (0.21)
() B(s) + B(t) = a(s)B(t) + B(s)
sothat(t # 1,5 # 1)

B _ B
1—a(s) 1—af)

i.e., the function B(-)(1 — a(-))™! is constant equal to c say. Therefore for t # 1

B) = B(s)(1 — als))™' (1 — a(1))
=c(l —t7%
and (0.19) becomes
G'(x) =Gt + c(1 — t7%)
=G(t™%x — ¢) + ¢);
i.e, changing variables
G'(x + ¢) = G(t ™% + ¢).

Set H(x) = G(x + ¢). Then G and H are of the same type so it suffices to solve
for H. The function H satisfies

H'(x) = H(t"*%) (0.24)

and H is nondegenerate. Set x = 0 and we get from (0.24), t log H(0) = log H(0)
for t > 0 so either log H(0) = 0 or — oo; i.e., either H(0) = 0 or 1. However,
H(0) = 1 is impossible since it would imply the existence of x < 0 such that
the left side of (0.24) is decreasing in t while the right side of (0.24) is increasing
in t. Therefore we conclude H(0) = 0.

Again from (0.24) we obtain H'(1) = H(t"®). If H(1) = 0 then H = 0 and if
H(1) = 1 then H = 1, both statements contradicting H nondegenerate. There-
fore, H(1)€(0,1). Set 7' = «, H(1) = exp{—p ™}, u=1t"? so that u™* =1t.
From (0.24) with x = 1 we get foru > 0

H(u) = exp{—p~*t} = exp{—~(pu)~*}
= q)a(pu)-
Case (c), § < 0. That this case leads to the type of ¥, is left as an exercise.
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EXERCISES
0.3.1. Verify in the proof of Theorem 0.3 that the case § < 0 leads to type '¥,.

0.3.2. The derivation in Proposition 0.3 uses the following fact: If F is a nondegenerate
distributionand a > 0,¢ > 0, beR, de R, and

F(ax + b) = F(cx + d)

then a = c and b = d. Prove this two ways by
(a) Considering inverse functions;
(b) Showing it is enough to prove F(Ax + B) = F(x) implies A = 1, B =0 by
iterating F(T(x)) = F(x) (i.e., replacing x by (T(x) again and again) where
T(x) = Ax + B.
0.3.3. Suppose {X,,n > 0} are iid and there exist a, > 0, b,e R such that for some G
nondegenerate

P[i X; — b,)a, < x:l - G(x)
i=1

as n — 00. Derive a functional equation for the characteristic function of G.
0.3.4. Suppose Y,, n > 1 are random variables such that there exist a, > 0, b,& R and
PLY, < a,x + b,] - G(x),
nondegenerate and for each t > 0
P Yy < a,x + b,] - G,(x)
nondegenerate. Then there exists §(t) > 0, a(t)e R such that
G(x) = G(B(D)x + (1))

and B(t) = t® and if 0 = O then a(t) = clogt and if 0 # O then a(t) = c(1 — t°)
(Weissman, 1975b).

0.4. Regularly Varying Functions of a Real Variable

Having established what the possible limit laws for normalized maxima are
we must next give criteria for convergence to each type. If G is an extreme
value distribution we say a distribution F is in the domain of attraction of G
(written F € D(G)) if there exists a, > 0, b,, n > 1 such that

FYa,x + b,) = G(x)

weakly. It is also important to characterize {a,} and {b,}.

Such domains of attraction questions are best understood within the frame-
work of the theory of regularly varying functions, so before continuing with
extreme value theory we pause for a brief account of regular variation. Mas-
tering this subject is important for proper understanding of extreme value
theory. The goal of this treatment is to provide a reader with a functional
understanding of basics. It is not intended to be exhaustively complete, and
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in some cases proofs deal only with special cases. Pay particular attention to
the material on de Haan’s classes IT and I', which are not nearly as well known
as they deserve to be. Further information can be found in the following
excellent references: Seneta (1976), de Haan (1970), Feller (1971), and Bingham,
Goldie, and Teugels (1987).

0.4.1. Basics

Roughly speaking, regularly varying functions are those functions which be-
have asymptotically like power functions.

Definition. A measurable function U: R, — R, is regularly varying at oo with
index p (written Ue RV,) iffor x > 0

Ultx)
o U()

x?

We call p the exponent of variation. With obvious changes we may speak about
regular variation at 0. The theories are equivalent: U(x) is regularly varying
at oo iff U(x ') is regularly varying at 0.

If p = 0 we call U slowly varying. Slowly varying functions are generically
denoted by L(x). If U € RV, then U(x)/x” € RV, and setting L(x) = U(x)/x” we
see it is always possible to represent a p-varying function as x”L(x).

ExaMPLES. The canonical p-varying function is x?. The functions log(1 + x),
loglog(e + x) are slowly varying, as is exp{(log x)*}, 0 < « < 1. Any function
U such thatlim, , , U(x) =: U(o0) exists finite is slowly varying. The following
functions are not regularly varying: e*, sin(x + 2). Note [logx] is slowly
varying, but exp{[log x]} is not regularly varying.

In probability applications we are concerned with distributions whose tails
are regularly varying. Examples are

1 —F(x)=x"¢ x> 1, a >0,
and
D, (x) = exp{ —x7}, x=>0.
®@,(x) has the property
1 —-®,(x)~x™* asx— oo.

{(Note, we write g(x) ~ h(x) as x — oo to mean lim__,, g(x)/h(x) = 1.) A stable
law with index o, 0 < a < 2 has the property

I - G(x) ~ cx7*%, X — o0, c>0

and more particularly the Cauchy density f(x) = (z(1 + x2))~* has a df F with
the property
1 — F(x) ~ (nx)L.
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If N(x) is the standard normal df then 1 — N(x) is not regularly varying nor
is 1 — A(x).

The definition of regular variation can be weakened slightly.

Propesition 0.4 (de Haan, 1970; Feller, 1971).
(i) A measurable function U: R, — R, varies regularly if there exists a func-
tion h such that for all x > 0

lim U(tx)/U(t) = h(x).

t—a0
In this case h(x) = x* for some pe R and U € RV,
(ii) A monotone function U: R, — R, varies regularly provided there are two
sequences {1,}, {a,} of positive numbers satisfying

Ay~ Apy1 asn— o (0.25)
a, — o0 0.26)

and forall x >0
lim 4,U(a,x) =: x(x) exists positive and finite. ©0.27)

n—aw

In this case y(x)/x(1) = x? and U € RV, for some peR.

Proor. (i) The function h is measurable since it is a limit of measurable
functions. Then for x > 0,y > 0
U(xy) Ulxy) U(tx)
U@ Uix) U@

and letting t — oo gives

h(xy) = h(y)h(x).
So h satisfies the Hamel equation and is of the form h(x) = x” for some pe R.
(ii) For concreteness assume U is nondecreasing. Since a, — o, for each ¢t
there is a finite n(¢) defined by

n(t) = inf{m: a,,, >t}

so that

Qpey S L < Bpirys1-

Therefore by monotonicity for x > 0

(Aan)( AnieyU(pyX) > < Ul(tx) <( inm )(}»n(z)ﬂu(an(z)ﬂx))

Angey Iny+1U@py+1)) — UM 7~ \Angys1 AnieyU (@)

Now let t — oo and use (0.25) and (0.27) to get lim U—(tfl = IM. The rest
=0 U(F) x(1)

follows from part (i). O
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ExXEeRrcise 0.4.1.1. Proposition 0.4 (ii) remains true if we only assume (0.27) holds
on a dense set. This is relevant to the case where U is nondecreasing and
A, U(a,x) converges weakly.

EXAMPLE. Suppose X,, n > 1 are iid with common df F(x). Find conditions on
F so that there exists a, > 0 such that

Pla;'M, < x] = F"(a,x) — ®,(x) (0.28)

weakly and characterize {a,}.

Set x, = sup{x: F(x) < 1} and we first check x, = 0o. Otherwise if x, < o0
we get from (0.28) that for x > 0, a,x — x,; i.e., a, = xox . Since x > 0 is
arbitrary we get a, — 0 whence x, = 0. But then for x > 0, F"(a,x) = 1, which
violates (0.28). Hence x, = 0. Furthermore a, — o since otherwise on a
subsequence n’, a,- < K for some K < oo and

0 < ®,(1) = lim F*(a,) < lim F*(K)=0

n’' = n'—+w

(since F(K) < 1) which is a contradiction.
In (0.28) take logarithms to get for x > 0, lim,_, n(—log F(a,x)) = x™*
Now use the relation —log(l — z) ~ z as z— 0 and (0.28) is equivalent to

Iim n(1 — F(a,x)) = x7%, x> 0. 0.29)

From (0.29) and Proposition 0.4 (ii) we get
1 — F(x) ~ x"*L(x), x — oo, forsomea > 0. (0.30)
To characterize {a,} set U(x) = 1/(1 — F(x)) and (0.29) is the same as
U(a,x)/n — x° x>0
and inverting we find via Proposition 0.1 that

U‘_(ny) N yl/'l
a

R y>0.

So U (n) = (1/(1 — F))~(n) ~ a, and this determines a,.
Conversely if (0.30) holds, define a, = U* (n) as previously. Then

. 1 — F(a,x) _
e 1= F(a)

—-a

and we recover (0.29) provided 1 — F(a,) ~ n~! or what is the same, provided
U(a,) ~ n; ie., UWU"(n)) ~ n. Recall from (0.6c) that z < U (n) iff U(z) < n
and setting z = U (n)(1 — ¢) and then z = U" (n)(1 + &) we get
UUm) _UUTE) U@
UU ()1 +¢) n T UWUT (1 —eg)
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Let n — oo remembering U = 1/(1 — F)e RV,. Then

(1 + &)* < liminf n'U(U* (n)) < limsup < (1 — &)™*

n—o n—o

and since ¢ > 0 is arbitrary the desired result follows.

EXERCISES

04.1.2.

04.13.

04.14.

Say that 1 — F is rapidly varying (de Haan, 1970), written 1 — F(x) ~ x ®L(x)
as x — oo, if

lim1—~F(tx) . 0 if x>1
—_— = X =
t-w 1 — F(1) o if 0<x<l1.

Let {X,,n > 1} beiid random variables with common distribution F(x). Prove
the following result about relative stability (Gnedenko, 1943; de Haan, 1970):
There exist constants 0 < b, T co such that

M, /b, 5 1
iff 1 — F(x) ~ x"®L(x). Also, give a characterization of b,.

Let{X,,n > 1} be iid nonnegative random variables with Ee™*¥* = £(1),4 > 0
as the common Laplace transform. Give necessary and sufficient conditions
on F for there to exist 0 < a, 1 o such that

Y Xi/a, 51
i=1

and give a characterization of a,.. Also give necessary and sufficient conditions
on F for there to exist 0 < a, 1 o0 and a nondegenerate distribution G(x) such
that

P[i Xi/a, < x] - G(x).

Characterize a, and the Laplace transform G(1) (Feller, 1971).
L: R, — R, is slowly varying iff
lim L(tx)/L(t) = 1

t—*w

for all x> 1. If L: R, - R, is monotone, then L is slowly varying iff there
exists one x > 0, x # 1, for which

lim L(¢x)/L(t) = 1.

t— o

Show the last result is false without the assumption of monotonicity.

0.4.2. Deeper Results; Karamata’s Theorem

The first result which is very useful is the uniform convergence theorem. (Cf.
Exercise 0.4.2.1.)
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Proposition 0.5. If U € RV, then
lim U(x)/U(t) = x*

t—ao0
locally uniformly on (0, o). If p < O then uniform convergence holds on intervals
of the form (b, 0), b > 0. If p > 0 uniform convergence holds on intervals (0, b]
provided U is bounded on (0,b] for all b > 0.

If U is monotone the result already follows from (0.1) since monotone
functions are converging to a continuous limit. The extensions when p < 0 or
p > Ofollow as in the end of Section 0.1. For the nonmonotone case see Seneta
(1976).

The next set of results examines the integral properties of regularly varying
functions. For purposes of integration, a p-varying function behaves roughly
like x?. We assume all functions are locally integrable and since we are
interested in behavior at co we assume integrability on intervals including 0
as well.

Karamata’s Theorem 0.6. (a) If p > — 1 then U € RV, implies [§ U(t)dte R Vi1
and

. xU)
lim ————— = 1. .31
e U@ 7T ©3b
Ifp< —1(orif p= —1and |7 U(s)ds < o0) then U € RV, implies _ff U(dt
is finite, [? U(t)dte RV, and

xU(x)

lim -——=—p— 1. .32
L Evea f 032
(b) If U satisfies
) xU(x)
then UeRV,_,. If [? U(t)dt < o and
. xU(x)
= .
:I—TO ff U €(0, w) (0.34)

then UeRV_,_,.

Corollary (The Karamata Representation). L is slowly varying iff L can be
represented as

L(x) = c(x)exp {Jx t“s(t)dt} (0.35)

1

for x > 0 wherec:R, - R,,e:R, - R, and
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lim ¢(x) = c€(0, o0) (0.36)
lim ¢(¢) = 0. (0.37)

PRrROOF OF COROLLARY. If L has a representation (0.35) then it must be slowly
varying since for x > 1

lim L(tx)/L(t) = lim (c(tx)/c(t))exp { ftx s"‘e(s)ds}.

Given ¢, there exists t, by (0.37) such that
—e<e(t) <se, t=>to,
so that

x tx tx
—elogx = —¢ f slds < f sle(s)ds < e J‘ s lds = elogx.
t t

t

Therefore lim, ., j:"s"s(s)ds = 0 and lim,_,, L(tx)/L(t) = 1.
Conversely suppose L e RV,. By Karamata’s theorem

b(x) := xL(x)/fx L(s)ds - 1

and x — co. Note

L{x) = x71b(x) Jx L(s)ds.

Set &(x) = b(x) — 1 s0 &(x) » 0 and

fx t le(t)dt = fx (L(t)/J" L(s)ds) dt — log x
= fx d(log It L(s)ds) — logx
1 (4]
= log(x‘1 Jx L(s)ds/f L(s)ds)
0 0

exp {f‘ t"s(t)dt} =x! jx L(s)ds/J‘1 L(s)ds
1 0 0

= L(x)/(b(x) Jl L(s)ds) (0.38)
0

and the representation follows with

whence

¢(x) = b(x) jl L(s)ds.
0
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Remark. If U € RV, then U has the representation

Ux) = c(x)exp{f t*‘p(t)dt}
1
where c(-) satisfies (0.36) and lim,_ p(t) = p. This is obtained from the
corollary by writing U(x) = x?L(x) and using the representation for L.

Proor oF THEOREM 0.6(a). For certain values of p, uniform convergence
suffices. If we wish to proceed, using elementary concepts, consider the fol-
lowing approach, which follows de Haan (1970).

If p> — 1 we show [§ U(t)dt = co. From UeRV, we have lim,_,, U(2s)/U(s)=
2° > 27! since p > — 1. Therefore there exists s, such that s > s, necessitates
U(2s) > 271U(s). For n with 2" > s, we have

n+2 an+t n+t
J\ U(s)ds =2 J‘ U(2s)ds > f U(s)ds
2n+t 2n 2n
and so setting ny, = inf{n: 2" > s,} gives
re) 2n+2 2no+2
j Usdds > Y, U(s)ds > Y. J U(s)ds = .
So n2n>sg J 2041 n>ng J2no+t

Thus for p > —1,x > 0,and any N < oo we have [, U(sx)ds ~ {} U(sx)ds,
t — o0, since U(sx) is a p-varying function of s. For fixed x and given ¢, there
exists N such that for s > N

(1 —gx?U(s) < U(sx) < (1 + ¢)x”U(s)

and thus
) 5U)ds x |4 U(sx)ds
ISP T U@ds ~ e T, Uts)ds
. x[yU(xds _ . fxU(s)ds
=1 Xy 208 <1 o] 4 g) T
MSUP G Tiyds ~ sep X+ O Tiods
=(1 + gxr*L.

An analogous argument applies for liminf and thus we have proved [§ U(s)ds e
RV,,, whenp > —1.

In case p = —1 then either [§ U(s)ds < oo in which case [5U(s)dse
RV_,,, = RV, orelse [§ U(s)ds = oo and the previous argument is applicable.
So we have checked that for p > —1, [ U(s)dse RV, ,,.

We now focus on proving (0.31) when Ue RV,, p > — 1. As in the develop-
ment leading to (0.38), set

b(x) = xU(x)/fx U()dt

0

so that integrating b(x)/x leads to the representations
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[x U(s)ds = cexp {JX t"‘b(t)dt}
Jo 1

U(x) = cx"b(x)exp {Jx t"b(t)dt}.

1

(0.39)

We must show b(x) - p + 1. Observe first that

liminf 1/5(x) = liminf 0 V04
x-vco xow  XU(x)

1
U
= liminf f (sx) ds  (change variable s = x™ 1)
o U®)

X0

and by Fatou’s lemma this is
1 1
1
> J liminf (U (sx)/U(x))ds = J sPds = ——
0 x-ow 0 p+1
and we conclude

limsup b(x) < p + 1. (0.40)

X~ a0

If p = —1 then b(x) — 0 as desired, so now suppose p > — 1.
We observe the following properties of b(x)

(i) b(x)is bounded on a semi-infinite neighborhood of oo (by 0.40),
(i) b is slowly varying since xU(x)e RV, ,, and [ U(s)dse RV, 4,
(iii) b(xt) — b(x) — 0 boundedly as x — 0.

The last statement follows since by slow variation
lim (b(xt) — b(x))/b(x) =0

and the denominator is ultimately bounded.
From (iii) and dominated convergence

lim J‘s tY(b(xt) — b(x))dt = 0

x-0o J1

and the left side may be rewritten to obtain

lim {Is t"'b(xt)dt — b(x)log s} =0, 0.41)

X+ 1

cexp {Jx t"b(t)dt} = Ix U(s)dseRV,,,

From (0.39)

1 0

and from the regular variation property
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. S U(e)dt
(p + Dlogs = lim log {I%U_(I—YT!}
x—® 0

x—0 Jx x—=wo J1

= lim J t71b(t)dt = lim j t~1b(xt)dt

and combining this with (0.41) leads to the desired conclusion that b(x) —
p+ L

PROOF OF (b). We suppose (0.33) holds and check U e RV, _,. Set

b(x) = xU(x)/ U(t)dt

JO

so that b(x) — A. From (0.39)

U(x) = cx~'b(x)exp ) t"b(t)dt}

J1

= ch(x)exp fx t7(b(t) — l)dt}

1

and since b(t) — 1 - A — 1 we see that U satisfies the representation of a
(4 — 1)-varying function. Od

The previous results described the effect of integration on a regularly
varying function. We now describe what happens when a p-varying function
is differentiated.

Proposition 0.7. Suppose U: R, — R, is absolutely continuous with density u
so that

Ux) = f ) u(t)de.

[

(a) Von Mises: If
lim xu(x)/U(x) = p, (0.42)

X0

then U e RV,.
(b) Landau, 1916; de Haan, 1970, p. 23, 109; Seneta, 1973, p. 1057 If U e RV,
p€ R, and u is monotone then (0.42) holds and if p # O then (sgn p)u(x)e RV, _,.
PROOF. (a) Set

b(x) = xu(x)/U(x)
and as before we find

U(x) = U(Dexp {jx t“b(t)dt}

1
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so that U satisfies the representation theorem for a p-varying function.
(b) Suppose u is nondecreasing. An analogous proof works in the case u is
nonincreasing. Let 0 < a < b and observe

xb

(U(xb) — U(xa))/U(x) = j u(y)dy/U(x).

By monotonicity we get
u(xb)x(b — a)/U(x) = (U(xb) — U(xa))/U(x) = u(xa)x(b — a)/U(x). (0.43)
From (0.43) and the fact that U € RV, we conclude
limsup xu(xa)/U(x) < (b” — a®)/(b — a) (0.44)

X =00

for any b > a > 0. So let b | a, which is tantamount to taking a derivative.
Then (0.44) becomes

limsup xu(xa)/U(x) < pa®™! 0.45)

for any a > 0. Similarly from the left-hand equality in (0.43) after letting a T b
we get

liminf xu(xb)/U(x) > pb?! (0.46)

X0

for any b > 0. Then (0.42) results by setting a =1 in (0.45) and b=1 in
(0.46). O

Say U: R, — R, is regularly varying with index co (U e RV, ) if for every

x>0
fim 29 _ o o ? ﬁfi
1 U(H) ’
o0

x> 1.

(Cf. Exercise 0.4.1.2.) Similarly U e RV_, if

1
U ) 0 x <
lim U(t)=x°°:= 1 x=1
e 0 x> 1.

The following proposition collects useful properties of regularly varying
functions and is modeled after the list in de Haan (1970).

Proposition 0.8. (i) If Ue RV, — 0 < p < 0, then lim,_,, log U(x)/logx = p
so that
lim U(x) =

X

0 ifp<0
o ifp>0.

(ii) Suppose U € RV,, peR. Take ¢ > 0. Then there exists t, such that for x > 1
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andt > t,
U(e
(I —¢gxr < TJ((_t);—) < (14 g)x?*=

(iii) If UeRV,, peR, and {a,}, {a,} satisfy, 0 < a, > ©, 0 < a, - ©, and
a, ~ a,c, 0 < c < oo, then U(a,) ~ c?U(a,). If p # 0 the result also holds for
¢ = 0 or . Analogous results hold with sequences replaced by functions.

(iv) If U, eRV, and U,e RV, and lim,_,, U,(x) = oo then

U,oU,eRV,

P1P2"

(v) Suppose U is nondecreasing, U(c) = oo, and Ue RV,,0 < p < 0. Then
U” eRV,..

(vi) Suppose U,, U, are nondecreasing and p-varying, 0 < p < co. Then for

0<c<w

U (x) ~ cU,(x), X —

Ur(x)~c?'Uy(x), x-o0.

(vii) If UeRV,, p # 0, then there exists a function U* which is absolutely

continuous, strictly monotone, and

U(x) ~ U(x)*, X — 0.

PRrOOF. (i) We give the proof for the case 0 < p < 00. Suppose U has Karamata

representation
{px
U(x) = c(x)expif t‘lp(t)dt}
1

where c¢(x) - ¢ > 0 and p(t) > p. Then

log U(x)/log x = o(1) + fx t“‘p(t)dt/jx trdt - p.

1 1

(ij) Using the Karamata representation

x

Utx)/U(t) = (c(tx)/c(t))exp {I s'lp(ts)ds}

1
and the result is apparent since we may pick ¢, so that t > t, implies p — ¢ <
p(ts) < p + efors > 1.

(i) Yf ¢ > O then from the uniform convergence property in Proposition 0.5

 Ula) .. Uldaa) . Ul
T R S TP M 1T S

4

(iv) Again by uniform convergence, for x > 0
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Ui(Ux(ex)) _ . Ui (U5 (1) (Uy(ex)/U,(1)))

i = lim
oo Uj(Uy(1)) 1o U,(U,(2))
. Ui(yx*?)
= lim ——=—~ = xP2P1,
y=o  Uy(y)

(v) Let U(x) = U(tx)/U(t) so that if UeRV, and U is nondecreasing then
0O<p< )

U,(x) - x*, t— o0,

which implies by Proposition 0.1

U (x)»x*"  ast— oo
ie.,
lim U (xU(t))/t = x*™".
t— a0
Therefore

lim U (xUU~@)))/U (@) = x*"".
This limit holds locally uniformly since monotone functions are converging
to a continuous limit. Now UoU* (t) ~ t as t — oo (cf. Section 0.4.1), and if
we replace x by xt/U o U™ (t) and use uniform convergence we get

U@ . US((st/UoU™(5)Uo U (1)
o T - m U~ ()
. UTUUT) _
=hm—ee— =X

which makes U~ € RV,-..
(vi) If ¢ > 0,0 < p < oo we have for x > 0
t t
o Ua) _ L Ui(09Uy(e) _
o Ua(t) 1= Un(tx)Usy (1)

P

Inverting we find for y > 0
lim U (yU,(0)/t = (c7'yy"™

t— o0
and so
lim Uy (yU, o Uy (0)/U; (1) = (¢ tyy™

and since U,o Uy (t) ~ ¢
lim UL (yt)/U5 (1) = (c7'yy"

t—o

Set y = 1 to obtain the result.
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(viii) For instance if U eRV,, p > 0 define

Then s~

U*(t) = J' sT1U(s)ds.

1

'U(s)e RV,_, and by Karamata’s theorem
U(x)/U*(x) = p.

U* is absolutely continuous and since U(x) — co when p > 0, U* is ultimately
strictly increasing. O

EXERCISES

04.2.1.

04.22.
0.4.2.3.
04.24.

0.4.25.

0.4.2.6.

04.2.7.

04.28.

Use Karamata’s representation of a slowly varying function to prove the
uniform convergence in Proposition 0.5. Hint: Use continuous convergence.

If p > 0 verify Theorem 0.6a by using uniform convergence (Proposition 0.5).
Supply the proofs of omitted cases in Proposition 0.8.

If UeRV,, and U is monotone, if a, — 0, a, - o, and a, ~ a,c (c # 1,
0 < ¢ < o) then

lim U(a,)/U(a}) = c®.

Give the Karamata representation of the slowly varying functions
1+ x Ylogx
and
exp{(logx)’}, O<a<l
Give an example of a slowly varying function L(x) such that

lim L(x)

X+ a0
does not exist. (Hint: Use the Karamata representation.)

Suppose U is integrable on [0, N] for every N and

lim x™! j Udt=p

x—+c0 0

exp {jxy—(—tzdt}eRVp
o

(Seneta, 1976, page 88; Aljancic and Karamata, 1956).

exists finite. Then show

Suppose F(x) is a distribution on R, and
1 — F(x) ~ x™*L(x).

For n > a show by integrating by parts or using Fubini’s theorem that
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lim fsu"F(du) __¢ ‘
o X"(1=F(x)) n—a

Formulate and prove a converse. (Cf. Feller, 1971, page 283.)
04.29. If L;: R, - R,,i=1,2,areslowly varying;sois L, + L, (Tucker, 1968, page

1382).
0.4.2.10. Suppose a(x)eRV,, p # 0. If N,, n > 0 are nonnegative random variables
such that
N,/n5N
then a(N,)/a(n) > N*.

0.4.2.11. Suppose L(x) is slowly varying and « > 0. Then as x — o
x*L(x) ~ sup t*L(z).

0<t<x

So a regularly varying function with a positive exponent is asymptotic to a
monotone nondecreasing (regularly varying) function (Karamata, 1962).

0.4.3. Extensions of Regular Variation: I1-Variation, I'’-Variation
(de Haan, 1970, 1974a, 1976a)

In extreme value theory domain of attraction criteria for ®, and ¥, can be
satisfactorily handled with a knowledge of regularly varying functions. How-
ever characterizations for the domain of attraction of A(x) require extensions
which we now discuss. Restriction to monotone functions will be adequate.
The revelance of the two following definitions is made precise in Proposition
0.10 later.

Definition. A nondecreasing function U is I'-varying (written UeI') if U is
defined on an interval (x;, X,), lim,4,, U(x) = co and there exists a positive
function f defined on (x,, x,) such that for all x

. U@+ xf(e

lim U + xjte) /) = e~

1~xg U(r)
The function f is called an auxiliary function and is unique up to asymptotic
equivalence. There are several ways to check this, but perhaps the most
straightforward is to define fort > 0, x > 0

F(x)=1-U@/U(t + x)

so that F(x) is a family of distributions. If (0.47) is satisfied for both f; and f,
then

(0.47)

F(f(®x)—>1—e~
for i = 1, 2, and hence by the convergence to types Proposition 0.2 we have

f1(®) ~ £,(0).
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Conversely, if (0.47) is satisfied with f, and f(t) ~ f(¢), then (0.47) holds with

e
In probability applications we set U = 1/(1 — F) where F is a probability

distribution with right-end x, = sup{x: F(x) < 1}.

Definition. A nonnegative, nondecreasing function V(x) defined on a semi-
infinite interval (z, o) is I1-varying (written ¥V eIl) if there exist functions
a(t) > 0, b(t)e R such that for x > 0

V(tx) — b(t
i
Note in (0.48) we may take b(t) = V(¢) since
V(tx) — V(1) _ V(tx) — b(t) _ V(t) — b(z)
a(t) a(t) a(t)
Furthermore putting x = e in (0.49) shows we may take
a(t) = V(te) — V(1)

= log x. (0.48)

—logx —logl =logx. (0.49)

The function a(-) is unique up to asymptotic equivalence: If a(-) satisfies
(0.48) and a(t) ~ a,(?), then a,(z) satisfies (0.48). Any function a(t) satisfying
(0.48) is called an auxiliary function. Similarly if

(b(z) — by(1))/a(t) > 0

then b, satisfies (0.48).
There is a convenient relationship between ITand I'.

Proposition 0.9. (a) If U eI” with auxiliary function f then U* eIl with auxiliary
function a(t) = fo U (2).
(b) If VeIl with auxiliary function a(-) then V" eI with auxiliary function

f@ =aoV().

PRrOOF (a). If UeT then (0.47) holds. Inverting (0.47) using Proposition 0.1
gives for y > 1

o UOU@) — ¢ _
1Txo f(t)
and so replacing ¢ by U () we get

Utoute) -t (0.50)

logy

im CR0)

The convergence in (0.50) is locally uniform so if U(U*(t)) ~ t we will get

o UT0) = U@

. fU@) o8y
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i.e. U €Il. To check UoU*(t) ~ ¢t recall that y < U (x) implies U(y) < x
and y > U (x) implies U(y) > x. Set y = U (t) + ¢f (U (t)) where ¢ > 0 and
we get

vur-¢U®) __ t _UUTO+eU1)
v R ) uu=@)

Since U €T, if we let t — o0 we get
e ¢ < liminf t/U o U (t) < limsup < e*
t—o0 t— o

and since ¢ > 0 is arbitrary the result follows.
The proof of (b) is similar. Analogous to the preceding step where one proves
UoU“(t) ~ t, in (b) we need to show
lim (s — V(V7(s)))/a(V*-(s)) = 0.
sV (c0)

Cf. Exercise 0.4.3.6. 0

The relevance of IT and I to the study of domains of attraction of D(A) is
given in the next proposition. Recall F € D(A) means there exist a, > 0, b,e R
such that

F'(a,x + b,) = A(x). (0.51)

The following formulation is in terms of U = 1/(1 — F). This is largely a matter
of tradition as 1/(—log F) is equally suitable from the theoretical point of view.

Proposition 0.10 (Mejzler, 1949; de Haan, 1970). For a distribution function F
set

U:=1/(1-F)
so that U is defined on (1, 0). The following are equivalent:
(i) FeD(A)
(i) Uel
(i) U ell

Proor. We first show (i) implies (iii). If (i) holds, so does (0.51). In (0.51), take
logarithms and use —logz ~ 1 — 2,211, to get

n(l — F(a,x + b,)—>e™*, xeR
which can be reexpressed as
n'U@,x +b,)—e*, xeR.
This implies by inversion (Proposition 0.1) that

(U‘_(ny) - bn)/an - IOg Y, y> O;
ie.,
(U™ (ny) — U™ (n))/a, — log y. (0.52)
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If we set a(t) = ay, it is easy to see (0.52) is the same as saying U eIl with
auxiliary function a(-). For if ¢ > 0 and ¢ is sufficiently large

UT([edy) - U (D) (U“([t](l +¢) — U"([t]))
a(r) a()

<(UT([ely) — U ([e] + 1))/a(r)

< (U (ty) — U (1))/alr)

<UL + Dy) — U™ ([eD))/a()

S (UT(Iedy( + &) — U ([D))/a()
and letting ¢t — oo and using (0.52) we get

logy — log(l + &) < liminf(U(ty) — U(t))/a(t) < limsup
t—+

<logy + log(l + ¢)

and since ¢ > 0 is arbitrary we see U eIl.

We next check that (iii) implies (ii). From Proposition 0.9(b), if U eIl
then (U7)" eI'. Since Exercise 0.2.2 informs us that (U7)"(x) = U™ (x) =
lim,4 , U(t) it remains to see that U™ eI implies U € I'. Suppose for xe R

Hm U™ (¢t + xf(t))/U (t) = e~
tho
For ¢ > 0 we have
U=t + xf(t) < U(t + xf(t)) < U™t +(x+ ef())
U= - U@ - U™ ()
Let t 1 x,. We see that

. L Ut t .
e* < liminf _(_’t__’fﬁ_)l < limsup < e***
t1xo U (t) t1xo

and since ¢ > 0 is arbitrary we conclude

.Ut + xf(0)
lim —————~ =¢*
M U O
for xeR. Set x = 0 in (0.53) and we see U(t) ~ U™ (t) and hence UeT.
Last we check (ii) implies (i). Given
Ui+ xf@®)
—_— e,
U(r)
Recalling from the proof of Proposition 0.9a that U(U* (t) ~ t we see that
U(U" () + xf(U" ()
n

which is the same as (set a, = f(U"(n)), b, = U (n))

(0.53)

ex

k4
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n(l - F(anx + bn))—’ e’
and this is equivalent to (0.51). O
This proposition shows that a proper understanding of IT and I' is essential
for the study of D(A). We now analyze the structure of a II-varying function.

The first fact is the analogue of Proposition 0.7 and gives a connection between
IT and RV_,.

Proposition 0.11 (de Haan, 1976b). Suppose V: R, — R, is absolutely con-
tinuous with density v.

(a) If v(x)e RV_, then V eIl with auxiliary function xv(x).

(b) If v(x) is nonincreasing and V eIl then ve RV_,.

ProoOF. (a) We have for x > 1 (a similar argument applies if 0 < x < 1)

(V(tx) — V(e)feolt) = f (ults)/o(0)ds.

Since the integrand tends to s™! uniformly on [1, x] we find VeIl.
Before proving (b) we note the following result:

Proposition 0.12. If V eIl with auxiliary function a(t) then a(:)€ RV,

ProoF. For x > 0
. . (Viex) = V() Vitx-x1) — V(tx)
Jm alex)fa(t) = lim < a0) )/ <_( a(x) ))

=logx/(—logx™1) = 1. 0

PROOF OF PROPOSITION 0.11(b). Suppose VeIl with auxiliary function a(t).
Then for x > 1
Viex) — V() _ Vx) — V() () _ to(e) [~ ots)
a®)  w@®  a®  a@® )i v

and therefore

() _ Vx) - V() / f os)
a(t) a(t) 1 ()

and using the fact that v is nondecreasing we obtain the bounds
v(tx
(V1) = VO — Dald) < tole)a(® < {(Vex) — VOa()) / =1,
In the left-hand inequality, let t — oo to get (log x)/(x — 1) < liminf,, , tv(t)/a(t)

and letting x | 1 gives 1 < liminf,_,  tv(t)/a(t). The preceding right-hand in-
equality leads to
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to(tx)/a(t) < {(V(tx) — V(©))/a(®)}/(x — 1) (0.54)
so that
limsup tv(tx)/a(t) = limsup tx"1o(t)/a(tx™!) = hmsup tx~to(t)/a(t)
(since a(t)e RV,)
<logx/(x —1) (from 0.54)
ie.,

limsup tv(t)/a(t) < xlogx/(x — 1)

t—w
and letting x | 1 gives limsup, ., tv(t)/a(t) < 1. We conclude that
v(t) ~ t ta()eRV_,
as required. 0
Remark. Virtually the same proof shows that Proposition 0.11(b) is true if one

merely assumes that x'v(x) is monotone in x for some te R.
Now a technical lemma necessary to derive a representation of VeIl

Lemma 0.13. Given V e X1 with auxiliary function a(-), for any 0 < n < 1 there
is to = to(n), ¢ > O such that for y > e (say), t > t,
(V(ty) — V(®))/a(t) < cy”.

Proor. Given ¢ > 0 there is t, such that ¢t > t, implies
V(te) — V(®)ait) <1+ (0.55)
and
a(te)/a(t) < 1 + = (0.56)
Therefore for any integer n > 1
(V(te™) — V(9)/a(®)
i (V(tef) - V(tef“)) a(te’™)

a(te’™) a(t)

(1 + e)a(te”™")/a(t)

IA
M=

.
[
-

(1 +¢) H (a(te’)/a(te’™))

]
||M=

<(1+s)z H(l+s)<(l+s)2(1+e)’“

j=1i=

<d¢(l + ¢ forc > 0.
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Foranyy > e, y = exp{logy} < exp{[logy] + 1} so
(V(ty) — V(t))/a(t) < (V(teU ") — V(1))/a(t)
< (1 + g)llee*D) < (1 4 g)'°8»  (for some ¢ > 0)

= ce(log(1+e))logy — cylog(l+e) _ cy”. D

Proposition 0.14. If V eIl with auxiliary function a(t) then

a(t) ~ t[Jw V(s)s 2ds — t“V(t):I
=t Iw u 'V (du), ast— oo.

PROOF. Since
lim (V(tx) — V(t))/a(t) = log x

t—o0

we have from Lemma 0.13 and dominated convergence that

fim f Ve - V0, f x~?log x dx. (0.57)
t»w J1 x*a(t) 1
The right side of (0.57) is

J (f u‘ldu>x‘2dx=f (J x‘zdx)u“du
x=1 u=1 u=1 x=u

=[ u“u“du=J udu=1.
1 1

o

The left side of (0.57) is
e Vu2du— V() tfru'V(du)
a(t) T a@
the last step following by Fubini’s theorem. O

Proposition 0.15. V eIT iff

K(x):= fm u 'V(du) = fm u 2V(u)du — x ' Nx) (0.58)

x x
is finite and — 1 varying. In this case the auxiliary function a(t) satisfies
a(t) ~ tK(z)

and we have representation

V(x) — V(1) = .r K(u)du — xK(x) + K(1). (0.59)
1
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(This emphasizes the relation between I1-variation and — 1 variation introduced
in Proposition 0.11.)

Proor. If V €11 then from Proposition 0.14
K(t) ~ t ta(t)e RV_,

since a(t) € RV,.
For the converse we first show we can express V in terms of K as in (0.59).
We have

JX K(u)du = [~ Im u~'V(du)dt

1 Jt=1 Ju=t

f* 0 ulAx
= (I dt) u~'V(du)
Ju=1 t=1

= [ (u— Du™V(du) + J’w (x — Du™'V(du)

u=x

V(x) — V(1) — (K(1) — K(x)) + (x — )K(x)
and this gives (0.59). If now K e RV_, then

Vi) — V() J K(utydu  xK(tx)
tK@) ), K@ K(@®

I

+1

-»J‘ uldu — xx 1 +1=1logx

1

so that VeIl 0O

Equivalence Classes

For regular variation asymptotic equivalence is the appropriate equivalence
relation. If V] e I with auxiliary function a(t), say V; and V, are I1-equivalent

(written V, & V,)if
(1(t) — V,(0)/a(t) » ceR

as t - oo. In this case V, e Il with auxiliary function a(z).
If VeIl we may construct smoother versions which are IT-equivalent to V.

Proposition 0.16. If V eI there exists a continuous, strictly increasing V, & V
such that

Vi) > V()
and

i(®) = V(©)/a@®) > 1.
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In fact, there exists a twice differentiable V, 2V with V,(t) > V(t) and

1

—-m—)eRVl, —xVy(x) ~ V3(x) as x — oo.

PROOF. Set V;(t) = ¢ [ V(uw)u~? du so that by monotonicity ¥, > V and (0.57)
translates to
(V1) — V(©)/a@t) > 1.

Note that almost everywhere

o0

Vi) = —t"V(e) + J u 2V(u)du

t

= K(t) from (0.58). (0.60)

Next set V, = V and
V,(t) == tJ' Vi (w)u2 du.
t

Then V, ~ V, and ¥, £ V so V¥, X V. Finally to prove the last assertion
of the proposition differentiate to get

a0

Vi) = —t V(1) + f Vi(wu~2du

t

=t '[-V(t) + tjm Vi (w)u~2du]

=71 [V,(0) — V1(8)] (0.61)
so that
V() = {t[V3(0) — Vi(©)] — (Va()) — V1(9))}/¢
and substituting the expression for ¥, — V, from (0.61) gives
Vi (@) = {t[V3(0) — Vi(H] — tV;()}/t?

= -V
and from (0.60)
Vi) = —K@/t (0.62)
and hence
—1/xV;'(x)) = 1/K(x)e RV;
since KeRV_,.

For the last claim of the proposition note by (0.61) V;eRV_, so that
V;(t) - 0 as t — oo. Hence
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Vi(t) = Jw — V;(s)ds = jw s K(s)ds

by (0.62). Therefore,

e [* -
:—m—ﬁ S lK(S)dS/K(t)

and since K € RV_; an appeal to Karamata’s theorem 0.6 completes the proof.

]

EXERCISES

04.3.1.

0.4.3.2.

04.3.3.

For a monotone function V eIl prove V € RV, and if the auxiliary function is
a(t) show V(t)/a(t) — oo (de Haan, 1970).

Let n: R, — R, . We do not necessarily suppose 7 is monotone. Say = is IT*
varying (written 7 € IT* ) if there exists a(t): R, — R,, b(t): R, — R, such that

lim (n(tx) — b(t))/a(t) = log x. (0.63)
Similarly say neI1™ if
lim (n(tx) — b(t))/a(t) = —log x. (0.64)

t—a0

Take as fact, the statement that (0.63) and (0.64) hold locally uniformly

(Balkema, 1973). Prove

(a) meTI* VT iff for every re RV, we have noreII* UII™. The auxiliary
function of = or is a o r if the auxiliary function of x is a(-). Moreover

nor & miff lim x 1r(x) = ¢ > 0.

X~

(b) nell* iff 1/ne I1~. The auxiliary function of 1/x is a(-)/n2.
(c) Suppose Le RV, and neIl*. Then L(f)n(t)e IT* with auxiliary function

L(t)a(t) iff
. L(tx) n(t)
,ILI:(L(t) —1>m_o forallx >0

(de Haan and Resnick, 1979a).

Suppose VeIl and for x > 0
lim (V(tx) — V(t)) = plogx, p>0.
t—o0
Show V(x) = c(x) + J t 1 p(t)dt where
1
lim ¢(x) =¢

XxX—o0

lim p(x) = p.

Xx—+o0
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04.34

04.3.5
04.3.6

04.3.7

04.3.8

0. Preliminaries

. If V,, VeIl show V + V, eIl. Hint: Use (0.58). What is an auxiliary function
of V; + 1,7

. Let U(x) = 2log x + sin(log x). Then U e RV, but U is not in I1.
. Prove Proposition 0.9(b) and check that
lim (s — V(V*(s)))/a(V*(s)) = 0.

500

. Suppose f: R, — R, is differentiable, lim,_,,, f'(¢) = 0, 1/f is integrable and
define

H(x) = exp{jx (l/f(u)du}.
0

Show H eI with auxiliary function f.

. Suppose f is as described in the previous exercise and U: R, — R, is mono-
tone. Then as t — oo we have for x > 0

Ut + xf(t)) — U@®) N

0.65
U@+ £0) = U0 (065

iff
U=V,oH

where H is described in 0.4.3.7. and V, eIl. Hint: If U satisfies (0.65) show
UoH" eIl

0.4.3.9. Give examples of nondecreasing V eIl such that V(oc0) = o or V(o) < 0.

0.4.3.10. If U eT with auxiliary function f so that

lim Ut + xf(©)/U () = e

t—o0

prove lim, , ., f(t)/t = 0. Hint: Use 0.4.3.1. and Proposition 0.9.

0.4.3.11. Suppose U,, U, eI" with the same f and x,. Show

04.3.12

0.4.3.13

04.3.14

0.4.3.15

0.4.3.16

U =Uol,

where Ue RV,. Extend this result to the case where U,eI” with auxiliary
function f,i = 1,2 and f,(x) ~ f;3(x) as x T x, (de Haan, 1974a).

. If UeT then U(x) ~ (U")" (x) as x T x,.

. Suppose U, is monotone and U, eRV,, p > 0. If U,eTI show U,oU,€eT.
Express the auxiliary function of U, o U, in terms of the auxiliary function
of U, (de Haan, 1970).

. Suppose U, eI" and U, is absolutely continuous with density UeRV,,
p > —1.Show U, o U, eI (de Haan, 1970).

. If U, eI and U, is absolutely continuous with density belonging to I" then
U := U, o U, €T (de Haan, 1970).

. Prove the remark which follows the proof of Proposition 0.11b.
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0.4.3.17. Suppose V is real valued with positive derivative V'and lim,_ , T V(x) = c0.If

lim log V(x)/(xV'(x)) =1

then V eIl with auxiliary function log V (de Haan and Hordijk, 1972).

0.4.3.18. Suppose U is a twice differentiable real valued function with positive deriva-
tive U’ and lim,4,, 1 U(x) = c0. Define

q(t) =1log U()/U'(r)
and suppose g'(t) - 0. Then
lim (U{t + xq(t)) ~ U@®)log U(t) = x

t—o0

(de Haan and Hordijk, 1972).



CHAPTER 1

Domains of Attraction and Norming
Constants

As in Chapter 0 suppose {X,,n > 1} is an iid sequence of random variables
with common distribution F(x). If G is an extreme value distribution then
according to Proposition 0.3, G is of the form

0 x<0
G(x) = B, (x) = {exp (), %m0
or

G(x) = W,(x) = {TXP{ —(=x)}, jcc i g
or
G(X) = A(x) = exp{_e—x}, xeR,

where in the first two cases, « is a positive parameter.
We say F e D(G) if there exist normalizing constants a, > 0, b, € R such that

F'(a,x + b,) = P[M, < a,x + b,] - G(x) 1.1)

where as usual, M, = \/; <; <, X; = max{X,,..., X, }. The goals of this chapter
are to give necessary and sufficient conditions for F € D(G) when G is one of
the three extreme value distributions and also to characterize a, and b,. Recall
that by taking logarithms and expanding (1.1) is equivalent to

n(l — F(a,x + b,)) > —log G(x) (1.1
for x such that G(x) > 0. (Cf. the derivation of (0.29).)

1.1. Domain of Attraction of A(x) = exp{—e™*}

We begin our study with the double exponential distribution since we know
from our discussion in Proposition 0.10 that the material about the function
classes IT and I" will be essential. We seck conditions for (1.1) to hold with
G = A and characterizations of a, and b,.
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Define the right end x, of the distribution F to be
xo = sup{y: F(y) < 1}.

If F e D(A), it is possible for x, to be either finite or infinite. An example where
X, = oo is the exponential distribution F(x) = 1 — ™%, x > 0, since in this case
with a, = 1 and b, = logn we get for x e R and n sufficiently large

F*(x + logn) = (1 — ¢~ G+losmyn

_ (1 _ %) exp{—e "} = AX),

or in other notation, if {E,,n > 1} is iid from 1 — e, x>0 and Y has
distribution A(x),

\V E;,—logn=Y. (1.2)
i=1
For an example where x, < oo consider (Gnedenko, 1943)
0 x<0
F(x) =<1 —exp{(—x/(1 — x))} 0<x<l1
1 x> 1

Ifa, = (1 +logn)~2,b, = (logn)/(1 + logn) then it is checked readily from first
principles that maxima M, from this distribution satisfy

P(M, < a,x + b,) = F'(a,x + b,) > A(x).

A more illuminating approach is to derive this result from the previous one:
If g(x) = x/(1 + x): [0, 0) = [0, 1) then g'(x) = (1 + x)"? and

M,—b, = g(i/l E:) — g(logn)

(cf. Section 0.2), and by the mean value theorem the right side is

(\/ E, - logn)g'«,)

where {, is between logn and \/%, E,. Note g’e RV_, and from (1.2) it is
evident that

\/ E;/logn 1.
i=1

Thus it follows that {,/logn 51 and hence from Proposition 0.8(ii) (cf.
Exercise 0.4.2.8) g'({,)/g’(logn) % 1. Thus

M, — b, 4 9(\/-'"=1 E;) — g(logn)

Y.
a, g'(logn) =
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We begin our study of D(A) by considering a special case. A distribution
F, with right end x, is called a Von Mises function if it has the following
representation: There must exist z, < x, such that for z, < x < xoand ¢ > 0

1 — Fu(x) = cexp{—fx (l/f(u))du} (1.3)

where f(u) > 0, z, < u < x,, and f is absolutely continuous on (zq, x,) with
density f'(u) and lim, 4, f'(4) = 0. Call f an auxiliary function.

Proposition 1.1. (a) If F, is a Von Mises function with representation (1.3) then
F4 € D(A). The norming constants may be chosen as

b, = (1/1 — F))~(n)
a, = f(b,)

and 1/(1 — F,)eT with auxiliary function f.
(b) Suppose F is absolutely continuous with negative second derivative F” for
all x in(zq,x,). If

lim F"(x)(1 — F))/(F'(x)? = —1 (1.4)

xTxo

then F is a Von Mises function and F € D(A). We can set f = (1 — F)/F'. Con-
versely, a twice differentiable Von Mises function satisfies (1.4).
For the proof, we need two lemmas.

Lemma 1.2. Suppose as in the preceding definition that f(u) is an absolutely
continuous auxiliary function with f'(u) - 0 asu{ x,.

(@) If xo = oo thenlim,_ t'f(t) = 0.

(b) If xo < oo then f(x,) = lim,y, f(t) = 0 and lim, 4, (xo — () =0.

In either case
lim (¢ + xf(t)) = x,

t1x

for all xeR. (For (a), ¢f. Exercise 0.4.3.10.)

PROOF. (a) We have as t — oo
t
t @) ~t! J f'(u)du
20

and since the integrand goes to zero so does the Cesaro average. Therefore
t + xf(¢) = t(1 + xf(t)/t) ~ ¢, ast — oo.

(b) If x, < oo then 1 — F(x,) = 0 and then from (1.3) for zy < x < x,

fxo (1/f(w)du = oo
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whence for all xe(zy, x,)

sup 1/f(u) =

x<u<xg

and thus
inf f(u)=0.

xLulxg

So by continuity there exists a sequence u,1x, and f(u,) =0, whence

f(xo) =0.

Next observe that since f(x,) = 0
lim /) — 1) = lim — f (%o — D)
Change variables y = x, — u and s = x, — t and the preceding becomes
lim — st Jsf’(xo — y)dy
s+0 0

which is clearly zero since f'(x, — y) = 0 as y — 0. Finally it is clear that since
f(t)>0ast— x,wehavet + xf(t) > xg as t = x,. g

Lemma 1.3. If f satisfies the conditions in Lemma 1.2

. Se+xf(1)
,I}T, 1 =1

locally uniformly in xe R.

ProoF. We show continuous convergence. Let x(t) be a function such that

lim x(t) = xeR.
t—=xo

Then

L1t + x(@f(@) — fO)| <

t+x(0) f(1)
J Sf'(w)du
t

Since from the previous lemma as t — oo we have t + x(£)f(t) - x, it follows
from f’(u) - 0 as u — x, that given ¢, for t > t4(e)

t+x(0) f(t)
J S (wdu| < e|x(0)f ()]
and therefore for t > t4(¢)
St + x(0)f(0)
T — 1| < g|x(9).

Since ¢ is arbitrary and |x(t)] is bounded the result follows. O
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PROOF OF PROPOSITION 1.1(a). From the form of F,, given in (1.3) we have for
x € R and ¢ sufficiently large

1 — Fylt + xf(t) _ e
—E© eXp{ Jt (1/f(u))du}

= CXP{—J {f@/f(e + Sf(t))}}ds (s = (u—0)/f(V)
0
and since Lemma 1.3 ensures the integrand converges to 1 uniformly on (0, x)
we get

. L= F,+x@)
11112; 1 — F, (1) =

which says 1/(1 — F,)eT. So Proposition 0.10 asserts F, € D(A). In fact pick
b, to satisfy

1—Fy(b,)=n7",
1e.,
b, = (11 — F4))"(n),
and then since 1/(1 — F(b,)) ~n (cf. the proof of Proposition 0.9(a))
lim n(1 — Fu(b, + xf(b,)) =™

n—o

which is (1.1') so that a suitable choice of a, is f(b,). 0

PROOF OF (b). Set 1 — F = exp{—R}. Then the representation like (1.3) is
possible with f=1/R’ and f' — 0 iff (I/R’) - 0. But R = —log(l — F) so
R' = F/1 — F)and 1/R' = (1 — F)/F’ and

(/RY = (~(F)* — (1 = )F)[(F)* = —1 — (1 — F)F")/(F')?

and the assertion follows. The converse is readily checked. O

ExAMPLES. (a) Let F(x) =1 —e™*, x > 0. Then F'(x) = ¢™*, x > 0, and
fx) =01 — F(x)/F'(x) = e ¥/e™ = 1.

Therefore f'(x) = 0 and F € D(A).

(b) Let F(x) = N(x), the standard normal distribution. We have

1 2
F'(x) = n(x) = ——e >
2n

— -x22 _

F'(x) =

xe —xn(x)

and using Mills’ ratio (Feller, 1971) we have 1 — N(x) ~ x~!n(x). Therefore
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- FO)F'() .
Im =—Fer  —m w0

—x"tn(x)xn(x) -1

and

1 — N(x) - _ln_(x~) _
n(x) n(x)

-1

Jx) =

The next result gives a nice representation of F € D(A) due to Balkema and
de Haan (1972).

Proposition 1.4. F € D(A) iff there exists a Von Mises function F, such that for
X€E (207 xO)

1 — F(x) = c(x)(1 — Fx(x)) = C(X)CXP{—jx (1/f (u))du} (1.5)

and

lim ¢c(x) =c>0.

t-xo

If (1.5) holds then from Proposition 1.1 there exists a, > 0, b, € R such that
n(l — Fy(a,x + b)) > e
and thus
n(l — F(a,x + b,)) > ce™™
so that
F"a,x + b,) » exp{—ce™}

and F € D(A). So it is only the converse which need concern us. We need the
following lemma.

Lemma 1.5. Suppose F € D(A) so that V .= (1/(1 — F))" €Il. Construct V; and
V, as in Proposition 0.16 and define

/1 -F)=V", i=12
Then as x — x,

1 — F(x) ~ ¢(1 — F{(x)),

1 2

wherec, = e ', c, =e" "

PRrOOF. We have for x > 0ast— o
Viex)— V(1) V(x)— V() V() — V()
a(t) B a(t) a(t)

—(logx) — 1
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and inverting we get for ye R
V=(ya(t) + Vi()))/t - exp{y + 1}
and setting y =0
Hm V= (V,(1))/t = e,

t—a0
whence remembering V; is continuous and strictly increasing

lim V= (s)/V;"(s) = e.
The result for F, is checked in an identical manner.
Now for the rest of the proof of Proposition 1.4. Assume F € D(A) and set
F, = F,s01 — F, = 1/V;~ and it suffices to show F, is a Von Mises function.
Write R = —log(l — F,) and we need to check

(1/R’)y - 0.
However
YR = S = ey = ViV = Vi A0S
so that
(1/RY = V- - {V; (V) V() + V() V().
Therefore

lim (I/R'(x)) = lim (yV;(»)/V;(»)+1=—-1+1=0

t—xg y—w

by Proposition 0.16. The result is proved. O

Remark. A small point, glossed over in the proof of Lemma 1.5,is this: f Ue T
then (U")~ ~ U. This was essentially proved within Proposition 0.10 and
also assigned as Exercise 0.4.3.12. If you are hard to convince here are the
details again: Suppose for convenience U is right continuous, as will be the
case if U = 1/(1 — F). Then by definition

(U")~() = inf{y: U™ () = x}
<inf{y: U= (y) > x}
= inf{y: y > U(x)} (by 0.6(c))
= U(x).
On the other hand
(U092 inf{y: U(3) > x — of(0)}

where ¢ > 0 and f is assumed the auxiliary function of UeTI". Therefore
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another application of (0.6(c)) yields
(UT)"(x) 2 inf{y: y > Ulx — ¢f(x))} = Ux — &f(x))
so that
Ulx — ef(x))/Ux) < (UT)"(x)/U(x) < 1.
Letting x — x, gives
e < liminf(U 7)) (x)/U(x) < limsup < 1

and the result follows.

Corollary 1.6. If F e D(A) then
lim (1 — F(x))(1 — F(x—)) = L.

xTxo

ProOF. Use (1.3). Since F, is continuous
(I = F())/[(1 — F(x—)) = c(x)/e(x—)

and since c(x) — ¢ the result is clear. O

Corollary 1.6 can sometimes be used to check that certain distributions are
not attracted to A(x) (or indeed, to any extreme value distribution).

ExampLES. (a) Although we have seen the exponential distribution 1 — e7*,
x > 0is a Von Mises function, the geometric distribution written as
1 — e = x>0
is not in D(A) since
lim e ™/e™571 £ 1
X —*ao0
because
lim e "/e™ ™"V = ¢!,
n—+oo

(b) The Poisson distribution is not attracted to A(x) (Gnedenko, 1943). Set
forx>0,A>0

1—F(x)= Y e *A%/(k)

k>x

and let N be a random variable with this distribution. LetI,, = E, +--- + E,
where {E,,i > 1} are iid, P[E; > x] = e **, x > 0. A well known relationship
from renewal theory is

P[N >n]=P[I, < 1]

SO



46 1. Domains of Attraction and Norming Constants

. P[N=n] . P[L<1]
1 —_— - = =1 —_— " -
o PIN =1+ 11 o P[Toe; < 1]

j'}, A (Ax)" L dx/(n — 1)!
s 3 de”**(Ax)" dx/n!

—A1n
- lim ﬂf_y_____ﬁm<1+__e_i_)

o [6€7VdY amw foe?ymdy

the last step following by integrating by parts. But observe

53 e-.vyn dy - J'éyndy _ An+t _ p) =0
et T e (n+De”*A" (n+ e

and therefore

lim P[N > n]/P[N>n+1] = o

n—w

The representation in the following corollary sometimes offers more flexi-
bility than the one given in Theorem 1.4.

Corollary 1.7. F € D(A) iff there exists z, < x, and measurable functions c(x),
g(x), and f(x) such that

lim ¢(x) = ¢, >0, lim g(x) =1

t-xo t-xg

and

1 — F(x) = c(x)exp {——Ix (g(t)/f(t))dt}, Zo < X < X (1.6)

where f is an auxiliary function with f > 0 on (z4,x,) and f is absolutely
continuous with f'(x) — 0 as x = x,.

ProoF. If F € D(A) use Theorem 1.4 with g = 1. Conversely if (1.6) holds then
for any xe R

1 _ F . t+xf(t)
lim _1‘_‘—;(3@ = lim exp{—ﬁ (g(s)/f(s»ds}

= t]im exp{——J: glt + sf(t))f(t _{_( )f(t)) ds.

It is evident from Lemmas 1.2 and 1.3 that the integrand converges to one
uniformly for se(0, x) and thus

1 —F(t+ (1) _
R B 7 S

which is equivalent to F e D(A). O

e 4
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ExXAMPLE. Let Q be the rationals on (0, o). Then

F(x) =1 —exp { - [ T+ 1o(t))/log z)d:}

€D(A) by the representation of Corollary 1.7. It is not clear how to construct
F, of (1.3) and (1.5).

For most practical purposes the criteria given in Proposition 1.1 are enough.
In the case F is not differentiable, it still remains to give reasonable criteria
for membership in D(A) and useful characterizations of a,, b,.

We begin with an integrability lemma:

Lemma 1.8. If x, = co and F € D(A) then

on (1 — F(u))du < oo, Jw Jm (1 — F(u))duds < .
1 1 s

Of course the result is true for x, < 0.

Proor. By Theorem 1.4 we may suppose without loss of generality that 1 — F
has representation (1.3). Given any & < 1/2, there exists u, > z, such that for
u=ug

-0 < f'(u) <.
Therefore for u > u,
—0(u — ug) < f(u) — flug) < o(u — up)
so that

1 1 1
Flto) + 0(u — tg) ~ ) Jltug) — O(u — ug)

and hence for x > u, there is a constant ¢’ such that

1 — F(x) = c'exp{—jx (I/f(u))du}

< c’exp{—fx (1/(f(up) + 6(u — “o)))d“}

4o

J(ug)+3(x—ug)
=c'exp{ —67! stds
J(ug)

= c’exp{ —1og((f(uo) + d(x — uo))/f(e))°"'}
= c'(1+ 8f(ue) " (x — u)) ™" ~ ¢"x7*"

as x — oo for ¢” > 0. The result follows. 0O
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Proposition 1.9 (de Haan, 1970). F e D(A) iff
x0 (*xo Xo 2
lim (1 — F(x))f J (a- F(t))dtdy/(J~ (1- F(t))dt) =1 (1.7)

x1 xo

and all the integrals in the preceding expression are finite. In this case
1/(1 — F)eT and for the auxiliary function f we may choose either

1) = f N f (1 = F@)drdy / f (1 = Faydr

or

£ = f " (1 = F@)di/(1 — F(x))

X

and b, = (1/1 — F))~(n)
a, = f(b,)

are acceptable choices of normalizing constants.

PROOF: SUFFICIENCY. Suppose (1.7) holds. Set

1= Fy(x) = (fx - F(s))ds)2 / f b f (1 = F@)dedy.

From (1.7)
.1 — Fy(x)
lim ———= =
t1xo 1 — F(x)
so that 1 — Fy(x) — 0 as x — x,. Furthermore
(1 = Fo(x)y

= { - j * J (1 = F)dt dyz(r’ - F(t))dt)(l — F(x))
X0 ’ 2 X0 xo {*xo 2
+ ([ a- F(t))dt) J (- F(t))dt} / ( J j (1 — F(t))dt dy)
o X x x y

_ ([0 - F@)dn(1 — Fx) {_2 N (31 — F(t)dry? }
[2 {301 — F(e)dtdy (I — F(x) [ *(1 = F(O)dtdy

and because of (1.7) this is negative for sufficiently large x, say x > z,. Thus
1 — F, is a distribution tail. Now set

h(x) = (1 — F(x)) f b f (1 - F)dedy / < J - F(t))dt)z

so that h(x) - 1 as x T x,. Check that
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& (~tog(1 — Fo(o)
X
= Fo(x)/(1 — Fy(x))
= 2h(x) - 1) / ( j b J‘ (1 = F($)dsdy / f - F(s))ds)
and if we set f(x) = [ % [5o(1 — F(s))dsdy/{ 2(1 — F(s))ds then
d
E(——log(l — Fy(x))) = (2h(x) — 1)/f(x).

Note
—(f3o(1 — F(s))ds)? + (J3 [ ;o(1 — F(s))dsdy)(1 — F(x))
(f (1 — F(s))ds)*

f'x) =
=—1+h(x)-0

as x — x, from (1.7). Write g = 2h — 1 s0 g(x) — 1 and we get for x > z,

1= Fo(x) = (1 - Fo(zo))CXP{-j (g(0)/f (t))dt}

whence
1 — F(x)

and the representation of (1.6) holds, proving F € D(A).

1 -F(x) = { a- Fo(zo))} eXP{*fx (g()/f (t))dt}

PrROOF: NECESSITY. Suppose F € D(A). Suppose initially that F is a Von Mises
function with representation (1.3) so that 1/(1 — F) is continuous and strictly
increasing in some neighborhood of x,. We know from Proposition 0.10 that

(1/(1 — F))~ = Vell,

and from Proposition 0.14 the auxiliary function a(t) for V satisfies as t — oo

a X

wV(du) = t f " (1 = F(s))ds,

14U)]

a(t) ~t [

Ji

where the last equality follows by the transformation theorem for Lebesgue
integrals. The auxiliary function for 1/(1 — F)eI” can be taken to be ao 1/(1 — F),
and since auxiliary functions for I'-varying functions are asymptotically unique
we conclude the f appearing in representation (1.3) must satisfy

1o~ ro (1 — F(s))ds/(1 — F(1)) =: f,(2). (1.8)

Recalling Lemmas 1.2 and 1.3 we have
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t+ xf1(8) =t + x(L(ON ) @) > xo

for any x and

L+ @) [+ x40) _ S+ x(fL@OF0)0)
11 f) 1

locally uniformly as t 1 x,,. Define a distribution tail by

1 (19

1 -F@)= J‘xo (1 — F(s))ds

so that f,(¢) = (1 — F5(t))/(1 — F(t)) and (1.9) can be rewritten as
(- Fe+xA@N0 - FO)
(= F@¢+x,0)1 - F0)

1 -FRe+x,0) 1-F@+x,0) e
1— Fy(0) 1-F()

as t —» x, for xeR. Therefore 1/(1 — F;)eI” and mimicking the argument
which led to (1.8) we obtain

ie.,

£~ f (1= Fys)ds/(1 — Fy(0)

ie, [Fo(1 — F(s))ds/(1 — F(t)) ~ [ ¥of3°(1 — F(u))duds/{ (1 — F(u))du which
is equivalent to (1.7).

If Fe D(A) but F is not a Von Mises function then there exists by Theorem
1.4 a constant ¢ > 0 and a Von Mises function F, such that

1 — F(x) ~ c(1 — Fy(x))

as x — x,. F, satisfies (1.7) and it is readily seen that the tail equivalence of F
and F, entails that F satisfies (1.7) as well. O

Here is another criterion for F € D(A).

Proposition 1.10 (de Haan, 1970). F € D(A) iff
(1 = Fr)rdt
(1= F)) (1 = F(e)*dt

as x — x, for some a > 1. In this case (1.10) is true for all o > 1.

—a a—1) (1.10)

r(x) =

ProOF. Suppose (1.10) holds for some a > 1 and define

1 - )= f (1 — F(o)yde / J "1 - Foya

We will show that for all sufficiently large x, 1 — F, is a distribution tail. First
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of all we have from (1.10) that
lim (1 — F())/(1 = F(x)) = a7}~ 1)

so that lim,_,, 1 — F,(x) = 0. Also differentiating we get
(= Foy fro(1 — F(o)ydt
=N = = Foy @ {(1 TFO) Pl - FOF Td 1}
- Fey
[ = F@o)y'd

{r(x)— 1} (L.11)

and since r(x) » 1 — a™! <1 we have (1 — F,(x)) ultimately negative and
hence 1 — F, is ultimately decreasing. Next observe that

d
7 (7108l = Fy(x)) = Fy(x)/(1 — Fy(x)

and using (1.11) this is
(1 = FoY/f3e (1 = F@) a1 = r(x)
fZ (1 — F(x)ydt/f> (1 — F(e)) " dt
_ (L= Fe)F(1 = r(x)
[ ~ F@)dt
_ (1= r()(1 = F)F/1 — Fu)* _ h(x)
(= F@Ord/(1 - Fx)F fix)
Now h(x) = o™ (a/(o — 1))* =: c,. Also

f(x) = —(1 — F,(x))*"(1 — F(x))* — j';o(] — F(O))y*dta(l — F,,(x))‘”‘(l — Fy(x)y
(1 — Fy(x)*

o e afR( = FOFdil ~ re)(1 — F))®
- ((1 F(X))/(l F4(x))) + (1 _ E,(x))"“jfc"(l - F(t))anldt

_ a \* otﬁ"(l — F(@®))*dt(1 — r(x))(1 — F(x))’“
= ‘(a - 1) + o TR = FOF dil =BGy

a a o at+1
= ——(;—:—T) + o(1) + ar(x)(1 — r(x))<&——l) + o(1)

=o(1) — (/e — 1))* + a(@ — Do ta (o — 1))**! = o(1).

Set h; = h/c,, f, = f/c,, and for z, sufficiently large and x > z,

1 — Fy(x) = ceXp{—r (hx(t)/fx(t))dt}

where ¢ > 0. Therefore
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1 — F(x) = {(1 - F(x))/((1 — Fy(x))c}exp {— J ) (hx(t)/fl(t))dt}

20

satisfies the representation in Corollary 1.7 and thus F € D(A).
For the converse suppose Fy, € D(A) and F, is a Von Mises function with
representation

I — Fy(x) = cexp {— f s (u»du}

for zy < x < x4. For any o > 1

(1 = Fx(x))* = cexp {—f (/@™ f (u)))du}

Zo

so that (1 — Fy(x))* is the distribution tail of a Von Mises function with
auxiliary function o« *f (u); similarly for (1 — F,(x))*"*. From Proposition 1.9

() ~ f " (1 = Fp@)ydt/(1 — Fy(x)y

x

and
(@—= D)7l ~ j ’ (1 — F@))*'dt/(1 — Fy(x)y™*

whence dividing
(1 — Fy()de

T-RoOF0-FRora * @Y

which is (1.10).
For the general case if F € D(A) then by Proposition 1.4 there exist a Von
Mises function F,(x) and a function ¢(x) —» ¢ > 0 such that

1 — F(x) = c(x)(1 — Fg(x))
and since 1 — F,(x) satisfies (1.10) it is readily seen that 1 — F(x)does also. []

EXERCISES

1.1.1. (a) Proveif F € D(A) then |5° x*F(dx) < oo for every k > 0. Construct an exam-
ple of F e D(A) where [, |x] F(dx) = .
(b) If x4 < o0 and F e D(A) then for any n

lim (xo — x)7"(1 — F(x)) = 0.

t1xo
So F is differentiable at x, with F'(x,y) = 0.If x, = co and F € D(A) then for
any n

lim x"(1 — F(x)) = 0.

X=*a0



1.1.2.

1.1.3.

1.1.4.

115,

L.1.6.
1.1.7.

1.1.8.
1.1.9.

1.1.10.

1.1.11
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Suppose F € D(A) with auxiliary function f. Given examples where
Jx)-0, X = Xo
Jx)=> 00,  x-x

and lim,_.,o f(x) does not exist.

Let F(x) be the lognormal.

(i) Is FeD(A)?
(ii) Do all moments exist? If so what are they? (Remember what the moment
generating function of the normal is.)

(iii) Does the moment generating function exist?

(iv) Is F determined by its moments?

(Cf. Feller, 1971, page 227.)

Suppose for ue R, v > 0 that as x —» c©
1 — F(x) ~ cx7e™".

Check Fe D(A). Find a, and b,.

Let F(x) = 1 — (logx)™", x > e. Show F ¢ D(A). Moment considerations should
suffice.

Let F(x)=1—¢™™,x > 0,a > 0. Show F e D(A). Find a, and b,.
Show if (1.6) holds that there exists a monotone U € RV, such that

11 = F) = Uo(1/(1 — Fy))
where F, is given in (1.3). Use this to check F € D(A) (de Haan, 1974a).
Derive Lemma 1.8 from Lemma 0.13 and inversion.
If x, = oo show F e D(A) immplies rapid variation: i.e.,

e L=F0) {0 x>1
o T—F@) © T lo 0<x<1

so that Fe D(A) implies weak stability. Cf. Exercise 0.4.1.2. Show the rapid
variation two ways:
(a) Use the representation (1.5).
(b) If Fe D(A)
(Mn - bn)/an =Y

(“=>" denotes convergence in distribution) where Y has distribution A. Divide
through by b,/a, and use Exercise 0.4.3.1.

Suppose fori = 1,..., k that X; is a random variable with distribution F;e D(A).
Show AX, X; has a distribution in D(A) (Balkema, unpublished letter).

(a) Suppose X > 0 has distribution F and x, = co0. If F e D(A) then the distri-
bution of — X! is in D(A).

{b) Suppose T maps the open interval I onto the interval J and that T is twice
differentiable and T is strictly positive on I. If X is a random variable with
values in I and whose distribution F € D(A), when does Y:= T(X) have a
distribution in D(A) (Balkema)?
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1.1.12. If Fe D(A) and F™(a,x + b,) - A(x), prove (1 — F(a,))/(1 — F(b,)) - co.

1.1.13. Suppose X,, n > 1 are iid with common distribution F with right end x, > 0.
If there exist a, > 0, b, e R such that

P[(\!l X, — b,,)/a,, < x] - AW)
1»[(\:/l X2 — b}) / 2a,b, < x] S AR).

Do this two ways:

(a) If Fe D(A) show F(x'?) for x > 0 is in D(A). Use the representation (1.5)
and compute norming constants for F(x'2) in terms of those for F.

(b) Write

show

\/ X2 b2 = (\=/l x,.)z B = <\=/l X, — b")(a\:/l X, + b,,)

i=1
and use Exercise 1.1.9.

1.1.14. Suppose X is a random variable with distribution F e D(A) and suppose the
auxiliary function is f(t). Prove if f(¢) — oo the moment generating function of
X* does not exist; it does however if f(t) = c€[0, o0). (Cf. Exercise 1.1.3.)

1.2. Domain of Attraction of @,(x) = exp{—x"*},x >0

The domain of Attraction of ®,(x) = exp{—x7*}, x > 0 is related to regular
variation.

Proposition 1.11 (Gnedenko, 1943). Fe D(®,) iff 1 — Fe RV_,. In this case
F(a,x) — @y(x)
with
a, = (1/(1 = F))"(n). (1.12)

So only distributions with infinite right end may qualify for membership in
D(®,).

PrROOF.If1 — FeRV_,and a, = (1/(1 — F))"(n) then because 1 — F(a,) ~ n~!
we have for x > 0

n(l — F(a,x)) ~ (1 — F(a,x))/1 — F(a,)) > x™*
as n — oo since a, — 0o0. Therefore for x > 0

n(—log F(a,x)) = x~*¢
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and F*(a,x) - x™* If x <0 then F"(a,x) < F"(0) - 0 = ®,(x) since regular
variation requires F(0) < 1.

Conversely suppose F e D(®,). This means there exist constants a, > 0,
b, € R such that

F*(a,x + b,) > ®,(x).
Taking logarithms, this leads to
n(l1 — F(a,x + b,) —» x™%, x>0

asn— o0. Set U =1/(1 — F) and ¥V = U". As in Proposition 0.10 we may
invert the relation

U(a,x + b,)/n - x*, x>0
and switch to functions a(t), b(t) of a continuous variable to obtain
(V(ty) = b))/a() >y,  y>0
or in a more convenient form
(V(ty) — V(¥))/a(t) > y** — 1, y>0. (1.13)

First of all (1.13) implies a(t) € RV, ,. To see this we mimic Proposition 0.12.
Forx >0

it = i () (- ()

= (17— Df(— (M — ) = x,

This means that for any fixed y > 0 the function V(ty) — V(t), considered
as a function of ¢, is also in RV}, and therefore by Karamata’s theorem 0.6
. (V(sy) = V(s)ds  «a

o) = V) a+l

and taking into account the fact that
2y
lim I V(s)ds/t(V(ty) — V(1) =0
t— o 2
(as a consequence of t(V(ty) — V(t)) — oo) we may rewrite the limit relation as
() FV)ds —t 5 V(s)ds [« ya
Jm a(t) =\avr)07

Next observe that 1.13 is the convergence of monotone functions to a
continuous limit and so the convergence is locally uniform. Therefore inte-
grating over y in (1.13) gives for 0 < 6 < 1

1

1
L (V(ty) — V(9)dy/a(t) ‘*J y'rdy — (1 — o),

é
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ie.,
tt

((1 = 8)V(@E)—t! V(s)ds>/a(t) >+ 07"+ 0(5)

J bt
where O(8) = —6 + a6 '*'/(a + 1). This means

{V(t) ¢ f Vs — o —V(t) — @) f " V(s)ds]} / a(t)
2 2

= {V(t) —t! J‘t V(s)ds — 6[V(t) -t J-t V(s)ds +t~* Jt V(s)ds

2 2 2

— (@6 J " V(s)ds]} / a(t)
2
= {(l — 6)<V(t) ~ 7! J" V(s)ds)
2
- cSI:t‘l J' V(s)ds — (61)! J‘& V(s)ds]}/a(t)
2 2

= (1+0) + 0()

and since
t ot
[t“ f V(s)ds — (6¢)! j V(s)ds] / a(t)
2 2

- alo + 1)71(1 — 5')

(V(t) —t! f' V(s)ds)/a(t)
2

L (40 +0(9) + dafa + H7M(1 - 6%

we get

1-6
(4ot -0+ ad® M a + 1) + o + 1)71(1 — 8Y%)
B 1-6
=1+
as t — o0. A final rephrasing is
t
V) —t™ f V(s)ds = a(t) (1.14)
2

where a(t) ~ (1 + a) 'a(t)e RV,-,. We now invert (1.14) and express V in terms
of a(t): Divide (1.14) by t and integrate from 2 to y:

fy t'lV(t)dt—fy 2 fl V(s)dsdt:fy t 1a(t)dt. (1.15)
2 2

2 2
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The second term on the left side becomes after reversing the order of integration

[r( [’y t_zdt> V(s)yds = ’ (s7! — y V) V(s)ds
J2 \Js J2
~ [ st — r V(s)ds
J2 2
e s'W(s)ds + a(y) — V(y)  (from (1.14)).
J2

So substituting in (1.15) we get
y
V(y) = a(y) + f t la(t)dt.
2
Therefore
y
lim V(y)/a(y) =1 + lim j t Ya(t)dt/a(y),
y—x y—wo J2
and applying Karamata’s theorem this is
1 1
1+ " Ydt=14+-—=1+a
0 1/a
Finally as t - o0
V() ~ a)(1 + o) ~ (1 + o) (1 + a)a(t) = a(e).
Therefore ¥V € RV,,, and from Proposition 1.8(v)
V() ~ 1/(1 — F(t))e RV,
so that
1— FeRV,,

as required. O

Remark. If we start from the assumption that F"(a,x) — ®,(x) (instead of
F*(a,x + b,) - ®,(x)) then it is more elementary to check 1 — FeRV_,. See
the example after Proposition 0.4.

Corollary 1.12. Fe D(®,) iff there exist measurable functions c(x) and a(x)
defined on (1, c0) such that

lim ¢(x)=¢c>0

X0

lima(x)=a >0

X0

and
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1 — F(x) = c(x)exp {‘J‘x t“oc(t)dt}

1

for x > 1.

Proor. This is just the corollary to Karamata’s Theorem 0.6 in disguise. []

EXERCISES

1.2.1. Check F e D(®,) where F is Cauchy with df F(x) = 1/2 + n~! arctan x. Find a,.
Do the same for the Pareto distribution:

1 - F(x)=x"#, x>1, B >0.
1.2.2. If Fe D(®,) and X is a random variable with distribution F then
E(X*Yy < oo, O<y<ao
Use this or any other method you like to check that if

C
= k22
k(log k)2

where C > 0 is chosen appropriately, then F ¢ D(®,) v D(A).

P[X = k]

1.2.3. If F e D(®,) why is it impossible for maxima of iid random variables distributed
according to F to be relatively stable?

1.24. If Fe D(®,) and lim,_ (1 — F(x))/(1 — G(x)) = ¢ > 0 for some distribution G,
then Ge D(®,). What are suitable normalizing constants for maxima of iid
random variables from G to converge in distribution?

1.2.5. Let X, ..., X, be a sample of size n from a continuous distribution F(x) with
xo = 00 and let X!V be the term of maximum modulus, ie., the X; among
X,, ..., X, for which | X,| is the largest. (Ties among the X’s occur only with
probability zero and can thus be neglected.)
(a) What is the distribution function of X{1?
(b) Prove the following relative stability result: There exist b, — oo such that
XW/b, 5 1iff 1 — FeRV_, and

1 — F(x) ~ P[1X,]| > x] as x - 0.

(c) There exist a, — oo such that X{/a, has a nondegenerate weak limit X1 iff
for some a€(0, 0] we have 1| — FeRV_, and
. . F(—x)
lim (1 — F(x))/P[|X,|>x] =C,, lm —————— = C_
lim (1~ FOYPLIX\ > x] = Cp, lim oot

and if « = oo both C, > 0, C_. > 0. In this case the limit satisfies for x > 0
and o < o©

PIX™ > x] = Cy(l — =)
P[XY < —x] = C_e ™™™
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and if « = oo we have
P[ XV =1]=C,, P[XW = —1] = C_ (Cline, unpublished).

Hint: Prove, using a change of variable and a Tauberian theorem, that for two
distributions F,, F,
lim (1 — F(x))/(1 — F,(x)) = 1€[0, o)
iff
lim nf FI Y (x)F,(dx) = |

X 00

(Maller and Resnick, 1984).

1.2.6. (a) Suppose X > 0 is a random variable with distribution F e D(®,) U D(A).
Then log X has distribution F(e*)e D(A). Relate the norming constants of
log X to those of X.
(b) Suppose X is a random variable with distribution F € D(®,). Suppose g is
defined on the range of X and g is continuous strictly increasing so that go X
has distribution F og*. Find conditions on g which insure Fog*~ e D(A).

—o0

1.3. Domain of Attraction of ¥,(x) = exp{ —(—x)*},x <0
The last case is also related to regular variation. Suppose « > 0.
Proposition 1.13 (Gnedenko, 1943). Fe D(¥,) iff xo < 0 and 1 — F(x, — x™!)e
RV_,, x = oo. In this case we may set

Y= (/1 = F))"(n)
and then

F"(xo + (xo - ')’,,)X) g a(x)’ x < 0.

PROOF. Suppose x, < o0 and 1 — F(x, — x"')e RV_,. Define

0 x<0
F9= {F(x0 —xY, x=>0.

Then 1-— F,(x)eRV_, and from Proposition 1.11 we may set aq,=
(1/1 — F,))" (n) and

F(a,x) - ®,(x), x>0
ie.,
F'(xo — (a,x) ) s exp{—x7"}, x>0
whence
F'(xo + a,'y) > exp{—(—y)"}, y<O.

Observe



60 1. Domains of Attraction and Norming Constants

a, = inf{u: 11 — F(u)) = n}
= inf{u: 11 — F(xq — u™')) > n}

= inf{ ! 11 — F(s)) > n}
Xo — §

= 1/(xo — inf{s: 1/(1 = F(5)) = n}) = 1/(xo — 7)
and therefore
Fi(xo + (xo = 7)) = ¥a(3),  y<O

as required.
Conversely: Suppose there exist a, > 0, b,, n > 1 such that

F*a,x + b,) = P,(x).
Letting U = 1/(1 — F) we find
U(a,x + b)/n—(—x)"°% x<0
and inverting we have
(U~ (ny) — b)/a, > —(y™), y>0.

Set V = U* and switch to a continuous variable. We obtain

(V(ty) = V(@®)ya) >1 -y, y>0. (1.16)
This relation implies a(t)e RV_,, since for x > 0
lim (a(tx)/a(t))

t—ao

) <V(tx) -~ V(t)) /( (V(tx-x“) - V(tx)))
— tim (2 TN [
t—>o a(t) a(tx)

= (1 = xT")(—(1 = x1))

= x"le

We next show x, := V(o0) < co. It is enough to show lim,_,, V(2") < 0.
Pick 6 < «™'. From (1.16) and the fact that a(t)e RV_,, it is clear there exists
no such that n > n, implies

(V@) — v2))/a2) <201 -277)
and
a(2"*1)/a(2") < 2%27 V=,
Then for any k > 1 (a product over an empty index set is 1)

V(2n0+j) — V(2no+j—1) ng—j—2 a(2i+1)
a(2roti-1) i=ny  a(2%)

k
(V@™ = VZe))/a2™) = 3,

k
<2127 Y @O
ji=1
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so that
lim (V(2"**) — V(2"))/a(2™) < ©©
k—o
and we readily conclude V(o0) < c0.
An elaboration of this argument, which mimics the argument in Lemma
0.13, produces a bound (¢ < a™")

V(ty) — V(©)

a(t)
valid for y > 1 and for all sufficiently large ¢. Dividing by y* produces a
uniform bound which allows an application of the dominated convergence

theorem. In (1.16) divide by y? and integrate over (1, o) to get after setting
V(t) = V(o) — V(1)

<cl - 2—(1“-e)y—(a‘1—e))

I fﬂde—Vwmmﬂyﬂjww*“*—yﬂwy=—Ua+ax
1

1

ie.,
V@y-:fmyﬂﬁums=a@) (1.17)

where
a(t) ~ a(t)(1 + ®)eRV_,,, t - 0.

We now invert (1.17) and express V in terms of a(t). Divide (1.17) through by
t and integrate:

Jw LV (t)dt — Jm Jm sT2V(s)dsdt = J-w t La(t)dt.

y y

The second term, after a Fubini inversion, is

— {Iw s WV(s)ds — y jm 572 V(s)ds}

and hence from (1.17)

a0 a0

$72V(s)ds = J s ta(s)ds

y

Ww—aw=yf

y

so that applying Proposition 0.5

1+«

— _ ® afys)ds .
Wde—1+L 20)s

and
V(y) ~ (1 + 0)a(y) ~ (1 + (1 + ) 'a(y) = a(y)
as y — o0. Therefore

H(t) := 1/(V(0) — V() e RV,
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so that
V(t) = V(c0) — 1/H(2).
Inverting gives
1/1 = F(y)) ~ H((V(0) — »)7")
and setting s = (V(o0) — y)™! we get finally
1/(1 — F(V(o0) — s™')) ~ H (s)e RV,
(cf. Proposition 0.8(v)). O

We have the following representation.

Corollary 1.14. Fe D(W,) iff x, < o0 and there exist functions 6: R, - R, and
a function ¢: R, — R, and a constant c, > 0 such that
lim 6(¢) = o, lim ¢(t) = ¢, (1.18)
t1xo t1xo

and for x < x,

x

1 —F(x)= c(x)exp{—f o(t)/(xo — t)dt}.

xo—1

Proor. If F e D(¥,) then
1—F(xo ~x')eRV_, so

1 — F(xq — x7') = €(x)exp {-—-Ix (5(t)/t)dt}
1

where & and ¢ have the properties given in (1.18). Letting y = xo — x™* (so
x = (xo — y)7!) we get for y < x,

(xo~y)~! _
1 — F(y) =¢((xo — Y)"I)CXP{—J‘I (5(t)/t)dt}-

In the integral, change variables (s = x, — t™!) to get

y

1 — F(y) =e((xo — y) " Jexp { —j (6((xo — ™ Wxo — S))dS}

xg—-1

= c(y)exp { —'r (6(s)/(xo — S))dS}~ O

xo—1

1.4. Von Mises Conditions

Some sufficient conditions for a distribution to belong to a domain of attrac-
tion were originally given by Von Mises (1936) and are often more convenient
to verify than some of the conditions so far presented.
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For @,, inspecting the tails often suffices to check whether or not F e D(®,).
Forexample, F(x) = 1 — x7% x > lis obviously in D(®,)and F(x) = 1 — ™7,
x > 0 is obviously not. Sometimes when a density F’ exists it is simple to
check that F’ is regularly varying near co and then a mental application of
Karamata’s theorem does the trick. This works, for example, with the Cauchy
distribution whose density is in RV_,. The following result is also useful. It is
basically a minor rephrasing of the corollary on page 17.

Proposition 1.15. Suppose F is absolutely continuous with positive density F' in
some neighborhood of co.
(a) If for some a > 0

lim xF'(x)/(1 — F(x)) =« (1.19)

X+

then F € D(®,). We may choose a, to satisfy a,F'(a,) ~ a/n.

(b) If F' is nonincreasing and F € D(®,) then (1.19) holds.

(c) Equation (1.19) holds iff in the representation for 1 — F given in Corollary
1.12, ¢(x) is ultimately constant, i.e., iff for some z, and all x > z,, we have

1 -F(x)= cexp{—fx t“a(t)dt}

where lim, , , a(t) = a.
PRrOOF. See the corollary on page 17, and its proof. O

For ¥, there is an analogous result.

Proposition 1.16. Suppose F has finite right endpoint x, and is absolutely
continuous in a left neighborhood of x, with positive density F'.
(a) If for some a > 0

li1m (xo — X)F'(x)/(1 — F(x)) = a (1.20)
then Fe D(Y,).
(b) If F' is nonincreasing and F € D(W,) then (1.20) holds.
(c) Equation (1.20) holds iff c(x) in the representation of Corollary 1.14 can be
taken to be constant in some left neighborhood of x,.

PROOF. Recall Fe D(W,) iff F,(x) = F(xo — x!)€ D(®,). But
a = lim xF,(x)/(1 — F(x)) = lim xF'(xg — x ")x"?/(1 = F(xo — x71)

iff
o = lim F'(s)(xq — s)/(1 — F(s)). O

s Xxg
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For A there are two results depending on how many derivatives F is
assumed to possess (cf. de Haan, 1970).

Proposition 1.17. Let F be absolutely continuous in a left neighborhood of x,
with density F'.
@ If

lim F'(x) Jxo (1 — F(t))dt/(1 — F(x))> =1 (1.21)

tTxo

then F € D(A). In this case we may take
£ = f " (1 = Fo)ds/(1 — F(x) (122)

b,=(1/1-F) (), a,=f(b)

(b) If F' is nonincreasing and F € D(A) then (1.21) holds.
(c) Equation (1.21) holds iff in representation (1.6), c(x) may be taken constant,
ie., iff

1—-F(x)= cexp{—jx (g(t)/f(t))dt}, Zg < X < X, (1.23)

where lim,4, g(x) = 1 and f is absolutely continuous with density f’(x) — 0 as
x 1 xq.
(d) Equation (1.21) or (1.23) are equivalent to tF'((1/(1 — F))"(t))eRV,
(Sweeting, 1985).
ProOF. (a) With the choice of f we have
(%) = ~(1 = F(x))*> + J3*(1 — F(s))ds F'(x)
o (1 - F®)

Furthermore if R = —log(l — F) then R’ = F'/(1 — F) = g/f where

- —-14+1=0.

g(x) = F'(x) Jxo (1 — F(®))dt/1 — F(x))?
and hence

Jx R'(s)ds = R(x) — R(1) = Lx (9(s)/f(s)ds

and
1-F(x)= e~ R o~ fi @) fisnds

and so F e D(A) by Corollary 1.7.

(b) Since F is nondecreasing, F' > 0. In fact in a left neighborhood of x,,
F'(x) > 0 since otherwise if for x; < x4 F'(x;) = 0, then because F’ is non-
increasing we would have F'(x) =0, x; < x < x, and hence F would be



1.4. Von Mises Conditions 65

constant on (x,, X ), which would contradict the definition of x,. But F'(x) > 0
means U := 1/(1 — F) is continuous strictly increasing so that Uo U (x) =
U oU(x) = x.

Recall F e D(A) means U eI and a suitable auxiliary function is

10 = f " (1 = Fe)ds/(1 — F()

(Proposition 1.9). Inverting via Proposition 0.9(a) we have U“ eIl with
auxiliary function

a(t) = fo U (¢).
On the other hand
Uy =1/U'U@®) =1~ FU~@))*/F U (1)
= 1/F U~ @®))

so that t2(U*)'(t) is nondecreasing, and so by Proposition 0.11(b) and the
remark following that proposition we have another choice for a(z):

a(t) ~ (UTY(®) = 1/eF' (U™ (1))
Therefore since the two choices of a(t) are asymptotically equivalent we have

1 = lim f(U-())tF' (U (2))
e SOF(x) . fRe(1 — F(y)dt F'(x)
=T Fe) T am A= F@Y

(c) The proof that (1.21) implies (1.23) was given in (a). If representation (1.23)
holds, then from Corollary 1.7 and its proof a suitable auxiliary function is
the f from the representation. From Theorem 1.9 and the asymptotic unique-
ness of auxiliary functions

ro (1 — F(s))ds/(1 — F(x)) ~ f(x) ~ f(x)/g(x) = (1 — F(x))/F'(x)

which is equivalent to (1.21).

(d) This is practically the same as the previous steps. If (1.21) holds, U =
1/(1 — F)eT and since (1 — F(s))ds/(1 — F(x)) ~ (1 — F(x))/F'(x) we get
from Proposition 1.9 and the asymptotic uniqueness of auxiliary functions
that fo(x) = (1 — F(x))/F'(x) is a suitable auxiliary function. This means
U ell with auxiliary function fooU* (x) = 1/(xF'((1/(1 — F))“(x))) and
since auxiliary functions of I1-varying functions are slowly varying (Proposi-
tion 0.12) the result follows. Conversely suppose tF'((1/(1 — F))~(t))e RV,,.
Then as in (b) we have

(U7Y(@®) = LPF(U(1)eRV_,
so that U eIl with auxiliary a-function (tF'(U* (£)))™! (Proposition 0.11)
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and thus by inversion (U7)” = Uel' with auxiliary function f,(t) =
UE@F U oU@®)) ™ =1 — F(@®))/F (). Again by Proposition 1.9 a suitable

auxiliary function is always |¥°(1 — F(s))ds/(1 — F(t)) and this must be
asymptotic to f, giving (1.21). O

The last result of this section requires two derivatives.

Proposition 1.18. Suppose F has a negative second derivative F" for all x in some

left neighborhood of x,,.
@@ If
lim F"(x)(1 — F(x))/(F'(x))> = —1 (1.24)

then F € D(A). We may take f = (1 — F)/F'.

(b) If F" is nondecreasing, F'(x) = [*(—F"(u))du and F € D(A), then (1.24)
holds.

(c) Equation (1.24) holds iff F is a twice differentiable Von Mises function so
that (1.3) holds.

PROOF. (a) and (c) See Proposition 1.1(b).
(b) Observe F'(x) is decreasing since F"(x) < 0. So by Proposition 1.17, since
FeD(A), we get (1.21) holding. Define for x sufficiently close to x,

Folx):=1— F(x)

so that F, is a distribution and 1 — F, = F’. Rewriting (1.21) in terms of F,
gives

lim (1 — Fo(x)) f f (1 — Fo(s))dsdy/(1 — Fo(x))* = 1
xTxo x y

so by Proposition 1.9, F,e D(A). But F; = — F” is nonincreasing so applying
again Proposition 1.17 gives

lim Fo(x) : (1 — Fo(0))de/(1 — Fy(x))* = 1

xTxo x
which translates into
lm —F"(x)(1 — FX)/(F(x))* =1

xTxo

as required. O

It is useful to note how the various Von Mises conditions simplify the
general representations of distributions in a domain of attraction. The Von
Mises conditions will also be seen to play a role in local limit theory discussed
in the next chapter.
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EXERCISES

1.4.1. Prove Proposition 1.17(b) without resorting to inverse functions by imitating
the methods of Proposition 0.12(b) and Proposition 0.7(b) (de Haan, 1970).

1.4.2. Generalize Proposition 1.17(b) to the case that F has increasing or decreasing
failure rate, i.e, to the case that

F'(x)[1 ~ F(x))
is monotone.

1.4.3. If F is absolutely continuous and

lim xF'(x){(1 — F(x)) = o

then 1 — F is rapidly varying.

1.44. Check that the t and F densities satisfy a Von Mises condition.

1.5. Equivalence Classes and Computation of
Normalizing Constants

Computing normalizing constants can be a brutal business, and any techniques
which aid in this are welcome indeed. This is the focus of our discussion on
equivalence classes.

We say two distributions F and G are tail equivalent if they have the same
right endpoint x, and for some 4 > 0

lim (1 — FO))(L — G(x)) = A. (1.25)

xTxo

Proposition 1.19. Let F and G be distribution functions and suppose H; is an
extreme value distribution, i = 1, 2. Suppose that F ¢ D(H,) and that

FYa,x + b,) > H,(x) (1.26)
Jor normalizing constants a, > 0, b, > 1. Then
G"(a,x + b,) > Hy(x) 1.27)
iff for somea > 0,beR
Hy(x) = H,(ax + b),
F and G are tail equivalent with right endpoint x, and if
(i H, =, thenb=0 and lim,., (1 — F(x))/(1 — G(x)) = a%

(i) H, =¥, thenb=0 and lim,.. (1 —F(x))/(1 - G(x))=a™%
(i) Hy =A, thena=1 and lim,,, (1 — F(x))(1 ~ G(x)) = e".

Remark. Regarding the problem of calculating normalizing constants, this
result suggests we switch to an easy tail equivalent distribution and compute
constants for that one.
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Proor. Suppose first that F and G are tail equivalent and that (1.26) holds.
An equivalent formulation of (1.26) is

n(l — F(a,x + b,)) > —log H,(x)

for x such that H,(x) > 0. For such x, a,x + b, > x, and hence from tail
equivalence

n(1 — G(a,x + b,)) ~nA"Y(1 — F(a,x + b,)) > — A 'log H,(x);
ie.,
G™"(a,x + b,) = HA '(x).

For the converse suppose we are given (1.26) and (1.27) and we wish to show
F and G are tail equivalent. Set

1 - 1 -
Ve(t) = (1—'_—}5) (0, Ve(®) = (I_:E) ®

and equivalent to (1.26) and (1.27) are the following two statements in terms
of inverses:

1 -
'lim (Ve(ty) — b())/a(t) = (T—TgH_> » (1.28)
1 -
lim (V5(ty) — b(t))/a(t) = (:Tog—lf) » (1.29)
t—o 2

for y > 0. Recall there are three mutually exclusive possibilities for a(t):
a(t)eRVy, if H, =@, a>0
a(t)e RV, if H=A
a(tyeRV_,, if H, =Y, a>0

(Propositions 0.12, 1.11, and 1.12).

Suppose first that H,(x) = ®,(x). Then a(t)e RV}, and from (1.29) we must
have H,(x) = ®,(ax + b). We check easily that b = 0 as follows. Recall from
Proposition 1.11 that Vi(t) ~ a(t). If we set y = 1 in (1.28) we get

lim (Ve(t) — b(1))/a(t) = 1

which requires lim,_, , b(t)/a(t) = 0. Therefore (1.29) becomes for y > 0
: 1 . 1/a
tlf: Ve(ty)/a(t) = (m) (y) = (y" — b)/a.

However because a(t) e RV}, we also have

lim Vs(ty)/a(t) = lim (Vs(ty)/a(ty)(a(ty)/a()) = a (1 — b)y'"

t—o0 t—ro0

whence for y > 0
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(y'* —b)a=a'(1 - by
which reduces to
b = byl
This necessitates b = 0. Thus (1.28) and (1.29) reduce to
Ve(ty)/a(t) > y'*
Vs(ty)/a(t) = a' y1*

and so
Ve(t) ~ aV5(t)

and since Vp€ RV, we get by inverting and using Proposition 0.8(vi)

1 — 1
—— A a —_—
1—F() 1 -G
ie,a® =lim,. . (1 — F(®))/(1 — G()).
Next suppose H, = ¥, so that a(t)e RV_,-.. Then (1.29) becomes
(Ve(ty) — b@®))a(®) » —(y™), y>0
so that (Vi(t) — b(#))/a(t) > — 1. On the other hand recall from Proposition
1.13 that (xq = Vg(00))
xo — Ve(t) ~ a(t)
so that
b(t) — Ve(®) + Ve(t) — x
a(t) a(t)

From (1.29) we conclude H,(x) = W,(ax + b) since a(t)e RV_,-. and we now
show why b = 0. Relation (1.29) becomes

Valty) = b(®) _ —(y™"%)— b
a(t) a

(b(t) — xo)/a(t) = 951-1=0. (130

and hence using (1.30)

Xo — V6(ty) N

(y VY + b)ja  fory>0.
a(t)

On the other hand

Yo~ VG(ty) Yo~ VG(ty) a(ty) - (1 ; b) —la __ <————y_1/a L b)
a)  aty) a() a )7 = a

for y > 0 which requires b = 0. We now conclude

xo — Vg(t) ~ a™ta(t)

and
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xo — V§(t) ~ a(t)
and therefore
(xo = Ve@))(xo — V5(1)) = a;

ie.,

1 1
~a
xo — V5(?) (xo - VF(t))
and hence applying Proposition 0.8(vi) we get

1 - —a 1 N
(xo - VG) 0)~a (xo - VF) ©

1 1

1—Gxg—tY) @ T—Fxg—t1)

ie.,

so that
(1 —F(xo — 7Y = Glxg —t 7)) >a™®

as t — oo as required.
Now suppose H, = A(x) so that

(Ve(ty) — b(t))/a(t) > logy,  y>0. (1.31)

Recall a(t)e RV, and b(t)eIl. Then H,(x) = A(ax + b), which entails on the
one hand

(Vs(ty) — b(1))/a(t) - ((logy) — b)/a (1.32)
and on the other

Ve(ty) — b(t) _ Vs(ty) — b(ty) a(ty) = b(ty) — b(t)
a(t) aity)  a() a(t)

—((log1) — b)/a +logy = —a'b + log y.

However
(logy —b)Ja= —a™'b +logy
means
a'logy = logy

and hence a = 1. From (1.31)

(Ve(®) — b(2))/a(®) -0
and from (1.32) with b(z) replaced by Vi(t) we get

(Vs(ty) — Ve(0)/a(t) > (logy) —b,  y>0



1.5. Equivalence Classes and Computation of Normalizing Constants 71

and inverting we get for xe R
Vg (xa(t) + Vi(t))/t > e**®

andsoif x =0

Ve (Ve(0))/t — €.
Change variables now to obtain
Ve () Vi (s) > e
ie.,
lim (1 — F(s))/(1 — G(s)) = e°. 0

s—*Xxg

ExaMPLE 1 (Cauchy). Let F'(x) = (n(1 + x?))"!, xe R. Then as x — o0, F'(x) ~
(nx?)~! and so by Karamata’s theorem

1 - F(x)= J‘w F'(u)du ~ [‘w w2 du = (nx)"1.

x JXx

Therefore F € D(®,). Instead of solving 1 — F(x) = n™! we solve (nx)™! = n"!
to get a, = n/m and so

F'((n/m)x) > @, (x).
ExaMpLE 2 (Normal). F'(x) = 2n) "2 exp{—x?/2}, xe R. We have already

checked F is a Von Mises function, F € D(A), and we know the auxiliary
function f(¢) satisfies

_1-—-F@®) n@t
F() nt)
We now show a, = (2log n)~12

b, = (2logn)'”2 — 1/2(loglogn + log 4m)/(2 log n)'/?

are acceptable choices of norming constants. Since 1 — F(t) ~ n(t)/t (Feller,
1968, page 174) we seek by tail equivalence to solve

(2m)"2b, Y exp{—bZ/2} = n?

f@®

1/t ast— oo.

and taking —log of both sides gives
(1/2)b? + logh, + 1/2log 27 = logn. (1.33)

We will construct an expansion of b, and indicate how many terms are
necessary. Since b, - oo we see by dividing left and right sides of (1.33) by b2
that as n -

b, ~ 2logn)'2. (1.34)

Since a, = f(b,) ~ b, we see that an acceptable choice for a,, is



72 1. Domains of Attraction and Norming Constants

a, = (2logn)™12,

This tells us that in an expansion of b,, we may neglect terms which are
o((logn)"'?). For if our expansion of b, is of the form b, = B, + o((logn)™*?)
then

(b, — Bu)/a, = o((logn)~'?)(logn)'/* - 0

and the convergence to types theorem assures us f3, is acceptable.
From (1.34) we see that

b, = 2logn)'? +r, (1.35)

where r, is a remainder which is o((log n)/?). Now substitute (1.35) into (1.33)
and we find

1/2r2 + (2logn)'r, + 1/2loglogn + 1/2log4n
+ log(1 + (2logn)™?r,) = 0. (1.36)
Divide through by (2logn)'r, and we get
(loglogn + log4n)
r.(2logn)'?
log(1 + (2logn)™?r,)
(2logn)'?r, B

r’l
saiogmia + 1+ (12

0. (1.37)

Becauser, = o((log n)!”?) and since the last term is asymptotic to r,(2 log n) "2/
(r.(2log n)*?) = 1/(2logn) — 0 we see that (1.37) is of the form

o(1) + 1 + 1/2(loglogn + log 4n)/(r,(2logn)'?) = 0,
ie.,
r, = —1/2(loglogn + log4n)/(2logn)'? + s, (1.38)

where s, = o(loglog n/(logn)'?). In fact s, = o((logn)~'?), which means we
have done enough expanding. To see this observe that (1.36) implies

(2logn)*?r, + 1/2(loglogn + logdn) = —log(1 + (2logn)™Y?r,) — r2/2
= —(2logn)™2r,(1 + o(1)) — 122 -0

because of (1.38), and if we substitute (1.38) into the Ieft side of this relation
we get

(logn)*?s, -0
as required. Hence we conclude

b, = (2logn)'? — 1/2(loglogn + log 4n)/(21log n)*.

ExaMPLE 3 (Gamma). Suppose F is the gamma distribution with density

F'(t) = t*¢/T(a + 1), t>0,a>0.
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Then
F'(t)=(—te "+ at®'e™)/T(a+ 1)
=—-F@O(1+aut)~ ~F()
and furthermore by L’Hospital’s rule

tim L= FO _ j PO _

= =1
o F(®) o0 F(1)

and
lim F"(t)(1 — F(xX)/(F'(t))* = —1

t—a
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so that F is a Von Mises function, F € D(A), and the auxiliary function f

satisfies
1—F(t)
—
F'(1)

= 1

ast — co. Therefore a, may be taken equal to 1. To find b, we solve F'(b,) = 1/n
instead of 1 — F(b,) = 1/n since 1 — F(t) ~ F'(t). So we have F'(b,) = 1/n

equivalent to
bZe b /T(a + 1) = 1/n;
ie.,
b, — aloghb, + logI'(@x + 1) = logn.
Since b, — oo we see by dividing through that
b, ~ logn

and consequently

b,=logn+r,
where r, = o(log n). Substituting (1.4) into (1.39) we obtain

logn + r, — alog(logn +r,) + logI'(x + 1) = logn,

ie,
r, + log(a + 1) = aloglogn + alog(l + (r,/logn)),
ie.,
r,= —logI'(ae + 1) + aloglogn + o(1).
Therefore
b, — (logn — logI'(a + 1) + aloglogn)/a, = o(1)/a, =0
and so

b, =logn + aloglogn — logI'(x + 1)

is an acceptable choice.

(1.39)

(1.40)
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Note when a =0, b, = logn, which is well known for the exponential
density.

EXERCISES

1.5.1. For two distributions F and G with the same endpoint x,, the ratio (1 — F(x))/
(1 — G(x)) need not have a limit as x — x,. Construct examples.

1.5.2. {X,,n > 1} is a sequence of iid random variables with common distribution F
and {z,,n > 1} isiid, positive integer valued, and {z,} and {X,} are independent.
Suppose Et, < oo and set

Sn

Sn"zl:'fj, Xn = Xj» M—;."—'j\:/l Xj-

J=8n-1+1

What is the distribution of x;? Show {M,} has a limit distribution iff {M,} has
one. In fact, there exist norming constants a, > 0, b,, n > 1 such that

P[M, < a,x + b,] - H(x),
nondegenerate, iff
P[M, < a,x + b,] > (H(x))’*  (Resnick, 1971).
1.5.3. F and G are distributions and H is an extreme value distribution. Suppose
F™a,x + b,) - H(x)
for a, > 0, b,e R. Then
(FGY(a,x + b,) .= F*(a,x + b,)G"(a,x + b,) > H(Ax + B)
iff
) H=®,:B=0,0<A4<1,and
lim (1 — F))/(1 — G(x)) = (A7 — 1)7;

(i) H=Y¥,:B=0,00 >4 >1,and
lim (1 — FO)/(1 ~ G(x)) = (A" - 1),

(i) H=A:A=1,B<0,and
lim (1 — Fx)/1 — G(x)) = (e™® — 1)™*  (Resnick, 1971).

x—Xxg

1.54. There is a weaker form of equivalence than tail equivalence. Say F,, F,,e D(A)
are a-equivalent if there exists a, > 0, b€ R, i = 1, 2 such that fori =1, 2

F(a,x + b) - Alx);

i.e., the same a, can be used for both distributions but not necessarily the same b,.
(a) F, and F, are a-equivalent iff

1 Y u/ 1t \"
1-F, 1-F,

(cf. prior to Proposition 0.16).
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(b) Let U; = 1/(1 — F;) and suppose F; are Von Mises functions for i = 1, 2.
Then F, and F, are a-equivalent iff

Uio Uy ~ UjoUy.
(c) F, and F, are a-equivalent iff there exists a positive function b(x) with
lim, ., b(x) = 1 and constants C,, C, > 0 such that
1 — Fi(x) ~ C,(1 — F(P(x)))

as x — x, where
P(x)=C, + J b(t)dt.
(V]

Hint: It suffices to consider Von Mises functions. Use part (b).

(d) Check that the standard normal distribution is a-equivalent to F(x) =
1 — exp{—x?}. What is a suitable choice of P? Use this to compute a, for
the normal distribution (de Haan, 1974a).

The normal distribution has the property
P[b,(M, — b,) < x] = A(x). (1.41)

Find a characterization of the distributions F with property (1.41). Cf. Exercise
1.1.7.

Suppose {X,,n > 1} are iid random variables with common distribution F(x).
Set M, = \/i, X;, m, = /\I-, X, and assume there exist a, > 0, a, > 0, b,e R,
B, € R such that
P[M, <a,x + b,] - G,(x)
and
P[-‘mn <a,x + ﬂn] - Gz(x)

where G, and G, are nondegenerate.
(a) Show joint convergence
P[Mn < a,x + bm -m, < o,y + Bn] - Gl(x)GZ(y)
(b) Particularize to the case where the common distribution {X,} is the standard

normal N(x). Show the range M, — m, has a limit distribution which is the
second convolution power of A(x):

P[M, —m, < a,x] > A*A(x).
(c) Ifin (a), G, = G, = ®,, show M, — m, has a limit distribution if
lim F(=x)/(1 — F(x)) = pe[0, 0]

exists.
(d) If in (a), G, = G, = A, show M, — m, has a limit distribution if F(x) and
1 — F(—x) are a-equivalent (cf. 1.5.4) (de Haan, 1974b).

Compute norming constants for the ¢ and F densities. In which domain of
attraction are these distributions?



CHAPTER 2

Quality of Convergence

The previous chapters contain information characterizing possible limit distri-
butions for extremes and also discuss domain of attraction criteria. So if the
familiar relation

F"(a,x + b,) - G(x)

holds, we know the class of possible G’s, what conditions F must satisfy, and
how to characterize a, and b,. The present chapter amplifies our knowledge
by describing in various ways how close F"(a,x + b,) is to G(x) and how if
approaches G(x) asymptotically. The topics discussed include moment con-
vergence, local limit theory and density convergence, large deviations, and
uniform rates of convergence.

2.1. Moment Convergence (Von Mises, 1936; Pickands,
1968)

Suppose X,, n > 1 are iid with common distribution F and F € D(G) for an
extreme value distribution G. Then there exist a, > 0, b, R such that M, =
\/1-; X; satisfies

Pla;'(M, — b,) < x] = F"(a,x + b,) > G(x). 2.1)

We ask for which values of k > 0 it is true that

lim E(a;'(M, — b,))* = r x*G(dx). 22)

n—+o -

It is well known that convergence of a sequence of random variables does
not imply that moments converge (cf. Chung, 1974, pages 94-98). The canon-
ical example is to take (0, 1) as the probability space with Lebesgue measure
as the probability. Set X,(w) = 2"19,,-1,(w) so that X, »0 as. but EX, =
n~12" - o. A condition which controls tail probabilities and thus prevents
improbable large values from disturbing moment convergence is needed.

Note that the tail conditions which comprise the domain of attraction
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criteria are only a control on the right tail. For instance, if Fe D(®,) then
1 — F(x) ~ x *L(x) as x — co. This implies

f x*F(dx) < o ifk<a
0

(Exercise 1.2.2), but no control is provided over the left tail and it is possible
for [, |x[*F(dx) = oo for any k > 0. Similarly F € D(A) implies when x, = oo
that

J x*F(dx) < o0 forallk >0

0

(Exercise 1.1.1) but implies nothing about behavior of the left tail.
Thus in investigating (2.1) it is necessary to impose some condition on the
left tail of F.

Proposition 2.1. For an extreme value distribution G, suppose F € D(G).
(i) IfG =, set a, =(1/(1 — F))"(n),b, = 0. If for some integer 0 < k < a

Io |z|*F(dx) < oo (2.3)
then h
lim E(M,/a,) = jm x*® (dx) = T(1 — a"tk).
(i) If G = ¥, and F has right end x set
a,=xo—(1/1 =F)"(n),  b,=x,.
If for some integer k > 0

r’ Ix[FF(dx) < o0 (2.4)

— a0

then

lim E((M,, — xo)/a,)* = J ’ x*W (dx) = (— 1) T(1 + o 1k).

n—o — a0

(i) If G=A and F has right end x, with representation (1.5) set b, =
1/t — F))~(n), a, = f(b,). If for some integer k > 0

0
j |x]¥F(dx) < o0 (2.5)

— a0

then
lim E((M, — b,)/a,}" = r x¥A(dx) = (= 1FTH(1)

where T®(1) is the kth derivative of the gamma function at x = 1.
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Remarks. (i) Conditions (2.3), (2.4), and (2.5) can be weakened slightly. See
Exercise 2.1.1.

(i) For any norming constants a,, b, satisfying (2.1) (not just the ones specified
in the statement of the proposition), we also have (2.2) satisfied provided the
appropriate condition (2.3), (2.4), or (2.5) holds. See Exercise 2.1.2.

We only prove (i) and (iii) in Proposition 2.1. Part (iii) requires that our tool
box be equipped with the following inequalities.

Lemma 2.2. Suppose F € D(A) with representation (1.5) and that a, and b, are
as specified in part (iii) of Proposition 2.1.
(a) Given ¢ > 0, we have for s > 0 and all sufficiently large n

fb,)/f@,s + b,) = (1 + es)™" (2.6)
and consequently if y > 0 and n is large
1 —Fa,y+b)) <1+ +ey™". 2.7

(b) Recall the meaning of z,, in the representation (1.5). Given g, pick z, €(z¢, Xo)
such that | f'(x)| < eif x > z,. Then for large n and ue(a,*(z, — b,),0) we have

SB)/f(au + b,) = (1 + elul)™ 2.8)
and consequently for large n and se(a;'(z; — b,),0)
F™(a,s + b,) < e"1-9*t+esh", 2.9

PROOF OF LEMMA 2.2. (a) For n such that [ f'(t)| < ¢if t > b, we have fors > 0

a,s+b,
(f(a,s + b,)/f(by) — 1 =f (f'W)/f(b,))du

b'l

and recalling a, = f(b,) this is
j f'(a,u + b,)du < es.

0

Consequently f(b,)/f(a,s + b,) = (1 + &s)™" as asserted.
To check (2.7) note that
1—-F®b,)~n!
so that for largenand y > 0
n(l — F(a,y + b,) < (1 + ¢)(1 — F(a,y + b,))/(1 — F(b,)
and from (1.5) this is
(1 + £)c(ayy + by)c ™ (by)e i isee,

Since ¢(x) — ¢ > 0 as x T x, we have the preceding
< (1 + g)2e BUC @b
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(recall a, = f(b,)), and applying (2.6) this is bounded by
< (1 + g)Pefoare s
=1+ &1 +ey)*".
Therefore
1 — F™(a,y + b,) = 1 — exp{n(—log F(a,y + b,))}
<n(—logF(a,y + b))

and since —logF(a,y +b,) ~1— F(a,y + b,) uniformly for y >0 (use
lim,,, (—logz)/(1 — z) = 1) the preceding is bounded for large n by

<1 + &n(1 — F(a,y + b,))

and the result follows.
(b) As earlier for n large and ue(a,'(z, — b,),0)

by
au+b,
4]
f f'(a,w + b,)dw

and since a,w + b, > a,u + b, > z, the preceding integral is > — ¢|u}, and
thus we have shown

1 — fla,u + b,)/f(b,) = —¢lul;
1.,
1+ elul = f(a,u + b,)/f(b,)
which is equivalent to (2.8). To check (2.9) write for large n
F'a,s+b)=(01—(1 — F(a,s + b))
<exp{—n(l — F(a,s + b,))}
< exp{—(1 — &)1 — F(a,s + b,))/(1 — F(b,))}

a,s+b,

= exp{—(l — g)c(a,s + b,,)c"(b,,)exp{—j (l/f(u))du}}

by,

and supposing z, has been chosen so that c(z,)/c(b,) > 1 — ¢ the preceding
is bounded by

< exp{—(l — g)? ej?(f(b,.)/f<anu+b,.))du}
and applying (2.8) we get an upper bound of

< CXP{‘“ - 8)26‘*“”'""""‘“} = exp{—(l —e(L + e!sl)"’}. u
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Proor of ProrposiTiON 2.1. If (2.1) holds than it follows from the standard
weak convergence theory (Chung, 1974, page 87; Loéve, 1963, page 180; cf.
the Helly—Bray lemma) that for any L > 0

L
lim E(a;l(M" - bn))klnﬂ;l(M,,‘b")'SL] = J‘ ka(dx).

n-*w

It is enough to show

lim ]imsup E'a;l (Mn - bn)lk 1[Ia,‘,‘(M,,~b,,)|>L] = 0 (2.10)
L0 n-w
because of the following: Write

E(a;* (M, — b)) — f " x*G(dx)

—aoo

< |E(a;' (M, — b)) ~ E(a; " (M, — b)) L jazs -0 s 1l

+

L
E(a;' (M, — b)Y \yacs i, by <1y — [ x*G(dx)
J-L

+ , (2.11)

JL x"G(dx)~J‘a° x*G(dx)

—~L -

If (2.10) holds the right side of (2.11) has lim, _, , limsup,_,,, = 0 and since the
left side of (2.11) does not depend on L, the desired result follows. So now we
concentrate on showing (2.10).

Set Y = |a, (M, — b,)| and we use Fubini’s theorem to justify an integration
by parts:

Y

EYk1[Y>L] = EJ ksk_lds1[y>L]
]

L ©
— Ej ksk—ldSI[Y>L] -+ EJ ksk‘ll[Y>L,Y>s]ds
] L

= L*P[|(a;*(M, — b,)| > L] + J’w ks*1P[Y > s}ds
L

=A+B.
Because of (2.1) we have

lim limsup 4 = lim L*(1 — G(L) + G(—L)).

L2 n—o© L-w
When G =®,and k <«
lim limsup 4 = lim L¥(1 —e 1) = lim L*L*=0

L-3w n—w Lo L-w

and when G = A
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lim limsup A = lim L*{1 —exp{—e %} + exp{—e’}}

L-o© n—o L—w

= lim L*{e"L + exp{—e’}} =0

L-

and so we must concentrate now on B.
Write

B= J ks*"'(1 — F™(a,s + b,))ds + J ks* ' F"(—a,s + b,)ds

L L
= B, + B,.
Consider B,. If G = @, then
1 — F*(a,s) < 1 — exp{n(—log F(a,s))}
< n(—log F(a,s))
and for large n we have the bound
<+ &n(l — F(a,s)) < (1 + &)*(1 — F(a,s))/(1 — F(a,)).

Now apply Proposition 0.8(ii), which tells us that given ¢ > 0, if n is large and
L > 1 then

(1 — F(a,s))/(1 — F(a,)) < (1 + g)s™***
so that in this case

lim limsup B, = lim (1 + s)af ks "1s7**eds = 0

L-2© n—w L-o® L

providedk — 1 — o + £ < —1,1i.e, provided k < a — &. Since k is assumed less
than a, an appropriate choice of ¢ is available.

Now consider B, in the case that G = A. In this case apply Lemma 2.2(a)
and so

B, <+ 3)3-[ ks* (1 + es)™¢ ' ds.
L

The integrand is asymptotically equal to
(1 4 &)3ke™ skt
and choosing ¢ small enough, so that
k—1—¢gl<—1, ore<k™,
we obtain

lim limsup B, < (const)lim J skT17=7 ds = Q.

L—+w© n—o L-w JL

This takes care of B, and now we deal with B,. In case G = ®, we have
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B, = J ks*"1F"(—a,s)ds

L

—a,L
= f k|sf*t Fr(s)ds/ak

(4]
< F*(—a,L) J kisf* " F(s)ds/ak

and because of (2.3) and the fact that a, - oo we haveforall L > 0
limsup B, = 0.

n—a

Now we consider B, for the case G = A. Write B, as

-L (z1-bn)len ~L
J k|sf**F"a,s + b,)ds = J + J = B,, + B,,
(

— -0 z,~by)/a,

where z, is chosen as in Lemma 2.2(b). Note that (z, — b,)/a, > —o0 so
eventually (z, — b,)/a, < —L. The reason (z, — b,)/a, > —oo is as follows:
Since F € D(A) we have (Propositon 0.10) that V = (1/(1 — F))* e [T and hence
foranye >0

limsup (z, — b,)/a, < limsup (V(ng) — V(n))/a, = loge

n-*w n—*o
by the I1-variation property. Since ¢ > 0 is arbitrary we must have

limsup (z, — b,)/a, = —oc0.

n—ao
For B,, we have be setting y = a,s + b,

B, = j kly — b,|*"' F*(y)dy/a}

< F"(zy)a, "k(const)j 1 Iyt + b Y )F(y)dy.

Both a, and b, are slowly varying functions of n, and hence since F**(z,) - 0
geometrically fast we get as n — o

Fnbl(zl)a;k—’(), F"—l(zl)an_kb:_l“"o-

Finally observe

j Iy 1 F(y)dy < o0

and
f by "' F(y)dy < (const) [ bty F(y)dy < oo

— a0 0

by assumption (2.5). This shows limsup,_, B,; = 0.
Finally we deal with B,,: We have
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—-L
B, = f KIsi™ F(ays + b,)ds
(

zy~bp)a,

and applying (2.9) B,, is bounded by

—L
.1
J. k'Slk_l e—(l—e)2(1 +e|s)) ds
(

zy~bp)ay
and thus
_L N .—l
lim limsup B,, < lim (const) [s|k"lem el g5 = 0
L-»® n—o L—-® 0
since |s[¥~1e (1790 j5 integrable on (—o0, 0). 0

The following interesting corollary was pointed out by L. de Haan.

Corollary 2.3. Suppose F € D(G) so that (2.1) holds. If G = ®, suppose o > 2.
Suppose (2.3), (2.4), or (2.5) holds in the form

f x2dF(x) < oo.

(This condition can be weakened as in Exercise 2.1.1.) Then normalization of the
maximum using the mean and standard deviation is possible:

P[(M, — E(M,))/(Var(M,))"* < x]
O (T — 20" —T2(1 —a 1) 2x + T(1 — oY)  fG=0,
S W (T + 207 —T2(1 + a ) 2x —T(1 +a7Y))  ifG="Y,
A((T3(1) — V(D)) x — TW(1)) ifG=A.

PROOF. If G = A then from Proposition 2.1
(EM, — b,)/a, - —TV(1) (2.12)
and
E(a,'(M, — b,))* > T2(1)
so that
1"(2)(1) _ (F“)(l))z
= lim E(a,'(M, — b,))* — (E(a;" (M, — b,)))*

n—+oo

= lim a;2{EM?— 2b,EM, + b? — E*M, + 2b,EM, — b2}

n—>wo

= lima;?(EM? — E*M,)

n—oo

= lim a,2Var M,. (2.13)

n—>ow
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The result now follows from (2.12) and (2.13) and the convergence to types
theorem (cf. Proposition 0.2). The arguments for the other cases are the

same. a
EXERCISES
2.1.1. Condition (2.3) can be weakened to the following: There exists some integer n,

2.1.2.

2.14.

such that
V]
f |x[*Fo(dx) < co.

Check this and the analogous weakenings of (2.4) and (2.5). Give an example of
F such that

0
[ |x|*F(dx) = o0

but for ny > 2
4]
J [x{*Fro(dx) < 0.
If a, ~ a,, b, — b, = o(a,) and (2.3), (2.4), or (2.5) holds, then

lim E((M, — b))/a,)f = J‘w x*G(dx).

. Moment convergence and relative stability: Suppose {M, } is relatively stable (cf.

Exercises 1.19,0.4.1.2) with x, = o0;i.e,, suppose x, = oo and there exists b, such
that

M, /b, > 1.
Show if

o
f |x|*F(dx) < o0

then

E(M,/b) 1
as n — oo so that

M,JEM, 51
(Pickands, 1968).

The following discusses when centering and scaling by means and standard
deviations, respectively, is possible: Suppose {X,} is a sequence of random
variables such that for some a, > 0, b,e R

P[X, < a,x + b,} = F,(a,x + b,) = G(x),

nondegenerate. Suppose
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EX,, Var X,

exist and are finite. Prove there exist a > 0, be R such that

PL[(X, — EX,)/(Var X,)'* < x] - G(ax + b)
iff

lim Var X, /(F;(3/4) — F;(1/2))> = ¢ > 0. (2.14)
Hints:
(a) Suppose (2.14). Set
Y, = (X, — F-(1/2)(F; (3/4) — F7(1/2)).

Why does Y, converge in distribution? (Cf. the remark following Proposition
0.2.) Then

EY, = (EX, — F; (1/2)/F;(3/4) — F;(1/2))
Var Y, = Var X, /(F;(3/4) — F; (1/2))?
and from 2.14, VarY, is bounded.
(b) Show EY, is bounded (cf. median inequalities on page 244 of Loéve, 1963)
and hence EY,? is bounded.

(c) Since sup,,, EY,? < oo, {Y,} is uniformly integrable, and since {Y,} con-
verges in distribution, lim, ., E'Y, exists finite (de Haan, 1970, page 59).

2.2. Density Convergence

Suppose (2.1) holds so that
P[a;l(Mn - bn) < x] = Fn(anx + bn) g G(x) (21)

for an extreme value distribution G. We suppose F has left endpoint x, and
as usual denote the right endpoint by x, so that

x; = inf{x: F(x) > 0}
xo = sup{x: F(x) < 1}

and —0 < x; < x4 < 0. We suppose F is absolutely continuous with density
F’ and ask when (2.1) implies density convergence

gn(x):= na,F*Y(a,x + b,)F'(a,x + b,) > G'(x). (2.15)

We will show that local uniform convergence of g, to G’ is equivalent to the
appropriate Von Mises condition. (Local uniform convergence is convergence
on compact subsets.)

Convergence in various modes of the density g, has been considered by
several authors; see Pickands (1967), Anderson (1971), de Haan and Resnick
(1982). These efforts culminate in the nice paper by Sweeting (1985).

We begin with a simple lemma showing norming constants a, and b, can
be chosen at our convenience without affecting results.
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Lemma 2.4. Suppose for given a,, b, we have
gn— G
locally uniformly. If for a, > 0, b,eR
d,~a, (B~ b,)a,—0
then
§n(x) := na,F*@,x + b,)F'(@,x + b,) » G'(x)
locally uniformly. The assertion remains true if “locally uniformly” is replaced
by uniformly in a neighborhood of + co.
Proor. It suffices to show that if x, —» xe R then §,(x,) = G'(x) (cf. Section
0.1). However, since
Gn(xa) = (8,0, )9,(,(@,0," X, + (b, — b,)/a,) + b,)
andsince d,a;x, + (b, — b,)/a, — x, the result follows from the assumed local

uniform convergence of g, to G'. |

Proposition 2.5. Suppose F is absolutely continuous with density F' and right
end x,. If F € D(G) and

(a) G = @, then (2.15) is true locally uniformly on (0, o) iff (1.19) holds.

(b) G = ¥, then (2.15) is true locally uniformly on (—o0,0) iff (1.20) holds.

() G = A then (2.15) is true locally uniformly on R iff (1.21) holds.

ProOF. We first prove the result in the case G = A. As in Lemma 2.4 we prove
continuous convergence. Assume (1.21) holds and set

b,=(1/1-F)~(m), f@O)= ﬁn (I = F(s)ds/1 —F(@®)),  a,=f(b,)
Then
gu(x,) = na,F"*(a,x, + b,))F'(a,x, + b,)
and since
F*"Y(a,x + b,) = (F"(@,x + b,))" ™" > A(x)
uniformly on R (see Section 0.1) we have
gn(x,) ~ na,A(X)F'(a,x, + b,)

and so it suffices to check

na,F'(a,x, + b,) > e™*.
Since a,x, + b, = x, we have upon setting f,(¢) = (1 — F(t))/F'(t)

na,F'(a,x, + b,) ~ n(1 — F(a,x, + b,))f(b,)/fo(anx, + b,)
~n(l — F(a,x, + b,))f(b,)/f(a,x, + b,)
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because (1.21) means f(t) ~ f,(t). However
n(l — F(a,x + b,)) > e™*

locally uniformly since monotone functions are converging to a continuous
limit and

S, + xa,)/f(b,) ~ 1

locally uniformly by Lemma 1.3. Thus the assertion is checked.

Conversely, if (2.15) holds locally uniformly then since density convergence
implies weak convergence it follows that F € D(A). Set V = (1/(1 — F))* and
we have V eIl (Proposition 0.10). We may set b, = V(n), a(t) = f(V (t)) where
f(#) = [fo(1 — F(s))ds/(1 — F(t)) and a(-) is the auxiliary function of V and is
hence slowly varying. Then (2.15) holds with this choice of b,, a(n), and the
convergence is still locally uniform (Lemma 2.4). Since F" *(a(n)x + b,) >
A(x) uniformly, (2.15) implies

na(n)F'(a(n)x + b,) > e™*
locally uniformly and thus as t - o |
[tJa([tDF'(a([tDx + byy) > e (2.16)
locally uniformly. Set

x, = (V(te*) — V([t]))/a([t]).

Since the II-variation property holds locally uniformly (monotone functions
are converging to a continuous limit) we get as t —» oo for x > 0

x, = (V([](e™t/[t]) — by)/ag — loge™ = x
and replacing x in (2.16) by x, and using local uniform convergence we get
e * = lim [t]a([t])F'(a([t])x; + by,)

t—= o

= lim ta(t) F'(V (te*)).
(The last step uses ta(t) ~ [t]a([t]) which is a consequence of ¢t ~ [t], ta(t)e
RV, and Proposition 0.8(iii).) Putting s = te* we get

e * = lim se *a(se *)F'(V(s))
and since slow variation of a(-) implies a(se”*) ~ a(s) the foregoing is equiva-
lent to

1/a(s) ~ sF'(V(s))

which is the same as the Von Mises condition (1.21) by Proposition 1.17(d).
Details for the case G = ®, are similar. If (1.19) holds then set a(t) = V(t) =
(1/(1 — F))~(¢) and if x, —» x > 0 then a(n)x, - o and

gn(x,) = na(m)F"* (a(n)x,)F'(a,x,)
~ ana(n)®,(x)(1 — F(a,x,))/a(n)x,
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since the Von Mises condition is the same as F'(t) ~ a(1 — F(t))t™!. The right
side here is

aq)a(x)n(l - F(anxn))/xn - a(pa(x)x—a—'l = Gl(x)'
Conversely if (2.15) holds locally uniformly on (0, o), F € D(®,) and we can
seth, =0,a, = V(n)and V = (1/(1 — F))” € RV, (Proposition 0.8(v)). There-
fore setting x, = xV (t)/V([t]) = x we get for x > 0

O, (x)ax"*"! = lim na,F""Y(a,x,)F'(a,x,)

and therefore
oax™ "t = lim [{]F' (xV () V([t])

t—a

= lim tV(t)F (xV (t)

t—w
and setting s = xV (¢) this is
= lim V< (sx Y)WV (sx 1)) F'(s)

Find ]

= lim x™*V* (s)sx "1 F'(s)

s$—a0

(since V* e RV,) and so

o = lim sF'(s)/(1 — F(s))

§$-*00

as desired. The treatment for ¥, is left as an exercise. O

We now discuss how to extend this result to get uniform convergence of g,
on all of R. Getting uniform convergence in neighborhoods of +oo is no
problem when G = @, or A as it comes almost for free under the Von Mises
conditions. When G = W, some care must be taken in extending local uniform
convergence on left, closed neighborhoods of 0.

To get uniform convergence in neighborhoods of oo it suffices to show (see
Section 0.1) that if x,, — oo then g,(x,) = 0. If G = A then

gn(x,) = na,F* *(a,x, + b,)F'(a,x, + b,)
< na,F'(a,x, + b,).

The Von Mises condition (1.21) requires F' > 0 in a left neighborhood of
X, and in this neighborhood F is strictly increasing. Now a, = f(b,) =
5o (1 = Fs)/(1 — F(b,)) ~ (1 — F(b,))/F'(b,) = 1/(nF’(b,)) (by 1.21), and thus

limsup g,(x,) < limsupF’'(a,x, + b,)/F'(b,).

n—*o n—o

Recall from Proposition 1.17(d) that ¢F'((1/(1 — F)) (t)) =: L(t)e RV, so that
F(y) = L((1/(1 = F()m{A — F(y) (2.17)
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in a left neighborhood of x,. Since n(1 — F(a,x, + b,)) = 0 we have for e > 0

limsup F'(a,x, + b,)/F'(b,)

n—ao

~ limsup L(n/(n(1 — F(a,x, + z..(iz))))n(l — F(a,x, + b,))
< limsup (1 + ¢)(1/(n(1 — F(a,x, + b,))))’n(1 — F(a,x, + b,)

(by applying Proposition 0.8(iii))
= limsup (1 + ¢)(n(1 — F(a,x, + b,)))! *=0.
If G = ®, the details are simpler: If x, —» co then
limsup g,(x,) < limsup na,F'(a,x,)

= limsup n(l - F(anxn))x;l(anan,(anxn)/(l - F(anxn)))

and supposing (1.19) holds this is

limsup an(1 — F(a,x,))x,! =0

n-o

since x, = oo and n(1 — F(a,x,)) — 0.

Now consider the problem of getting uniform convergence in (2.15) on
intervals of the form [ —M,0], M > 0, when G = ¥,. Let x, 10 and we seek
conditions which guarantee g,(x,) = ¥, (0). Since W,(0) = 0 if 0 <« < 1, we
only consider the case a> 1. The Von Mises condition is (1.20) and the
norming constants are given in Proposition 1.13 so that

gn(xn) = ”(xo - '))n)F"’_l(xO + (xO - ')’n)xn)F’(xo + (xo - yn)xn)'
Since F" 1 (xq + (g — ¥a)X,) = P,(0) = 1 we must consider when

0 ifoo>1

1 ifoo=1. @18)

n(xO - ’Yn)F/(xO + (xo - yn)xn) _’{
The Von Mises condition says F'(y) ~ a(l — F(y))/(xo — ¥)asy T xo and using
this (2.18) becomes

0 ifoa>1

n(l—F(xo+(xo—vn)x,.»/(—x,)a{I R AT

It is convenient to recall that F e D(\P,) iff

U(t):=1/(1 — F(xo — t*))e RV,
(Proposition 1.13). Check that

U™ () = 1/(xo — (11 — F))" (1)

and thus (2.19) can be recast as
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uiu~m) {0 ifa>1
OO @) U ifa=1

and setting y, = |x,|”! we have (2.19) equivalent to the condition:

For all sequences {y,} such that

U= (ny,) o0 ifa>1
0 — 2.19
SHhE DU M) T ifa=1 2.19)
which in turn is equivalent to the more appealing condition:
For any function y(t) such that
U(ty(t)) oo ifoo>1
: 2.2
0<yO-:0mm " ifa=1 (2.20)

(Check this equivalence!) If @ > 1 we may readily check that (2.20) is a simple
consequence of the inequalities of Proposition 0.8(ii). So we now focus on the

case a = 1.
Suppose the left-hand derivative F'(x,) of F at x, exists, is finite and
nonzero. Then as x - xy,— the Von Mises condition is

F'(x) ~ F(x)/(xo — x)
and the right side is

o) 2709, pr(xe)0,0)

X —
and we conclude that as x — x, —
F'(x) - F'(x,) < o0.
Thus the left side of (2.18) is
n(xo — ¥a)F'(xo — (xo0 — ¥a)Xn)
~ F'(xo)n(xo — va) = F'(x0)n/U" (n).
However we are assuming
F(xo) = lim Z0%0) ~ f_ (o — 1)

t—o0

o U(t)

and thus by an application of Proposition 0.8(vi)
lim U™ (t)/t = F'(x,)

t—~o0

and hence (2.18) holds.
Conversely suppose (2.18) or equivalently (2.20) holds for « = 1. Writing
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U(t) = tL(t) this means we assume:
For any function y(t) such that

.Ley®)
0 < y(t) > o0: L©) -1

(2.20)

We wish to conclude that (2.20") implies the existence of a constant c,
0 < ¢ < 00, such that

lim L(t) = c.

t—oo

Suppose not. Then either (a) L(t) - oo, or (b) L(t) =0, or (c) there exist
0 < ¢, < ¢; < o and sequences s, — o, t, — o with L(s,) = ¢, L(t,) = c,.
To see that (c) leads to a contradiction define for n > 1

k(n) = inf{k > n: s, /t, > n}
so that k(n) —» co and y, = s,/t, = . Then from (2.20")

o Ltayn) . Lisgw) €y
L= lim L) = lm Lt) ¢,

a contradiction. To see that (a) leads to a contradiction take t, — oo and define
forn>1

<1,

k(n) = inf{k > n: 5’;‘—’ >n and Lt) > L2(t)}

so that y, := t,,/t, = o and
1= hm L(tnyn)/L(tn) = llm L(tk(n))/L(tn)

> lim L2(t,)/L(t,) = lim L(t,) = oo,

a contradiction. The proof that (b) leads to a contradiction is similar.
Thus L(t) - ¢ whence

¢! = lim t/U(t) = lim F(xo) — F(xo —t™)

t—l
t—w t— o

and so the left-hand derivative of F at x,, exists finite and nonzero.

Uniform convergence on (0, 0o) is readily verified from (2.18) when F € D(¥,)
since the left side of (2.18) is zero for x, > 0.

We now summarize these findings.

Proposition 2.6. Suppose F is absolutely continuous with density F'(x) and the
appropriate Von Mises condition (1.19), (1.20), or (1.21) holds. If F € D(®,) then
density convergence (2.15) on (0, ) is uniform on neighborhoods of . If
F € D(A) then density convergence (2.15) on R is uniform on neighborhoods of
0. Suppose F € D(W,) and o > 1. If a > 1 density convergence (2.15) is uniform
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on intervals of the form [ — M,0], M > 0 (and hence uniform on all neighbor-
hoods of ). If a = 1 this is true iff the left-hand derivative of F at x, exists
positive and finite.

We now discuss how to obtain uniform convergence on all of R. Similar to
the situation in Section 2.1, behavior not controlled by right tail conditions
must be controlled by imposing extra conditions; cf. (2.21) later.

Proposition 2.7. Suppose F is absolutely continuous with density F'(x) and that
one of the Von Mises conditions (1.19), (1.20), or (1.21) holds. If FeD(¥,),
suppose either o > 1 or a =1 and the left-hand derivative of F at x, exists
positive and finite. Then density convergence (2.15) holds uniformly on Riff there
exist constants B > 0, C > 0 such that for all x

F'(x)F(x)? < C. 221

Remark. If the density F’ is bounded then (2.21) is satisfied. Condition (2.21),
devised by Sweeting (1985), is designed to allow the density to become un-
bound in right neighborhoods of x;, = inf{x: F(x) > 0}. Condition (2.21) says
that the distribution F2*(x) has a bounded density.

ProoOF. We start by supposing F € D(A), (1.21), and (2.21) hold. Let x, - —o0
and we must show g,(x,) — 0. There are two possibilities along subsequences
{n'}:

(@) ayx, + b, >x, or

d) a,x, + b, <K < x,.

In case (a), just as in the developments following (2.17), we have by recalling
a, ~ (1 — F(b,))/F'(b,) and using Proposition 0.8(ii) that for large n’

L(n'/(n’(1 — F(ayxy + by))))

gn(xn) ~ n'(1 — F(b,))F" " (ayx, + by) L(n)

‘n'(1 — F(a,x, + by)
<+ (1 — Flapx, + by))! *F"(ayx, + b,)
and remembering that F = 1 — (1 — F) < e”* 7P the foregoing is bounded by
<1+ &) (1 - F))'“exp{—((n' — 1)/n)n’'(1 — F)}.

If n'(1 — F) — oo then this bound obviously approaches zero as desired. To
check n’(1 — F) - oo note that since x,, - —oo we have for any M > 0 and
all large n’ that

Xy < —M
and hence
n,(l - F(an’xn' + bn)) = n’(l - F(an’("‘M) + bn’) "')eM

and since M is arbitrary the conclusion is that
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n'(1 — F(a,x, + b,)— co.
In case (b) when a,.x,. + b, < K < o0 we have
Gu (%) = @t F" "N (ay X + by )F (@ Xy + by)

<na,CF* ' 8a,x, + b,)

(by 2.21)
<Cn'a,F" ' BK)-0

since na, ~ nL(n) and F"'8(K) — 0 geometrically fast as a consequence of
F(K) < 1.

Conversely suppose (2.21) fails. Then with C = 1 and B = n — 1 we see there
exists z, €(x;, x,) such that

F'(z,) = F(z,)"*'.
Set x, = a;'(z, — b,) and then
n(xs) = na, F*Y(a,x, + b,)F'(a,x, + b,)
> na,F""(z,)F "*!(z,) = na, » o

so that g, cannot converge uniformly on R to A’(x).

Now we deal with the problem assuming F e D(®,). Suppose (1.19) and
(2.21) hold and we show uniform convergence of g, — ¢, on intervals of the
form [0, M]. Suppose 0 < x,, — 0 and again along subsequences {n’} there are
two cases:

(@) a,x, - o
(b) a,x, <K < 0.
Case (b) is handled as in the discussion for A so we focus on (a):

gn’(xn’) = n’an’F"l—l(an’xn’)F’(an’xn’)
~ o' (1 — F(ay X)) F™ Y@y X )/ X (from (1.19))
<on’(l — Fayxy))exp{—(n" — 1)(1 — F(a,x,))}/%,-

Now U = 1/(1 — F)eRV, so that since U(a,)/U(a,x,) = U(a,x,x,")/
U(a,x,) we get from Proposition 0.8(ii) for given 0 < ¢ < o and large n

(1 — &),y < Ulan)/U(anx,) < (1 + &) (')

Since n(1 — F(a,x,)) ~ (1 — F(a,x,))/(1 — F(a,)) = U(a,)/U(a,x,) we have
for large n

(1 = e*x;*"* < n(l — F(a,x,)) < (1 +&fx;*".
So when n’ is large, a bound on g,,(x,) is of the form
a(l + &x;**exp{—(1 — &)*x;**}/x,,
= 0(x;* " texp{—(1 — &)*x;***}) - 0.
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To get uniform convergence on (—o0,0) is easy: If x, —» x < 0 then the
simple argument of case (b) works. The converse is nearly the same as for A
and is omitted.

Checking details for F e D(\P,) is left as an exercise. O

Convergence of g, to G’ in the L, metric is considered in de Haan and
Resnick (1982) and Sweeting (1985). The first reference also considers local
limit theorems when it is not assumed that F has a density.

EXERCISES

2.2.1. Suppose F € D(A) with auxiliary function f. For given & > 0 there exist t, such
that for x > 0,t > ¢,

L—F@©) T St +50)
(= [1 e xf(t))] =0
and for x < 0, t + xf(t) > t,
L= F(t+ OV _ £t + 50) 1= F(t + xf(®)
=9 [ - F) ] ST <4 8’[ —Fo |

Hint: With U=1/(1—F) we have foU“€eRV, Apply Proposition
0.8(ii) (de Haan and Resnick, 1982).

2.2.2. Give an example of F € D(A) satisfying (2.21) but with the density F’ unbounded
near x; and g, — G’ uniformly on R.

1 - F()
=@+ 8)[1 ZF( + X))

2.2.3. Prove the unproven statements in the ‘P, case.

2.2.4. Suppose the conditions of Proposition 2.7 hold so that g, — G’ uniformly on R.
For any sequence d, » co and h > 0
(a) If FeD(®,), then lim, ., d,P[x < a,'M, < x + d,;'h] = h®,(x) uniformly
on R.
(b) If FeD(A), then lim,, d,P[x <a,'(M,~b,) <x+d;*h] =hA\'(x)
uniformly on R.
(c) If Fe D(¥,), then

lim d,P[x < (M, — xo)/(xo — 7,) < x + d;" h] = h'¥(x)

n-*w

(de Haan and Resnick, 1982).

2.3. Large Deviations

This section is based on Anderson (1971,1976,1978,1984), de Haan and

Hordijk (1972), and Goldie and Smith (1987).
Since convergence in (2.1) holds uniformly in R, we may write (2.1) as

sup |F"(x) — G(a;'(x — b,))| = d, = 0. 222
xeR
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This suggests that in a statistical context, if we do not know F, we regard
G(a"!(x — b)) as the approximate distribution of extremes. This is appealing
for two reasons. First, we have at most three parameters to estimate (a, b, and
possibly the shape parameter a appearing in the definition of ®, and ¥,), and
second, domain of attraction restrictions on the tail behavior of F are mild
and satisfied by most common densities so that this procedure is fairly robust.

Of course there are two possible sources of difficulties: the statistical estima-
tion of parameters and the approximating of F*(x) by G(a,(x — b,)). For the
latter it would be useful to know something about d, appearing in (2.22), and
this is the subject of Section 2.4. However d, is not always the best way to
measure how close F*(a,x + b,) is to G(x). In problems concerning prob-
abilities of exceeding large values, we care about how closely 1 — G(x) ap-
proximates P[M, > a,x + b,] for large values of x. Since both 1 — G(x) and
P[M, > a,x + b,] are likely to be very small, these quantities have little
influence on d, and it is better instead to use relative error, which is equivalent
to examining how close

P[M,>a,x+b] 1—F'"a,x+b,
1 —G(x) T 1-G(x)

is to one for large x.
We seck x, 1 00, the convergence to infinity being as fast as possible, such
that
lim P[(M, — b,)/a, > y,]/(1 — G(y,)) =1 (2.23)

for any sequence {y,} such that y, = O(x,) or equivalently for any positive 4
lim sup |P[(M, — b,)/a, > x]/(1 — G(x)) - 1| =0. (2.23)

n—oo x<Ax,
We always assume {x,} is strictly increasing. The relations (2.23) or (2.23')
describe those values of x such that 1 — G(x) is a good approximation to
P[(M, — b,)/a, > x]. Obviously the faster we can allow x, to increase to oo,
the better the approximation.
We begin by considering the case F € D(®,). In this case

1 — F(x) = x™*L(x), X — o
with L € RV, and we may take b, = 0, a, = (1/(1 — F))"(n). Then (2.23) can be
written as (assume y, — oo, the contrary case being covered by uniform
convergence in (2.1))
1 =1lim (1 — F*(a,y,))/(1 — @,(y,))

= lim n(l - F(anyn))/yn_a

n-w

(since 1 — @ (x)~x"% x—o00 and 1— F'(a,y,) =1 — e ""leeF@w) _
n(—logF(a,y,)) ~ n(1 — F(a,y,)) where the asymptotic equivalences are
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justified by the fact that F"(a,y,) — 1 implies nlog F(a,y,) — 0). Since n™* ~
1 — F(a,) the previous expression becomes

1 =lim y;(1 — F(a,y,))/(1 — F(a,))

n—o

= lim (any'l)a(l - F(an.})n))/a:(l - F(an)))

n—+wx

= lim L(a,y,)/L(a,) (2.24)
and this is equivalent to (2.23). Condition (2.24) is rephrased slightly in the
following.

Proposition 2.8. (Anderson, 1978). Suppose x*(1 — F(x)) = L(x)e RV, and {x,}
is strictly increasing, x,1 c0. Then the large deviation property (2.23) holds iff
there exists a non-decreasing function &(t) with £(c0) = oo such that &(a,) = x,
and

lim L(t£%(t))/L(t) = 1 (2.25)

t—=

locally uniformly in 6 € [0, c0].

PrOOE. Suppose (2.25) holds and we verify (2.24) when y, > o, y, < Ax,,.
(Again, note if a subsequence of {y,} is bounded, then (2.24) along that
subsequence is a direct consequence of uniform convergence; cf. Proposition
0.5.) Since y, < Ax,, if we set J, = log y,/log x, then y, = x2» = £%(a,) and
{8,} is bounded. The limit in (2.24) is
lim L(a,¢%(a,))/L(a,)

and this limit is 1 since (2.25) is assumed to hold locally uniformly in 4.

Conversely if (2.24) holds then for all {§,} = [0,1]*° = {(uy,u,,...): u;€
(0,1, i=1,2,...}

lim L(a,x2")/L(a,) = 1. (2.26)
Define
(@) =x, fortela,,a,.)
and
n(t) = sup{n: a, < t}
so that

Ayy S < uiyis- (2.27)

Then since a, ~ a,,, (because of a(t) = (1/(1 — F))”(¢)e RV,-: and Proposi-
tion 0.8(iii)) we get by dividing through by a,,, in (2.27) that as t - oo

Apgyy ~ L.
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Furthermore
Ay E2a, ) < E2NE) < 01 E2(angr)
which implies
t& Jltl(t) ~ an(r)f altl(au(z))
and from (2.26) and Proposition 0.8(iii)

lim L(t&%(t))/L(t) = 1

t—+o

and since {,} is arbitrarily chosen in [0,1]® (2.25) holds uniformly for
0 < < 1. It is easy to extend this to local uniform convergence on [0, o).
For instance if (t)e[1,2] then

i LEEO0) _ L LEEOSO @)LEE@) _
ca LO e LEOLE

a

Remark. Proposition 2.8 does not assert (2.25) holds for all £ satisfying &(a,) =
X,
Since (2.25) strengthens the slow variation property, Anderson (1978) aptly
termed (2.25) super slow variation.

Definition. Let £ be nondecreasing with £(c0) = 00. A slowly varying function
is &-super slowly varying (&-ssv) if
lim L(t&%(t))/L(t) = 1 (2.25)
1200
locally uniformly for é € [0, o).
Actually, uniformity in (2.25) is a consequence of pointwise convergence in
d, provided the function ¢ satisfies a growth condition. See Anderson, 1984,
Theorem 2, and Goldie and Smith, (1987), Section 2.3.
We now examine sufficient conditions for super slow variation and hence
for the large deviation property.
Suppose L € RV, has Karamata representation (cf. Corollary 0.7)

L(x) = c(x)exp{J'x t”‘s(t)dt} (2.28)
1

where ¢(x) — ¢ > 0, &(x) » 0 as x — 0. Since &(f) » oo we have

1&(1)

L(t&%(t))/L(t) ~ exp{j u‘le(u)du}

t
so that the ratio goes to 1 locally uniformly in J iff the integral goes to zero
locally uniformly in d. In the integral make the change of variable z = (logu —

logt)/log &(t) and

7403 s
J # )u“s(u)du = f slexp{logt + zlog&(t)}) log &(t)dz

0
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and this goes to zero locally uniformly in J provided

&(td*()log&(1) > 0 (2.29)
as t — oo locally uniformly in z. However (2.29) is true iff
e(t)log&(t) > 0 (2.30)

and this is the desired sufficient condition. (To see the equivalence of (2.29)
and (2.30) note by setting z = 0 in (2.29) we get that (2.29) obviously implies
(2.30). Conversely if (2.30) holds, then because ¢ is nondecreasing

0 = lim g(t&*(2)) log £(e£7(2))

t—*o0

> lim e(t&*(t))log E(t) = 0

t—w

and the convergence is locally uniform in z.)
As a special case consider what happens if the Von Mises condition (1.19)
holds; i.e.,

a(t) ;= tF'(t))(1 — F(t)) > a

as t — oo. Then

1

1—F@)= cexp{~fx t“‘a(t)dt}

and thus
gty =at) —a
and sufficient condition (2.30) becomes
log SO (F'(1)/(1 — F(1))) —a) >0

ast—» oo.
Another interesting special case, which covers the Cauchy, Pareto, t, and F
distributions, is when

t*(1 — F(t))-»c>0
as t — oo. In this case
L(t) = t*(1 — F(t)) = c(t)e®

so &(t) = 0 and all growth rates for £(t) are allowed.
Interestingly enough, when ¢ satisfies a growth condition, (2.30) is necessary
as well.

Proposition 2.9 (Anderson, 1978; Goldie and Smith, 1987). Suppose &(f) — oo
and

log £(x¢(x)) = O(log £(x)) (231)

as x — 00. Then Le RV, is £ — ssviff L has a Karamata representation of the
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form (2.28) with

e(tog ()~ 0 (2.30)
ast— 0.
Remark. In cases where ¢ is differentiable, (2.31) is close to saying log £(e*)

has a bounded derivative. See Exercise (2.3.4).

ProoF. You might wish to review Exercises 0.4.3.8 and 0.4.3.11, and Lemma
1.3. We need only prove necessity of (2.30). Define

L*(t) = L(e")
$¥(1) = log&(e’)
so that assuming L is £ — ssv and satisfies (2.25) we get
lim L*(s + 0&*(s))/L*(s) = 1 (2.25)

s+

locally uniformly in 6 and the rephrasing of (2.25) and (2.31) becomes
&*x + E*(x))/E*(x) < K. (231)
Pick ¢ such that £*(t) > O for ¢ > c. The function

f (/€ ))du

for x > ¢ is continuous, strictly increasing, and since for x > ¢

x+&%(x) 1
f (1/&*w)du = f §*(x)/E*(x + ug*(x))du
0

X

> 1E*(x)/E*(x + E*(x)) = K™ (from (2.31) (2.32)

« e+Ete C+EHO+EHe+E ()
f (1/E*(w))du > f + f + = oo,

c c+&E*c)

we have

Thus the function

U(x) = exp { f " (Uf*(u»du}

is continuous, strictly increasing with U(oo) = oo, and U* is well defined on
[0, c0). We show

L* =L,oU (233)
with L, € RY,. Repeat the argument leading to (2.32) to getfor0 < 6 < 1
U(x + 8&*(x))/U(x) = e*¢" (2.34)

for x > ¢ and hence for ve[1,eX™']
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0 < (U (wU(x)) — x)/E*(x) < Klogv < 1. (2.35)
Thus to show L, = L* o U~ € RV, we write for ve[1,eX ']

. Ly@w) . L*(U"(tv))
mTO TR e)

and setting x = U*(t) we have this equal to

) L#(U"(UU(X))
=m0

L U (wU(x)) — x _
= J!]_l:!olo L# ([—T*(x)—*] é*(X) + X)/L#(X) =1
since

0<(U (U (x)) — x)/¢*(x) < 1

and the convergence in (2.25') is uniform for §€[0,1]. This verifies
lim,_, ., L,(tv)/L,(t) = 1 for ve[1,eX"'] and a simple argument extends this to
all v > 1. Hence (2.33) is checked.

Since L, € RV, it has a Karamata representation

x

L,(x) = c,(x)exp {J t“sl(t)dt}

1

where ¢,(x) = ¢, > 0, &;(x) = 0. Thus

L*(x) = ¢, (U(x)) exp{wa t“sl(t)dt}.
1

Make the change of variable s = exp{U(t)} so that t = U(logs), dt =
s71U(log s)ds = U(log s)/(s¢*(log s))ds, and

L(e*) = L#*(x) ~ (const)exp { fex (e,(U(log s))/log &(s))s ™! ds}
1

and setting
&(s) = &,(U(log s))/log £(s)
we see that L has a Karamata representation with &(s) satisfying
g(s)logé(s) >0

as required. O

Now we consider (2.23) for F € D(A) supposing throughout the discussion
that x, = o0. Since 1 — G(y,) = 1 — exp{—e™>"} ~ e~ for y, - oo we have
(2.23) equivalent to

e’"(1 — F'(a,y, + b,)) ~ e’n(1 — F(a,y, + b,) > 1 (2.36)
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as n — oo where we recall that a,y, + b, — o so that F(a,y, + b,) = 1. From
Proposition 1.4 we have for z, < x < ®©

1—-F(x)= c(x)exp{—— r (l/f(u))du} (1.5)

J 29

where lim,4, c(x) = ¢ > 0, lim,4,, f'(x) = 0, and we may take

b,(1/1 — F))~(n),  a, = f(by).
Thus (2.36) can be expressed as
1 ~e™(1 — F(a,y, + )1 — F(b,))

8pYntby

(2.37)

= e”(c(a,y, + b,)/c(by)) exp { —f (/11 (u))du}

b"

and making the change of variable in the integral v = (u — b,)/a, y, the preced-
ing expression becomes

[ Ynf(B,)/f (b, + va..y..)dv}

0

e’(1 + o(l))exp{—

o

~ €xp {-L (/) f(by + va,y,)) — 1)y, dv}-

Since y, < Ax,, if we set §, = y,/x,€[0, A] we can write y, = d,x,. If &(x) is
nondecreasing satisfying £(o0) = oo and &(b,) = x, then we see (2.36) may be
rewritten as

3,
¢(ba) L (f(B)/1 (b, + vE(b,)f (b)) — 1)dv =0,

and sufficient for this is
S(x)
R A AN 1 N ]
£0) (f(x + of(x)&(x)) > 0 (2.38)

as x — o0, locally uniformly in é. Finally we check that (2.38) holds if the de
Haan and Hordijk (1972) condition holds, viz

E2(0)f'(x) = . (2.39)
Note first that
Sx + of(x)¢(x)) ' (X +37CR@ | £ ()
—_—— 1< u
J(x) Jx f
&

-, Lf(x + uf (x)&(x))|E(x)du

o
o

, LfGe + uf () ()& (x + uf (x)€(x))] du

IA
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and this approaches zero locally uniformly in § because of (2.38). To show
that (2.39) implies (2.38) we repeat these steps as follows:

F60 |+ 809200 — 09
O aramee YT Tk + gz
~ £(x) flx+ 5f()})(i()x)) — /™) (by the previous calculation)

3
sf Lf'(x + uf (x)€(x))| &2 (x)du
0

s
< j LfGe + uf () ()& (x + uf(x)¢(x)) du — 0
0

locally uniformly in é as required.
We now summarize our large deviation results when F € D(A).

Proposition 2.10. Suppose F € D(A) with x, = o0 and 1 — F has representation
(1.5). Set R(x) = ﬁ‘o(l/ 'f(u))du for x > z,. Then the large deviation property
(2.23) holds iff there exists a nondecreasing function &(t) satisfying £(o0) = o0,
é(bn) = Xns and

lim (R(x + §f(x)&(x)) — R(x) — 6&(x)) =0 (2.40)
locally uniformly in 6 € [0, c0). Sufficient for (2.40) is the de Haan and Hordijk
(1972) condition

lim &3(x)f'(x) = O. (2.39)

Proor. We need only check the equivalence of (2.23) with (2.40). Note that
(2.23) and (2.37) are equivalent, so taking logarithms in the latter we obtain

R(a,x,0, + b,) — R(b,) — 8,x, ~0 (2.37)
or, what is the same,
R(b, + of(b,)¢(b,)) — R(b,) — 6E(b,) — 0 (2.377)

locally uniformly in §, and obviously (2.37") is implied by (2.40), so we need
to check the converse. Supposing (2.37") we define

f(X) = Xy forxe [bm bn+1 )

If xe[b,, b,.,;) we may write x = b, + 0(b,,, — b,) for 0 < 6 < 1. We assume
FeD(A) so that V = (1)1 — F))" eIl with auxiliary a-function fo ¥ (Prop-
ositions 0.9 and 0.10). Thus for any ¢ > 0

0 <limsup (b,+; — b,)/f(b,) = limsup (V(n + 1) — V(n))/f o V(n)

n—o n—o0

< limsup (V(n(1 + ¢)) — V(m))/f o V(n)

n-=*o0

= log(1l + ¢),
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and hence we conclude

lim (bn+1 - bn)/f(bn) =0.

n—oo

Recall
lim f(¢ + of(1))/f(t) = 1

t—oo
locally uniformily in § (Lemma 1.3) and therefore for xe[b,,b,,,)

f(x) — f(bn + e(bn+1 - bn))
1) fb,)

_ (bn+1 - bn) ) N 41
= f(bn + (3 7o) )f(bn) /fb,) 1 (2.41)

asn — 0. Since £(x)is constant on [b,, b,,) and R is monotone nondecreasing

R(x + of(x)£(x)) — R(x) — 6¢(x)

J(x)
= R<b,. + <5 f(b,,))f (b..)é(b,.)) = R(b,4y) — 6E(b,)

_ f(x) e

— (R(by+1) — R(b,)).
From the definition of R
R(ba+1) — R(b,) = —log((1 — F(b,+1))(1 ~ F(b,)))
+ logc(b,+,)/c(b,) > 0
and we get on applying (2.41) and (2.37")
liminf (R(x + df(x)€(x)) — R(x) — 8£(x)) > 0.

X0

For an inequality in the reverse direction write for x € [b,, b,+,)
R(x + of (x){(x)) — R(x) — 6¢(x)

Jx)
J(b,)

_ 0buss — ba) | - fO0) o
—R(bn+< TR f(b"))f(bn)i(b,.)) R(b,) — 5¢(,)

and since

Obus —b0) , 5 1)

-0
S(b,)¢(by) f(by)

we get from (2.37") that
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limsup (R(x + Jf(x)é(x)) — R(x) — 8¢(x) <0

and thus we have shown that
lim (R(x + f(x)é(x)) — R(x) — 6&(x)) = 0.

X+

Checking local uniform convergence is no problem using continuous conver-
gence (Section 0.1), and thus we are done. O

As an example consider the normal distribution N(x) with density
n(x) = (2m) " 2e >,
Then
fO=(0—=N@OYn@) ~ ¢t
(Feller, 1968, page 175), and since
f®)= -1+l — N@®)/n()
and
S &)= —t+ (1 + )1 = N@®)/nt) 2 0

we have f'(t) nondecreasing and an application of Proposition 0.7(b) gives

fO~—t?
and (2.39) becomes

7281 -0
ie.,

&(2) = o(v).

Since b, ~ (2logn)'”? (Example 2, Section 1.5) we see that the large deviation
property holds for

X, = 0((b,)) = o((log n)'?).

If Von Mises condition (1.21) holds, then from the proof of Proposition
1.17(a) we see that (2.39) can be formulated

. F(x)f2 (1 — Fu))du\
lim éz(x)(-—1+ 1 —FP )-0

X0

and if Von Mises condition (1.24) holds, condition (2.39) becomes

. (1 -FX)F'(x)\
Jim f“")(‘ +—<FT»—) =0
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Rewriting (2.40) as

R(x + 3(x)¢(x)) — R(x) 5) -0
£(x)

makes it clear that (2.40) describes a rate on how fast
R(x + f(x)¢(x) — R(x) |
&(x)
The latter condition suggests that

R=noH

lim &(x) (

X0

d.

where nell, HeT, and under suitable growth conditions on &(x) this should
enable one to show that (2.39) is necessary. However this interesting conjecture
has yet to be fully verified. See Exercise 2.3.8 for evidence in support of this
conjecture.

EXERCISES
2.3.1. When Fe D(®,), if (2.23) holds for a certain choice of normalizing constants

a, >0, b,eR, then it holds for every choice; i.e., if (2.23) holds and a, ~ a,,
b, — B, = o(a,), then (2.23) holds with («,, 8,) replacing (a,, b,).

2.3.2. Even if the Von Mises condition 1.19 fails, we may set

a(t) = (1 — F(t) / r sY(1 — F(s))ds

so that a(t) —» o« and
1—-F(x)= (a(x) rﬂ s7i(1 — F(s))ds)exp{—Jx t“oz(t)dt}.
J1 1

&(t) = a(t) —a

Thus

and condition (2.30) becomes

log é(t)(((l - F(t))/J‘cu s - F(s))ds) - a) -0.

2.3.3. Derive large deviation results for F e D(¥,) either ab initio or by using the fact
that if Fe D('P,),

0 x<0
F, =
olx) {F(xo —x1) x>0

is in D(®,).
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2.3.4. (a) If £*(t) = log &(e') is the integral of a bounded derivative then 2.31 holds. If
(£*) (1) is nondecreasing, then (2.31) or (2.31') implies (£*) is bounded.
(b) Show that any power function of the form &£(t) = t°, a > 0, satisfies (2.31).

2.3.5. If &, grows so fast that
J (1/¢T(w)du < o
1
in violation of (2.31), then (2.30) implies L(c0) < co and L is &,-ssv, and in fact

L is &-ssv for any £ nondecreasing with £(c0) = co (Anderson, 1984).

2.3.6. I E3(t) = 1%, B > 0, L*(t) = log, t then for 0 < B < 1,(2.30) and (2.31) hold, and
for > 1 (2.30) and (2.31), do not hold, [ (1/&§(u))du < oo but L is £p-ssv. So
(2.30) can be too strong and the super slow variation property can hold without
it (Anderson, 1984).

2.3.7. For which sequences {x,} does the large deviation property hold when F is
gamma, Weibull, lognormal?

2.3.8. (a) Observe from the proof of (2.38) that f’(x)&(x) — 0 implies
JE)f(x + 6f(x)&(x)) - 1

locally uniformly. By symmetry, if we suppose £ is the integral of a density
&, then &'(x)f(x) — 0 implies &(x)/E(x + f(x)E(x)) — 1 locally uniformly. If

lim f'(x)&3(x) =c >0

then show
lim P[a;'(M, — b,) > &(b)IA1 — A(¢(B,))) = e°

n—o0

(de Haan and Hordijk, 1972).
(b) Iflim f'(x)&(x) = lim__,,, &'(x)f(x) = 0 and (2.40) holds, then locally uniformly

lim f E2x + sf(x)ENS(x + sf(x)€(x))ds = 0.
(1]

If f' does not change sign and | '] is nonincreasing

lim &4(x)f"(x) = 0.

X0

(© Iflime., f'(x)E(x) = lim,,, '(x)f(x) = O then

H(x) := exp {f (S (u)é(u)))du}
1
is in class I" with auxiliary function f¢ and

n(x) = J‘x u”'¢(H" (u))du

1

is in class IT with auxiliary a-function £ o H*. Furthermore

R =noH.
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2.4. Uniform Rates of Convergence to Extreme Value Laws

We now survey some results which describe the rate of convergence of

d, = sup |F"(a,x + b,) — G(x)|
xeR
to zero when F e D(G). As in the previous section, we are interested in how
good an approximation G(a,!(x — b,)) is to F"(x), and d, is another way to
measure the goodness of the approximation.

Such problems have been considered in the literature dating back to Fisher
and Tippett (1928). We have found the following references very instructive:
Anderson (1971), Davis (1982b), Hall (1979), Hall and Wellner (1979), Cohen
(1982a, b), and Smith (1982). In particular, when F e D(®,), Smith relates
uniform rates of convergence to the concept of slow variation with remainder
(Goldie and Smith, 1984).

In contrast to the approach based on slow variation with remainder, our
method centers around the representation results for distributions F € D(G)
(Proposition 1.4, Corollary 1.12, Propositions 1.15, 1.17, and 1.18). In this
section, in the interest of usability, we are less than completely general and
assume that F(x) satisfies Von Mises conditions so that the convenient repre-
sentations of F € D(G) exist as described in Propositions 1.15 and 1.18. We feel
this is the appropriate level of generality, but in any event our methods can
be generalized by making use of the more general representations for F. (cf.
Cohen, 1982b). We concentrate on @, and A and leave results for ‘P, to the
reader.

The representations described in Propositions 1.15 and 1.18 are in terms of
1 — F. However, in this section, it is preferable to work with —log F because
tighter bounds are then obtained. Since —log F(x) = ¢(x)(1 — F(x)), c(x) - 1,
there is little involved in obtaining new representations. The cost of working
with —log F results from the obvious fact that more common distributions
are described in terms of 1 — F and not —log F.

Some of the approaches discussed later arose from discussions with
A. Balkema and L. de Haan.

2.4.1. Uniform Rates of Convergence to ®,(x)

Write F = exp{ —e~*} and suppose F is differentiable. A Von Mises condition
guaranteeing F € D(®,) analogous to 1.19 is
xF'(x)

ho) = xg'(x) — &= s

>0 (2.42)

and we suppose there exists a nonincreasing continuous function g and
|h(x)| < g(x)1 0 (2.43)

as x— co. Typically we take g(x)=sup,,,|h(y)|. Set exp{—¢(a,)} =
—log F(a,) = n™! so that
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x

#(a,x) — #(a,) = f t™ (o + h(a,t))dt - alog x, X — 00,

1
for x > 0 showing that (2.42) is sufficient for F € D(®,). The rate of convergence
will be given in terms of g.
We begin with the following simple lemma:
Lemma 2.11. For a;, a, > 0,
sup | @, (x) — @, (x)| < (2701)far; — oz |y A a5).

x>0

0
Proor. Observe for x > 0, o ®y(x) = ®y(x)x#log x and so assuming a; < o,

sup |®@,,(x) — @,,(x)] <sup sup [Dy(x)xFlogx|la, — a,]
x>0

x>0 pefag,az]

=sup sup |e’ylogylf e, —ay|  (sety=x7F)

y>0 Belay,a;)

<(spleris)ie o1

y>0

The supremum is found numerically to four decimal places. O
It is now easy to obtain the rate of convergence on the interval [1, co).

Proposition 2.12. If (2.42) holds and exp{—¢(a,)} = n"! then
sup | F™(a,x) — @ (x)| < (2701)(x - g(a,))'g(a,) = O(g(a,)).

x21

PrOOF. For x > 1
#a,x) — d(a,) = j‘x (o + h(a,)t™dt < J‘x (« + g(a,t)t1dt
1 1

< (a + g(a,))log x.
Obtaining a lower bound in a similar way we finally get
(@ — g(a,)log x < 4(a,x) — #(a,) < (x + g(a,))log x
and taking negative exponentials twice gives for x > 1
D ga, (%) < F(@,X) < Dyt gi,(X) (2.44)
and an application of Lemma 2.1 gives the desired result. O
On the region (— o, 1), more care must be taken. We first present a method

which works quite generally, and then we show that if more is assumed about
g a better bound can be obtained.
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If x < 1 we find in the same way as (2.44) was obtained that
(I)(a+g(a"x))(x) < F"(anx) < (D(a—g(a,,x))(x) (245)

and hence |F"(a,x) — ®,(x)| < (.2701)(« — g(a,x)) 'g(a,x) from Lemma 2.11.
Now suppose {x,} is a sequence (to be specified) satisfying x,—» 0 and a,x, — 0.
Then we conclude that

sup |Fn(anx) - (Da(x)l < (2701)(& - g(anxn))nlg(anxn)'

X, Sx<00
For x < x, observe from (2.45) that
F(a,x) < F'(anx,) < Da—gia,x,y(Xn)
and for x, < 1
D, (%) < Pia—gia, ) (Xn)
and so the uniform bound becomes
sup |F™(@,x) — @o(x)] < (2701)(ct ~ g(@nxn)) " 9(@nXn) V Pa—gia,x,)(Xn)-  (2:46)

The way to choose x,, so that the right side of (2.46) is minimized is to pick x,
to satisfy

(2701)(a - g(anxn))-lg(anxn) = q)(a—g(a,,x,,))(xn)
or equivalently
a,%,(—10g((:2701) (x — g(a,x,)) ' g(a,x,)))* %" = g,

To get an expression for x, it is convenient to switch to a continuous variable.
Define

a(t) = (_l(l)gF)k(t) = inf{u: 1/(—log F(u)) > t}

and define a nondecreasing function p(t) by

pla(r)) = a(t)x(t)

where x(t) is an unknown function decreasing to zero, while a(t)x(t) increases
to oo. Then we have

pla(t)){ —1og(2701)(x — g(p(a(t)))) ' g(p(a(r)))}=oP O™ = q(y).
Change variables replacing a(t) by t. If we let p~(t) be the inverse of p we obtain
p=(t) = t(~1og((2701)(x — g(t))"g(r)))=~*". (247)

It may be difficult to invert this expression, but an asymptotic inversion can
usually be performed. Note that it is clear that

lim1 p=(B)/t = oo

=0
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and hence (Proposition 0.8(vi))
lim | p(¢)/t =0

00
so from the definition of p we get x(t) = p(a(t))/a(t) | 0. Since p(t) T c0 we get
a(t)x(t) T co and so x(t) has the desired properties.
We now summarize our findings.

Proposition 2.13. Suppose (2.42) holds so that F € D(®,). Then
sup |[F™(a,x) — @,(x)| < (:2701)(x — g(p(a,)))'g(p(a,))

where p is given in terms of its inverse by (2.47).

Remark. One sometimes gets the impression from results in the literature that
O(n™!) is the best convergence rate.possible. This is not the case. Since the
function g can be any function converging monotonically to zero, a wide
variety of convergence rates are to be expected. For example, suppose g(t) =
¢”* and we define a distribution F by

Flx) = 0, x <1
(x) = exp{—exp{—[T(1 + e “)u""du}}, x> 1.

Then p*(t) ~ t(—log())* @ ~ 2 so that p(t) ~t*?. Since logt =
{191 + e ™)u""du we have loga* (t) = [{ (1 + e™)u"'du = logt + ¢ + o(1),
and thus a* (t) = te‘(1 + o(1)) and a(t) = te” (1 + o(1)). So an order of con-
vergence g(p(a,)) is of the form exp{ —kn""?}, k > 0.

It is an interesting fact that, as shown by Rootzen (1984), the convergence
rate cannot be faster than exponential without F actually being an extreme
value distribution.

The convergence rate on [1, ) is g(a,), but the preceding technique gives
the overall rate g(p(a,)). When g satisfies growth conditions of regular varia-
tion type it is possible to improve the bound from O(g(p(a,))) to O(g(a,)) as
is done in Smith (1982). Indeed when g is regularly varying with index —f < 0
we have

9(p(ay)) _ .. gla.(pla,)/a,))

lim = lim ———"—"~ = lim (p(a,)/a,)* = ©

n—w g(an)) n—aw g(an) n—w p( /
(recall p(t)/t —» 0 as t - o0) so that O(g(a,)) is a significant improvement over
0(9(p(a,)))-

We show that O(g(a,)) is a valid convergence rate under the following
assumption: Pick J so large that g(5) < a. Then for n such that a;16 < 1 we
assume

9@ s ais<xs<t, (2.48)
g(a,)

where § > 0.
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Remark. There are two circumstances in which (2.48) is easy to verify. The
first is when g is of the form g(x) = x~#, which occurs in several common cases.
The other situation is when g is regularly varying, is differentiable, and satisfies

tg'(t)/g(t) > — B, as t - oo.
We need a variant of Lemma 2.11.

Lemma 2.14. Suppose (2.48) holds and 6 > O is chosen so that g(d) < a. We have
for n such that a,*é < 1

Sup_ (1Pa—g(a,x)(*) = Pa(X)| V @ g1 g(a,x)(X) — Po(X)| < c(a, B, 6)g(a,)
T (2.49)

where

c(o, B, 6) = p~'0 sup {s'**(log s)e*}
s=>1

and

0 = B/l — g(9)).

PRrOOF. Since @,(x) = A(ylog x) for x > 0 and A’(y) is increasing for y < 0 we
have

sup lq)a(x) - d)(a~g(a,,x))(x)| < sup J‘ A,(y log x)llogxldy
a,'6<x<1 apté<x<1 a—g(a,x)
< sup A((x — g(a,x))log x)|log x|g(a,x)
a'3<x<1

< sup A'((x — g(9))log x)|log x|g(a,x)

azlé6<x<1

< sup A'((x — g(9))log x)|log x|xPg(a,)

O<x<

= sup {y ‘e '|logyly *0B'}g(a,)

o<y<l1
= c(a, B, 8)g(a,).
The bound for |®,, 4, . (x) — ®,(x)| is dominated by the one just presented,
so we are done. I:l

Remark. The constant c(a, 8, 6) must be computed numerically once g, J, and
p are specified. For example:

0 25 5 1 2 3 4

sup {s!*?(logs)e™*} 2372 2976 4928 16392 6.8703 35058
s>1

Proposition 2.15. Suppose that (2.48) holds and & > 0 is chosen so large that
g(8) < o Then for n such that a;'é < 1
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sup [F(a,x) — @ (x)| < (2701)(x — 9(a,))""g(a,) v c(, B, 0)g(a,)
v F(0) v ®,(a,"0) = O(g(a,)).

PROOF. Proposition 2.12 is still applicable. From Equation (2.45) and Lemma
2.14 we have

sup IF"(a,,x) - d)u(x)l < c(a, ﬂ, 6)g(an)

a;1d<x<1
Finally
sup |F(a,x) — @,(x)] < F"(0) v @,(a,d). O
]

x<ap!

For many distributions it is convenient to work with 1 — F rather than
—log F. In cases in which the convergence rate is slower than 1/n, the following
result is useful. Set F =1 — F.

Proposition 2.16. Suppose (2.42) holds and set
©  Fkx
B = X 1)1)
F(x)/2 < B(x) < 1F(x)(1 + F(x))
and B(x) ~ $F(x) as x = c0. Then — Flog F = F(1 — B) and hence
xF'(x) Cy= xf"(x) Y —xF’(x)B(x)
F(x)(—log F(x)) F(x) F(x)(1 — B(x))

so that

(2.50)

so that
xF'(x) oy xF'(x)
F(x)(—logF(x)) ~  F(x)

where c(x) — a/2.

— o + c(x)F(x) 2.51)

Unless (xF'(x)/F(x)) — « goes to zero more slowly than F(x), the use of this
formula will lead to a convergence rate of O(n™!). This will be the case, for
instance, with the Cauchy distribution. Cf. Exercise 3.4.3.

ExaMPLE (Cf. Smith, 1982, Example 1). Suppose for x > 1
F(x)=cx™® 4 dx*°
wherec>0,d>0,0<f<a,c+d=1 Wefind

xF'(x) (1 +d(x + ﬁ)c"a"x"’)
Fo O\ 1+dex?

and so
xF'(x) dfc*x™?
=
F(x) 1 +dc'x7#
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which implies

xF'(x)
F(x)
where ¢; = dfc™!. Set ¢, = a + d(« + B)c™! and for x > 1 we have

xF'(x)B(x) c B _ 23 F(x)(1 + F(x))

Fe(1 - B)| ~ “1-B(x) ~ 1~ 3Fx)(1 + F(x)

< ¢, F(x)/[(1 — F(x)) < 2¢,F(x)
provided F(x) < 4, as will be the case if x > x, and x, = (4¢)'* v (4d)+P v 1
is a suitable and convenient choice.

According to (2.50) we have for x > x,

xF'(x)
F(x)(—log F(x))
where k = ¢; + 2¢,(c + d) = ¢; + 2¢,.

We do not find a, but instead compute a, < a,, which will be more con-
venient but still give a valid bound O(g(a,)). Recall that a, is the solution of
—log F(x) = n™". Let a,, be the solution of F(x) = n~". Since —log F > F we
have a, > a,. Also F(x) > cx™* so if we set a, = (cn)'’* we have a, < a, and
also a, ~ a, ~ a, as n — 0.

If we pick 6 > x, we then have for all n such that a, > § (i.e., n > ¢716%)

sup |Fn(anx) - (ba(x)l

o]l <c x7f

al < x7PLey + 2c,(ex™ @D + dx ™)) < kx 7P =:g(x)

< (2701)(x — g(@,) " g(@,) v cla, B, 8)g(x,) v F'(8) v Dy(e, ")

where g(x) = kx#, o, = (cn)"”*. The order of convergence is O(n#/*).

To get a better feel for the method, suppose o = 1/2, B = 1/4, ¢ = 3/4,
d = 1/4. Then we find x, = 9, ¢, = .0833, ¢, = .75, k = 1.5833. We pick é to
give a reasonable value for 8 and hence for c(a,,0). If 8§ =1 then § =
1608.9012 and c(a, B,8) = 1.9712. The condition a, > J requires n > 54, and
on this range the dominant term in the bound is ¢(a, §, 6)g(«,), showing the
dependence of the bound on c(a, §, ). Some values for the bounds are given
in the following table to four decimal places.

n (2700 — gl)) 'g@) | cBdg@) | FO) | (;-)
54 2675 4904 0393 .0000
15 1974 4161 0112 .0000
100 1557 3604 .0024 .0000
150 1150 2943 0000 0000
300 0723 2081 .0000 .0000
500 0528 1612 0000 0000
1,000 0353 1140 0000 0000
5,000 0148 0510 0000 0000
10,000 0102 0360 .0000 0000
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2.4.2. Uniform Rates of Convergence to A(x)

Again write F = exp{—e ™%} and suppose that F is twice differentiable. The
Von Mises condition analogous to (1.24) guaranteeing F € D(A) is

— F(x)F"(x)log F(x)

mn=awuw=—mmnn—{ -+@»0 2.5

(F(x))
as x — X, := sup{y: F(y) < 1}. There exists a nonincreasing function g with
|h(x)] < g(x) {0 (2.53)

as x — x,. Set f(x) = 1/¢’(x) and define b, by F(b,) = exp{—n""} so 4(b,) =

log n and define a, by a, = f(b,) = n"*F(b,)/F'(b,). Observe that

* fb) v

0 f(anv + bn) '

Since f’ = h — 0 we have by Lemma 1.3 that
Sy + Sb)D)

fb,)
locally uniformly in v as n — 0o, and thus we see that
¢(anx + bn) - ¢(bn) —->X

as n — oo, showing Fe D(A). The function g will again yield the rate of
convergence. The following estimates are basic to our approach.

¢, x + b,) — ¢(b,) =

1

Proposition 2.17. For a positive real number g define the distribution functions

0 ifx < —g!

Flg,x) = {exp{—(l +gx)7¢'} ifx> g™
exp{—(1 — gx)'} ifx<g™?
””%”={1 ifx>g L.

Then for0 < g <1
sup |[F(+g,x) — A(x)] < e"'g ~ .3679g.

xeR

Remark. 1t is possible the constant e™! can be improved by using techniques
of Hall and Wellner (1979). Hall and Wellner have proved

sup [(1 — 7' x)" Lo (x) —e™*| <2 +n7)e?n7! = 0(n™").
x>0

Proor. The method follows Ailam (1968) and Hall and Wellner (1979). We
consider only the bound on F(—g, x) — A(x), the other case being similar. We
have



2.4. Uniform Rates of Convergence to Extreme Value Laws 115

sup [F(—¢,x) — A(x)] =sup|F —Alv sup |F—A|v sup |F—A|
x<0

xeR 0<x<g! x>g1
=AvBvC

Now

C=sup |l —e*|=1—exp{—e?'}<e?".
x>gt

Note that ¢ < e !gfor 0 < g < 1 since xe™* is decreasing on [1, o). For
A we have

A = sup lexp{ —(1 — gxp™"} — exp{—e™*}]

x<0

= sup (exp{—(1 + yy’"'} —exp{—e’}) = sup q(y).

Check that the supremum of g(y) can be found by solving q'(y) = O for the
nonzero root. Since g’(y) = 0 gives

exp{—(1 + yy '}(1 + yf"' " = exp{—e”9}e"
we have
A < sup (exp{—e”?}e”*(1 + y)! 9" — exp{—e”¥})

y>0

= sup (e”exp{—e”}((1 + y)! 7" — e79))
y>0

<e™! sup 1 + y)l-a—l _ e—ylg) =e! sup q—(y)

y>0 y>0

since sup,,, ye > = e~ !. Again check that sup g(y) is achieved at the nonzero
root of g'(y) = 0. The equation g'(y) = 0 yields

e =(1— gL+
SO

sup g(y) <sup (1 +»)' " — (1 —g)(1 + y)™7)

y>0 y>0

=sup((1+y*'(y+9) =g

y>0

since the supremum is achieved at y = 0. The bound for B is obtained by a
similar but simpler argument than the one used on A4 and is omitted. O

On the region [0, co) we have the following resuit.

Proposition 2.18. If (2.52) and (2.53) hold and a, and b, are as specified after
(2.53) then

sup |F*(a,x + b,) — A(x)| < e g(b,).

x>0
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PRrOOF. Recalling that f = 1/¢’ we have forv > 0

S, + a,v) — f(b,) <fb"+“"" |f"wW)du _g(b)av _
fb,) s, fb)) — f(b)

Therefore for v > 0

Jb, + a,v)
1)
and taking reciprocals we have, assuming that g(b,)v < 1, that
1 < f1b,) <
1+ g(bn)u f(bn + anv) 1 - g(bn)v

For x such that x > 0 and g(b,)x < 1 we get by integrating

—log(—log F(g(b,), x)) < dla,x + b,) — $(b,)
< —log(—log F(—g(b,), x)).

1 —gb)v < <1+ g(b,)v

Taking negative exponentials twice the following is true for x > 0:
F(g(bn)’ X) < F"(anx + bn) < F('—g(bn)a X).

The desired result follows by means of Proposition 2.17.

- g(bn)v'

(2.54)
O

We now obtain a bound on the region (—o0,0) which will be generally

applicable. For x < 0, the analogue of (2.54) is
F(g(a,x + b,), x) < F(a,x + b,) < F(—g(a,x + b,),x)
and so
[F'(a,x + b,) — A(x)| < e"'g(a,x + b,)
by an appeal to Proposition 2.17. Let {x,} satisfy
X, —oo and a,x, + b, — c0.
Combining (2.56) and Proposition 2.18 gives
sup |F"(a,x + b,) — A(x)| < e"'g(a,x, + b,),

x> x,
and using (2.55) we obtain

sup |F™(a,x + b,) — A(x)|

< e7'glayx, + b)) v F(—glayx, + b}, x,) v A(x,).
It is easy to check that
F(—g(a,x, + b,), x,) > A(x,)
so that the uniform bound becomes

e—lg(anxn + bn) v F(“g(anxn + bn)’ xn)‘

(2.55)

(2.56)

2.57)
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At this point we see the bound is minimized if we pick {x,} to satisfy
e"'gla,x, + b)) = F(—g(a,x, + b,), x,). (2.58)

It is necessary to check whether this choice of {x,} satisfies (2.57). Suppose to
get a contradiction, that {x,} does not converge to —co so that for a sub-
sequence {n'} and a number K, x, > K. Then a,.x,. + b, — oo and the left
side of (2.58) converges to zero as n’ —» co. However, the right side is of the
order of A(x,), which does not converge to 0, and this gives the desired
contradiction. Next suppose a,x, + b, does not converge to oo so that for a
subsequence {n’'} and M < co we havea, x,. + b, < M.Theng(a, x, + b,) >
g(M) >0 and g(a, x, + b,)x, - —oo. So the left side of (2.58) does not
converge to zero but the right side does, again giving a contradiction.
We summarize our findings.

Propeosition 2.19. Suppose (2.52) and (2.53) hold so that F € D(A) and suppose a,,
b, are chosen as specified after (2.53). Then with {x,} chosen as in (2.58) we have

sup | F"(a,x + b,) — A(x)| < e 'g(a,x, + b,).

This bound may be compared with the more attractive bound e~ g(b,) valid
for xe [0, 0). When g satisfies conditions of regular variation type we may
extend the bound g(b,) to cover all xeR. If | f’| is regularly varying then
Lf' ()| ~ g(x) = sup, 5, | f'(y)las x — x, (cf. Exercise 0.4.2.11), and so by Kara-
mata’s theorem we hope

f(x)
xg(x

as x — x,. So with the regular variation case in mind we assume there exists
k €(0, o0) such that for n > n,

) — constant

J(b,)
Eat) ¥ (2.59)
andforc <k tandn>ny, >0,7>0
g(bu(1 — ck)) < y(1 — ck) P g(b,). (2.60)

Proposition 2.20. If (2.59) and (2.60) hold then for n > n,
sup |F*a,x + b,) — A(x)|

xeR

n € € - -1 _
<F <a,, (@) + b,,) v A(g(b,,)) v (y(1 — ke)™® v 1)e 1 g(b,) = O(g(b,)).

PROOF. From (2.56)

sup  |F'(a,x +b)—A(XI< sup e'gla,x +b,)

—c/g(b,) <x<0 —¢/glby) <x<0
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and by monotonicity of g this is

_ o of(b,)
<e lg(an(-—c/g(b,,)) + bn) =e g<b"<l - b,,g(bn)))

and using (2.59) and the fact that g is nonincreasing we have the preceding
bounded by

< e 'g(by(1 — ck))
and from (2.60) this is
< ye'g(b,)(1 — ck)™’.
Combining this with Proposition 2.18 gives the result. O

Remarks. From (2.56) and (2.60) we see that
F(a,(—c/g(by)) + b,) < A(—c/g(b,)) + ye™'g(b,)(1 — ck)™*

for n > n,. Hence the order of the bound in Proposition 2.20 is O(g(b,)). If g
is regularly varying, we have that g(b,) is a slowly varying function of n since
b, is slowly varying (cf. Proposition 0.8(iv)) and hence the bound converges

to zero at a slow rate. B
As in Section 2.4.1, we often prefer to work with F := 1 — F rather than

—log F. Recall B(x) = Y ., F¥(x)/(k(k + 1)) and B(x) ~ F(x)/2.

Proposition 2.21. Set p(x) = F(x)/F'(x). Then since f = 1/¢' = p(1 — B)

(q;i—) = P91 = B + 5 P/ + 1)

"(x)
= p'(x)ey(x) + %F(x)(l + ¢,(x)) (2.61)
where ¢,(x) > 1, ¢(x) = 0.
Note
¥ P+ 1) = oF +F 3 P+
% + 3P/ < F 262)

provided F < 3/5.

ExaMPLE (Weibull Distribution). Suppose for x >0, >0, f # 1
F(x) = exp{—x*}.
Then F'(x) = F(x)px*~! and
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_Fx) _ F
F(x)  F()px"
p'(x)= BB —Dx7’
Using (2.61) and (2.62) gives

()
¢'(x)

for x such that F(x)<3/5; i.e., x>(log 5/3)". We have f(x)=p"1x"¢~1)(1 — B(x))
and so

= B ix¢-D

p(x)

<IB—-1p"'x7F + e =g(x)

f) B 1

xg(x) " x| -1 xP g1 T
For s > 5, > 1 (Where s, is the solution of sBe % = §) we have exp{—s?} <
3s7F and therefore

gx) < (1B — 1B + 9)x".
So for x > (s v (log 5/3)"%)/(1 — ¢)

gl =) _(+FNB-1N, .,
e S( A~ 1] >“ 9

and so we gety = (3 + BB — 1)/(B7'|B — 1))

For concreteness, suppose f = 2. Then k = 1, b, = (—log(l — ™ "))'2,
a, = f(b,) = 1b;1(1 — Le7%(1 4+ ¢7 %)) = a,. A moderate value of ¢ must
be chosen, otherwise the very slow decrease of g(b,) will prevent A(—c/g(b,))
from being small for reasonable sample sizes. We choose ¢ = .1, s, = 1.75 s0
that & = .1432, y = 1.2864, and the bound in Proposition 2.21 is valid for
n > 44. Some typical values are given in the table.

n eyl —c)?gh)  A(=c/gh))  F(a(—c/g(b,) + b,)
44 .0901 1477 1548
75 0753 1139 1220
100 0692 0976 1060
250 0552 0561 0644
500 0482 0346 0418
1,000 0429 0201 0258
10,000 0318 0019 0032

In Proposition 2.20 we considered the situation where f’(x) — 0 roughly
like a negative power of x. We consider now what happens when f’ decays to
zero roughly like an exponential function. More precisely we suppose 0 <
f'(x)] 0 and 1/f"e. Thinking of f' as a distribution tail (as in Proposition
1.18) we get from Proposition 1.19

lim f*(x) ) fwdu/f?(x) = 1. (2.63)

X0
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Also from Proposition 1.9 we get that the auxiliary function of 1/f’ can be
taken as f/f’ so that locally uniformly in x € R we have

lim f(¢ + x(S@&)/f /() = e (2.64)
1+
With this case in mind, we state the final result.

Proposition 2.22. Suppose F € D(A) and for ¢ > 0, ¢ > 0, and n > n, we have
g(b, — ca,/g(by)) < e“**g(b,). (2.65)
Then for n > n,

sup |F"(a,x + b,) — A(x)|

xeR

< F(a,(—c/g(b,) + b)) v A(—c/g(b,)) v e g(b,).

The proof is virtually identical to the proof of Proposition 2.20 and is left
as an exercise. Again the order of convergence is 0(g(b,)). If 0 < f'(x) | 0 and
(2.63) holds then

9(b,) ~ £2(b) f :o fpdu
Note if we change variables u = b(s) := ¢ (log s) then
" fwdu = [ " fbE)b ()ds
b(n) Jn
and since
b'(s) = 1/{¢'(¢"(logs))s} = 1/{¢'(b(s))s}
= f(b(s))/s =: a(s)/s

we have
g(by) ~ az(n)/r) a*(s)s™ ds.

According to Proposition 0.11(a), {2 a*(s)s™! ds =: n(x) being the integral of
a — 1-varying function is I1-varying with auxiliary function a2(-). So g(b,) = 0
like the reciprocal of a I1-varying function divided by its auxiliary function.
Both 7 and a?(-) are slowly varying so again the convergence rate is rather
slow.

EXERCISES
24.1. If g is differentiable and satisfies
lim tg'(®)/g(t) = ~B <0

1~

show (2.48) is satisfied. What is a suitable §?
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1 x<1
_ seta,=n
x7 x>1

sup | F'(a,x) — @,(x)| < O(n™")
xeR

1/a

24.2. If1 — F(x) = { and show

and using Hall and Wellner (1979)
Om™M)=Q2+nYen™t.
The same calculations give a rate of convergence for 1 — F(x) = e™*, x > 0.
2.4.3. Suppose F concentrates on [0, oo) and the density F'(x) is of the form
F(X)=clx)x™? x>0
for g > 1, where lim, _ ,, ¢(x) = ¢ > 0. Suppose
le(x) —cl < g(x) 1 0
as x - oo. Check

xF'(x) 29(x)

T_‘_‘?(;)‘—(ﬁ—'l) S(ﬂ‘—l)c—g(x)

= 0(g(x))

so that Proposition 2.16 leads to a convergence rate no better than O(g(a,) v
n'). Illustrate this by analyzing the Cauchy, t, and F densities.

2.4.4. Check the algebra in Proposition 2.21.
24.5. Prove Proposition 2.22.

2.4.6. Check that for the normal distribution, the bound is of order O(1/log n). Check
that (2.59) and (2.60) are satisfied and a suitable g is

g(x)=x"2+1— N(x).

See Hall (1979) for a more precise result. Find the order of the bound for the
gamma distribution.

24.7. (a) Show d, > dj.
(b) Consequently if d, = 0(0") for all 6 > O then d, = 0 and F is an extreme
value distribution
(c) If G is an extreme value distribution define F for fixed 8€(0, 1) by

Gx) x>G(0)

F(x)=<0 G @)>x>G"0)-1
0 G 0)—1>x.
Show
0<d, <0

Thus despite the remarks following Propositions 2.20 and 2.22, the conver-
gence rate can be exponentially fast.
(d) However the convergence rate can be arbitrarily slow. Let

Ff(x)=1—¢7*

and suppose {6,} is any sequence whatever satisfying 6, | 0. Define
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én = 4e80(,xp{"+l}]
and set for large n

Flo) = {F*(n +&) xe[nn+¢&)

F*(x) otherwise.

Show F ~ F* so that F and F* are tail equivalent and FeD(A). With
a, = 1, b, = logn, show d, > 6, for all large n. (Hint: Show for large n

F"({logn]) — F"([logn]—) = € *0gm
(Rootzen, 1984).)



CHAPTER 3

Point Processes

For a thorough understanding of many structural results in extreme value
theory, knowledge of point processes is desirable. We present a brief account
of those parts of the theory that are useful for understanding the behavior
of extremes. Some skimming may be advisable. Parts of this account are
fashioned after Neveu (1976). An additional excellent reference is Kallenberg
(1983).

3.1. Fundamentals

A point process is a random distribution of points in space. How can we make
a model for this?

We begin by specifying some notation. The state space where the points live
will be denoted by E. It is convenient to suppose E is locally compact with
a countable basis. (By this we understand that E is Hausdorff, every x € E has
a compact neighborhood, and there exist open G,, n > 1 such that any open
G can be written G = { J,; G, for I a finite or countable index set.) For us,
E will always be a subset of a compactified Euclidean space of finite dimension,
and the reader with little background or interest in topology is urged to
consider E in this way. Let & be the Borel o-algebra of subsets of E, i.e., the
o-algebra generated by the open sets.

For x € E, define the measure ¢, on & by

1 xeA
ax(A)={0 xé A for Aeé.
A point measure on E is a measure m of the following form: Let {x;,i > 1} be
a countable collection of (not necessarily distinct) points of E. Then

o0
m=Y e,
i=1

and if K € & is compact then m(K) < oo (i.e., m is Radon meaning the measure
of compact sets is always finite).
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Let S, = {xe E: m({x}) # 0} so that S,, is the set of points charged by m,
i.e., the distinct points of {x;,i > 1}. We may check that S,, is the support of
m; i.e., S,, is the smallest closed set F such that m(F¢) = 0.If x€ S, call m({x})
the multiplicity of x and call m simple if m({x}) < 1 for all xe E.

Designate by M,,(E) the space of all point measures defined on E and define
a o-algebra .# ,(E) of subsets of M,(E) to be the smallest g-algebra containing
all sets of the form {me M (E): m(F)e B} for F € &, Be ([0, c]). (Since m(F)
hasrange {0, 1,..., 00}, it is excessive to take B € ([0, c0]), but for generaliza-
tions to random measures later, this is the most convenient formulation.)
Alternatively, .#,(E) is the smallest o-algebra making all evaluation maps
m — m(F) (from M,(E) - [0, c0]) measurable for all Fe&.

A point process on E is a measurable map, call it N, from a probability space
(Q, A, P) - (M,(E), #,(E)); i.e., a point process is a random element of M,,(E).
The probability law, denoted by Py of the point process N, is the measure
PoN7! = P[Ne-]on #,(E).

So if we pick w, then N(w, -) is a point measure and N(w, F) is the number
of points in F for the realization w.

Just from the definition of a point process one would think it difficult to
verify that a map N: Q — M,(E) is a point process. The following is a more
palatable criterion in that it says N is a point process iff N(F) is an (extended
real valued) random variable for each Fe &.

Proposition 3.1. N is a point process iff the map w — N(w, F) is measurable from
(Q, o) - ([0, 0], B([0, 00]) for every FE&.

ProOF: NECESSITY. If N is a point process, then w — N(w, -)is measurable from
Q, &) —» (M,(E), #,(E)), and m — m(F) is measurable from (M,(E).#,(E)) -
([0, 0], ([0, 0])) by the definition of .#,(E). Therefore w — N(w, F) is
measurable since it is the composition of these two measurable maps.

PROOF: SUFFICIENCY. Suppose @ — N(w, F) is measurable, ie., {&: N(w, F)e
B} e o for Be #([0, c0]) and F € &. Define
% =(AeM,(E): N"Ae o}

It is easy to check that ¥ is a g-algebra. Note that % contains all sets of the
form {m: m(F)e B} since

N7'{m: m(F)e B} = {w: N(w,F)e B}e &/
by assumption. Hence
% > g{{m: m(F)e B}, Fe&, Be A([0,0])} = M ,(E). O
The notation a(4,,a€l) is standard and means the smallest o-algebra

containing the collection A,, a€l.
Further simplifying criteria are given later.
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Reminders. See, for example, Billingsley (1979) for the following: If 7 c &,
call 7 a Il-system if 7 is closed under finite intersections; i.e, if A, Be 7 then
AnBeZ.If # < &, call # a A-system (o-additive class) if

() Ee g,

(i) If 4, Be #,and 4 > Bthen A — Be ¢,
(iii) If A, € # and A, = A,,, then

lim1A,e #.
The following is very useful:

Dynkin’s Theorem. If 7 is a I1-system and ¢ is a A-systemthan # o J implies
J o a(9)

A useful corollary: If two probability measures are equal on a TI-system which
generates the a-algebra then they are equal on the a-algebra. Cf. Exercise 3.1.3.

To check that N is a point process, one does not have to check that
w - N(w, F) is measurable for all F but just for F in a restricted class, say for
bounded rectangles in case E is Euclidean.

Proposition 3.2. Suppose I~ are relatively compact subsets in & satisfying
(i) 7 is a Il-system.
(i) (7)) =6.
(iii) Either (a) there exist E,€ 7, E, 1 E or (b) there exist {E,}, a partition of
E,with) E;=Eand E,e 7.
Then N is a point process on (Q, ) in (E, &) iff @ - N(w,I) is measurable
Jrom Q — [0, ) for each 1€ T .

PROOF. Suppose @ — N(w, I) is measurable for all I € J and define for n fixed
4 = {Fe&: w - N(F n E,) is measurable from Q — [0, 0]}.

Suppose (iii(a)) holds; the proof under (iii(b)) is similar. We note the following
properties of 4:

1. 4 5 7 because if FeJ then FNE,eJ since J is a [I-system and thus
w — N(F n E,) is measurable.

2. ¢ o E since @ —» N(E,) is measurable.

3. % is closed under proper differences: If F;, F,e%, F, o F, then

N((F, — F;)nE,) = N(F,nE,) — N(F, n E,). (.1)

Note N(F, n E,) < N(E,) < o since E,e .7 and is relatively compact and all
point measures m have the property m(K) < oo if K is compact. Therefore
the difference in (3.1) is that of two finite measurable functions and hence is
measurable.

4. % is closed under nondecreasing limits.
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Properties 2, 3, and 4 indicate that 4 is a A-system. Also ¥ o .9 so 4 o
(7 ) = & by Dynkin’s theorem. So for any Fe&, w - N(F n E,) is mea-
surable. Measurability is preserved by taking limits so let n — oo (which sends
E, T E) to get w — N(F) is measurable for any F. O

Corollary 3.3. Let J satisfy the hypotheses of Proposition 3.2 and set

F={{mml)=n,1<j<k}k=12,...,1,€7 andn; > 0 integers}.
3.2)

Then o(#) = M ,(E) and ¢ forms a Il-system.

ProoF. In the previous proposition, set Q = M,(E). Then by definition
M (E) = o{{m:m(F)e A},Fe &, Ac B([0, ©])

and Proposition 3.2 assures us that also
M(E) = a{{m:m(I)e A},1e T, A€ B([0, 0]}

Since m(-) has range {0, 1,..., 00}, it is clear the right side in the preceding line

is also o (#). O

If Q is a probability measure on (M, (E), 4 ,(E)) then defining N(m, -) = m(-)
gives a point process with law Q, called the canonical point process.

For Fe &, N(F)is a random variable. So for F,, ..., F,e & (N(F),i < k)) is
a random vector. The set of finite dimensional distributions of such random
vectors determines the law Po N~! = Py as is proved next.

Proposition 3.4. Let N be a point process in (E, &) and suppose I satisfies the
hypotheses of Proposition 3.2. Define the mass functions
PI Ik(nla--'ank)=P[N(Ij)=nj’1Sjsk]

for I,e T, n; > O integers, 1 <i < k. Then P, is uniquely determined by knowl-
edge of

Lseees

{Pll ..... Ik’k=1,2,---;1jeg—}.

The proof is made apparent if we formulate the result in an alternate way:
If P and Q are probability measures on .#,(E) and P = Q on ¢ (defined by
(3.2)) then P = Q. (From Corollary 3.3, P = Q on a Il-system generating the
full o-algebra and hence everywhere.)

This uniqueness result does not say much about how to construct point
processes. A construction of a Poisson process is given later.

Let (Q, o, P) be a probability space and let (E;, &) be state spaces. If
N;: Q- M,(E)), i > 1 are point processes we say N;, i > 1 are independent if
the induced o-algebras

N ALE)), ix1

are independent. In particular if F;e &, | <i <k, and Gje&,,1 <j<Ithen
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the vectors
(Ni(F),i<k) and (N,(Gyp.j<])

are independent vectors. (The converse holds as well; cf. Exercise 3.1.5.)
The intensity or mean measure of a point process N is the measure u defined
as

u(F) = EN(F) = j N(w, F)P(dw)
Q

. J m(F)Py(dm)
M (E)

for F e &. (Check that u really is a measure; Exercise 3.1.4.) Warning: u need
not be Radon.

Suppose f:(E,&) — ([0, 0], Z([0, 0])) is measurable. Recall there exist
simple f, with 0 < f, 1 f and f, is of the form

ky
Jo=2 "y, APeé& and {AM,i<k,} disjoint.
1
Define, as usual, for weQ
N(w,f) = J. f(x)N(w,dx) < . (3.3)
E

This is a random variable since by monotone convergence

N(w, f) =lim 1 N(w, f,)

n—o

and each
kn
N(o,f,) =, ¢"N(w, A")
1
is a random variable. (If N is canonical so that Q = M,(E)and N(m, -) = m(*)

then this argument shows that m — m(f) := jE f(x)m(dx) is measurable from
M,(E) - [0, 0].) Furthermore

EN(w,f)=p(f) = Lfdﬂ
since

EN(f)=1im{ EN(f,) = lim TE{:, ¢"N(w, A™)

n—+o0 n—w 1

~ tim 13} cPu(AP) = lim 1 j Sx)u(dx)
E

n—o 1 n—w
= j (lim Tf..(x)> u(dx) = ff (x)u(dx).
E \n—©

If fe L (p) but f is not necessarily non-negative we may still define N(f) by
N(f) = N(f*) — N(f ") since N(f*) < 0, as.
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EXERCISES

311

312

3.13.

3.14.

3.15.

3.1.7.

3.18.

Show R* and C[0, 1] are not locally compact. (Here
R® = {(xy,%,,...): x,€eRi=1,2,...}
and C[0, 1] = all real valued continuous functions on [0, 1].)

Verify that the o-algebra generated by the sets {me M, (E): m(F)e B}, Fe#,
Be ([0, o0]) is the same as the o-algebra generated by the maps

m— m(F)
for Feé.

Verify using Dynkin’s theorem that if two probability measures are equal on a
I-system which generates the g-algebra then they are equal on the o-algebra.
(The collection of sets where the two probability measures are equal is a A-system
containing the n-system.)

Check that the intensity measure of a point process is indeed a measure. Give
an example to show it need not be Radon.

Suppose N,, N, are point processes defined on (Q, o, P) with state spaces E,,
E,, respectively. Then independence of

(M(F)L1<i<k and (N,(G)1<j<])

foranyk,L Fy,...,F,€é,,G,,...,Ge&,implies N,, N, independent. Generalize
to the case that the F’s and G’s are selected from subclasses of &; and &,,
respectively.

. Suppose N is a point process with state space R*. If t is a random vector in R*

show N(- + 1) is a point process. Note the value of N(- + t) on set F for
realization w is N(w, F + t(w)) where F + t = {x + t,xe F}.

A common way of specifying a point process is as follows: Let {X,,n > 1} be
random elements of E defined on (Q, ). Show

o0
N= Z £x
i=1
is a point process.

Suppose  is a Il-system of subsets of E and 3¢ is a linear function space of

real valued functions on E satisfying

(@) les# and 1,esf forall Aed,

b)if 0<f<f,1€# and f=supfis finite, then fe . Prove # con-
tains all functions which are ¢(9") measurable (Jagers, 1974).

3.2. Laplace Functionals

Let Q be a probability measure on (M,(E), #,(E)). The Laplace transform of
Q is the map Y which takes non-negative Borel functions on E into [0, c0)
defined by



3.2. Laplace Functionals 129

()= I (CXP{~ [ S (X)'n(dx)}) Q(dm).
M(E) JE

If N: (Q, o) > (M,(E), #,(E)) is a point process, the Laplace functional of N
is the Laplace transform of the law of N:

Yn(f) = Eexp{—N(f)} = L exp{—N(w, )} P(dw)

= J (exp { - f f (x)m(dx)) Py(dm).
Mp(E) E

Proposition 3.5. The Laplace transform ¢ of Q uniquely determines Q. The
Laplace functional Yy, of N uniquely determines the law of N.

ProoF. Fork>1and F,, ..., Fed,and 4, >0,i=1, ..., k define f: E -
[0, 0) by

k
J) = ; Ailg(x).

Then
N@,f) = I JON@,d3) = 3 LN(@,F)
and
nif) = Eexp{——i AiN(Fi)}

which is the joint Laplace transform of the random vector (N(F),i < k). Using
the uniqueness theorem for Laplace transforms of random vectors we see yy
uniquely determines the law of (N(F;),i < k) for any F,, ..., F,€&. The proof
is completed by an appeal to Proposition 3.4. O

Laplace functionals are useful for studying weak convergence of point
processes. We will compute some after discussing Poisson processes.

A final comment: Moments of N can be determined from y. For example,
for f > 0 and measurable

u(f) = EN(f) = ltlfg 1 — (o).

To check this observe that

lim 1 t71(1 — &™) = N(f)
tl0

and taking expectations and using monotone convergence give the result.
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3.3. Poisson Processes

3.3.1. Definition and Construction

Given a Radon measure p on &, a point process N is called a Poisson process
or Poisson random measure (PRM) with mean measure p if N satisfies
(a) For any F € £, and any non-negative integer k

exp{—u(F)} (WF)/k!  if w(F) < o0
N = k =
PING) =] {0 if u(F) = oo,
and
(b) For any k > 1,if F,, ..., F, are mutually disjoint sets in & then

N(F), i<k

are independent random variables.

It follows from (a) that if u(F) = co then N(F) = oo a.s. and that u is the
intensity of N. As a shorthand for “Poisson process with mean measure y” we
will sometimes write PRM(p).

Proposition 3.6. (i) PRM(y) exists! Its law is uniquely determined by (a) and (b)
in the previous definition.
(ii) The Laplace functional of PRM(p) is given (for f > 0, measurable) by

Wn(f) = exp {—f Q—e’ "")u(dx)}, 34

and conversely a point process with Laplace functional of the form (3.4) must
be PRM (p).

ProoF. We begin by proving that any point process satisfying (a) and (b) has
a Laplace functional (3.4), and conversely any point process with Laplace
functional (3.4) satisfies (a) and (b). Then we give a construction of a point
process satisfying (a) and (b). Since the distribution of a point process is
uniquely determined by the Laplace functional, we will be done.

So suppose N is a point process for which (a) and (b) hold. If ¢ > 0, Fe &,
f(x) = c1g(x) then N(f) = c¢N(F) and from (a)

Yn(f) = Eexp{—N(f)} = Eexp{—cN(F)}
=exp{(e™ — )u(F)}  (since N(F)is a Poisson random variable)

= exp{—f (1- e‘f"")#(dX)}
E

which is the form given in (3.4). Next suppose ¢; > 0, F, ..., F, are disjoint in
&.Then N(F,), ..., N(F,) are independent and if f(x) = ) £, ¢; 15 (x) we have
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wUFEuMAwm=Ewﬂ—;qmm}

k
=[] Eexp{—c;N(F)} from independence

0
-

II

k
H { J (1-e c“""")u(dx)} from the previous step
i=1

= exp {—J Xk: a- e““"’:‘"’)y(dx)}
E i=1

= exp {——J- (a- e‘z";"""i"")u(dx)}
E

= exp{—f (- e'f"‘))p(dx)}
E

which again gives (3.4). Now for general f > 0, measurable, there exist simple
fof the form just considered, f, = } iz, ¢ 1gm with¢f” > 0, {F,1 <i < k,}
disjoint, and 0 < f, 1 f. By monotone convergence

N TN

for all w. Since e ¥® < 1 for any measurable g > 0 we have by dominated
convergence as n — o0

Yn(f,) = Eexp{—N(£,)} = Eexp{—N(f) = ¥n(/).
On the other hand (3.4) holds for f, so

Yn(fn) = exp {— L(l - e“f")du}.

If £, 1 fthenalso 1 — e /=1 1 — e~/ and monotone convergence applies to give

f (- e"")dmj (1 —efdu
E E

and so we conclude (3.4) holds for f as required.
Conversely, suppose a point process N has Laplace functional given by (3.4).
Setting f = A1, Fe& gives

Ee ™™ = Ee™N0 = exp{~(1 — e ()},

which is the Laplace transform of a Poisson random variable with parameter
u(F). So (a) holds in the definition of PRM. Likewise for F,, ..., F, disjoint in
&and with =YY%, 2,1, 4, > 0 we get
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=N — Fo~2% AN(F)
Ee Ee

= exp{—f (1 —e2i ‘i‘ﬁ)d,u}
E

k k
= eXP{—J ;(1 - e“‘“-')du} = [11 exp{ —(1 — e"*)u(F)}

k
— H Ee*N(F)
1

and so (N(F), ..., N(F,)) are independent; this verifies (b) in the definition
of PRM.

We now focus on the construction of PRM(y). Suppose initially that the
given measure g is finite (u(E) < o) so we can write u = cv where v is a
probability measure. Construct a probability space which supports indepen-
dent random elements

T, Xy, X5, oo

where t is a Poisson random variable with parameter ¢ > 0 and {X;,j > 1}
are iid random elements of E with distribution v; i.e., P[X, € F] = v(F), Fe§.
(Note, we may take Q = N x E x E x ..., where N is the non-negative in-
tegers. Give Q the product s-algebra and product measure.) Now define N*
on Q by

N* =Ygy on [t > 0]
1

=0 on [t = 0].

We first verify that N* is a point process and for this its suffices to check
whether N*(F) is a random variable for any Fe&. Fork > 1

v =1 = (| £ v = |ore - )

=k

and so [N*(F) = k] is measurable. A similar argument works for k = 0. In
fact N*(F) is a Poisson distributed random variable. For k > 1:

© ]
PIN*(F)=k] =) Pl:z 1:(X,) = k]P[r =11
1=k 1
The first probability on the right is binomial so
P[N*(F) = i B OE)A — v(F)) e~ c!/l!
=k

2 (c(1 = v(F))) " e~(cv(F))f T e “(cv(F))
& -k k! - k!

= e " ev(F)/k!.
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So N* is a point process and for fixed F, N*(F) has a Poisson distribution.
We now verify that the independence property (b) holds for N*. To accomplish
this, let Fy, ..., F, be a measurable partition of E(F,e&,F,nF;=¢,i # j,

-1 F, = E).Supposen;,i = 0,..., kare non-negative integersand Y &, n, = n
and for n > 1 (similar procedures for n = Q)

P[N*(Fy) = ng, ..., N*(F) = n,]
= P[N*(F)=n, i=0,...k t=n]

- p[é)1 &y (Fy) = n(,; 8.(F) = n,,}P[t =]

and recognizing the first probability as a multinomial we get

—C n

4

n!
k

] E S
[4]

i=o Nt i= n!

and since 1 = Y X, v(F;) and n = Y%, n, the preceding is

[1 e evE)yint = [] PIN*(F) =l
=5 i=0

Now suppose Fi, ..., F, are any disjoint sets in &. Set F, = E — Y *_, F; so
that F,, ..., F, is a partition of E. For any non-negative integers n,, ..., n,

P[N*(F\)=ny,..., N*(F,) =n,]

S PIN*(Fo) = no, N*(Fy) = ny, .., N*(F)) = n,]

no=0
)
k
= || PIN*(F) =n;],
i=1
which is property (b) in the definition of PRM.

It remains to indicate the construction when u(E) = oo. In this case we
decompose p as p =) 7w and we do this as follows: Take a partition
{F, k = 1} of E by relatively compact sets of & and define p, = p(- " F,) so
that yu, concentrates on F,. Since y, is finite (u,(E) = u(E n F,) = u(F,) < o0
since F is relatively compact and p is Radon) we know how to construct
PRM(y,). Let N¥ be such a process and we may suppose N, k > 1 are

independent. Then we assert N*:= Y, N, is the desired PRM () and we prove
this assertion via Laplace functionals. Let f > 0 be measurable. Then

It

I

k
P[N*(F,) = no] Dl P[N*(F) = n,]

ne=0

Yn+(f) = Eexp { —}; Ne(f )}

= lim Eexp{—ki1 Nk*(f)}

r—ao
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= lim l:I Eexp{—Nk*(f)}

r-oo k=1

= lim IL[ exp{-f (1 - e"f)du,,}
E

r—+o k=1

(since N, is PRM(y,))

= lim exp{-—f a- e’f"")(i u,‘)(dx)}
r—oo E 1
- exp{— J (1- e'f“’)(i uk) (dx)}
E 1
= exp{—J. a- e‘f)du}
E

as required since ) pu, = p. O

3.3.2. Transformations of Poisson Processes

There are several transformations of Poisson processes that are enormously
useful in limit theory. Much of this material was learned from Cinlar (1976).
Additional applications are contained in Resnick (1986).

We first show that mapping the points of a Poisson process yields a new
Poisson process.

Proposition 3.7. Let E;, i = 1, 2 be two locally compact spaces with countable
bases. Let &, i = 1, 2 be the associated o-fields. Let T: (E,,&,) - (E,, &) be
measurable. If N is PRM(u) on E, then

N:=NoT™' isPRM(i=puoT')onE,.
If we have a representation

N=sti

then
N=NoT ' =Y ery.

ProoF. Let f;: E, — [0, o0) be measurable. Then

Ya(f2) = ECXP{"N(fz)} = ECXP{‘fE Sa(x3)No T_l(w,dxz)}
2

= Eexp{—‘[ fo(Tx,)N(o, dxl)}
Ey

by the transformation theorem for integrals. Now f, o T is non-negative and
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measurable on E, and N is PRM(u) on E, so by (3.4)

Yi(f2) = exp {—f (- e‘fz"T)dy}

= exp{— [ (1 —e 2*Nyo T‘l(dx)},
JE,
which is the Laplace functional of PRM(uo T ') on E,. O

The next result shows that starting from PRM, we may construct a new
PRM whose points live in a higher dimensional space.

Proposition 3.8. Let (E;, &) be two state spaces as in the previous proposition.
Suppose

Nl - ng‘

isPRM(u)on(E,,&,)andlet K: E, x &, — [0, 1] be a transition function from
E, - E;;ie, K(-,F,) is &-measurable for every F,€ &, and K(x,") is a prob-
ability measure on &, for each x€E,. Let {J;} be E,-valued random elements
which are conditionally independent given {X,}:

PlJeFRl{X,},{J,a #i}] = K(X,,F,) (3.5
for any i and F, € &,. Then
N* .= z': Ex, 1)
is PRM on E, x E, with mean measure
p*(dx,dy) = p(dx)K(x,dy).

Special Case: {J;} areiid and independent of (X;}. Suppose {J;} have common
distribution F. Then ) &, ;,, is PRM with mean measure which is the product

u(dx)F(dy).
E,

s
X
A

X% X% X

E 1
Before the proof, we need two lemmas which interpret (3.5).

Lemma 3.9. Suppose f: E, x E, — [0, o) is bounded. Then a.s.

E;
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PROOF. Let
# = {f: f=0,bounded, & x &, measurable, and f satisfies 3.6}.

First note 5 contains functions of the form f(x, y) = f,(x)f2(y) where f; > 0,
bounded, and &; measurable, i = 1, 2. To check this note that

E(f(Xi, D X,}) = E(fi (X)) H{X,})
= fl(Xz)E(fZ(Jl)'{Xn})
and applying (3.5) this is
= fi(X3) [ L2(»)K(X;,dy)

JE,
= L LX) f()K(X,, dy) = L S(Xi, YK (X, dy).

This means that if 4;€4;,i = 1,2 then
Ly x4, €.
Now let € = {Ge &, x &,: 1;e #} and observe that

(i) E, x E,€%;
(ii) ¥ is closed under proper differences,
(iii) % is closed under nondecreasing limits.

Hence € is a A-system containing the n-system of rectangles 4, x A4,, A;€é&,,
i = 1,2 and so by Dynkin’s theorem ¥ = o {rectangles} = &, x &,. Now it is
easy to check that if G,, ..., Gy are disjointin &, x &, and¢; >0,i=1,...,k
then

k
‘12‘ cilg e 3.7

Finally any f > 0, bounded and &, x &, measurable can be written as the
monotone limit of functions of the form (3.7). The monotone convergence
theorem then shows f € 3# as desired. |

Lemma 3.10. If g: E; x E, —»[0,1] is & x &, measurable then a.s.

E([j]1 g(X,-,J.-)I{X..}> = Ij1 E(g(X,, J){X,)).

The proof of this result can be accomplished in a manner similar to the proof
of Lemma 3.9 and is left as an exercise.

Proor ofF ProprosiTION 3.8. We proceed by using Laplace functionals. Let
f = 0be &, x & measurable. Then
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Wy+(f) = Eexp{—N*(f)} = Eexp{—if(xi,-’.-)}

= E(fj e'f‘x"‘m> = E(E (]n‘:[ e‘f"‘*""l{X.,}>)

and via Lemma 3.10 this equals

E(ﬁ E(e‘f"‘""’l{Xn}))

=E (ﬁj e’ """”K(X.-,dy)) (from (3.6)).
E;

1

Now set 8(X,) = [g,e”/**PK(X,,dy) so that 0 < § < 1 and

Wy(f) = E ﬁ 8(X,) = E(exp{—i (—log e(xi»})

= Eéxp { — J (—log8(x))N, (dx)}
E,

= ‘I‘NI (—log8)
and because N, is PRM(p) we get from (3.4) that

»

Yy (f) = CXP{— - e"""“‘""”)u(dX)}

JE;

= exp {— (- G(X))/t(dx)}

E,

= exp{— [ (1 — J. e TEVK (x, dy)) u(dx)}
JE, E

and by Fubini’s theorem we get

= CXP{— (1 — e /=M u(dx)K(x, dY)}

EyxXE;,

= exp{—— (1- e'f"‘”’)u*(dx,dy)},

E| XE,

137

which is the Laplace functional of PRM(y,,), and this completes the proof.

a

ExampLE. Let ) 2, ey, be PRM(u) on R’ Displace each point X; by an
independent amount J; where {J;} are iid with common distribution F and
{X,} is independent of {J;}. The resulting point process is PRM(u * F) where

* denotes convolution. To see this observe that by Proposition 3.8
N* = Z Ex. )
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is PRM on R? x R? with mean measure u x F. Define T: R? x R? — R? by
T(x,y) = x + y. Then by Proposition 3.7

*oT-1 = -
N*oT™ = Z Erx,ay = Z Exi+y;
1 t

is PRM((z x F)o T™!) and for Be B(R%)

ux FoT™'(B)=pu x F{(x,j): x + je B} = u* F(B)

where * denotes convolution.
Observe that if u is Lebesgue measure on R? then

u*F(B)= Ld F(dy)u{x: x + ye B}

= JW F(dy)u(B) = pu(B).

When u is Lebesgue measure we usually call the process homogeneous espe-
cially if the dimension d = 1. So independent displacement of the points of
a homogeneous Poisson process results in a homogeneous Poisson process.

EXERCISES

3.3.1.

3.3.2
3.33.

3.3.4.

3.35.

33.6.

33.7.

Prove Proposition 3.7 directly without using Laplace functionals. Check that
N satisfies (a) and (b) in Section 3.3.1.

Prove Lemma 3.10.

Let N be PRM(y) on E. Show that N is simple a.s. iff u is diffuse (atomless) on
E. Show N(- n F)is PRM where F € £. What is the mean measure?

Let N be PRM(u(dt) = t1dt) on (0, o). Express N as a time changed homo-
gENneous process.

Let N be a nonhomogeneous Poisson process on R with mean measure

u(B) = f A(s)ds
B

where 1 is locally integrable. Express N as a function of a homogeneous PRM.
Of particular interest later will be the cases

(a) E = (0,00], AMs) = as™* 71, >0

(b) E = (—o0, 0], AMs) =e°, —00 < § < 00.

M/G/oo Queue: Calls arrive to a telephone exchange according to a homo-
geneous Poisson process at times {X;} (X;e(— o0, ©0)). Lengths of calls are iid
random variables (J;) with common distribution F. Times when calls terminate
form a homogeneous Poisson process if {J;} and {X;} are independent.

(a) Let {E;,i > 1} beiid exponential random variables on [0, ©0): P[E; > x] =
e*, x>0 LetT,=Y", E. Show that ) & is a homogeneous Poisson
process on [0, c0).
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(b) Use Proposition (3.8) and (a) to construct homogeneous PRM on [0, c0) x
[0, 0).

(©) If Y &x, s, is homogeneous PRM on [0, c0) x [0, 1) then ) ; &y, is PRM on
[0, 00) and {J;} is iid uniform on [0, 1).

3.3.8. Let {I,} be as in the previous proposition and suppose {U,,n > 1} are iid,
uniform on [0, 1]. Suppose v is a measure on R with Q(x) := v(x, ) < oo for
all xe R. Define for y > 0
2 (N =01/Q)" (™).
Show

Z &, 0@y
1]

is PRM on [0, 1] x R with mean measure du x v(dx).

3.3.9. Two point process N, and N, on E are equal in distribution (N, 4 N,) iff for
each f > 0 bounded and measurable we have

N(f) £ Ny(f)

as random variables. (It is only necessary to check N,(f) = N,(f)for f e G/ (E);
cf. Section 3.4.)

3.3.10. Suppose N; are PRM(y;) with domain (Q, .2¢) and state space (E,&), i =1,
2,....IfY p is Radon, Y N; is PRM(Y ;).

3.4. Vague Convergence

Weak convergence of point processes is a basic tool in the study of stochastic
process behavior of extremes and records. In order to discuss weak con-
vergence of point processes we need a notion of convergence in M,(E), and in
fact we will show how to make M, (E) into a complete, separable metric space.
There is little extra cost if we discuss these issues in the context of random
measures.

Let (E, &) be a state space as before and let p be a metric on E which makes
E a complete, separable metric space. We have need for additional notation
which parallels and amplifies what was introduced in Section 3.1.

Let Ci(E) be the continuous, real valued functions on E with compact
support so that fe Ci(E) means there exists a compact set K and the con-
tinuous function satisfies f(x) = 0 for xe K. C¢(E) is the subset of Cy(E)
consisting of continuous, non-negative functions with compact support. Let
M_(E) be all non-negative Radon measures on (E, &) and define .#,(E) to
be the smallest g-algebra of subsets of M, (E) making the maps m —» m(f) =
{&f dm from M, (E) » R measurable for all f € Cg(E).

Some equivalent descriptions of #, are

M ,(E) = o{{me M, (E): m(f)e B}, f € Ci(E), Be ([0, 0])}
= g{m - m(G), G open, relatively compact}

=0a{m-m(G),Ges}
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and so on. The monotone class arguments needed to verify the equivalent
descriptions of M, will be omitted.

Since point measures are the primary objects of interest, it is natural to
wonder whether M,(E) is measurable; i.e., is M,(E)e .4, (E)? This is certainly
the case, and a method to check this is outlined in Problem 3.4.2. Alternatively
we will see that if M, (E) is topologized with the vague topology, .#, (E)
coincides with the Borel g-algebra (the o-algebra generated by the vaguely
open sets) and M, (E) is vaguely closed and hence measurable.

Random Measures

¢ is a random measure if it is a measurable map from a probability space
(Q, o, P) into (M, (E), #.(E)). If £ takes all its values in M,(E) then ¢ is a
point process. The Laplace functional of ¢ is the map ¥, from positive,
&-measurable functions to [0, 1] defined by

Wo(f) = Eexp{—¢(f)} = L CXP{—J f(X)'f(w,dX)}P(dw)
E

= J exp{—J f(x)m(dx)} P(dm)
M (E) E

where P, = P o {71, The Laplace functional restricted to Cy (E) uniquely deter-
mines the distribution P, of the process £ (Exercise 3.4.3,; cf. Lemma 3.11).

Two random measures &,, &, on (Q, .o, P) have the same distribution if
P, = P,,. In this case we sometimes write , 4 £,. Check &, 4 ¢, iff for any
kand f,e C{(E), i < k we have

(&1 (f)i <) = (E(f)i < k) in R

In order to discuss weak convergence of random measures and point
processes we must topologize M, (E). Ideally this topology will be metrizable
as a complete separable metric space to facilitate link-ups with standard
accounts of weak convergence theory such as that of Billingsley (1968).

For u,, pe M, (E) we say p, converges vaguely to u (written u, - ) if
()= u(f) for all fe Cg(E). A topology on M, giving this notion of con-
vergence is obtained as follows: A sub-base for this topology consists of sets
of the form

{neM.:s < p(f) <t}

for some fe C{ and s < t. Finite intersections of such sets (example, {ue M,:
u(f)e(sit;), i =1,...,k}) form a basis, and open sets are obtained by taking
unions of basis sets. A basic neighborhood of ue M, is a set of the form

(veM,: v(f) — u(f)l <&i=1,...,k}.

For a topological space such as M, (E), a natural o-algebra is the Borel
o-algebra #(M,(E)), which is just the o-algebra generated by open sets.
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Since we have already discussed a g-algebra, namely .#, (E), for M, (E) it is
important to know the relation between the two. However

M. (E) = B(M,(E))

so that either description of the measure structure can be used, depending on
convenience. Cf. Jagers, 1974, or Exercise 3.4.5.

Developments thus far seem to be emphasizing integrals over sets. From
your knowledge of weak convergence of probability measures on R it is
plausible that {u(f), f€ C{(E)} holds the same information as {u(A4), A€ &}.
Integrals are frequently more convenient to deal with (at least theoretically).
We interpret u(f) as the value of p at coordinate f. Compare this with a
function x(-) = {x(t),t > 0} of a real variable where x(t) is the value of x(-) at
coordinate .

Theoretical justification for looking at integrals rather than sets is given by
the next result, which is a variant of Urysohn’s lemma (e.g., Simmons, 1963,
page 135) as presented in Kallenberg (1983).

Lemma 3.11. (a) Let K be compact. There exist compact K, | K and a non-
increasing sequence { f,}, f,€ C<(E) and

g < f, <1 | 1k

(b) Let G be open, relatively compact. There exist open, relatively compact
G,1 G and a nondecreasing sequence { f,}, f,e C{(E) and 1¢ > f, > 15 1 1.
PROOF. We use the fact that if E is locally compact with countable base, then
it is metrizable as a complete, separable metric space. Call the metric p. For
B < E let B™ be the closure and B° be the interior of B.

(a) Let {B,} be open, relatively compact and B, 1 E. If K is compact, {B,} is
an open cover of K and hence there exists k, such that K = B, . Furthermore
p(K, By)) > Ossince if p(K, B )) = 0, K and B both being closed, there would
be x € K n By, and this would contradict K < B,,. Suppose p(K,B;)) > ¢ >0
and define

K? = {xeE: p(x,K) < 6}

to be the §-swelling of K. For n such that n™* < ¢set K, = K" and note that
K, is closed and

K, < B, < By,

Since B, is relatively compact, K, is compact. Also K, | K.

Define f,(x) = | — (np(x,K) A 1)sothat 0 < f, < 1, f,e C{(E) and {f,} is
nonincreasing. To check 1, > f, > 1 observe first thaton K, 1 = 1 = f, =
1 so everywhere f, > 1;. To verify 1y_> f, observe that

(i) IfxeK,, then 1y =12 f,(x)and
(i) If xeK: then by definition of K,, p(x,K)>n"! and f(x)=1—
(np(x,K,) A l)=1—-1=0.
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(b) Every open set in E is an F, and since G is assumed relatively compact
there exist compact K, 1 G from which it is easy to construct open, relatively
compact G,1G (cf. Cohn, 1980, page 198) such that G, = G,,,. This last
property forces p(G,, G°) > 0 since if not, then

0 = p(G,,G) = p(G, ,G")
implies that there exists
xeG, NG =G,y NG =,

a contradiction. Now set

o(x,G,)
maqo“l

so that 0 < g, < 1. If xe G, then for large n, x€ G, and hence p(x, G,) = 0 and
gn(x) = 1. If xe G* then for all n

p(x, G,) = inﬁf p(y, G,) =: p(G*, G,)
yeGe

mm=1—<

so that p(x, G,)/p(G", G,) = 1 and g,(x) = 0. If we define f, = \/1, g, then { /,}
is nondecreasing and 15 > f, > 1;,. O

Remark. The proof of (a) shows that if K is compact, then for all small § > 0,
K? is compact.

With Lemma 3.11 under our belts, we can now give some interpretations
of vague convergence in terms of sets.

Proposition 3.12. Let y, uy, pt,, ... be in M (E). The following are equivalent:
() pn—>
(ii) p.(B) — u(B) for all relatively compact B for which u(0B) = 0, i.e., the
boundary of B has y measure 0,
(iii) limsup,., #,(K) < u(K) and liminf, ., u,(G) > u(G) for all compact K and
all open, relatively compact G.

PRrOOF. (i) — (iii): If K is compact then by Lemma 3.11 there exist compact K,,,
f.€Cg,and

I < fu <1k 1k
Then for m fixed

limsup p,(K) < limsup p,(f) = p(f)-

n—*o0 n—*w

Since f,, < 1g, for m > m, and 1 is u-integrable we find by dominated
convergence that letting m — oo gives limsup, ., #,(K) < u(K) as desired. The
second result for open, relatively compact G is proved similarly by using
Lemma 3.11(b).
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(ili) — (ii): Suppose B is relatively compact with u(éB) = 0. Then B°
B = B7, and by applying (iii) we get

1(B°%) < liminf u,(B°) < liminf u,(B) < limsup u,(B) < lim u,(B7) < u(B7)
and since u(0B) = 0 implies u(B°) = u(B) = u(B™) (ii) follows.

(if) - (i): Let fe Cg(E) and suppose F is the support of f, so that F is
compact. We must show that u,(f) — u(f).

A simple helpful preliminary is the following: Let (E;, &), i = 1, 2 be two
metric spaces and suppose T: E, — E, is continuous. Then if 4, €&,

AT™14,) c T (34,). (3.8)

(Note on the left, d is an operator on E, but on the right ¢ operates in E,.)
You may check this as Exercise 3.4.8.
Let f be the restriction of f to F. Define

I,={y>0: u{xeF:f(x) =y} >n"'}

and I :=  J,I,. Now the sets {xe F: f(x) = y} are disjoint for different values
of y so that I, is finite and hence I' is countable (remember that u(F) < oo).
Note that I' = {y > 0: pof1{y} > 0} is the set of atoms in (0, ) of the
measure pof ' on R,.

There exists f > 0, suchthaton F,0 < f < B.Given¢ > 0, thereexist o; € I,
0 <i<kwith

O=o0y<o; < <oy=p

and
sup (o — ;) < & (3.9)
1<i<k
On F,
Yol (f6) < f09 <Y il ) (3.10)

and also {xeF: f(x)e(oz,._l,a,-]} is relatively compact since it is a subset of
compact F. Finally observe that by (3.8)

1@f oy, 2:1) < pu(f 71 (Blo—y, 2,1))
= u(f MHop—yo}) = p(f ) + u(f 7y }) =0

since a;_,, o, €T
From (3.10) we have

k A A k A
Z i ulfe(wioy,01] < u(f) = j fdp < Z wplfe(-,0]] (3.11)
1 F 1

and the difference in the extremes of the inequalities is

k

Y (o — oyl fe(@i-y, 211 < eu(F) (3.12)

1
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from (3.9). Therefore

limsup u,(f) = limsup J fdu,
F

n—*w n—o

k
< limsup J Y i e an®pa(dx)  from (3.10)
F1

n—w

= limsup i oG, {x:f(x) €(-y, %1}

n—+c0 1

k A
; au{x: f(x)e(a;_y,0]} (applying (ii))

< u(f) + eu(F)  from (3.11) and (3.12).
Similarly
liminf 1, (f) = p(f) ~ eu(F)

n—w

and we find that u,(f) — p(f); ie., (i) holds. O

Vague convergence of point measures, m, - m, has the following inter-
pretation in terms of convergence of the points of m, to the points of m.

Proposition 3.13. Suppose m,, me M,(E) and m, > m. For K compact and
satisfying m(0K) = 0 we have for n > n(K) a labeling of the points of m, and
m in K such that

P P
m,(- nK) = z Exin)s m(-nK)= Z &y,
i=i &

and in E?
x"1<i<p)-(x,1<i<p) asn- oo.

(Of course, E? has the product topology so that convergence of vectors in EP
means componentwise convergence.)

ProOF. We may write
s
m(- nK)=Y ce,
1

where y,, ..., y, are the atoms of m in K (in fact, in K, since m(6K) = 0) and
¢y, - - -, Cs are integers giving multiplicities.

For each y, choose a neighborhood G, = K° G, ..., G, disjoint and
m(0G,) = 0. Then lim,_, m,(G,) = m(G,),1 < r < 5, and for n sufficiently large,
n > n(K) say, m,(G,) =m(G,) =c¢,, 1 <r <s, and m,(K) = m(K). Labeling
points properly now gives the result. |
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Next is a proposition which assures us that topological or metric infor-
mation about M, (E) may be transferred to M,(E).

Proposition 3.14. M (E) is vaguely closed in M, (E).
The following lemma precedes the proof.

Lemma 3.15. Suppose K is compact and pe M. There exist 5, | 0 and K~ | K
and p(0K?%") = 0.

PRrROOF OF LEMMA. By the remark following Proposition 3.11, K¢ is compact
for all sufficiently small 8, 6 < J, say. Now u(K?%) < oo since p is Radon. Also
0K? < {x: p(x,K) = 6}

and therefore
{0K?%0 <6 < 8y}
is a disjoint family of sets. It follows that
{6€(0,6,]: u(@K? > n1}
is finite since otherwise uK% = co. Therefore
{6€(0,8,]: u(0K?) > 0}
is countable. O
PROOF OF PROPOSITION 3.14. Suppose u, € M,(E), p€ M, (E), and p, > p. We
show that pe M,(E). Let G, be relatively compact, G, 1 E, and u(0G,) = 0.
(If your favorite covering sequence happens to have p-mass on a boundary,

Lemma 3.15 assures us that by swelling a bit we can find an equally serviceable
covering set with no mass on its boundary.) Define

A, = {Be &: Bis relatively compact, u(éB) = 0}.
Observe that 8, is a II-system since for B.e&,i= 1,2
d(B; N B,) < 0B, U 0B,.
Let
%, = {Be&: u(B n G,) is a non-negative integer}.
By Proposition 3.12
m(B)—>u(B),  Bed, (3.13)

so that u(B) is a non-negative integer and therefore since Be 4, implies
BN G,e®, we have 4, o #,. One readily checks that %, is a A-system and
hence by Dynkin’s theorem

Y, o00(B,)=26.
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(Why is 6(%#,) = €? If K is compact, Lemma 3.15 assures us there are K, | K,
K,€%,. Therefore 6(8,) > o(compact subsets of E) = £.) We conclude that
u(A N G,) is integer valued for any Ae& and any n. Hence u is a point
measure. O

Now we consider a criterion for relative compactness in M, or M.

Proposition 3.16. A subset M of M,(E) or M (E) is vaguely relatively compact
iff sup u(f) < oo for each f e C{(E)

peM

iff sup u(B) < © Jor each relatively compact Be &.
ueM

ProoF. Since M, (E) is a closed subset of M. (E), it suffices to prove the result
for M, (E). We prove only the first equivalence; the second one is left as an

exercise.
We observe first that for each fe CZ(E)

sup u(f) = sup u(f).

ueM neM~

This is almost obvious since the map T,u = u(f) is continuous; here are
details. Note that there are u,e M~ such that u,(f) — sup, .- u(f). By the
definition of the vague topology there exists for each n, v,e M such that

I#n(f) - n(f)l <2™

Therefore

sup u(f) = vu(f) = sup u(f) = sup u(f)

ueM peM- neM
and the result follows.

If M~ is compact then for f'e Cg(E) define T;: M, — [0, o) by T;u = p(f).
The map T, is continuous on M, by definition of the vague topology,
and hence the image of M~ under T, is compact; ie., {Tfu,yeM“} =
{u(f),ue M~} is compact in [0, c0). Compact sets on [0, c0) are bounded

so SUP“GM~I-l(f) < .
For the converse, suppose that for each fe CZ(E), sup, . - u(f) < co. Then

I;:= [0, sup u(f)]
neM~
is a compact subset of [0, c0) and hence by Tychonoff’s theorem (Simmons,

1963, page 119)

SeCE)

is a compact subset of R%® = [, csx R with product topology.
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Identify ue M~ with {u(f): fe C¢ } €. This defines a map T from M~ into
I, and the topologies on M~ and on T(M ~) coincide since u, — pin M~ means
() = u(f) for all feCg(E)and the latter statement is just componentwise
convergence in the product topology on I. Thus M~ and T(M ™) are homeo-
morphic. Since M~ is closed, T(M ™) is a closed subset of I and hence T(M ™)
is compact. Thus so too is M~ a compact set. O

We now metrize M,(E) and M, (E).

Proposition 3.17. The vague topology on M, or M., is metrizable as a complete,
separable metric space.

Proor. From Proposition 3.14 it is enough to consider M,. The idea of
the proof is to find a countable collection {h;} in Cg(E) such that if u,,
ue M, (E) we have u, — p iff u,(h;) — u(h) for all L. An explicit construction
(cf. Kallenberg (1983)) is as follows.

Let {G,,i > 1} be a countable base of relatively compact sets and suppose
without loss of generality that {G,} is closed under finite unions and finite
intersections. (If the G-family you started with does not have this property,
switch to finite unions of sets of the form ();., G; where I is a finite subset
of the non-negative integers.) From the approximation Lemma 3.11 there exist
ﬁ,na gi,ne CI-('-(E) and

lim1f, =1, lim | g;, = 1
Enumerate {f; ,,g; i = 1,n > 1} as {h,, h,,...}.

Any pe M, (E) is uniquely determined by {u(h,),! > 1}. For any i, u(G,) =
lim, ., 1 u(f; ,) and hence {u(h))} determines { 4(G;)}. Since {G,} is a I1-system
generating the o-algebra &, p is determined everywhere.

Next we observe that for u,, u€ M, (E), u, - u iff

For each I, there exists a finite positive constant
¢, and p,(h;) - c,. In this case ¢, = u(h,). 3.149)

To verify this we suppose that (3.14) holds and as a first step to showing u, - u
we show that {u,} is relatively compact in M, (E). We proceed by means of
the criterion in Proposition 3.16. Take any f € Cx (E) and suppose the compact
set K is the support of f. Compactness implies there is a finite subset I of the
integers and
Kecl|JG.
iel

Since {G,} is closed under finite unions, for some iy, G, = (J;c;G; and
K < G,,. Therefore if || f|| = sup{ f(x): xe E} we have

f= Mk <, < 1 M6, < 111 gi
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for any fixed k and so

sup ua(f) < If1l sup pp(gi,i) < 0

since {u,(h;)} is a convergent sequence for each [ and hence bounded. So
Proposition 3.16 implies that {u,} is relatively compact.
Since {u,} is relatively compact, there exists a subsequence {n’'} and ue
M (E) such that u,. 5 p as n’ — 0. So we have on the one hand
Ba()) = ¢
and on the other
B (hy) = p(hy).

Any limit point g thus has the property u(h)) = ¢, and since any measure in
p+ (E) is uniquely determined by its values on {h,} we conclude that all limit
points of {,} must be the same and hence p, ~> u as desired.

Since u,(h;) = p(h,) for all I is enough for u, ~ p, the following is a satis-
factory metric on M, (E) for the vague topology: For u, ' € M, (E) define

() = 3. 2700 = exp{—luth) = W )1

The metric is complete: If d(p,, 1,,) = 0 then for each I we have

1talh)) — () =0

and so {u,(h),n > 1} is a Cauchy sequence of real numbers. Consequently
there exists ¢;: lim,,_,, 1, (h;) and from (3.14) we conclude there exists pe M (E)
with p, 5 p;i.e., d(u,, p) = 0. The metric is also separable: A countable base is

{{neM,: u(h)e(r,r)}1=1,2,...,r,r rational}. |

Applications of weak convergence theory, discussed later, require a knowl-
edge of what functionals are continuous. The following is very useful.

Proposition 3.18. Suppose that E, E' are two spaces which are locally compact
with countable bases.
Suppose T: E — E' is continuous and satisfies

T~YK') is compact in E for every compact K’ in E'. (3.15)
Then T: M, (E) » M, (E’) defined by
Tu=poT™

is continuous.
Note T restricted to M,(E) is of the form

T(Z gx,-) = Z 8Tx,~
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so that a continuous function on the points which also satisfies (3.15) induces
a continuous function on the point measures.

ProoF. For y,, pe M, (E) suppose p, — . If fe CE(E") then
Tl f) = a0 THf) = pal fo T).

Because of (3.15) we have foTeCg(E) since the support of foT is
T ™! (support of f) which is compact in E. Therefore y, ~ u implies

Tuu(f) = ta(fo T) > u(fo T) = po T7!(f)
and thus
T, > Tu. 0

Remark. For continuous T, the compactness requirement (3.15) is satisfied
whenever either T is a homeomorphism or E is compact. Sometimes neither
is the case, and if one is desperate to apply Proposition 3.18 an approximation
procedure which restricts attention to a compact subset of E must be applied.

EXERCISES
3.4.1. Verify that the different descriptions of .#, (E) are equivalent.

34.2. Let G;,j > 1 be a countable base of the topology of E such that G; is open and
relatively compact. (For example, if E = R then {G;} can be taken to be open
rectangles with rational vertices.)

(a) The only positive Radon measures on E which take non-negative integer
values on G, for each j, are the point measures.
Hint: If m is such a measure, then for all x € E there is an open neighborhood
V,€{G;} of x such that m{x} = m(V,). For compact K, a finite collection
S = {x,,....x} of points of K exists such that m{x} > 1, xeS, and if
ANnS = ¢, Aclosed and A = K, then m(4) = 0. Write

m(- nK) =Y m{x}e,.
xeS

{b) Check M,(E) = (2, {me M, (E): m(G;) is non-negative integer valued} so

that M, (E)e .#, (E) and

M (E) = M, (E)n M,(E)
= {AnM,E): Ae A ,(E)}
(Neveu, 1976).

3.4.3. Use Lemma 3.4.3 to prove that the Laplace functional of a random measure ¢
restricted to Cg (E) uniquely determines the distribution of &,

3.4.4. Two random measures ¢, and £, are equal in distribution if for every k and
Jis -5 Ju € CE(E) we have in R¥
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Gl <siskh =1 <i<k).
Formulate and prove an analogous result with sets replacing the f’s.

Prove A . (E) = #(M,(E)). Hint: Since m — m(f) is .#, (E) measurable, every
basis set of M (E) is .# . (E) measurable. Since M, (E) has a countable basis,
#B(M,(E)) c # (E). For the converse, m — m(f) is continuous and hence
m — m(f)is #(M, (E)) measurable for each f € C (E). So m —» m(G) is #(M, (E))
measurable for each relatively compact, open G (use Lemma 3.11) and hence
M, (E) = BM, (E)).

Check (3.8).

Check a(compact subsets of E) = &.

Prove the second equivalence in Proposition 3.16.

We know M, (E) is a complete, separable metric space. Is it locally compact?

Show that the following transformations are vaguely continuous:
(i) Ty: M (E) x M, (E) > M, (E)

Ti(uwv)=p+v
(ii) T;: M, (E) x (0, 0) > M, (E)
TL(pA) = Ap

(Kallenberg, 1983).

If K € & is compact, show that {pe M, (E): u(K) < t} is open in M (E). If G is
open, relatively compact show {ue M. (E): u(G) > t} is open in M, (E). Cf.
Proposition 3.12 (Kallenberg, 1983).

Suppose x,, x€ E, ¢, > 0, ¢ > 0. Then
Chby, = CE;
iff ¢, — ¢ and x, — x (Kallenberg, 1983).
If E = (0, 0)?, is (3.15) satisfied for the following T:
Tx,y)=x+y
T(x,y) = xy?
If E = (0, o0) how about Tx = 2x?

Let m, = Y 2, n" "¢, be a discrete version of Lebesque measure m on [0, c0].

Show m, 5 m.

3.5. Weak Convergence of Point Processes
and Random Measures

We first review some facts from the theory of weak convergence in metric
spaces (cf. Billingsley, 1968).

Let S be a complete, separable metric space with metric d and let & be the
Borel s-algebra of subsets of S generated by open sets. Suppose (Q, &/, P) is a
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probability space. A random element X in S is a measurable map from such
a space (Q, .«¢) into (S, %). The most common examples are

S=R X = random variable
= R? = random vector
= C[0, c0), the space of = random process
real valued, continuous with continuous paths
functions on [0, c0)
= D[O0, o), the space of = random process with
real valued, right continuous Jjump discontinuities

functions on [0, co) with finite
left limits existing on (0, o)

= M,(E) = stochastic point process
= M, (E) = random measure.

Given a sequence {X,,n > 0} of random elements, there is a corresponding
sequence of distributions

P,=PoX;' on %, n>0.

Then X, converges weakly to X, (written X, = X, or P, = P,) if whenever
[ € C(8S), the class of bounded, continuous real valued functions on S, we have

Ef(X,) = L J(x)F,(dx) - Ef(X,) = L J(x)Po(dx).

This is equivalent (Billingsley, 1968, page 12; cf. Proposition 3.12) to
lim P[X,e A] = P[X,€ A] forall Ae ¥ (3.16)

such that P[X,€0A] =0 or
limsup P[X,e F] < P[X,€eF] for all closed Fe or (3.17)

n—o0

liminf P[ X, e G] > P[X,e G] for all open Ge %. (3.18)

n—o0

A nice way to think about weak convergence is from Skorohod’s theorem
(Billingsley, 1971; cf. Proposition 0.2): X, = X, iff there exist random elements
{X¥,n > 0} on the uniform probability space ([0, 1], #[0, 1], m) where m is
Lebesgue measure such that

X, < X¥ foreachn>0
and
Xr-Xg as.

The second statement means
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m {te [0, 17: lim d(X*(t), X)) = O} =1

The power of weak convergence theory comes from the fact that once a
basic convergence result has been proved, many corollaries emerge with little
effort. The arguments usually involve continuity. Suppose (S;,d;), i = 1, 2, are
metric spaces and h: §; — S, is continuous. If X,, n > 0 are random elements
in (8;, %) and X, = X, then h(X,) = h(X,) in (S,, %). To check this is easy:
Let f, € C(S,) and we must show that Ef,(h(X,) — Ef,(h(X,)). But f5(h(X,)) =
f>0oh(X,) and since f, o he C(S,) the result follows from X, = X,,.

In fact h need not be continuous everywhere.

Continuous Mapping Theorem (Billingsley, 1968, page 30). Let (S;,d;),i = 1,2
be two metric spaces and suppose X,, n > 0 are random elements of (S,,%,)
and X, = X,. If h: S; = S, satisfies

P[X,eD,] =P[X,e{s, €8S,: his discontinuous at s,}] = 0
then
h(X,)=>h(X,) in S,.

This is an immediate consequence of Skorohod’s theorem. Alternatively
proceed from first principles as follows. Let F, e %, be closed and we must
show that

limsup P(h(X,)e F,] < P[X,eF,].

n—a0

But
limsup P[h(X,)€ F,] = limsup P[X,eh™(F,)]

n—oo n-—o0

< limsup P[X,e(h™'(F,)) ] < P|X,e(h™ (F>))" ]
However, (h"'(F,))” = D, u h™!(F,) since if s, e(h™}(F,))” n Dj there exist
s,€ h"1(F,) and s, — s, implying h(s,) — h(s,). Since h(s,) € F, and F, is closed
we get h(s,) e F, and therefore s, € h™(F,). Finally
limsup P[h(X,)eF,] < P[Xo,eD,uh™(F,)] = P[X,eh™\(F,)]

= P[h(X,)€eF,]

and so weak convergence follows by equivalence (b) subsequent to the defini-
tion of weak convergence.

Often to prove weak convergence subsequence arguments are used and the
following is useful. A family IT of probability measures on a complete, separable
metric space is relatively compact if every sequence {F,} — Il contains a
weakly convergent subsequence. Relative compactness is theoretically useful
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but hard to check in practice so we need a workable criterion. Call the family
IT tight (and by abuse of language we will refer to the corresponding random
elements also as a tight family) if for any &, there exists a compact K, € & such
that

P(K,)>1—¢ for all PeIl.

This is the sort of condition that precludes probability mass from escaping
from the state space. Prohorov’s theorem (Billingsley, 1968 or Williams, 1979)
assures us that when S is separable and complete, tightness of IT is the same
as relative compactness.

We now are prepared to give a usable criterion for weak convergence in
M (E) or M (E).

Proposition 3.19. Let P,,n > 0 be probability measures on M . (E). Then P,= P,
iff Laplace functionals converge, i.., iff for any fe Cg(E), ¥p (f) - ¥p,(f)
Equivalently if £,, n > 0 are random measures (i.e., random elements in M, (E)),
then &, = &, iff W, (f) = W, (f), for all fe Cx(E).

PROOF. Suppose &, = &, in M, (E). For fe Cg(E) define the continuous map
T;: M (E) = [0, 00) by T, = u(f). The continuous mapping theorem assures
us that &, = &, entails T;¢, = £,(f) = T;¢, = &,(f). By the dominated con-
vergence theorem

¥, (f) = Eexp{—&,(/)} = Eexp{—&o(f)} = ¥y, (/).

For the converse we need the following lemma. |

Lemma 3.20. {&,} is tight in M.(E) iff for any f € Cg (E) we have {&,(f)} tight
in R.

ProOOF. Suppose {&,(f)} is tight in R for any fe CZ(E). Pick g,e Cg (E) with
g: 1 1. Since {£,(g;),n > 1} is tight, for any ¢ there exists c; large enough that
for all n

P[&,(g) > c;] < /2.
The set M = ()5, {e M (E): u(g;) < c;} is relatively compact by Proposi-
tion 3.16 since for any f'e C¢ (E)

sup u(f) < oo.
peM

To see this, note that given f, there exists some iy and a constant K, such that
f < K,g,, and hence

sup u(f) < K, SU}B 1(g;,) < Koy,
e

neM

Furthermore for all n
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P[C,¢M™] <P[C,¢M] = P{U [En(g)) > C:]} < Y PLL(g) > c.]

i>1

S z P /2i+1 =g
1
which shows that {£,} is tight. The converse is an easy exercise. Il

Now for the converse to Proposition 3.19. Suppose ¥, (f) — ¥, (f), for all
feC{(E). Then for any 4 > 0, replacing f by Af gives

Eexp{—2&,(/)} = Eexp{—,(4f)} = ¥, (A)
= ¥, (Af) = Eexp{—&o(4)} = Eexp{—2&o(/)}-

Thus the Laplace transform of the random variable &,(f) converges to the
transform of &,(f) and hence &,(f)=&o(f) in R. A convergent sequence is
certainly relatively compact and hence, by Prohorov, {&,(f)} is tight. From
the lemma {&,} is tight in M, (E) and hence relatively compact in M. (E).
So given any subsequence {n”} — {n} there exists a further subsequence
{n'} = {n"} and for some random measure ¢ € M, (E)

én' = f-

From the first half of this proposition we get ¥, (f)= W,(f) for every
feCE(E). By assumption ¥, (f) — ¥, (f) and hence ¥,(f) = ¥, (f). This
means é ¢, and so all weak subsequential limits of {£,} are equal in
distribution to &, and hence &, = &, in M (E) as desired.

Typical of the applications of Proposition 3.19 is the next result, which,
though rather simple, has far-reaching implications and provides the link
between regular variation and point processes to be discussed in the next
chapter.

Proposition 3.21. For each n suppose {X, ;,j > 1} are iid random elements of

(E,&) and p is a Radon measure on (E,&). Define §,:= Y 2, &1 x, ) and

suppose £ is PRM on [0, ) x E with mean measure dt x du. Then &, =>§ in
M,([0, ) x E)iff

nP[X, € ]>u onE. (3.19)

PRrOOF. As a warm-up, we prove the following simpler result: If N is PRM(y)
on E then

N,=Y & =N  in M,E)
j=1 .7

iff (3.19) holds. To see this we show convergence of Laplace functionals so if
f € C{(E) we have
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() = Eexp{=N,(/)} = Eexp{— ) f(Xn.,-)}

= (E exp{ "‘f(Xn, 1)})"
- (1 _ Je — e T)nPLX, edx])"

n

exp{ﬁj (1-e’ "")#(dX)},
E

the Laplace functional of PRM(y) (cf. (3.4)) iff (3.19) holds.

This illustrates the method in a simple context, and we now concentrate on
showing the full result of Proposition 3.21. For f e C£ ([0, o) x E), the Laplace
functional of &, is

and this converges to

W, (f) = Eexp{—{,(f)} = Eexp {—; Slkn™, X,.,k)}

= H(l — j (1 —e /e PIX, | edx])
k E
and W, (f) - P (f) iff
~log'¥,, (/)
= -y log(l - J (1 — e /EnPX, edx]) — —log W(f).
x E
Suppose (3.19) holds. Define 4, by
An(ds,dx) =Y &xp-1(dS)P[X,, ; €dx]
k

so that by (3.19)
An(ds, dx) > dspu(dx).

Then
;j (1 — e~ PIX, | edx]
E

= II 1 —e7)di,— j-[(l — e~ T dsu(dx) (3.20)
{0,0)x E

as n — oo. Furthermore if K is the compact support of f in [0, o) x E, there
is some compact 4 < E such that

sup I (1 — e/ NPIX,  edx] <P[X,,cA]»0  (321)
E

k>1

as n — o0 by (3.19).
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From the elementary expansion
log(l + z) = z(1 + &(2)), le(2) <liz| if |z|<1/2

we have

l—log‘l‘g,,(f) - Zk: L (1 — e/ NPLX,  edx]

(J a- e’f""'"""’)P[x,,_ledx])2
1\JE

(for n sufficiently large)

IngE

<
k

< (supj (1 — e f® " NPIX, | edx])
E

k>1

x Y f (1 — e /*"NP[X,  €dx] >0
k=1 JE

as n — oo by 3.20 and (3.21). Therefore if (3.19) holds ‘P, (f) — W,(f) by (3.20)
since the right side of (3.20) is —log of the Laplace functional of PRM with
mean measure ds x du.

Conversely if we know W, (f) = W(f) for all feCg([0, ) x E), set
1(5,x) = 1;9,,(5)g(x) where g€ Cg and we get

¥, (f) = Eexp {—;1 g(X...k)} - exp {—j (1- e‘”)du}- (3:22)
= E
Note this f is not in C;} ([0, 0) x E) but by writing

hi (5)g(x) < f(s,x) < b (s)g(x)

where 0 < h; (s) T 10, 11(5) I () | 110, 11(s) as I — o for hit € CZ([0, o0)) we get
(3.22) by a standard approximation argument. Now (3.22) says ) p-; ex,,
converges weakly to PRM(y) and so (3.19) follows by the discussion in the
warm-up. (]

Propositions 3.19 and 3.21 will be adequate for almost all our needs in the
next chapter. However, for many limit theorems involving point processes,
particularly in extreme value theory of dependent stationary sequences (cf.
Leadbetter, Lindgren, Rootzen, 1983), the following striking result of Kallen-
berg has been very useful. (Cf. Kallenberg, 1983; Jagers, 1974.)

Call a point process & simple if its distribution concentrates on the simple
point measures of M,(E). This means

Pl¢({x}) < 1forallxeE] = 1.

Proposition 3.22. Suppose & is a simple point process on E and 7 is a basis of
relatively compact open sets such that 7 is closed under finite unions and
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intersections and for e 7
PE@ =0] = 1.

If &,, n > 1, are point processes on E and for all Ie T

1@PMW=N=PKW=M (3:23)
and
lim E¢,(I) = E&(I) < oo (3.29)
then
&n=¢
in M (E).

Remark. Typically if E is Euclidean, J consists of finite unions of bounded
rectangles.

Before the proof we need to develop a uniqueness result which essentially
says that the distribution of a simple point process ¢ is uniquely determined
by knowledge of P[£(I) = 0], Ie 7.

For me M,(E), if § is the support of m we may write

where ¢, are non-negative integers, ¢, = 1, and ¢, represents the weight or
multiplicity given location y,. Define T*: M,(E) - M,(E) by
T*m= ) ¢, =:m*, (3.25)
yreS
so that by construction m* is simple. Later we will show that T* is measurable

(in fact more will be shown). Now the uniqueness result will be stated and
proved.

Proposition 3.23. Suppose &;, i = 1, 2 are point processes on E, and  is a basis
of open, relatively compact sets closed under finite unions and intersections.
Then T* defined by (3.25) is measurable from (M,(E), 6({me M (E): m(I) = 0},
Ie 7)) into (M,(E), #,(E)) and if

P[¢,(1) = 0] = P(5,(1) = 0] (3.26)
Jorall 1€ 7, then

&=

in M(E), where £¥ = T*{,i=1,2.

<3

PrOOF OF PROPOSITION 3.23. Set
€ = {{meM,(E): m(I) =0}, T }.
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First of all observe that € is a n-system. It is closed under finite intersections
because

{m: m(I,) = 0} n {m: m(I,) = 0} = {m: m(I; v I,) = 0}
and since I, I, € 7 implies I, U I, € J by assumption, this last set is in €.
Let P,:= Po ¢! be the distribution of &;. Assumption (3.24) says P, = P,
on the n-system % and hence by Dynkin’s theorem we have P, = P, on ¢(%)

(cf. Exercise 3.1.3).
We now must check T* is a measurable map from

(M,(E), (%)) — (M,(E), # ,(E))
and as in Proposition 3.2 it suffices to check for each I € 7 that
.Y m - m*(I)

is measurable from (M,(E), (%)) - {0,1,...}, this being much easier than
checking the measurability of T* directly. Since I is relatively compact, it is
possible for each n to cover I by a finite number of sets 4, ;eI,1 < j < k, such
that the diameter of 4, ; = sup, . 4, , P(x, ) is less than n~!. Furthermore we
may suppose the {4, ;;1 <j < n},, family is nested so that A4, ; = A4, for

some i. Thus
kn

T¥*m =m*(I) = lim1 ) (m(4,;) A 1).

e =
Defining T;*m = m(A, ;) A 1 we have
(T 71({0}) = {m: m(4, ;) = 0} e o(¥)
so that T;* and hence T;* is o(%) measurable as required.
It is now easy to prove {f = £%. We have for Be M, (E).
P[{teB] = P[T*{, € B] = P[¢, e(T*)7(B)] = P,((T*)"'(B)).
Since (T*)"!(B)e a(%) and P, = P, on o(%), the preceding equals
P,((T*)™'(B)) = P[¢3 e B]. O
PROOF OF PROPOSITION 3.22. Condition (3.24) implies that {£,} is tight since
for I € 7" we have by Chebychev’s inequality

lim limsup P[&,(I) > t]

t—o0 n—co

< lim limsup t 'E&,(I) = lim t 'EE() = 0
1= n—w =0
and therefore by covering any compact K with a finite number of I’s from I~
we get
lim limsup P[¢,(K) > t] =0

0 n—ow

which is equivalent to tightness. (Cf. Lemma 3.20 and Exercise 3.5.2.)
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From tightness we have for any subsequence {n"} that there exists a further
subsequence {n'} = {n"} such that {£,.} converges weakly to a limit which we
call 4. From Proposition 3.14 # must be a point process. We need to know
two facts about #:

n is simple (3.27)
and
P[£(0A4)=0] =1 implies P[n(0A4) = 0] =1 (3.28)

for any relatively compact A. Accept these two facts as true temporarily.
From (3.28), for I€ .7, the map m — m(l) is a.s. continuous with respect to #
(Proposition 3.12(ii)) and thus

Cn =1
in M,(E) entails for Ie 7
&w(D)=n(D)
in R so that
P[¢, (1) = 0] —» P[n(I) = 0].
On the other hand, we have assumed
P, (I) = 0] - P[E() = 0]
so that
P[¢(I) = 0] = P[n(I) = O].
Hence
E=¢*  (&*is assumed simple)
< n* (Proposition 3.23)
= (3.27).

So any subsequential limit # of {£,} has the property n = ¢ and hence &, = &
So it only remains to prove (3.27) and (3.28).
We check (3.28) first and this will be proved if we show for any compact K

P[n(K) = 0] = P[{(K) = 0] (3-29)

since 0A is compact for A relatively compact. From the approximation Lemma
3.11, there exist f;€ C¢(E) and compacta K; such that as j — oo

k< i<l 1k
Therefore
P[n(K) = 0] > P[n(f;) = 0]
=P[n(f) <0].
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Since &,.(f;) = n(f;) and {t: ¢ < 0} is closed we get from (3.17) that the preceding
is not less than

> limsup P[£,(f) = 0]

n’ =0

> limsup P(£,(K;) = 0]

n’—w

and because J contains a basis, there exist [;e 7 such that K; c I; | K. The
previous limsup thus has a lower bound of

> limsup P[¢,(I)) = 0]

=P[&(I)=0]  (from 3.23)

and since £(I;) | £(K) the proof of (3.29) is complete.
Now concentrate on (3.27). To show n is simple we pick a relatively compact
IeJ and show

P[# has a multiple point in I'] = 0. (3.30)

If (3.30) is true, we can cover E with a countable collection of relatively
compact sets from 7 and easily replace I with E in (3.30).
Now the probability on the left of (3.30) is

Pn(I) > n*()] = PLin(1) — n*(D] > 1/2]
< 2(En(I) — En*(I)).
However £,.. = n and the already proven (3.28) imply as before that
P[E(I) = 0] = P[n(1) = 0]
for all I € 7 so that by Proposition 3.23 we have ¢ 2 n*. Thus for Ie 7
ES(I) = En*(I) < En())
and by Fatou’s lemma this is

< liminf E¢,.(I) < limsup E&,(I)

= E&(I)

this last step following by assumption (3.24). We therefore conclude En(I) =
En*(I), whence

Pln() > n*(]=0

as desired.

EXERCISES

3.5.1. For random measures £,, £ we have

é=>¢  inA.(E)
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iff for all fe C{(E)
&LN)=4f) iR

The sequence of random measures {£,} is tight in .4, (E) iff for every relatively
compact Be &

lim limsup P[£,(B) > t] = 0.

t—ao n—w

Let X,, n > 0 be random elements of (S, &) and suppose X, = X, in S. Suppose
h,, n > 0 are real valued, uniformly bounded, and continuous with h, — h,
locally uniformly. Show h,(X,) = h(X,) in R.

In the converse to Proposition 3.21 prove the map
Ek: €t i) "’; Lo, 11(t)e;,

from M ([0, c0) x E) - M,(E) is a.s. continuous.

If £ is PRM(u) and p is atomless, what is a suitable 4~ for Proposition 3.22? (Cf.
Exercise 3.3.3.)

Prove that if £ is a random measure then
B ={Ae& P[{0A4)=0]=1}

contains a topological base. Thus the difference in hypotheses for J between
Propositions 3.22 and 3.23 is not theoretically significant (cf. Lemma 3.15)
(Kallenberg, 1983, pages 32-33).

Let {X; », 1 < k < n,n > 1} be random elements of (E, &) and suppose for each
n {X, .1 <k <n}isiid. For 0 < a,1 oo and some pe .4, (E) show

n
a'ey=at Y o, =

in A, (E) iff
Uy = a;'nP[X, ,e-] > u (Resnick, 1986).



CHAPTER 4

Records and Extremal Processes

Many natural questions about extremes need a stochastic process context for
precise formulation.Imagine observing X, X,, ... at a rate of one per unit of
time. Suppose while observing we compute the maxima M;, M,,.... We may
ask how often or at what frequency does the maximum change. A change in
the maximum means a record was observed, a record being a value larger than
previous values. So the previous question is equivalent to asking how often
records occur. Also, at what indices do records occur and do the actual record
values have any pattern?

These and related questions requiring a stochastic process point of view are
dealt with in this chapter for an iid sequence {X,,n > 1}. The careful study of
point processes in the previous chapter will pay rich dividends, as many
processes which explain the time varying behavior of extremes are based on
simple point processes.

In Section 4.1 the structure of records times is explored. The Markov
character of {M,} is discussed. The indices {L(j),j > 1} where the process
{M,} jumps are called record times and the values {M,;,,j > 1} = {X,;,
j = 1} are the record values, i.e., those values larger than previous ones. When
the underlying distribution is continuous, the record values form a Poisson
process and the record times are asymptotically Poisson in a sense to be made
precise. There is a very elegant structure to record value processes, and ideally
this brief description will whet your appetite for the more detailed results to
come.

The stochastic process orientation is temporarily suspended in Section 4.2,
where we return to the analytic arena to classify the class of limit laws for
records and the domains of attraction of these limit laws. Surprisingly (at first
glance) these limit laws are different from the Gnedenko classes given in
Theorem 0.3.

In Section 4.3 we introduce a class of continuous time stochastic processes
called extremal processes. Any sequence of maxima {M,,n > 1} of iid random
variables can be embedded in a continuous time extremal process {Y(t),
t > 0} so that

{My,n>1} 2 {Y(m),n > 1}
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in R, Sometimes structural properties stand out more clearly in continuous
time than in discrete time, and thus our pattern of investigation could be to
discover some fact about {Y(¢),t > 0} and then see how it applies to {M,}.
Also it will be shown that if the underlying distribution is in a domain of
attraction, the sequence of maxima converges (in a powerful stochastic process
sense) to a limiting extremal process and thus many properties of extremal
processes will be true asymptotically for {M,} through the magic of the
invariance principle.

Thus extremal processes are important because of finite time structural
results arising out of embeddings and because of asymptotic theory and weak
convergence applications. Both uses of extremal processes require detailed
knowledge of the properties of extremal processes, and these results are given
in Section 4.3. In Section 4.4 the basic weak convergence results are given, and
many applications from the continuous mapping theorem (see Section 3.5) are
discussed.

Section 4.4.1 is a technical section which discusses how to metrize D(0, c0)
(the class of functions on (0, c0) which are right continuous with finite left
limits), which is the natural space where extremal processes live. You are
advised to skim this section, especially if your knowledge of weak convergence
at the level of Billingsley (1968), say, is good.

The weak convergence techniques in Section 4.4 are based on the point
process method: In order to prove that (M,, — b,)/a, converges in a stochastic
process sense, we prove that the sequence of point processes with points
{(k/n,(X; — b,)/a,),k = 1} converges as n — oo to a limiting point process and
then apply a suitable functional to get weak convergence of extremes. This is
a powerful technique and in Section 4.5 we apply it to an important class of
stationary dependent variables, namely the infinite order moving averages

{X,, = z ch,,_j,n > 1}

where {c;} are real constants and {Z,, —c0 < n < oo} are iid with a distribu-
tion whose tails are regularly varying.

In the last section we discuss recent results about the process of k-records,
i.e., those observations which have relative rank k upon being observed. If we
observe over n time units the collection of k-record processes for 1 < k <1,
we obviously have more information than if we just note records, and in
restricted circumstances the k-record process can be of inferential use. For
different k, the point processes based on k records are iid, a surprising and
very attractive result. In Section 4.6 we also discuss behavior of records when
the underlying distribution is not assumed continuous.

The importance of extremal processes became apparent with the simul-
taneous appearance of the two articles by Dwass (1964) and Lamperti (1964);
the Dwass paper was followed by Dwass (1966, 1974). See also Tiago de
Oliveira (1968). The study of record times was stimulated by Renyi (1962)
and Dwass (1960). The importance of Poisson processes was emphasized
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in Pickands (1971), Shorrock (1972, 1973, 1974, 1975), Resnick (1974, 1975),
and Weissman (1975a, b, ¢, 1976). The use of embeddings and various
strong approximations was discussed in Shorrock (loc. cit.), Resnick (loc.
cit), Pickands (1971), and Deheuvels (1981, 1982a, 1983). Useful surveys are
Resnick and Rubinovitch (1973), Resnick (1983, 1986), de Haan (1984a),
Goldie (1983), and Vervaat (1973a).

4.1. Structure of Records

Let us recall some relevant facts from the theory of Markov processes (Brei-
man, 1968, Chapter 15). Let { Y(¢),te T} be a Markov process with state space
R. The index set T will be either (0,00) or {1,2,...}. Suppose there are
stationary transition probabilities and there is a family of Markov kernels
K,(x,B)forte T, xe R, Be #(R) and

P{Y(t + 1)eB|Y(s),se T,s < t} = K,(Y(t), B)

forallteT,t + t€T, t > 0, Be #(R). The finite dimensional distributions of
the process Y have the form

P[Y(to)edy,, Y(t )edy,,..., Y(t)edy,]
= no(dJ’o)Kz,—:,,(YOadY1)~ .- Ktk—tk_,(yk—ladyk) 4.1)

fort;eT,i=0,..., k, and n, is the distribution of Y(¢,). For our purposes we
will take Y to be a pure jump process. This means there is a sequence (possibly
doubly infinite for the case T = (0, o0)) of jump times {t,} and 1, < 7,4, {7,}
has no cluster point, and Y(¢) is constant for 7, <t < 1,,,. Incase T = (0, 00)
we assume Y has right continuous paths. The times between jumps when
T = (0, o) are conditionally exponentially distributed: Given that the process
is in state x, the holding time has an exponential distribution with parameter
A(x). Given that the process is finished holding in state x, it moves to a new
state in set B with probability I1(x, B). The relation of K,(:, ‘) to A(-) and
I, -) is
Ki(x,{x}) =1 — A(x)t + o(r), t-0 4.2)
K,(x, B) = (A(x)t + o(t)I1(x, B) t—0,xeB". 4.3)

When T = {1,2,...}, the holding time distributions are conditionally geo-

metrically distributed.
The process { Y(z,)} is Markov with discrete index set, and it has stationary

transition probabilities IT(x, B):
P[Y(t,41)€ B|Y(1,) = x] = II(x, B).

Observe that {¥(z,)} represents the succession of states visited by the process
{Y(t),te T}. Given { Y{z,)}, the variables {t,,, — 1,} are conditionally indepen-
dent and exponentially distributed in the case T = (0, co):

Pltwss — T > X {Y@)} {Teay — Tk £ m}] = e300 (4.)
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In the case T = {1,2,...} the variables {z,,, — 1,} are conditionally indepen-
dent and geometrically distributed.

Now let {X,,n > 1} be iid with common distribution function F. Forn > 1
set M, = \/%, X;and consider the stochastic process {M,,n > 1}. Let us write
down the finite dimensional distributions of this process. In the bivariate case
we have for x; < x,,t, <t,, and t,, t, non-negative integers

t
P[M,l <x, M, < xz] - P[M,l <x, V X< x2]
j=ty+1

= F1(x,)F'?7"1(x,).
In case x; > x,,
P[M, <x,,M,, < x,] = F'*(x,]
so in general

P[M, < x;,M,, < x,] = F'(x; A x3)F27"(x,).

ty =
Following this pattern we get for the k-variate case

P[M, <x{,M,, < x,,....,M, <x]

Fu (/k\ xi) Ft271 (/k\ x,)...F"‘—""(xk) 4.5)

i=1 i=2

fort, <t, < - <t,k=>1,andt;, non-negative integers.
Comparing (4.5) and (4.1) we see that {M,} is a Markov process with
stationary transition probabilities. The transition kernels are given by

F'(2) z2Xx
0 z < X.

K, (x,(—00,z]) = { (4.6)

(This is checked by substituting (4.6) into (4.1) to verify (4.5).) The paths of
{M,} are constant except for those indices n such that M, > M,_,, which are
call record times. Define L(1) = 1 and inductively for n > 1

L(n + 1) =inf{j > L(n): M; > M, }.

So the record times {L(n), n > 1} are the times when the Markov process {M, }
jumps. The succession of states visited { X, ,,n = 1} = {M,,,n > 1} is called
the record values and constitute the embedded Markov process of states
visited.

Proposition 4.1. (i) { X, ,),n > 1} is a Markov process with stationary transition
probabilities and for n > 1
I(x,(y, ©)) = P[X 1) > Y| Xpmy = X]
{(1 - FO)/(1 —F(x)) y>x

1 y<x

(i) If F(x) =1 — e * x > 0, then {X,,,n > 1} are the points of homogeneous
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PRM on (0, o). This means
{XL(n);n = 1} 'g {r,,,n > 1}

inR® wherel, = E, + -+ + E,and {E;,j > 1} areiid, P[E; > x] = ¢ *,x > 0.
(iii) Suppose R(t) = —log(l — F(t)) and set x,=inf{y: F(y) >0}, xo =
sup{y: F(y) < 1}. Suppose F is continuous. Then R: (x;,xq) — (0, ) so that
R*:(0,00) = (x;,x0). Then { X, n > 1} are the points of PRM on(x,, x,) with
mean measure

R(a,b] = R(b) — R(a)
Jorx;<a<b<x,.
(iv) If F is continuous, { X, ), L(k + 1) — L(k),k > 1} are the points of a two
dimensional PRM on (x;,x,) x {1,2,3,...} with mean measure

#*((a,b] x {j}) = (F/(b) — F'(a))/j
Jorx;<a<b<xg,j=1.
PRrOOF. (i) Since { X, } is the embedded jump chain of {M,} we already know

that {X;,} is Markov with stationary transitions. To compute II(x,dy)
observe for y > xand 1 — F(x) >0

I(x,(y, 0)) = P[ X3 > y| X ) = x]

= Zz P[Xpo) > ¥, L(2) = n| X4y = x]

© n—1
= ZZPI:V X, <x,X,>ylX, = x:'

j=2

= nzi F2(x)(1 — F(y) = (1 — F(»)/(1 = F(x)).
(ii) In case F(x) =1 — ¢ ™ we have for y > x
n(x,(y,00)) = (1 = F()AL — F(x)) = exp{—(y — x)}
= P[4, > yIT, = x].
Since also X, = X, 41, we have
Ky 2 1} = (T, 2 1,
since two Markov sequences with stationary transition probabilities are equal
in distribution if their initial distributions and transition kernels coincide.
(iii) If X is a random variable with distribution F then the variant of the

probability integral transform discussed in 0.2 gives R“(El)iX , and
similarly

{\/ RO (E)n> 1} L (M,n>1).

i=1

Since R* is nondecreasing
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£ e )= fre (i ) 1

Furthermore R continuous makes R* strictly increasing and hence
(R (Epm)in = 1} £ {Xp,n = 1} @.7)

where notation has been slightly abused; the L(n) on the left refers to record
times of {E;j> 1}, and the L(n) on the right refers to record times of
{X;,j = 1}. (Observe that without the assumption that R is strictly in-
creasing, there would be the potential that intervals of constancy of R~ would
cause records of {E;} to be ignored in the left side of (4.7).)

Notice that {R"(Ey,)} are the points {E,, } of homogeneous PRM trans-
formed. A glance at Proposition 3.7 assures us that {R“(E_,)} are the points
of PRM with mean measure mo(R*)™! where m is Lebesgue measure. For
x,<a<b<x,

mo(R") Y(a,b] =m{s:a < R (s) < b}
and applying 0.6(c) this is
= m{s: R(a) < s < R(b)} = R(b) — R(a).
(iv) We have from the discrete time analog of (4.4) that
PLL(n + 1) — L(n) = j{ Xy, = O}, {LGi + 1) — LG),i # n}]
=P[L(n+ 1) — L(n) = jIX1]
= F(Xym) (1 — F(Xpw)) (4.8)
for j > 1. From (4.8), the fact that ) 2., €., i$ PRM(R), and Proposition 3.8

we conclude that

[+ o]
) £(X oy L(n+1)-L(n))
n=1

is PRM on (x;, xo) x {1,2,...} with mean measure p* given by

#*((a,b) x {j}) =f R(dx)F(x)'"'(1 — F(x))

(a,b]

= J yildy = (Fi(b) — Fi(a))/j. a
(F(@),F®)

Corollary 4.2. Suppose F is continuous. Define for x; <t < x,
n(t) = inf{n: M, > t}.
Then n(t) is a process with independent increments and for x;, < a < b < x,
P[n(b) =kl=F'(0)1 - F() k=1
P[n(b) — n(a) = 0] = (1 — F(b))/(1 — F(a))
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and forn > 1
1 — F(b)
1 — F(a)

P[n(b) — n(a) =n] = ( )F(a, b]F*(b).

Proor. Observe that

nb) — (@) = #{n: Mye(a,b]} = 3 (L(k + 1) — LK)y, (a,b]

k=1

and if N* = Z:;I a(xuh),l‘(k.'.l)_l‘(k» then
a0

n(b) — n@) = 3, jN*((a,b] x {j}).

j=1
Since N* is PRM the independent increment property of  follows from that

of N*; cf. property (b), Section 3.3.1.
Next we have that for k > 1

[n(b) < k] = [M, > b]
so that
Pn(b) < k)] =1~ FXb)
and
Py(b) = k) = (1 — F¥b)) — (1 — F*7'(b))
= F*"1(b) — F*b) = F*"1(b)(1 — F(b)).

Therefore, taking generating functions givesfor0 <s < 1
Es"® = i s*F*"1(b)(1 — F(b)) = s(1 — F(b))/(1 — sF(b)).
k=1

From the independent increment property
Es™® — E(s(n(b)—n(a))sn(a)) = Esn®—ma) g onia)

and thus

Est®-na) — Eon)/ pona <1 - F (b))l ~ sF(a)

1 —F(a)/1—sF(b)

=((1 — F®))/(1 — F(a)))(1 — sF(a)) é:o s*F¥(b)

_(1-Fp)\[ & °
= <1 — F(a)) { Y s*F4b) - ’;o s lF"(b)F(a)}

_[1—F@) « .

= (l - F(a)){l + kz=:1 s*(F*(b) — F* (b)F(a))}
(1= F() °

= (1 — F(a)){l + k; skF* (b)F(a,b]}

and the desired formulas are obtainable as coefficients of s*. O
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We now study the sequence {L(n),n > 1} and the point process generated
by this sequence. The next pearl is a basic structural result. See Dwass (1960,
1964) and Renyi (1962).

Proposition 4.3. Let {X,,n > 1} be iid with common continuous distribu-
tion F(x). Let R, be the relative rank of X, among X, ..., X,; ie, R, =

Yot lix,2x,y- Thus
R,=1iffX,=M,,

= 2iff X,, is the second largest among X ,, ..., X,,
and so on.
(i) {R,.n > 1} is a sequence of independent random variables with

P[R,=k]=n"}, l<k<n
(ii) The events
A; =[X;is arecord] = [R; = 1], ji=>1
are independent and
PA;=ju

Proor. The second result follows directly from the first, which is checked as
follows: Since ties among the observations occur with probability O (F is
assumed continuous) each of n! orderings X; <--- < X; is equally likely
(iy5---,i, 18 a permutation of 1,...,n). There is a one to one correspondence
between each such ordering and a realization of Ry,..., R,. For example when
n=3

X;< X, <X,

corresponds to the realization
R, =1, R, =1, R, =3.

So each realization of Ry, ..., R, has equal probability 1/n!; i.e.,
P[R, =ry,....,R,=r,]=1/n!

for rie{l,...,i},i=1, ..., n. To get the mass function of R, we sum over
r,...,r,_, remembering that r; has i possible values. Hence

P[R,=r]= Y P[R,=r,. R, =r1]

Y tnl=(@1-2-...-(n—)/n!=1/n
Hence P[R, =ry,...,R, =r,] =1} P[R; =r;] showing {R,,n>1} is a
sequence of independent random variables. O

Define now the point process u on (0, 00) by

p(-) = ,.iji Em = 12 L,gi(+)
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so that u([1,n]), the number of records in the first n observations, is a sum of
independent Bernoulli random variables. This fact can be used to obtain
asymptotic behavior of u[1,n] or L(n) as done by Renyi (1962). We give one
argument in this classical vein but prefer to await discussion of extremal
processes for a fuller treatment. Also it is noteworthy that whereas {X,} are
the points of PRM, p is only asymptotically Poisson, a statement which will
be made precise later. This is explored both as a corollary of Proposition 4.3
and also later in connection with extremal processes.

Corollary 4.4. If F is continuous then
u([1,n])/logn - 1 as.
PRrOOF. Observe that E1 4, = 1/jand
Vart, = E1Z, = (E1,)* = 1/j — 1//* = (j = Djj%.
Since u[1,n] = } j-; 14, consider the series ) ¢ ((1,, — j™')/log j). We have

3 Var((l,, — j")log ) = . (Var L, )log * = 3 (J = D log. -
Since (j — 1)/(jlog j)* ~ 1/j(log j)? is summable (approximate by

f x"(log x)"2dx < o0)

1

we have by the Kolmogorov convergence criterion (Feller, 1971, p. 243) that
Y 4, — J)/(log j) converges almost surely.
1

Applying the classical Kronecker lemma we get

20 =0yt

—1+4+0(1)—0 as.
logn logn

since Y1 j' ~ lognas n — . O

The next result says the point process of record times is asymptotically
Poisson.

Corollary 4.5. Let F be continuous. Define the point processes p, on (0, c0) by

(1) = Z SL(j)("') = Z En—lL(n(’) = Z 1,4,-3n~1i(')-
i=1 j=1 i=1
Let u,, be PRM on (0, cv) with mean measure of (a,b] = log (b/a). Then

Hp = U
in M,((0, )).
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Proor. We show ¥, (f) = ¥,_(/), for all fe Cg((0, c)). We have that

¥,(f) = ECXP{ - S Z Ly.8n- .(dX)}

(0,0) i=1

= Eexp{—-i f(n“i)IAl}

8

H Eexp{—f(n"'i)1,}

i=

-

(e 4 (1 — 7))

E:IS

8

=[] =it (1 —e7@)),

—-

As an alternative to taking logarithms and expanding as in Proposition 3.21
we use the elementary inequalities

q
=i
i=1

valid for [g;)| < land |b,| < 1,1 <i < q,and
le™ — 1+ x| < x?/2 4.10)

valid for x > 0. (For (4.9) suppose q = 2, write a,a, — b;b, = (a; — b,)a, +
b,(a, — b,), take absolute values, and use induction. For 4.10 write
1 —e™—x|=|f5(e™— 1)du| < f§le™ — 1]|du < f[gudu) Set x,,=
i~'(1 — exp{—f(i/n)}) and we have

= 'Ij (= x;n) — Ii exp{— X}

< ¥ la,— b 49)

i=1

—ls
8

[
-

‘Pu,.(f) - lf! cxp{_xi,n

Sile x”‘_1+x;n'< Z(x;n)z

=1

(71 — exp{—f(i/m)}))*. (4.11)

W
R

i
™Ms
MI —

Now
(i—l(l . e-f(n”‘i)))Z < i—2
which is summable, and for fixed i,

lim (i7'(1 — e /@'9))2 =0
because fe Cx ((0, c0)) has support in some interval [a,b], a > 0. Therefore
by dominated convergence, the series in (4.11) goes to zero as n — co.
This means that if we set
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then

¥,..(f) = o(1) + exp{ ~¥ it - eXP{—f(i/n)})}

= o(1) + t:xp{-—.;i1 1- exl’ijn—f(i/n)} n“}

= o(l) + exp{ -I L—ji%‘{;ﬂx—)}mn(dx)}.
(0,)

Observe that m, > m, Lebesgue measure (cf. Exercise 3.4.14) since for
f€Cx((0, ))

—

m(f) = gf(i/n)n"

which we recognize as a Riemann approximating sum to an integral and thus
m,(f) - f(x)dx = m(f).
(0,0)

It therefore follows from vague convergence that

1 —e ™ d
0,) X (0,) x

since (1 — e /™)/x e C£((0, o0)) and m, > m. Our conclusion is
lim ¥, (f) = exp{—J‘ (1 - e“""’)x‘ldx}
n—ao (0, )

as required for p, => u . O

EXERCISES

4.1.1. (a) If {E,,n > 1} are iid with P[E; > x] = ¢™*, x > 0 show using the Borel-
Cantelli lemma that

limsup E,/logn=1as.

n—o0

(b) Show

lim E;,,/n =1 as.

(c) Show

lim X;,, /R"(n) =1 as.

provided for all te R



4.12.

4.13.

4.14.

4.15.
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lim R (s + t(sloglog s)?)/R(s) = 1.
The last condition is equivalent to

lim (R(tx) — R(8))/(2R(t)loglog R(1))'* = c0.

t—o

Hint: Use the representation (4.7) and the law of iterated logarithm for partial
sums.

(d) What is the norming constant in (c) when the underlying distribution F is
normal?

For two random variables X and Y write X >F Y (X is stochastically larger than
Y)if P[X > x] > P[Y > x]. Showif X > Y then there exists X* and Y* defined
on the uniform probability space with

XL x+y4yx

and X* > Y* as. (Use the probability integral transform.)
Construct examples where

@ Xpmsr) — D, € >F Xim = Xpw-1)
and
®) Xppa1y — Xpm "< Xpmy — X1y

(Try the Weibull distribution.)
(Duane Boes, unpublished comments)

When is n(¢) = inf{n: M, > t} stochastically continuous? (Stochastic continuity
means if t — t,, then #(t) A n(t,). If n is not stochastically continuous it has fixed
discontinuities.)

Define the point process
0() =Y eu,

where {X,,,n > 1} are iid from a continuous df F(x)and M, = \/7_, X;. Compute
the Laplace functional of O. Hint: Write

0 =T (Lk + 1) — Lke,,,
Relate this to the {n(t)} process (de Haan and Resnick, 1982).

Kendall’s tau: A natural distance between two orderings of the objects
{ay,...,a,}is

T = #/(discordant pairs)
where

(a;,a)) is a discordant pair if a; precedes g; in one order but not the other.
For instance if the ranks of a,, ..., a, are

Ist order 2, 1,4, 3
2nd order 2,4, 1, 3

then T =5. To get a permutation distribution for T suppose one order is
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ag, ..., a, (“natural order”) and the other is a random reordering of the natural
one. Let

Y,_, = # {objects among a,, ..., a;_, which g; precedes in second ordering}.

Then Y,_, takes values 0, 1, ..., j — 1 each with probability 1/j and {Y¥;} are
independent. Check

VarY, = {E{i +2), EY,=i2 ET= g(n -1,

Var T = n(n — 1)(2n + 5)/72.

The rank statistic is t = 1 — 4T/(n(n — 1)) and 7 is approximately
~(o, 2(2n + 5) '
9n(n — 1)

Hoo () 2 p (K()).

Hint: What is the mean measure of u,(k(-))?

4.1.6. For any k > 0 show

4.1.7. Prove Proposition 4.1(iii) directly from Proposition 4.1(i) by computing the
Laplace functional of ¥ 2, £x,,, Hint: Let N(x) be the number of records in
(— o0, x]. Using Proposition 4.1(i), what is

P[Xy 4 €dx,, ..., X @m€Edx,; N(x) = n]

for x, < --- < x,. Use this to compute
N(x)
Eexp { Z f(XL(i))}
k=1

and then let x — o0.

4.18. Let {X,,n> 1} be iid with common distribution F(x). Prove that the total
number of records is finite iff the right endpoint x,, of F is an atom: F(x,—) < 1.
(Recall x, = sup{x: F(x) < 1}) (Shorrock, 1970).

4.2. Limit Laws for Records

Here we consider the class of possible limit laws for X, and also domain of
attraction criteria. It is striking that neither the limit laws nor the domains
are the same as for maxima.

Suppose F is continuous and return to relation (4.7). Since the records
{E_} from an iid exponentially distributed sequence are equal in distribution
to {T; }, the points of a homogeneous Poisson process on [0, c0), we may write

{Xpmon = 1} £ (RO(T)n 2 1}. @.12)

Suppose next that there exist o, > 0, f, € R, such that for some nondegener-
ate distribution G

PU(Xpw — Ba)/, < x] = G(x). (4.13)
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Therefore from (4.12) and (4.13)
P[Xy 0y < @yx + f,] = P[R™(T,) < ayx + f,]
= P[I, < R(z.x + B,)]
= P[(T, — n)/n'? < (R(@,x + B,) — m)/n'?]
- G(x). 4.14)
However from the central limit theorem

lim P[(T, — n)/n'? < x] = N(x)

n—rwo

uniformly for all x, where N is the standard normal distribution. Therefore
(4.14) can hold iff there is a nondecreasing function g(x) with more than one
point of increase such that

(R(oyx + B,) — m/n'? - g(x), 4.15)
weakly. In this case G is of the form
G(x) = N(g(x)).

Convert (4.15) into a convergence with a continuous parameter by setting

a(t) = oy, B(t) = By Then
(R(x(t)x + () — 1)/t
< (R(@x + By) — [ED/[1 = g(x)
and
(R(a(t)x + B(2)) — t)/t'?
2 (ROgyx + Bry) — ([e] + DAL + DY2

_ (R(egyx + By) — [t])< [£] )”2 1
= [t]l/Z []+1 ([£] + 1)1/2

- g(x) ast-— oo

and therefore
(R(@(®)x + B()) — )/t'* — g(x). (4.16)
If in (4.16) we divide by ¢ instead of ¢'? we may conclude
R(ax(t)x + p(t)) ~ t
as t - oo, for all x such that g(x) is finite. Hence
(R(x(t)x + (1)) — 0)/t'?
= R"(a(t)x + B()) — t'*) R (a(t)x + B(1)) + t'2)/e'
~ 2R (a(t)x + B()) — £')

as t — oo and so (4.16) is equivalent to
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RZ(a(hx + B(®)) — t'? > 1g(x). 4.17)
Define a distribution function H, called the associated distribution, by
1 — H(x) = exp{ —R"*(x)}.
Exponentiating in (4.17) gives
e"*(1 — H@(t)x + B(t)) —» e #™"?
and letting s = ' we get s —» o
s(1 — H(a((logs)*)x + B((logs)*)) - e™#*
or equivalently as s - o0
H(a((log 5)%)x + B((logs)?)) — exp{ —e 9™V},

From Theorem 0.3 we conclude that exp{ —e %2} must be an extreme value
distribution and hence up to affine shifts we have either

g(x)/2 =x xeR
or = alogx x>0
or = —alog(—x), x<0

where a > 0.

Proposition 4.6. (a) The class of limit laws for record values is of the form
N(—log(—log B(x))

where B(x) is an extreme value distribution and N(x) is the standard normal
distribution. More explicitly the limit laws are of the following types:

() N(x)

.. 0 x<0
@) Nyolx) = {N (axlogx) x>0

_ N(—oalog(—x)) x<0
(ii)) Ny q(x) = {1 >0
where a > 0.

(b) A limit law G in (4.13) exists for {X,,} iff H =1 — exp{—R"*} is in the
domain of attraction of an extreme value distribution. In fact G =

(i) N(x)iff He D(A). In this case may take
%, = R“(n + /n) — R"(n), B, = R (n).
(i) Nj o(x)iff He D(®,,). In this case we may take
o, = R"(n), B, =0.
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(iti) N, ,(x) iff He D(\Y,;;). In this case we may take
%, = Xo — R"(n), B, = %o

where x is the (necessarily) finite right end of F(x).

Proor. We only comment briefly on (b), the rest being clear. For instance in
case (ii) we have

PL(Xym — Ba)/otn < x] = N(—log(—log @,(x)))
= N(g(x)) = Ny q(x)
iff
H¥(a((logs)*)x + P((logs)*)) —» exp{ —e™**} = B, (x).

From Theorem 1.11 we may set f(s) = 0 and

1 -
«((logs)?) = <T:ﬁ) ($)-

However 1 — H = exp{—R"?} so

1 < -~
(T——H) (s) = R ((log s)*)

and hence
a(t) = R7(1)

as asserted. |

Exercises. Throughout, suppose F is continuous.

42.1. (a) G = N, iff

R2(x) = ¢(x) + [ ) a(t)/tdt where c(x)—ceR

and
at)»a/2 as t— o0
iff
fim R(tx) — R(x)

m ———m—- = alogx.

(b) Suppose x, < 0. Then G = N, , iff

R¥Z(xq — x71) = c(x) + ‘[x t ta(t)dt

1
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4.22.

423.

4.24.

4.25.
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where ¢(x) —» ce R, a(t) » a/2,t - w©
iff
. R(xy —tx) — R(xog — t)
1 = —al fi t>0.
o RP(x— D wosx o =
(c) G=Niff
. R(s+ x/s) = R(s)
lim =x
s~o R(s + /5) — R"(s)
iff
R ((logs)))el
iff

RY¥(x) = c(x) + Jx (]1—) ds
2 \JS(9)

where f is absolutely continuous with density f'(x) -0 as x - x, and
c(x) »ceRas x — x,.

What happens to weak limits of records when
1 — F(x) = exp{—(x/(1 — x))}, 0<x<1?
If G = N, , show
R(x) ~ (3alog x)*. (4.18)

If R(x) = (3alog x)? show records have limit distribution N, ,. Show (4.18) is
necessary for G = Ny, but not sufficient by considering

*1

3 a(1 — cos(logt))t1dt.
1

R (x) = f

Call {X,,} relatively stable in probability if there exists B, > 0 such that
Xew/By 51

as n— oo, Show that the following conditions are equivalent and any one of
them implies {X,,} is relatively stable (assume x, = c0):
(i) Xym/R™(n) 1
. .. R(tx) — R(x)
i) lim ———— =
(i) v RP(x)
(i) R ((logx)*)e RV,
iv) lim R"(x + ex?)/R(x) = 1
for ce R.
(v) Maxima of iid random variables from the associated distribution H(x) =
1 — exp{—R"?(x)} are relatively stable in probability; i.e, 1 — H is rapidly
varying.

Suppose x, = o0.
(@) If X,,/R"(n) 5 1 then M,/R* (logn) 5 1.
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(b) If R(x) = (log x)?, then M,/R* (logn) > 1 but {XLm} is not relatively stable
in probability.
(c) If(4.13) holds with G = N then {X,,} is stable in probability.

4.2.6. If (4.13) holds write R e DR(G).

(a) If R e DR(G) and for some extreme value distribution G,, we have F € D(G,),
then G, = A.

(b) Let

R,(x) = (3B log x)*
for x > e, « > 0, > 0 and call the corresponding distribution F,. Check
(1) For a > 2, R,e DR(N), F,e D(A).
(i) Fora =2, R,e DR(N, ,), F,e D(A).
(iij) For 1 <« < 2, R,¢ DR(N, ) for any y and F,e D(A). Also R,e DR(N).
(iv) Fora = 1, R,¢ D(N, ,) for any y, F, € D(®y,), R, ¢ D(N).
Conclude
D(A)nDR(N)# &

D(A)NDR(N, 4) # & forany § >0
D(A) nDR(N, ) # & for any f > 0.
However {M,} can have a limit distribution but not {X,,}.

42.7. Let R¥(x) = x'2 + 4x "sinx, x > 1. Then H = 1 — exp{—R?} e D(A) and
hence R e DR(N). But F = 1 — exp(— R} is not in D(A).

4.28. Let H=1—exp{—R"?} and suppose F = 1 — exp{ —R} has a differentiable
density.
(a) If H satisfies (1.19) then Re DR(N; ,,) and Fe D(A).
(b) If H satisfies (1.20) then Re DR(N, ,,) and F € D(A).
(c) If H satisfies (1.24) then Re DR(N) and F € D(A).

4.3. Extremal Processes

For the study of the stochastic behavior of maxima and records, extremal
processes are a useful tool.

Let F be a distribution function on R and define a family of finite dimen-
sional distributions F, |, (x,...,x)fork>1,4,>0,x;eR,i=1,...,k by

Ft, ..... :k(xl,...,xk)

F (/k\ xi) Ft2™n </k\ xi). . Fhei(x, ), 4.19)
i=1 i=2

If we compare (4.19) with (4.5) we see the formulas are the same except that
in (4.5) the t;s are restricted to be positive integers. The family (4.19) forms a
consistent family of finite dimensional distributions so that by the Kolmogorov
extension theorem there exists a continuous time stochastic process Y =
{Y(t),t > 0} with these finite dimensional distributions. Such a process is
called an extremal process generated by F or an extremal-F process.
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The following is a constructive approach to extremal processes: Suppose x;
and x, are the left and right endpoints of F. Let N = ) , &, ;, be PRM on
(0, 0) x [x;, xo] (if either x,; or x, is infinite, change a square bracket to a
parenthesis) with mean measure (x; < a < b < x,)

E{N(0,t] x (a,b]} = t(—log F(a) — (—log F(b))).
Set
Y(¢) = sup{ji: t, < t} (4.20)
for t > 0. Then this Y process has (4.19) as its finite dimensional distributions.

This may be readily checked in a manner similar to the development of (4.5).
In particular

P[Y(t) £t] = P[N((0,t] x (x,0)) = 0]
= exp{— EN((0,] x (x, 00))} = F'(x).

The reason for the interest in extremal processes is that a sequence of
maxima of iid random variables can be embedded in an extremal process. If
{X,,n > 1} are iid random variables with common distribution F and M, =
\/% X, then as random elements of R®

{M,,n>1} < {Y(n),n>1}. 4.21)

This is readily checked by noting that if we restrict the ¢;s in (4.19) to be
integers, we get (4.5). The sequence {M,,, n > 1} may be considered embedded
in Y in the sense of (4.21); we can always switch spaces to get a sequence
distributionally equivalent to {M,} which is embedded in Y.

Here are some elementary properties of Y:

Proposition 4.7.
(i) Y is stochastically continuous.
(i) There is a version in D(0, o), the space of right continuous functions on
(0, 00), with finite limits existing from the left.
(iii) Y has nondecreasing paths and almost surely
lim T Y(t) = x,, lim | Y(t) = x,.
t—0

120
(iv) Y is a Markov jump process with
Fix) x>y

P[Y(t+s)$x!Y(s)=y]={0 x <y

for t >0, s> 0. Set Q(x) = —log F(x). The parameter of the exponential
holding time in state x is Q(x), and given that a jump is due to occur the process
jumps from x to (— oo, y] with probability

1-Q)/0kx) ify>x
0 ify<x
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Proor. (ii) Consider Y defined by (4.20). It follows from the definition that Y
has nondecreasing paths and hence each path has finite limits from the left.
We now check that Y(t,w) is right continuous for almost all w. Suppose
initially x; is not an atom of F; a small modification is necessary to the
discussion if x; is a finite atom. We show there exist w-sets A;, i = 2 such that
PA; = 1and

weA, implies Y(t,w)>x, forall ¢t>0 4.22)

and
weA, implies N(w,(0,t] x (x,0)) < oo forall x> x,
and allt > 0. 4.23)
For the first assertion note that for any t > 0
EN((0,t] x (x;,0)) = tQ(x;) = o©
so that
PIN((0,t] x (x;,0)) = 0] = 1.

If {t,;} is countable and dense in (0, c0)

P[N((0,t] x (x;,00)) = oo for all t > 0]

= P(m [N((0, ] x (xi, 0)) = oo])

= lim P[N((0,t,]J x (x;, ®0)) = 0] = 1.
t;—0

This is equivalent to (4.22). For (4.23) observe that for fixed t > 0, x > x,
EN((0,t] x (x, 00)) = tQ(x) < o0

and so
PIN((0,t] x (x,00)) < o0] = 1.
Therefore
PIN((0,t] x (x,0)) < oo for all x > x;]
= lilm PIN((0,£] x (x,0)) < 0] =1
and

P[N((0,t] x (x, 00)) < oo for all x > x;,t > 0]
= lim P[N((0,£] x (x,0)) < oo forall x > x;] = 1.

t—o

Now for e A; n A, and any ¢

N(®,(0,2t] x (Y(t,w), 00)) < o0
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and hence the points of realization w falling in (0,2¢] x (Y(¢, w), c0) cannot
cluster. So there exists 6 = d(t, w) and

N(w,(t,t + 8] x (Y(t,w),0) =0.

Hence Y(s,w) = Y(t,w) for t < s <t + & showing right continuity at ¢ when
welA;NnA,.
If x, is an atom, then Q(x;) < oo so that
PLN((0,t] x (x;,0)) < oo forallt > 0] =1

and hence points of (0,2¢] x (x;, o) do not cluster. The proof can be com-
pleted as before.

(i) Since we may take almost all paths in D(0, 00), Y must be stochastically
continuous from the right; i.e,ass |, Y(s) L8 Y (¢) since the convergence is in
fact almost sure. If Y is not stochastically continuous from the left then there
is t, and as sTty, Y(s) does not converge in probability to Y(¢,). Since
Y(s) — Y(¢,—) a.s. this means

0 < P[Y(to—) < Y(to)]
But
P[Y(to—) < Y(t6)] < PIN({to} X (x;, 0)) > 0]
< EN({to} X (x;,00)) = 0

since the Lebesgue measure of {¢,} is zero.
(iii) Since P[Y(t) < xo] = F'(x¢) = 1 and for M < x,,.

P[Y() < M] = F\(M)—>0
ast — oo we have
Y() D xo.

However Y has nondecreasing paths so convergence in probability is the same
as a.s. convergence by the subsequence characterization of convergence in
probability. The convergence to x, as t — 0 is handled similarly.

(iv) These results parallel those of Proposition 4.1 in discrete time. Y is
Markov with the given transition probability because of the form of the
finite-dimensional distributions. The form of the holding time parameter may
be obtained from infinitesimal conditions or by observing

P[Y(t+s)=Y(s)|Y(s) = x]
= P[N((s,t + 5] x (x,0)) = 0]
= exp{—E(N(s,t + 5] x (x,0))} = 7™

so the holding time in x is at least ¢ with exponential probability e™*¢®. To
compute the jump distribution Il(x,(y, o)) for y > x note from (4.3)as t —» 0

tT'PLY(t + 5) > y|Y(s) = x] = A()TI(x, (, 00))
= Q()H(x,(y, ©)).
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On the other hand
tTIPLY(t + s) > p|Y(s) = x] =t71(1 — F'(y))
=t71(1-e) > Q(y)
and so

(x, (y, 0)) = Q(y)/Q(x). 0O

Now let {r,, —00 < n < o} be the jump times of Y so that {Y(z,)}, the
range of Y, is a discrete indexed Markov process and by (iv) earlier we have

P[Y(tp+1) > yIY(z,) = x] = Q(»)/Q(x).
Note that if Q(x) = e7*, i.e., if F(x) = A(x), then

P[Y(t,4y) > y|Y(zr,) =x] =707
= P[[,,; > yII, = x]

where {I',} was defined in Proposition 4.1. Therefore {Y(z,)} is homogeneous
PRMonR. Let S(x) = —log Q(x) = —log(—log F(x)). The following parallels
Proposition 4.1 and Corollary 4.2.

Proposition 4.8. (i) If F = A, then {Y(z,)} are the points of homogeneous PRM
on R.

(ii) If F is continuous, then {Y(t,)} are the points of PRM on(x;, x, ) with mean
measure S.

(iii) If F is continuous

o0
Y e tnsr =t
n=-—co

is PRM on (x,;, x¢) x (0, c0) with mean measure

Q(a)

#*((a,b] x (¢, 0)) =J y e dy
o)

Jor x; <a<b<xyt>0.
(iv) If F is continuous {Y ~(x),x;, < x < Xo} is a process with independent
increments and exponential marginals:

P[Y (x)<t]=P[x<Y(t)] =1 — e 2™,
PRrOOF. (ii) If Y, is extremal-A then ST (Y,) is extremal-F since S* o Y has finite
dimensional distributions given by 4.19. For example, for k = 1 we have
PIST(YA(1) < x] = P[Y,(t) < S(x)]
= A'(S(x)) = F'(x).

If F is continuous then S* is strictly increasing and {S* (Y,(z,))} 4 {Y(z,)}
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where the process Y on the right is extremal-F. The result follows by the
transformation theory for Poisson processes as in Proposition 4.1.
(iii) This follows as in Proposition 4.1 except that by Proposition 3.8

1*((a,b] x (t,0)) = J‘ S(dx)e—‘Q(")

(a,b]

Q(a)
= ey ldy.
o)

(iv) This follows as in Corollary 4.2 since

Y‘—(b) - Y‘—(a) = Z (In+l - tu)GY(t,,)(as b]

= f EY Exeyn,-o((@b] x db). 0O
(0,)

We next discuss the point process of jump times.

Proposition 4.9. Suppose F is continuous. Then
oo =Y &,
is PRM on (0, o0) with mean measure of (a,b] equal to log(b/a),0 < a < b.

It will be enough to show that u (- " (0, K])is PRM on (0, K] where K is
arbitrary. Toward this goal we prove the next lemma (cf. Exercise 3.3.8).
Lemma 4.10. If O(x) = —log F(x), set for y >0

0-(»=01/0)"(y")
= inf{s: Q(s) < y}.

Suppose {E;i> 1} is iid with P[E;>x]=¢7* x>0, and set T, =
E, + - + E,. Let {U,,i > 1} be iid uniformly distributed on (0, K] and suppose
{U;} and {E;} are independent. Then

a0
# .
N7 := Zl EwiQ-@yK)
=

is PRM on (0, K] x (x;, x,) with mean measure of (0,t] x (a,x,) equal to tQ(a),
t>0,x,<a<xyie.,
N* & N restricted to (0, K] x (x; X Xo)

(where N is used in the construction (4.20)).

PROOF. As with (0.6) we have
0 (>t iff Q) <y. 4.24)
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Since ) ,ex-ir, is PRM on (0, c0) with mean measure Km(-) (m is Lebesgue
measure) we have by Proposition 3.7 that

; o~ /K)
is PRM with mean measure Kmo(Q*“)™*. However for x;, < a < x,
Kmo(Q“) ' (a,©) = Km{s > 0: Q* (s) > a}
= Km{s: 0 < s < Q(a)} by (4.24)
= KQ(a).

By Proposition 3.7, N* is PRM on (0, K] x (x;, x,) and the mean measure of
0,t] x (a,x0)is (0 <t < K,x; < a < xq)

K~'tKQ(a) = tQ(a) = E(N(0,] x (a, o0)). I

Proor. Now for the proof of Proposition 4.9: Define
Y#(9) = sup{Q~(T/K): U; < t}

on (0,K] so that Y* £ Y and instead of analyzing the jump times of Y we
analyze these of Y*. Since Q“(I',/K) > Q@ (I';/K) > -+, if we define for
O0<t<K

T@)=inf{i> 1: U; <t}
then
Y#(1) = Q" (Try/K).

Since F continuous makes Q* strictly decreasing, the jump times of {Y * (1)}
and those of {T(t)} coincide. However observe that for 0 <t < K

T@t)=inf{n > 1: U, < t}
=inf{n>1: U1 >t}
- inf{n > 1: \_/1 U > rl} = (™)
where following Corollary 4.2 we set
n(s) = inf{n >1: \:'/1 Uu™t> s}.

Now observe the
jump times of T(t),0 <t < K

= jump times of 5(s), K™ < s < 0

= records of {\/ Uj“} in [K™!, o0).
Jj=1
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From Proposition 4.1 the records of {\/%, U;"'} form a Poisson process on
(K™, 00) and the mean measure of (g, b](K™! < a<b)is
~log P[U;! > b] — (—log P(U;! > a])
= —log P[U, <b™'] — (~log P{U, <a™'])
—log(b™!/K) — (—log(a™"/K)) = log(b/a). O

Consider now {X,,n > 1} iid from a continuous distribution F(x) and as
usual set M, = \/{;1 X;. If Y is extremal-F we have

{My,n>12{Y(n),n>1}

so to study the record structure of {X,} we may as well suppose {M,} is
embedded in Y; ie., we study functionals of {Y(n)} instead of {M,}. So, for
instance, with this point of view

ui= Z &Ly = Z Yy -1.0>008(")
J i

can be considered as a functional of Y.
Since we may consider both x and u, defined on the same space, we may
hope to compare them @ by w. What is the relation of u to u,? Observe that

[u(n — 1,n] = 1] = [record at n]
= [“w(n - l’n] > 0}

and thus g counts jumps that u misses since u only checks to see whether or
not Y(n) > Y(n — 1) but is not sensitive to all jumps of Y in (n — 1,n]. If
Ueo(n — 1,n] > 1 for infinitely many n, then u and p,, will not be related in a
useful way. Fortunately this is not the case.

Proposition 4.11. For F continuous, we have

Plug(nn+ 11> 1i0]=0.

PrOOF. From the Borel-Cantelli lemma it suffices to show
Y. Plpo(mn+1]1>1] < .
n=1

Since pu,(n,n + 1] is a Poisson random variable we have

Y Plponn+11>11=Y (1 —exp{—log(n~'(n + 1))}

—log(n™Y(n + )exp{—log(n~'(n + 1))})

8

Z log(n™!(n + 1))(1 — exp{—log(n™*(n + 1))})

Z (log(n™ (n + 1))*.

8
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Since (log(n~*(n + 1)))*> ~ n~2 as n — oo, the desired convergence of the series
follows by a comparison argument. O

A conclusion from Proposition 4.11 is that for almost all w, there exists
no(w) such that if n > ny(w) then

wow,(n,n + 1]) = p,(@,(n,n + 1]). (4.25)
We now use this to prove Corollary 4.5 again.
Corollary 4.5. If F is continuous and p and p, are defined on the same space
we have

B = p(n°)=>py,
in M,((0, 00)).
PROOF. Let fe C£((0, c0)). Suppose f(x) = 0 for x e [6,571]°. We need to show
in R
Jf (xX) pn(dx) = Jf (X) e (dx)

(cf. Proposition 3.19).
Now

mm=§ﬂwum

.
8 |

f(”_l i) 1(Y(i)> Y(i-1)]

= Z f(nﬁli)l[um(i—l,i]>0]'

in-liel[s,571]

For n > (ny(w) + 1)67%, if i > né then we have by (4.25) p(w,(i — 1,i]) =
lluu,(l"-l.i]>0](w) == llﬂm(i”1,i1=1](w) and fOl‘ SllCh n

il
-

#n(f’ w) = Z f f(n—l l)“oo ((,O, dx)
i:n~lie[s,6°1] J(i—1,i)

= fg,.(xw°° (w, dx)
where
00 = 3. S0 )
The preceding shows that u,(f) — . (g,) — 0 a.s., and therefore it suffices to

ShoW pe,(ga) = te (S)-
Observe
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gn(nx) = Zi f(n‘li)l(n"(i—l).n*li](x) - f(x)
as n — oo and for n large

gn(nx) < sup f(y)1x(x)

y>0

where K is compact and K = [§7%,8].
Therefore since i, (-) 2 4. (n(*)) (Exercise 4.1.6) we have

Po(gn) = f gn(X¥) U (dx) = f gn(ny) oo (ndy)
(0,») (

0,o)

4 f oy~ | SOmefa)
(0,00)

(0,0)
= Us(f),

the convergence following by the dominated convergence theorem. O

We now use these ideas to study the asymptotic behavior of u(1,n] and
L(n). Note first that the structure of p, is quite simple since a time change
renders it homogeneous; i.e., {4, (1,e‘],t > 0} is a homogeneous PRM. (It is
PRM by Proposition 3.7 and homogeneous since Eu(1,e'] = log(e'/1) = t.)
For a homogeneous Poisson process, the following are standard:

Strong law of large numbers: Uo(l,e'] ~ ¢, t — o0;
lLe']—1t
Central limit theorem: %— =N
where N is standard normal,
. . o1, e'] —t
Iterated logarithm theorem: llrgs;m %‘%ﬁ =1as.
NP X A e
liminf —Ll— = —1as.

1w (2tloglog )2

Changing variables we get

Uo(1,8] ~ logt, t — oo; 4.26)
o(1,t] —logt
%o’gﬁﬁz”“ =N, t-ow; @.27)
1,6 —1
limsup F=tb —logt o (4.28)

o (2logtlogloglogt)'?

.. ﬂm(l,t] - ]Ogt
1 f = —1as.
i (2log t logloglog t)* .
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From Proposition 4.11 and (4.25) we get that for large enough n, n > ny(w)
say,

Heo (@, [1,1]) = j(w) + p(w,[1,n]) (4.29)

where j(w) is a finite integer valued variable representing the jumps that u,,
sees which are missed by p. Hence if a,, = o0

(#m(l, n] - ﬂ(l ) n])/a,, —0as.
and we get the following.

Proposition 4.12. If we replace t by n and p,(1,t] by u(l,n] = number of
records in the first n observations then (4.26), (4.27), and (4.28) all hold.

Applying Proposition 3.7 yet again we see that the points of u,, which are
greater than 1, which we label t; < 7, <---, can be represented as
{t;n > 1} = {exp{T},},n > 1}

where as before I, is a sum E; + --- + E, of n iid exponentially distributed
random variables. Hence for loge™ = I, we get a strong law, central limit
theorem and law of the iterated logarithm. Referring to (4.29) and Proposition
4.11 we see that {L(n)} and {e"} are related for n > ny(w) by

L(n’ (D) = exp{rn+j(w)(w)} + 6}1(0)) = Tn+j(w)(w) + 6,,((1)) (430)

where [4,] < 1. This implies

limsup

n—+w

< j(w) 4.31)

log L(n,w) — I',(w)
logn

a.s. This is checked as follows: From (4.30)
lOg L(n’ (D) - rn(w) = log(exp{rn+j(m)(w)} + 6"((1))) - rn(w)
= n+j(m)(w) - rn + 0(1)

and hence
~T,
limsup log L(n, w) ..(w))
n—m logn
| RERE|
=1 & ——|< as.
imsup | “jogn | <@
since for any i > 1
E ..
limsup —~ = 1, a.s.
neo  lOgn

(cf. Exercise 4.1.1(a)). The relation (4.31) says asymptotic behavior of T, can
be transferred to L(n):
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Proposition 4.13. If F is continuous then we have
(a) logL(n) ~nasn— oo;

(b) (log L(n) — n)/\/r_z = Nasn— oo;

(c) limsup, .. (log L(n) — n)/./2nloglogn = 1 as.

liminf (log L(n) — n)/\/2nloglogn = —1 as.

n—ow

We now show that the same asymptotic behavior holds for the interrecord
times {L(n) — L(n — 1),n > 2} as for {L(n)}. We first investigate {t, — 7,_,}
and show

limsup {log(z, — 7,-,) — logz,|/logn =1 4.32)

n—ow

a.s. Recalling that 7, = e™ where I, = E, + --* + E,, we get
Ilog(Tn - Tn—l) - log Tn' = —lOg(l - Tn—ltn—l)

—log(1 — e7En).

fi

Now it is readily checked that

{—log(1 — e )} £ (E,}

in R® and since limsup, ., E,/logn = 1 a.s. (Exercise 4.1.12), (4.32) follows.
We may now prove the next result on the asymptotic behavior of interrecord
times.

Proposition 4.14. F is continuous. We have that the results of Proposition 4.13
hold with L(n) — L(n — 1) everywhere replacing L(n). Also

limsup [log(L(n) — L(n — 1)) — log L(n)|/logn = 1 as. (4.33)

PROOF. It suffices to prove (4.33). From (4.30)
[log(L(n) — L(n — 1)) — log L(n)|/logn

= 108(Ty 1) = Tasjos + b, — b,-1) — 108(tysy + &,)|/logn

= 108(Tys; — Tasjo1) — 108 Tysyl/log n + o(1).
The last step is verified by noting first of all that since |6,] < 1 we have

log(t,4; + 6,) = log 7,4; + o(1)
as n — oo, and furthermore we can show
08(t0s; — Tasjt + 6, — ,-1)/10g 1 = 108(5ys; — Tusy-1)/logn
+ o(1)

as follows: From (4.32) it follows that

(log(Tn - Tn—l) - log 1"n)/n - 0,
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whence because 1, = exp{I,}

n”(log(t, — 7,-) — 10

and

lOg(T" - Tn—l) ~ n

Thus for any fixed i we have t,,; —

Tpei-1 — 00 SO that

log(l + (5n - 6n—1)/(1n+j - tn+j—1))/logn
~ (0s — On—1)/((Tusj — Tnsj-1)logn) = 0 as.

Therefore

limsup |log(L(n) — L(n — 1)) — log L(n)|/logn

n—w

=limsup [log(t,+; — Ta4j-1) — 108 T,4;l/logn = 1

n—aw

from (4.32).

a

We end this section with a chart comparing the various descriptive quantities
of interest in discrete time, with the analogous quantities in continuous time.
A comparison of {M,,n > 1} and {Y(),t > oo}:

. {M,,n > 1}, underlying distribu-
tion F, is a Markov process in
discrete time.

.Fork>1,1<t, <t <" <t
and ¢, integers,

P[M, < x;,i=1,... k]

(i

e ) F'k“k—:(xk)_

. P[M,,, < z|M, = x]
_F'@,z=x
B {0, z<x
for t > 0, integer.

. {M,} is a Markov jump process
with (L(n),n > 0} as jump times.

. If F is continuous
00 o0

; EMyw = % Exiim

is PRM(R), R = —log(l — F).
. Y. &x,,, is homogeneous

PRM on (0, o0) if F(x) =

1—e*x>0.

1. {Y(t),t > 0}, extremal-F, is a

Markov process in continuous
time.

.Fork>1,0<t, < <t

PLY(t) < xpi=1,...,k]

(e (i

-+ x Ff-1(x,) and
{(Y(n),n>1} £ {M,,n> 1}
in R®.

. P[Y(s +t) < z| Y(s) = x]

F'(z),z>x
0, z<x
fort >0,

. Y is a Markov jump process

with {,} as jump times.

. If F is continuous

Y. &y, is PRM(S),
S = —logQ = —log(—logF).

- Y. % £y, is homogeneous

PRMon Rif F = A.
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1. P[Xine1y > Y| X = X] 7. PLY(tpeq) > y|Y(z,) = x]
_ {(1 —FO)/(1 —F(x),y=x _ {Q(y)/Q(x), yzx
1, y<x. |, y<X.
8. P[L(n+ 1) — L(n) = k| X, = x] 8. P[t,4, — 1, > t|Y(z,) = x]
= F*Y(x)(1 — F(x)), k > 1. =e 2 5 0.
9. Letp=Ygerm If Fis 9. Letp, =3¢  IfFis
continuous, u has independent continuous, u . is PRM (¢! dr).

increments (recall {[X, is a
record], k > 1} is a sequence of
independent events). For F
continuous

Hp = 2%0)("')

= 2 8L(j)ln(') = “oo(')’
in M,,((0, o).

EXERCISES

4.3.1. When F is continuous show that u,, is PRM (¢! dt) by the following procedure.
(a) When {M,} comes from an underlying continuous distribution

{I[M,>M,_,1aj =2}

is a sequence of independent random variables.
(b) Let Y be extremal-F and set

p®(-) = #jumps of {Y(i27"),i > 1} in ().
Show u™(-) has independent increments and for a < b, u™(a, b] - pu(a,b],
whence y,, has independent increments.
4.3.2. In Corollary 4.5, does u, — p,, almost surely?

433. f {E,,n > 1) areiid, P[E; > x] = e™*', show
(@) E /n—1as.
(b) /L Ei/logn —> 1 as.
Hint: \/%, E; = Epiq1.m)
{c) Under the condition of Exercise 4.1.1(c), show that if {X,,n > 1} are iid
with common continuous distribution F then

Xpm/R™(n) > 1as.
and this in turn implies
M,/R"(logn) > 1 as.

{The most general condition for as. stability of {M,} is discussed in
Barndorff-Nielsen (1963) and Resnick and Tomkins (1973).)

4.3.4. If{Y(t),t > 0} is extremal-A then {S*(Y()),t > 0) is extremal-F, where S(x) =
—log(—log F(x)).
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43.5. (a) If {Y(t),t > O} is extremal-A, so is
{—log Y (—logt),t > 0}.

Note that the second process is not right continuous (Robbins and
Siegmund, 1971; Resnick, 1974).
(b) If Y is extremal-A, then

lim Y(f)/logt = 1 as.

t—o0
and

lim Y(t)/logt = 1 as.

t—0

From the result in (a), these two limiting results are the same result.
(¢) Use (a), Proposition 4.8, and Exercise 4.3.4 to prove Proposition 4.9.

4.3.6. (a) Suppose {X(t),t >0} is a Lévy process, i.c., a process with stationary,
independent increments. If the Levy measure of the process is v then

sup (X(s) — X(s—=) A0

0<s<t

is extremal-F where for x > 0, F(x) = exp{ —v(x, 0)} (Dwass, 1966; Resnick
and Rubinovitch, 1973).

(b) Suppose {X(t),t > 0} is homogeneous Poisson, rate 1. What is Y? What is
v? Why does Proposition 4.9 fail?

4.3.7. Suppose Y is extremal-F and F is not necessarily continuous.
(a) f F(xg) >0

P[Y hits xo] := P( U [y = xo])

t>0

= (Q(xo—) — Q(x0))/Q(x0 )

where Q = —logF.
(b) From (a), P[Y hits x4] > 0iff x, is an atom of F. Furthermore

{LY hits x], x e (€(F))}

is a family of mutually independent events (recall that €(F) is the continuity
set of F).
(c) More generally show that

{Y=(x),x; < x < X0}

is a process with independent increments and one-dimensional exponential
marginals.

4.3.8. Suppose Y is extremal-F and F is continuous. Prove for0 <a < b
1iy_(a,0y>0yand Y ()
are independent (Ballerini and Resnick, 1987).

4.39. Suppose Y is extremal-A and (X;, —o0 < j < oo} is iid with common distribu-
tion A. Define for ¢ > 0
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4.3.10.

4.3.11.

4.3.12.

4. Records and Extremal Processes

ME = \/ (X + ).

j=—o
(a) Show in R®
(MEn=>1} £ {Y(plem),n> 1}

where p = |2, [121 Alx + ¢)Adx) =1 — "
(b) The sequence

{15n > 1} = {lpngo py_pn 2 1}
is iid Bernoulli with
Pl1*=1]=p=1—-¢""

(c) M} and 1} are independent for each n (use Exercise 4.3.8) (Smith and Miller,
1984; Ballerini and Resnick, 1987).

If Y is extremal-F, prove forany k, 0 < t; < - <1,

(Yt 1<i<k} = (UI,UI v U,y \/ U)
i=1
where U,, ..., U, are independent and P[U; < x] = F«"-1(x),i = 2,..., k. Use
this to prove Y is Markov (Dwass, 1964).

Let {X,,n > 1} beiid random variables with common, continuous distribution

F. As usual, let {L(n),n = 1) be the record times.

(a) Let {E,,n>1} be iid with P[E, >x]=e*". Define a sequence
{L*m)\n > 1} by

L*1)=1, L*mw=[L*n—1e5]+1, n>2
where square brackets denote greatest integer function. Prove in R®
{Le),n=>1} £ {L*m),n > 1}

(Williams, 1973).
(b) Define

T(n) = inf{ j: j = L(n)/L(n — 1), an integer}.
Using (a) show {T(n)} are iid and
P[Tm)=j1=GG-D"  j=2

(Galambos and Seneta, 1975; Westcott, 1977).
(c) Check

efn— 1 <(Lm)—Ln—1))/Ln—1)<efr -1+ (n—1)!

and so rederive Proposition 4.14 (Westcott, 1977).

(@) Let {L(n),n > 1} be the record times from a continuous distribution. Define
H(x) by
1 — H(x) = 1/[x], x>1

and let {,,n > 0}, £, = 1 be the record value sequence from H. Provein R*
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{L(n,n>1} £ {¢,,n > 0}.

(Recall that the record value sequence is a Markov chain.)
(b) Prove in R®

{L(k)/L(k — 1),k = n} = {W,,k > 1} where {W,} are iid and
P[W, > x]=x"}, x> 1.

Proceed via Exercise 4.3.11 or ab initio (Shorrock, 1972).

() If {Y(t),t > 0} is extremal with a continuous distribution and jump times
{z.} show that {z,} is equal in distribution to the range of the extremal
process governed by @, (x) = exp{—x""'}.

(d) For the set-up as in (a) and (b) show that

lim P[(L(n + 1) — L(n))/(L(n)) — L(n — 1)) > a}

=a'llog(l+a), a>0
(Shorrock, 1972).
(a) If E is exponentially distributed and Z (0, 1) is independent of E check
P([EflogZ ']+ 1=2r|Z)=2""

(b) I {Xy,,n > 1} is the record value sequence from the uniform distribution
on (0, 1), check

(Xppnz1} = {1 ~e T n>1}
where as usual (E,,n > 1} are iid,
P[E,>x]=e¢™* and T,=E, + - +E, n>1l
(c) From (4.8) show when F is U(0, 1):
{(L(n + 1) — L(n), X;,)),n > 1}
2 {[(E./(—log(1 — e ™)) + 1,1 — e F),n > 1}

where (E,,n > 1}, {E¥,n > 1} are each iid unit exponential sequences,
independent of each other, and I} = E} + --- + E}.
(d) Prove whenever F is continuous

{Lopn=1} < {1 + "il ([Ec/(—log(l ~ ™ )] + ),n > 1}
k=1

in R® (Deheuvels, 1981).

Suppose {Y(t),t > 0} is extremal-F. Assume F is continuous with left endpoint
x; and right endpoint x,,.
(a) Check for te(x,, xq)
Y ()= Z (Thas — Te)-
k:Y(n<t
(b) Suppose ¢ = Y, &, is homogeneous PRM on R and {E,, —0 < k < o0}
isiid, P[E, > x] = ¢ * . If § = —log(—log F) show
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0 _li a0
> E(5=(Zi) Exexp{Zi)) = > E¥(me)s tiey s~ )
© k=—oc0

on M,((x;,x,) x (0, 0)) by appealing to Proposition 4.8(iii), Proposition
3.7, and Proposition 3.8.
(c) Hence show
Y2 DI X <t<Xqo
k:Z, <S(1)

in the sense of equality of finite dimensional distributions (Deheuvels, 1981).

4.4. Weak Convergence to Extremal Processes

4.4.1. Skorohod Spaces

Extremal processes (as well as Levy processes and other Markov processes)
live in the space D(0, oo), the set of real functions on (0, co) which are right
continuous with finite left limits existing everywhere. In order to discuss weak
convergence of extremal processes intelligently, we need to study properties
of D(0, 00) and, in particular, impose a metric which will make D(0, o) a
complete, separable metric space.

The concept of weak convergences of probability measures on a space S
(cf. Billingsley, 1968 and Section 3.5) is very much dependent on the choice of
metric as this governs continuity concepts as well as which subsets of S belong
to the Borel o-fields. The usefulness of the theory depends on wise choice of
a metric. If a metric on S makes too many functions continuous, it will be
difficult to prove weak convergence of a sequence of probability measures. If
the chosen metric makes too few functions continuous, then applications of
the continuous mapping theorem will be scarce and the resulting weak con-
vergence theory will not be particularly useful.

The topology of local uniform convergence on (0, c0) presents problems
(Billingsley, 1968, page 150), and a consensus of opinion is that the Skorohod
topology is a good compromise.

We begin by discussing D[a, b], the functions which are right continuous
on [a, b) and have finite left limits on (a, b]. This treatment follows Billingsley

(1968).

Lemma 4.15. A criterion for xe D[a,b] is that for any ¢ > 0, there exist r > 1
and times ty, ..., t,a=1ty < - <t,=b,and

sup{|x(s) — x(®)|: t;-, < st <t} <e 4.39)

fori=1,...,r.
By avoiding bad points we make the variation of x small.

ProoOF. Given xe D[a,b] and € > 0. Let
t=sup{t > a:[a,t) can be decomposed as described in (4.34)}

=supG,
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where G is the set previously described in the braces. Then t > a since
x(a) = x(a+) makes the variation of x in a right neighborhood of “a” con-
trollable. Similarly e G because x(r —) exists and hence variation in a left
neighborhood of 7 is controllable. If 1 < b we would get a contradiction since
right continuity at © means there is a right neighborhood of t for which

variation is smaller than . 0

From the lemma we have the following properties of functions in D[a, b]:

1. The set {te[a,b]: |x(t) — x(t—)| > ¢} is finite (in fact has cardinality
at most r), and therefore the number of discontinuities of x is at most
countable.

2. The function x € D[a, b] is bounded on [a, b] since

sup{|x()l: te[a,b]} < sup (Ix(ti-)l + ) v Ix(B)l.

1<i<r-1

Therefore, functions in D(0, c0) are locally bounded.
3. Let

x (1) = Z *(ti-1) e g0 + X() 115 (0).

The sup, <, <, |x,(t) — x(t)] < £ and so x € D[a, b] can be uniformly approxi-
mated to any desired accuracy by a simple function. Hence x is Borel
measurable.

Now we define a metric. The uniform metric says that two functions x and
y are close if their graphs are uniformly close. The Skorohod metric is not so
strict; it allows uniformly small deformations of time before comparing the
graphs. The time deformations are achieved by homeomorphisms i€ A, ,
where

Ay y = {4: [a,b] > [a,b]: A(a) = a, A(b) = b,
A is continuous and strictly increasing}.

Then define for x, ye D[a, b]

d, p(x,y) = inf {a > 0: there exists A€ A, , such that

sup JA(t) —t] < ¢, s<u;<)b [x(t) — y(A(1)] < e}

ast<b

= inf ( sup |A(t) — t|> % ( sup |x(t) — y(A(t))I).
b

AeAgp \a<I<bh asi<

Then d, , is a metric generating the Skorohod topology on D[a, b].
For notational simplicity let e(t) = ¢,

14— ellap= sup [A)—tl, lx—yollss= sup |x(2) — y(AD).

a<t<b
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What does convergence mean in this metric? Given x,€ D[a,b], n > 0 we
have d, ,(x,, x,) — 0 iff there exist 4,€ A, , such that

14s —ellay =0, lIx,04, — Xollap 0.
Note that if we take 4 = e in the definition of d, , we get

da,b(x’y) < "x - y"a,b

so that uniform convergence is more stringent than Skorohod convergence
since uniform convergence implies d, ,-convergence. The converse is false:
Take xo(t) = g, @+py21(8) Xal) = Lig,@4py24n-1)(t). Then for n > 1

"xn - xO”a,b =1

so there is no hope of uniform convergence. However

da,b(xmxo) < n_l

since a homeomorphism mapping [a,(a + b)/2 + n™'] onto [a,(a + b)/2]
would cause the graphs to match exactly.

This example also shows that d, ,-convergence does not imply pointwise
convergence everywhere; note x,(3(a + b)) =1, x,(3(a + b)) =0 so x,(¢)
does not converge to x,(t) when t = 3(a + b). However it is true that d, ,-
convergence implies convergence at points ¢ which are continuity points of
xo. For suppose ¢ is such a point. Then if 1,€A,, and |x,0 4, — x,]| = O,
”A'n - e”a.b -0 we get

1xn(t) — Xo()] < 1%4() — Xo (A, (D) + |X0 (4" (1)) — X0 (D)
< lIxg0 4y — Xolla,s + [X0(An ™ (2)) — Xo(2)]
= o(1) + |xo(4," (1)) — xo(®)I.
Since |4, — ell..p = 4, — ella,» = O we have 4,7 (t) - t and since x, is con-
tinuous at t, | xq(4, () — xo(t)] = 0.
A slight variant of this argument shows that if d, ,(x,,x,) = 0 and x, is

continuous on [a,b] then |x, — xll,, — 0. This follows since, as in the
preceding argument,

”xn - xO”a.b < ”xnoln - xO”a,b + ”xo°/1..‘_ - xO”a.b'

Since x, is uniformly continuous on [a, b], the result follows. Hence Skorohod
convergence coincides with unform convergence when the limit is continuous
on [a,b].

With this metric, the space D[a, b] is separable. A countable dense set of
simple functions can be constructed with the help of Lemma 4.15. However,
the space is not complete. Let x, = ligrpy2,a+by2+1/m and let xo = 0 on [a,b].
Then for all A€ A, , we have

[X,04 — Xolla,p = ||xn°)~||a,b =1

so that d, ,(x,, Xo) does not converge to zero. On the other hand d(x,, x,,) =
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In"* —m™'| -0 as n, m— oo so that {x,} is Cauchy. Since x, is the only
potential limit (lim x,(¢)) = 0 a.e.) we sadly conclude that d, , is not complete.

This is a minor irritation since there is an equivalent “slope” metric d,,
cooked up by Billingsley (cf. Billingsley, 1968) which makes D[a, b] complete.
The Cauchy sequence exhibited previously is no longer Cauchy with respect
to dy. Thus reassured, we will by and large continue to work with d, ,. Before
proceeding however we make some comments about the phenomenon that a
space may be complete with respect to one of a pair of equivalent metrics but
not the other.

Let S be a set with two metrics, p; and p,. The metrics p, and p, are
equivalent if (S, p,) and (S, p,) are homeomorphic, i.e., if there is a bicontinuous
bijection between the two spaces. In this case, the two spaces have the same
open sets and a sequence converges with respect to p, if and only if it converges
with respect to p,. However if the homeomorphism is only bicontinuous but
not uniformly bicontinuous, it is possible to have a sequence which is Cauchy
in (S, p,) but not in (S, p,).

As an example define on R

t(x) = x/(1 + |x|)
and define for x, ye R
p1(x,y) = |t(x) — t(y)|
p2(x,y) = |x — yl.

Note that p; measures distance by homeomorphically sending x and y into
the interval (— 1, 1). As is well known, (R, p,) is complete. However (R, p, ) is
not. The sequence {n} is not Cauchy in (R, p,) but it is in (R, p, ) since

n m
n+1 14+ m

py(n,m) = —»1—-1=0

as n,m— co.
Following Whitt (1980) (see also Stone, 1983, and Lindvall, 1973) we now
construct a metric d on D(0, o) such that for x, e D(0, o), n > 0 we have

d(xmxo) g 0
iff forall 0 < a < b, a, be €(x,) = {t > 0: x, is continuous at ¢}
da.b(ra.bxm ra.bx()) -0.

Here r, ,: D(0, 00) = D[a,b] is defined by r, ,x(t) = x(1), a < t < bsor,,x is
just the restriction of x to [a, b]. Thus convergence in D(0, oo) will be reduced
to convergence in the more familiar space D[a, b].

Define for x, ye D(0, o)

1 )
d(x,y) = J dsj e (d, ((rs, X, 15,1 y) A 1)dt. (4.35)
0 t=1
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We will show in the next lemma that this definiton gives the desired notion
of convergence.

Lemma 4.16. (a) The integrals in (4.35) exist and define a metric.
(b) If x,, n > 0 are functions in D(0, 0) and 0 < a < b < ¢ with be €(x,) then
da.c(ra.cxm ra,cxo) - 0
iff
da,b(ra,bxm ra.bxo) -0 and db,c(rb,cxmrb,cxo) -0
(¢) If x,e D(0, ), n > O then
d(xm xO) - O
iff forall0 <s < t,sand te€(x,),
ds,t(rs,txm rs,zxo) - 0
Proor. (a) For x, ye D(0, o) we have for fixed s > 0 that d, ,(r; ,x,7,,y) is
continuous at te €(x) N €(y), t > s, and for fixed ¢ we have d, ,(r, ,x,r; ,y) is
continuous at se € (x) N €(y), s < t. To get an idea of how this is proved we

show right continuity in t. Given t € €(x) N €(y) there exists for any ¢, A€ A, ,
such that

1A —ellse v lix —yodls, — & < ds (r,x,7;,))
<ld—els v lx—yolls, (436)

Furthermore by continuity there exists 0 < h < ¢ such that for 0 < n < h we
have

[x(t) — x(t £ )| viy@®) -yt +n)l<e
Define

v JA) s<uxt
““)'{u t<u<t+h

so that 1'€ A, ,+,. Therefore
Ay pon = dg gin(Ts 040X T, 040 ) S WA — €l pan v X — yo Xl 141
<{IA—ellse v ilix—pollse} v IA—elleen v lIx = Ylleern
and from (4.36) applied to the expression in the braces we have the preceding

bounded by

<@, +¢ev ( sup |x(u) — x(®)| + |x(t) — y(®)|

t<u<t+h

+ sup |y(®) - y(u)l) <ds,+¢e) v+ (d,+e+e);

t<u<tth
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ie.,
dy o < d,, + 3e 4.37)

A reverse inequality is obtained as follows: Given ¢ there is some A€ A, 4y
(not the same 4 as previously) such that

Ay evn = Ay on(s 040X T 040Y)
2 |4~ ellsen v lIIx —yoldllg,in— & (4.38)

There are two cases to consider: (1) A(f) > ¢t and (2) A(t) < t. We only consider
case (1) and for this case define for small d < h

M) = [ Au) fors<u< i (t-—9)
={6(t A=) u—-A(t—-8)+t—9o forA=(t—-d8)<ux<t
so that the graph of A’ is linear between the points (1~ (t — J),¢t — ) and (¢, ¢).
This definition makes A'e A, ,. Now
14— ells,e = 1A — el a8 V 14 — el -3
<A —ellgeen v [A7( — 8) — (£ — 0)|
<A —ellg,tn
and therefore
14— ells,cen = 14— el > d,,. (4.39)
Likewise
Ix = yolils,=llx — yodlsi-e-9
v osup  [x(u) — y(A'(u))]

AC(t-d)<u<t

Slx—yoldlgenv  sup  {Ix@) — y@)|
l"(l—é)sust

+ ly(®) — y(X W)}
Now
sup  |y(t) — y(A' W)l = sup |y()—y@) <e

AT(-d)<u<gt t—d<v<t

and since A€ A, ,,, implies A(t + h) = t + h we have

sup  [x(u) — y(®) < sup |%(u) — y()|
AT (t-d)<ugt A (t-d)<su<i(t+h)

= sup |x(A7(v)) — y()I
t—d<v<t+h

< sup  (Ix(A7@) — y)| + [y(@) ~ y(@)])
t—d<v<t+h

< sup  |x(A7()) — y()l + ¢
s<v<t+h

=x—yoldllgisn+8
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ie.,
lx —yollly, < lx — yolls s+ &
Thus
Ix —yolls = llx—yoll,, —e>ds,—e (4.40)

We conclude from (4.38), (4.39), and (4.40) that
dogon=ds, vd,—€)—¢
=d, — ¢
which coupled with (4.37) yields the sandwich
d,, —e<d, ., <d;, + 3¢

giving the desired right continuity in ¢.

It is now relatively straightforward to verify the existence of the integrals in
(4.35). For fixed s, e™"(d, ,(r,,X.7;,y) A 1) is a.e. continuous and bounded and
hence Riemann integrable. Also by dominated convergence, |2, e™*(d; ,(r;..X,
r...y) A 1)dt is a.e. continuous in s; it is also bounded and hence Riemann
integrable.

The verification that (4.35) defines a metric is routine and is left as Exercise
44.1.2.

(b) Ifr, yx, = 7, %o and r, .x, = 1, X, then there exist 4, €A, ,, A, €A, ., and

lxn — xo0 Anllap v 140 — €llap Vv Xy — Xo0 A4llpe v 147 — ellpc —>O.
Define

_ (), a<u<b
Aalt) = {lﬁ,’(u), b<u<e

so that A,€ A, .. Then clearly
”xn - xooln"a,c v "ln - e”a.c - 0

giving r, .x, — r, .Xo. Note that this direction did not require continuity of x,,
ath.
Conversely suppose thatr, .x, — r, .x, so that there exist 1, € A, . such that

”ln - e”a,c Vv “xn - xooin"a.c g 0 (441)

Modify 4, to get A, with the following properties: The 1, must fix b and still
satisfy (4.41) and 4, € A, .. How do we construct 4,? Since |4, — e||, . — 0 we
can obtain 4, from 4, by modifying 4, only on a neighborhood (b — ¢,,b + ¢,)
of b, where 0 < ¢, — 0. On (b — ¢,, b + &,) push the graph of 4, closer to the
graph of e so that |4, — ell, . < |4, — ell,.. = 0. For the second expression in
(4.41) we will have
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“xn - xo°i;||a.c < “xn - xooln"a,c + “xo"'ln - x0°'1;-”

<o)+  sup  [xo(u) — xo(v)| =0

b—g,<u,v<b+teg,

since b e €(x,).
The construction of 4, gives r, ,A,€ A, , 1, A€ Ay . and

4 — ellap Vv 1%, = X0 0 Anllap =0
140 — €llp,c v 11Xa = X0 0 Anllp,c = O,

proving the result.
(©) Ifd, (rs X575 x0) > 0asn — coforalls < t, s and t e €(x,), then d; ,(r; ,x,,
r,.+Xo) — 0 almost everywhere with respect to the measure

ds 1o, 15(s)e™" dt 1y (1)

and by dominated convergence

d(x"’xO) = J\J' (1 A ds,t(rs.txm rs,:xo))e—' dtds -0
(5.0 €(0,1]x(1,0)

as required. Conversely suppose that d(x,, x,) — 0. For the purpose of getting
a contradiction, suppose there exist 0 < s < t, s, t € €(x,) and

liminf d{ := liminf d, ,(r; ,X,, % Xo) > O.

ThenforO<u<s
liminf 40" > 0

n—owo
since otherwise along some subsequence {n'} say
™) -0

implying by (b) that d{") —» 0, d"") -0, a contradiction. Similarly for v >
t>s>u

liminf d®, > 0.

n—o0

Thus by Fatou

liminf d(x,, x,)

n-*o0

sAL -]
> liminf [ J d®, A Ddue™ dv

n=o Ju=0 Jv=tvl
sAL o

> liminf (d{", A 1)due™dv
u=0 v=tvi n—00

>0

which is a contradiction. 0
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If each d, , used in (4.35) is complete in D[s, t] (for example, if d, , is the slope
metric) then (D(0, c0),d) is a complete separable metric space.

In practice, to prove Skorohod convergence in D(0, o0), we pick a typical
interval [a,b] and prove convergence in D[a,b]. The same is true for weak
convergence as Proposition 4.17 later shows.

We first consider projection maps. For ¢y, ..., t,€(0, o) define «,,
D(0, o0) - R* by

..... [

m,

bt X) = (X(E1), . x(80))-

Observe that for t > 0, =, is continuous at x if x is continuous at t. This follows
since if x is continuous at ¢t and x,e D(0, c0) with d(x,,x) — 0 then x,(t) =
7, x, = x(t) = m,x. Likewise if t;, ..., t; are continuity points of xe D(0, c0)
thenm, . is continuous at x. This has a nice interpretation for processes.
As in Billingsley, 1968, page 124, for a probability measure P on D(0, o0) let

Tp = {t€(0, 0): P{x € D(0, 00): x(t) = x(t—)} = 1}.

The complement of 7T, is at most countable (Billingsley, 1968, page 124). If
{X (), > 0} is a stochastic process on (Q, &, P) with all paths in D(0, c0) then
P=PoX 'and
Tiy=Tp={t>0P[X1t)=X(t-)] =1}
= {t > 0: P[X is continuous at t] = 1}

so that Ty is the set of fixed discontinuities of X. If in addition X is stochas-
tically continuous (as is always the case for extremal processes, but not always
for inverses of extremal processes) then T, = (0, oo). (Recall that for a process
X in D(0, c0) stochastic continuity at ¢ implies X(t—) = X(t) a.s.)

Lemma 4.17. Suppose X,, n > 0 are random elements of D(0, ).
(@) If 0<a<b,aand be Ty, thenr,, is as. continuous with respect to X,.
Thus if

Xu 9‘XO
in D(0, 0), then
ra,bXn:ra,bXO

in D[a,b].

(M) Ifty,...,t,e Ty , thenmn, . isas. continuous with respect to X,. Thus if

Xn => XO
in D(0, 00), then
(X,(t),i < k)= (Xo(t:),i < k)

in R,
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PrOOF. (a) The a.s. continuity of r, , is just a rephrasing of Lemma 1.16(c).
Finish with the continuous mapping theorem. The proof of (b) is similar
upon recalling that n, . is continuous at x € D(0, o) if x is continuous at
Lisovns by O

The open sets of D(0, c0) generate the Borel g-algebra denoted 2. Another
natural o-algebra to consider is the one generated by finite dimensional sets.
Suppose T < (0, o0) is dense. A finite dimensional set is a set of the form

{xeD(0, o0): (x(t;),...,x(t,))eH} = n;' _, (H)

where He B(R*),0 < t, < -*- < t,. It is a fundamental fact that

.....

(Billingsley, 1968; Whitt, 1980, page 73; Lindvall, 1973, page 117). The impor-
tant consequence of this fact is that if two random elements X, Y, of D(0, c0)
have the property that for any k > 1,¢,,...,t,€T

(X(t1)-, X(0) £ (Y(t),..., Y6)  in R
then
X2y
in D(0, o). (The distributions of X and Y agree on the Il-system of finite
dimensional sets generating & and hence agree everywhere.) Thus equality of
finite dimensional distributions implies that X and Y are distributionally
indistinguishable.

We now state the natural criterion for weak convergence in D(0, c0), which
reduces the problem to weak convergence in D[a, b].

Proposition 4.18. If {X,,n = 0} are random elements of D(0, c0) then
X, =X,
in D(0, ) iff for each a and be Ty, with 0 < a < b we have
Ta s Xn=> T2 X0
in D[a,b].
Remark. For notational simplicity, we will drop 7, , when indicating weak
convergence in D[a, b].

ProOF (Whitt, 1980). Because of the previous lemma we need only show that
weak convergence in D[a,b] for 0 < a < b, a, be Ty, implies weak conver-
gence in D(0, ). If F = D(0, o) is closed, weak convergence in D(0, o0) is
equivalent to (cf. (3.16), Billingsley, 1968, Theorem 2.1)

limsup P[X, e F] < P[X,€F]. (4.42)

n-*o0
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We assume without loss of generality, that for any xe F, x is continuous at
all te Ty,.

The way to relate weak convergence in D[a, b] to convergence in D(0, c0)
is through the following mechanism: For 0 < a < b, a, be Ty, define

Ha.b = ra—.IlJ((ra.bF)_)

where the bar indicates closure in D{a, b]. We prove a succession of facts about
the relation of {H, ;; 0 < a < b;aand be Ty} to F. Once these are stated and
checked, it will be easy to verify (4.42). We have first

FcH,, 4.43)

for each a, be Ty,. For if x € F then obviously r, ,x€(r, ,F)~, which restated
glVCS xera b((ra bF) ) = a b
Nextif a, b, c,de Ty,,a < b, c < d, [a,b] = [c,d] then

Hc,d < Ha,b‘ (444)

Ifxe H, jthenr, 4xe(r, ,F)™ so thereexist y, € F such thatd, 4(r. 4x,7. 4¥,) = 0.
Two applications of Lemma 4.16(b) (d. ; — 0 implies d, , — 0 implies d, , — 0)
results in d, ,(r, ,X, 7, 5¥s) = 0. Hence r, ,x e(r, , F)~ whence xer_}((r, ,F)7)

= g p-

The last fact needed is that if 5, and t,€ Ty, 1 < ¢, T 00, 5, | O then
F=1lm|H, , = ﬂ H ,. (4.45)
k-

Since we know from (4.43) that F = H,, we must prove (. H,, , < F. If
x€ ﬂk o, WE Will show x e F by showing d(x, F) = 0. Given any ¢, there is
an integer p such that if k > p we have s, v e™™ < ¢. Since xe H, , we have
Topt, X €5, F)” and so there exist y,€ F such that d, , (r, . %7, y,) =0
as n - oo. Thus

prlp

d(x, F) < limsup d(x, y,)

n—oo

= limsupj dsf dte™'d, (r X, T, y,) A 1)

n—oo

= limsupf dsf dte™*(d,, A 1)

n—oo

n—oo

11msupf dsf dte™'(d,, A 1)

+ limsup‘[ dsf dte™"(d, A 1)
Sp p

n—+oo

and because of the choice of p this is bounded by

1 tp
< ¢ + limsup J ds J dte'(d,, A 1) + & (4.46)
1

n—*w
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Since d_, (r;,..,%.Ts,.1,¥n) >0 we get by Lemma 4.16(b) that d,, in (3.46)
converges to zero almost everywhere in (s,t)e[s,, 1] x [1,¢,] and hence by
dominated convergence

d(x,F) < 2.

Since ¢ > 0 is arbitrary we get d(x, F) = 0 as desired.

With 4.43, (4.44), and (4.45) checked it is now easy to get to the desired
conclusion (4.42). From (4.44) and (4.45) it is evident that there exist a, be Ty,
such that

P[X,eH,,] <P[X,eF]+e
Now

limsup P[X,e F]

n—*w

< limsup P[X,eH, ] (by 4.43)

n—roo

= limsup P[r, , X, €(r,,,F)"].

n—o

Since we assume r, , X, =>r, , X, in D[a, b], if we apply the criterion for weak
convergence in terms of closed sets (cf. (3.16) or Billingsley, 1968, Theorem 2.1)
we get the foregoing probability bounded above by

P[r, , Xo€(r,,F)"] = P[Xoers 3((r,,F) )]
=P[X,eH,,] <P[X,eF]+e

Since ¢ > 0 is arbitrary, we conclude that (4.42) is correct. O

EXERCISES

4.4.1.1. Analyze the omitted case (2) after (4.38) in the first part of Lemma 4.16. Prove
d, , is left continuous at t € €(x) N ().

4.4.1.2. Check d, , is a metric for 0 < a < b and then check (4.35) defines a metric on
D(0, 0).

4.4.1.3. Consider the following alternative topology for D(0, o), which is constructed
by imperfect analogy with the method of Lindvall (1973). For k > 2 define

(Dk’dk) = (D[k‘ls kldk",k)
and set
Doo = l_[ Dk
k=2

where D, is the combinatorial product. A typical element of D, is x =
(x3,X3,...), Xek€ Dy, k > 2 and on D, x D, define a metric d, by

dux¥) = 3, 27801 A dyoxp )
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44.14.

44.1.5.

44.1.6.

44.1.7.

44.18.

44.19.
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(@) Show (D, d,,) is a separable metric space. If each 4, is complete, so is d,..
(b) Define r, = r,.1; and ¢: D(0, c0) - D, by

ox = (nx,k > 2).

Check ¢ is 1-1 and ¢(D(0, 00)) is closed in D,.
(c) Define a metric d* on D(0, 0) x D(0, o) by

d*(x,y) = do(¢x, $y).

Compare (D(0, o0),d*) with (D(0, c0), d).
(d) Find a criterion for weak convergence in (D(0, c0),d*).

Prove X £ Y in D(0, o0) iff for all 0 < a < b, a and belyn Ty,

ra,bX i— a.bY
in Dfa,b].

Let {X,,n > 0} be random elements of D(0, o0) and suppose 1 > 5,10, 1 <
t 1 o0, 5, and t, € Ty, . Show X, = X, in D(0, co0) iff

(ot Xns k 2 1) = (1, 1, Xo, k 2 1)
in H;o=1 D[sy, 1]

Prove addition and multiplication is continuous D(0, 00) x D(0, ) —»
D(0, o0) at those (x, y) for which €(x)) N (€(y)) = &. In particular, if X and
Y are stochastically continuous random elements of D(0, c0), then these
operations are a.s. continuous (Whitt, 1980).

The map T: D(0, co) — D(0, c0) defined by
Tx(t) = sup{(x(s)): 0 < s < t}

is continuous and in fact
d(Tx, Ty) < d(x,y)
(Whitt, 1980).

(a) What is the continuity set of the map from D(0, c0) —» D(0, o0) defined by

x— { sup ((x(x) — x(s—)) v 0),t > 0}?

0<s<t
(b) Check continuity for the map from D[0, 1] — R* defined by
x - {@x,i > 1}
where @,x is the ith largest positive jump of x in [0, 1].

Let {£,,n > 0} be random elements of M,([0, 1]) such that £, has no multiple
points and no atoms at 0 or 1. If

cn = fo
in M,({0, 1]) then setting T¢,(t) = £,[0,¢],n 20,0 <t < 1 gives

Tén = Té()
in D[O, 1] (Jagers, 1974).
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44.1.10. Let
A = {A: A is a strictly increasing homeomorphism of
(0, 00) onto (0, c0), A(0+) = 0, () = c0}.
Show for x,, n > 0 in D(0, c0) that
d(x,, xo) 0
iff there exist 4,,n > 1, 4,€ A, and
Xp0dy — Xq
locally uniformly and
14, — €ll0,c) > 0
(Lindvall, 1973).
4.4.1.11. The following maps are not continuous R* —» R®
ey, %0,...) = (X4, Xy + X3,%y + X5 + X3,...)

(X1,X2,--.) 2 (X1, X V X9,Xy V X3 V X3,...).

4.4.2. Weak Convergence of Maximal Processes to Extremal
Processes via Weak Convergence of Induced Point Processes

Rather than prove weak convergence of maxima to limiting extremal processes
directly we first prove weak convergence of induced point processes to limiting
Poisson processes and then apply an a.s. continuous functional. For a rough
sketch of the following results, let { X,,, n > 1} be iid with common distribution
F and suppose there exist a, > 0, b,, n > 1 such that

P[(M, <a,x + b,] = F'a,x + b,) > G(x). 4.47)
From the following, we will find (almost) that

; E(k/m, a7 (Xi—b,) = ; €ty ) (4.48)

in M,([0, o0) x R) where the limit point process is PRM. We then apply the
map which takes M, ([0, ) x R) - D(0, o) via Y, &, ;. = {\/ o< <efirt > 0}.

The point process convergence is a direct application of Proposition 3.21,
which we now repeat for convenience.

Proposition 3.21. Suppose E is locally compact with countable base and & is the
Borel o-algebra. For each n suppose {X, ;,j > 1} are iid random elements of
(E,&8) and p is a Radon measure on (E,&). Define &,:= % &;n-1, X, and
suppose £ is PRM on[0, o] x E) with mean measure dt x du. Then £, =& in
M,([0, 0) x E)iff

nP[X,,e-]>u onE. (3.19)



210 4. Records and Extremal Processes

In using Proposition 3.21 to discuss the relation between (4.47) and (4.48)
there are two small but potentially annoying problems that must be overcome.
The first is to translate the condition F € D(G), or what is the same (4.47), into
an equivalent statement (3.19) about vague convergence of measures. For
example, if F € D(A) then (4.47) is equivalent to

n(l - F(anx + bn)) = nP[an—l(Xl - bn) > X] - e—x’ XER-
This will not be equivalent to (3.19), viz.
nPla,'(X, —b)e-1—=p

where u(x, 0) = e”*, xR, unless neighborhoods of + oo are compact. Thus
the first difficulty can be overcome by correct choice of topology: E =
[—o00,00]\{—00} = (—00, 0], the homeomorphic image of (0,1]. Closed
neighborhoods of + oo are compact.

The second difficulty occurs when F € D(®,). The regular variation in the
right tail does not offer us any control over points (jn~*, X;/a,)e [0, 0] x
(— 00, 0), and such points will be simply neglected by our point processes.

Corollary 4.19. Let {X,,n > 1} be iid with distribution F € D(G) where G is an
extreme value distribution. Set M,, = \ /7, X, so there exist a, > 0,b,e R,n > 1
such that

Pla;*(M, — b,) < x] = F'(a,x + b,) > G(x). 4.47)

Suppose, for convenience, that the norming constants are chosen in the canonical
way as described in Propositions 1.9, 1.11, and 1.13.

(i) If G= A, set E=(—00,0],v(x,0] = e %, xeR, and then (4.47) is equiv-
alent to

&, = kz‘l Eqimazt(x,-b, = & = PRM(dt x dv)
in M,([0, ) x (— o0, c0]).

(ii) If G =®,, suppose F(0) =0 (so that X; >0 as.) and set E = (0, 0],
v(x, 0] = x7% x > 0. Then (4.47) is equivalent to

£ =Y Eamxi/ay=¢ = PRM(dt x dv)
k=1

in M,([0, o) x (0, 00]).
(i) If G = ¥, so that xo, = sup{x: F(x) < 1} < o, then set
E =(—00,0],v(x,0] = (—x), x <0,

and (4.47) is equivalent to

&, = Z B(k/n,(xk—xo)/(xo—y")):é = PRM(dt x dv)

a0
b

k=t
in M,([0, ) x (—o0,0]).
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PRrOOF. This is a direct application of Proposition 3.21. Note that (4.47) is
equivalent to

nP[(X, — b,)/a, > x] - —log G(x)

for x such that G(x) > 0 and this last convergence statement is equivalent to
(3.19) because of the way E is topologized. O

‘We may now prove the invariance principle first given by Lamperti (1964)
with a traditional proof (finite dimensional distributions converge plus
tightness).

Proposition 4.20. Let {X,,n > 1} be iid rv’s with common df F(x). Set M, =
\/;'=l X; and suppose there exist a, > 0, b,e R such that for a nondegenerate
limit df G(x)

P[M, <a,x + b,] = F'(a,x + b,) > G(x) (4.47)
weakly. Set

-
and suppose (Y(t),t > 0) is an extremal process generated by G. Then
Y=Y
in D(0, o0) is equivalent to (4.47).

Proor. Consider first the case G = A. From Corollary 4.19 we have
Cni= ; Eqk/m,az ! (X~b) = & 1= ; Eatre, i)

in M,([0, o) x (—o0, c0]) where the limit is PRM(dt x dv), v(x, 0) = e”*,
x € R. Let T, be the functional from M,([0, ©0) x (— 00, 00]) — D(0, c0) defined
by

(Tlm)(t) = (Tl ; e(tk,yk)> (t) = \/ yk
<t
provided m([0,t] x (—o0, 0]) > 0 for all ¢. Otherwise set t* = sup{s > 0:
m((0,s] x (—oo, 0]) = 0} and

(Tim® =\ _»

T=t*

The functional T, is defined (except at m = 0) and a.s. continuous with respect
to £ (see later discussion), and so by the continuous mapping theorem

’Tlén:Tlé

in D(0, oo) where
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(T, ) = \/ Ju=Y()

he<t

(cf. Section 4.3) and
(T,6) (@) = Y.

The treatment for G = ¥, is similar so consider now the case G = ®,. Again
we recall the problem of how to handle points (k/n, X, /a,) such that X, <0,
since the regular variation in the right tail offers no control over such points.
One method is to neglect these points by using the following device dating
back to P. Lévy.

The “Découpage de Lévy”

Suppose {X,,n > 1} are iid random elements of a metric space S with Borel
sets . Fix a set Be.% such that P[X, € B] > 0. Let K*(i) be those indices j
for which X;eB; i, let K*(0) =0 and K*(i) = inf{j > K*(i — 1): X;e B},
i > 1. Similarly define {K~(i)} by K™(0) = 0 and K~ (i) = inf{j > K~ (i — 1):
X;e B}. Also define N(n) = sup{i: K*(i) < n}. Then it follows that {Xx.},
{Xk-@}> {N(),i > 1} are independent and {Xg:,} is iid with

P[Xkx+»€A]l =P[X,e4| X, €B], AcB, Aed,
P[Xx-nweA]l = P[X,€A|X,¢B], A < B, Ae .

Furthermore N(n), n > 1 is a renewal counting function and EN(n) =
nP[X, e B].
To use this in our problem let S = (—00, 0], B = (0, c0] so that for x > 0

P[Xg+qy > x] = P[X, > x]/P[X, > 0]
~ x7*L(x)/(1 — F(0)), x— oo.
From Corollary 4.19(i1)

’2 Eliim, X lan) = Z o) (4.49)
where the limit in (4.49) is PRM. To compute the mean measure we assume
that a, is canonically chosen so that

nP{X, > a,x] - x7% x>0
and therefore
nP[Xx+q)/a, > x] = nP[X,/a, > x]/(1 — F(0))
- x"*[(1 — F(0))

so the mean measure, by Proposition 3.21,is dt x ax™* ' dx/(1 — F(0)). Apply-
ing the analogue of T, used earlier for the case G = A we get in D(0, c0)

(L]
_\=/1 Xgs@wlan=> \/ jx = Y(*) (4.50)

e <-



4.4. Weak Convergence to Extremal Processes 213

where Y(-) has marginals determined by
PLY(t) < x] = exp{—tx"*/(1 — F(0))}
= (@,(9y'a~F,
If Y, is the extremal process generated by ®, then we have
Y(') £ V()1 — F(0))) (4.51)

in D(0, o0).
Because {N(n),n>1} is a renewal function, N(n)/n— P[X, > 0] =
(1 — F(0)) a.s. in R, and it is easy to extend this to (recall e(t) = 1)

N([n-])/n=(1 — F(0))e (4.52)

in D(0, o0). (See the following if you are skeptical.) Since the découpage gives
{N(n),n > 1} independent of {Xk.,i > 1} one readily combines (4.50) and
(4.52) into a joint statement:

]
<\=/1 X+ i/ ns N([ﬂ'])/ﬂ) =(%(()/1 - F(0))),(1 - F0)e) (453)

in D(0, o0) x D(0, o0). Composing the two components (an a.s. continuous
operation; cf. Whitt, 1980, and Exercise 4.4.2.2) gives

N(n-)
yl Xir@y/an=>Yo(*). (4.54)

Note
N([»-)) ©

Xgr@/an =T, Z 1ix,> 01€/m, X,a)
k=1

so we have managed to neglect the points in [0, 0] x (—o00,0]. However,
(4.54) is not quite the desired Y, = ¥, but this will be achieved if

N([»-D P
d \/ X,mi,/a,,, Y,]-0
i=1

and by Proposition 4.8 it suffices to show the foregoing with d, , replacing d
for 0 < a < b. Since Skorohod distance is bounded by uniform distance we
show

i=

N([nt]) [nt]
XK*(i)/an - \/ X;/a,
i=1

lim P[ sup > s] =0 4.55)

n—o a<t<b| i=1

for any given ¢ > 0. However, observe that

[[\/] X/a, > 0] < [N([na]) > 1]
i=1

N([ntD [nt]
<! sup
a<t<b

V' Xxew/an— \=/1 Xi/a,

i=1

_ o],
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and therefore the probability in (4.55) is bounded by
{na)
P[\/ Xi/a, < 0] = F")(0) - 0
i=1

as required.

Now let us see why T, is a.s. continuous. Consider as an illustration the
case G = A. It suffices to show that T, is continuous in D[a,b] (cf. Lemma
4.16(iii)) at me M,([0, o] x (— o0, c0]), where m satisfies the following:

m({a} x (—o0,0]) = m({b} x (—,0])=m([0,0) x {c0})=0,
m([0,t] x (x,0)) < 0,  m([s,t] x (—0,x]) = 0

for any a < s <t < b, xeR. Note that PRM ¢ lives in the set of m with these
properties.

Let m,e M,([0, ) x (—0,00]) and suppose m, - m. Suppose for con-
creteness that T,m(a) < T;m(b). Choose 6 < Tym(a) such that m([0,b] x
{6}) = 0. For large enough n,

m,([0,b] x (8, 00]) = m([0,b] x (8, 0]) = p,

1 < p < o0, and there is an enumeration of the points of m,, call it ((t{, j™),
1<i<p) with 0<t{" < <t <a<tl) <<t <b, q<p, such
that (Proposition 3.13)
lim (¢, j), 1 <i<p)=((tj) 1 <i<p)

where ((t;,j;), 1 <i < p) is the analogous enumeration of points of m in
[0,b] x (8, c0]. Pick 8 < $min(¢; — t;_,) small enough that 5-spheres about
the distinct points of the set {(¢;, j;)} are disjoint and in [0,b] x [J, c0]; for
g + 1 < i < p, the d-spheres should be in [a,b] x [, c0]. Pick n so large that
each e-sphere contains the same number of points of m, as of m. Define 4, as
a homeomorphism of [a, b] onto [a, b] by

A(a) = a, Ab)=b andforg+1<i<p
A,(t;) = inf{t{: (¢, j{) € sphere of radius é about (t;, j;)} and 4, is linearly
interpolated elsewhere on [a,b]. Then

sup |Tym,(t) — Tym(A,(t))] < 0

a<t<b

sup |4, —tj<$é

ast<b

showing Tym, and T, m are at a Skorohod distance <4 in D[a, b].
We now comment on assertion (4.52). Since N(n) = Y I, lix,>0; We get for
any t > 0 by the strong law of large numbers

n"'N([nt]) - (1 — F(O))t a.s.

and hence for any {t;) dense in (0, c0) we get in R®
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{nIN([nt;]),i = 1} > {(1 — F(0))e(t,), i > 1}

so that for almost all » the monotone functions n"*N([n-]) converge on
a dense set, and hence weakly, to the continuous limit (1 — F(0))e. Local
uniform convergence ensues from (0.1). This suffices for the Skorohod con-
vergence in (4.52).

Finally we return to the découpage and give an indication of how this is
proved. Since N(n) = ) I, 1;x,. 5 it is enough to show

{XK*(I‘)}’ {XK‘(i)}’ {l(XjeB]}

are independent with the given distributions. For integers k, [, and m we look
at the joint probability

k 1 m
P{Q [Xx+@€B;] ﬂl [XK‘(j)eAj] ml [llx,em = 5(1]}
i= Jj= a=

where B, ¢ B, B.e ¥, A, < B, A, &, and {J,, 1 <a <m}e{0,1}™ For con-
creteness we suppose the number of ones Y ™., 8, > k and the number of zeros

m1(1 — é,) = m. Suppose ones occur in the sequence 4,, ..., J,, at indices
i(1), ..., i)™, 8,) and zeros occur at indices j(1), ..., j(m — Y =, &,). The

preceding joint probability is then
k 1 L6, m—x5,
1 { () Xin€B,] () Xiw€Ad () [Xin€Bl () [XjqeB ]}
r=1 q=1 p=k+1 q=1+1

which by independence is

k 1
nl P[X,eB,] [[1 P[X,e A,]P[X, e BJ¥*P[X, € BJ" %!
p= q=

—p=1(P[X,,€B])qu(P[quBf])P[XleB]uP[XlEB] £,

k 1 m
= I—[l P[ X, €B,] l_lx P[Xx-p€A,] I]l P[lix, cp = 6.1
r= q= a=
as required. O

We now look at some weak convergence applications of Proposition 4.20
which follow by the continuous mapping theorem. For each of these, we
suppose that the assumptions of Proposition 4.20 hold, i.e., that (4.47) is valid.

If Y is extremal-G where G is continuous with left and right endpoints
x; and Xx,, respectively, we may consider along with Y its path inverse
Y™ ={Y"(x), x; < x < xo} defined by

Y “(x) = inf{t: Y(£) > x}.

Y < is a process with independent increments (Proposition 4.8). (Note here we
take right continuous inverses to keep all paths in D(x;, x,).)
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Corollary 4.21. If (4.47) holds then
T=Y"
in
D(0, «0) ifG=9,
D(— o0, o0) ifG=A
D(—0,0) ifG=VY,.

Remark. D(— o0, ) and D(— o0, 0) are defined analogously with D(0, o).

PRrOOF. In case G = A or ¥,, we return to Corollary 4.19 and apply the
functional T,: M,((0, ©) x (—o0, 0]) = D(—00, 00) (in the case of A, say)
definedonm =) ¢, ., by

(T,m)(t) = inf{z,: y, > t}.

Then 5} €¢,.50) = Y and T, is as. continuous by an argument similar to
the one used to show T; a.s. continuous. Hence

LiL =Y =Ti{=Y".
In case G = ®, we again use the découpage: For t > 0 let
M (t) = inf{i: Xg. ) > t}
and note
Y, (t) = inf{i/n: X;/a, > t}
and because ¢t > O this
= inf{K*(i): Xg+/a, > t}/n
= K*(inf{i: Xx./a, > t})/n

= K*(M*(a,1))/n
and so
Y,7 () = K* (n(n"*M* (a,t))/n. (4.56)
Applying T, to (4.49) we get in D(0, o0)
M (a,t)n=Y" 4.57)

where Y appears in (4.50). From (4.51) we have in D(0, o)
Y() £ Y(()(1 ~ F(0))

and therefore we have
Y ()= (1~ FO)Y ()

in D(0, oo) as well. Since by renewal theory we have
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K*(n)/n— (1~ F0))! as.
we get by the argument leading to (4.52)
K*([n-])n—-(1 — F@Q))'e as. (4.58)

in D(0, c0). Combine (4.57) and (4.58) into a joint statement (cf. Billingsley,
1968, page 27, and Exercise 4.4.2.1)

(M (a;)/n, K*([n-])/m)=((1 — FO) Y., (1 — F(0)"¢)

in D(0, c0) x D(0, c0) and composing components (an a.s. continuous opera-
tion; cf. Exercise 4.4.2.2 and Whitt, 1980) we get from (4.56)

Y =K ([T M (a,)]) = (1 — FO) (L - FO)Y,™ = ¥
in D(0, o). 0
Remark. One might be tempted to proceed from Proposition 4.20 via the map

T, defined on nondecreasing functions by T;x = x~. However, this is not
continuous on D(0, c0). Consider x,(t), t > 0 defined by

1-nt, O0<t<i
xO=<3i+n1, I<t<i
t>1
1 O0<t<l1
2
x(t) =
(®) {t t> 1.

For any 0 <a <b, sup,cp.nlx.(t) —x(t)) < 1/n—>0 and so in D(0, c0),
d(x,,x) —» 0. However,

(=]

O<t<i—nt
t-nt'<t<i+nt
1+nt<t<1
t>1

x, () =

e N

t<}
I<t<l1
t>1

x7() =

e O

and so matter how time is dilated, the distance between the graphs is at least
1/2.

Next consider DT(0, o0), the subset of D(0, co0) consisting of nondecreasing
jump functions; these are nondecreasing functions which are constant between
isolated jumps. In a compact subset of (0, o0), such functions have only finitely
many jumps. Define

T,: D(0, 00) - M,(0, 0)
at xe DT(0, o) by
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(nx) = Z &,

where {t;} are the points of discontinuity of x. This is relevant because extremal
processes live in D1(0, ) and if Y is extremal

T4Y = zst"

where {7,} are the jump times of Y. The map T, is continuous when re-
stricted to D(0, c0). For suppose x,, n > 0 are functions in D'(0, o) and
d(x,,x,) — 0 in the Skorohod topology. If f e Cg (0, o), the support of f is a
compact set contained in [a, b] for some 0 < a < b with aand be €(x,). There
exist A,€ A, , such that

IS:le] 1%(4a(t)) — Xo(2)| = O (4.59)
| sup 14,0 = 110 (4.60)

If Tyx, = Y ;& then we must cl;eck
LS 1 () = lim 3 f(t) 110, (t") (4.61)

and since x, € D1(0, o) for n > 0, the sums in each case involve only a finite
number of nonzero terms. From (4.59) and (4.60) we see that the jump points
of x, on [a, b] must be close to those of x, and (4.61) follows.

This means that T, is a.s. continuous with respect to the distribution of Y
and from the continuous mapping theorem we get the following result.
Corollary 4.22, If (4.47) holds then

L.,Y,=>T.Y,
ie.,

kzl En-1() ™ Hoo = ZE:,,
in M,(0, o) where p,, is PRM(t™"d).
The last statement follows from Proposition 4.9. Note

LY, =TM,, = ;":n'lL(k)
since the function {M,,,, t > 0} jumps at {L(k)/n, k > 1}.

Compare this result with Corollary 4.5 where F was required to be con-
tinuous. Here we require F € D(G).

Now apply T, to the convergence in Corollary 4.21 and use again the
continuous mapping theorem.

Corollary 4.23. If (4.47) holds then
.Y, =TY"
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ie.,

:21 EX gy ~blan = Xk:evuk)
in
M, (0, ) ifG=9,
M, (0, ) ifG=A
M, (—0,0) ifG=1Y,.

Recall that Y ,eyq,, is PRM with mean measure determined by S(x) =
—log(—1log G(x)).

Again compare this result with Proposition 4.1(iii).

Remark on the magic of the invariance principle: Suppose {X,,n > 1} is
any sequence (for example, stationary) which is not necessarily iid but for
which the point process convergence conclusion of Corollary 4.19 is valid.
Then for such a sequence Proposition 4.20 and Corollaries 4.21,4.22, and 4.23
all hold. This remark will be illustrated in the next section, where we study
extreme values in the important example of moving average processes.

The preceding results detail the basic convergences. We now give some
further illustrations of the power of the invariance principle.

Form =Y ¢, e M,(0, o), such that m(1, o) = oo, the map

Tsm _'(tl,tz,...)

where | < t; < t,---is a.s. continuous from M,(0, ) - (0, 0]* = HT(O, )
(cf. Proposition 3.13 and Exercise 4.4.2.11). Apply T to the convergence in
Corollary 4.22 so that for the terms to the right of 1 we get in R®

{L(k)/n: L(k) > n} = {r;,i = 1} £ {e i > 1}. (4.62)

Letting u(n) = p[1,n] = number of records among X, ..., X,,, we rephrase
(4.62) as

n" ! (L(u(n) + 1), L(p(n) + 2),...)={"; i > 1}.

In particular we get for the index of the first record past n that for x > 0 as
n— oo

P[(L(p(n) + 1) — n)/n < x] - P[e" — 1 < x] = P[T;, <log(l + x)]
=1—e 80+ D = x /(1 + x).

Likewise for the index of the last record at or before n we get for 0 < x < 1
asn— o

Pl(n — L(um)/n < x]->P[1 -1, <x] = P{ i &, (1 —x,1) 2 l:l
k=00

and using the fact that ) &, is PRM(¢7'dr) this probability is
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1 —exp{—logl/(1 —x))}=1—-(1—-x)=x

giving an asymptotic uniform distribution.
In a similar way we find for x > 0asn— «©

P[n™(L(p(n) + 1) — L(p(n))) < x] - Pr; — 1.4 < x]
_{x—log(1+x), x<1
T —log(x7M(1 4+ x)), x>1.

The last distribution may be computed by using the fact that (r, — 1) and
1 — t_, are independent random variables (since PRM’s on (0, c0) have inde-
pendent increments) so that the distributionof 1, —7_; = (1 — 1) + (1 — t_,)
is a convolution of the two previous limit distributions.

Some cheap variants of (4.62) are

YLk 4+ 1) — L(k): L(k) > n) = {1, — 15, i = 1} £ {elir — el 1 > 1}
(L(k + 1)/L(k): L(k) > n) = {e%,i > 1}
(log(L(k)/n): L(k) > n)={T;, i > 1}.
Now apply T in Corollary 4.23. For points to the right of 1 we get when
G=A
(Xpgy — ba)/an: Xy > ap + b)=> {1+ T, i > 1} (4.63)
so that
(Xparry — Xpa)an: Xpgy > Gp + by) = (Ey, Eq, ..., (4.64)

These results can be made marginally neater by employing a change of
variable: Recall that possible choices of a, and b, are

b,=F~(1-n""), a,=F~(1—(ne)™")—b,
so that
a,+b,=F (1 —(ne)™).

Setting T = a, + b, we invert and recalling that a, is the retraction to the
integers of a slowly varying function a(-) we get, for example, in (4.64) that

1

(XpLges1) — Xy w)/a <T:__F—(l5) Xpw > T)=(E,,E,,...)

as T — o0.
When G = @, similar results hold:

(X Lo/ Xpgy > @) = (Y(z)): Y(z;) = 1) £ (exp{a”'T}}, i > 1).

Changing variables T = a, gives a somewhat neater limit theorem as T — co.
A variant is
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(XL(k+1)/XL(k): Xrw > T) ==>(emle'} i>1) < (Uil/a, i>1)

where U,, i > 1, are iid uniform (0, 1) random variables.
By now, the idea will have become clear.

EXERCISES

4.4.2.1. Suppose X, Y,,and n > 0 are random elements of D(0, co) and all are defined
on the same probability space. If

X, = X,
in D(0, c0) and
Y, =Y
in D(0, c0) where Y, is a.s. constant then show
(Xn, Y) = (Xo, Yo)
in D(0, o0) x D(0, co) (Billingsley, 1968, page 27).

4.42.2. (a) Suppose x,, n >0 are functions in D(0,c0) and t,€D(0, 0) is non-
decreasing for n > 0, 1,,: (0, 0) — (0, ), d(x,, x,) = 0, d(z,,7,) = 0. If 7,
is continuous, show

d(xn 0Ty, Xo© IO) -0

(b) Assume in addition x, is nondecreasing, x,€ D(0, o) and x,: (0, c0) -
(0, 0). Show

d(Tn O Xy, Tg© xo)-

Hint: Try using Exercise 4.4.1.10. See Whitt (1980) for details and re-
finements.

4.4.2.3. Combine Proposition 4.20 and Corollary 4.22 to show
(Y, L) =(Y,Y")
in D(0, o0) x D(—00, o0) fG=A
D(0, c0) x D(0, 0) fG=0,
D(0, 0) x D(—00,0) ifG="1Y,.

4424. Let {X,,,1 <k<nn>1} be a triangular array of dependent random
variables defined on the same space and suppose {#,,,0 <k <nn>1}is
an array of g-algebras such that X, , is %, , measurable and for each n,
Fo k-1 © Z i If for a measure v

n,

(@ 21 PLX, . > x| %0115 v(x, 0)

3

P[X, s < V1%, 1112 V(— 0, )]
1

k

for y < 0 < x, x and y not atoms of v and
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(b) max P[|X,,|>x|%, ;150 forx>0
1<j<n

then
; 12 Mg ; &
in M, ([ — o0, 0]\{0}) where ) ¢, is PRM(v).
Hint: Review Proposition 4.8. Define the random measure

(@, ) = z PLX,.€ | Fos]

so that (a) is equivalent to
P
Hy =V
in M, ([ —o0, 0]\{0}) (Durrett and Resnick, 1978).

44.25. Let F,, n > 0 be probability distributions such that F, - F, weakly. If Y™ is
extremal-F, show

Y™ = YO
in D(0, c0).
44.26. Let 1(v) = inf{n: M, > v}. If Fe D(®,), find a limit law for M, as v — co.
4427. If Y, is extremal-®, show for any ¢ > 0
| Y(c') £ ¢y, in D(0, c0).
If Y is extremal-A show for ¢ > 0
Y(c') L Y(*)+loge  in D(0, o).

4.4.2.8. Suppose {X,,n > 1} are iid random variables satisfying for 0 < p, q < 1,
p+g=1a>0
Pl|X,| > x] ~ x"*L(x), X —» 00

lim P[X, > x]/P[|1X,|>x]=p

X—*a0

lim P[X, < —x1/P[|X,|>x]=q.

X0

Define for x > 0

a

v(x,00] = px~

v[—o00, —x] =¢gx~

and set E = [ —o0, 00]\{0} so compact sets are those closed sets bounded

away from zero.
(a) Show

& =Y Em xijay = € = PRM(dt x dv)
on M,([0,0) x E), where a, is chosen so that

a, = (1/P[|X,| > )" (n).
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(b) Let X{! be the term of maximum modulus among X, ..., X,. Find a
limit law for X{" by applying a functional to the result in (a).
(c) Let T{*®: M, ([0, ) x E) — D{0, c0) be defined by (0 < a < b)

Ts‘“"”(Z s(rk.y.,)>(‘)= 2 Yelyeqasn:
k T <t

Show that Ty is a.s. continuous with respect to £ and compute
E(T{"0) @),  Var(T"¢)().
(d) For 1 =d, > 8, > --- — 0, show by using the Kolmogorov convergence
criterion (summing the variances) that

3 (X)) — BT )0)

converges a.s.

(e) Pick {4;} at your convenience to guarantee that convergence in (d) is
uniform for 1[0, 1] (Kolmogorov inequality).

(f) Show that for any i

nt]
X1 = a,* 21: Xilyx,>a,60 — Ny YEX ) Ygzux, e 011

= ué(ds, du) — tf uv(du) = X%(")

Ouf>31,5<1) (1>1ul>8))
in D[0, 1] and that almost surely and uniformly on [0, 1]
XX

as i — oo, where X is a stable process.
(g) Show

()
X)) =a" Zx X; — na, X gz <1y = X (1)

in D[O0, co) by showing, using Kolmogorov’s inequality and Karamata’s
theorem,

lim limsup P{d(X?, X2) > ¢] =0

i“00  n—co

where d is the Skorohod metric on D[0, c0) (Resnick, 1986; Durrett and
Resnick, 1978).

44.29. If Fe D(A) show for x > 0
PLa;" (M, — M,_y) > x|ne{L(j), j = 1}] > e
as n —» o (McCormick, 1983).
4.4.2.10. Suppose X,, k > 1 are iid, X; > 0, and
P[X, > x] ~ x"*L(x), X = 00, a> 1.

Let ©(B) = sup{k > 1: X, > Bk}.
(a) Check 1(f) < 0.
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(b) The convergence in Corollary 4.19 holds with n replaced by a continuous
variable, u say.

(c) Let Ty: M,[0, ) x (0, 0) — M,([0, c0) x [0, 00)) be the map induced by
the transformation of points

&y - @y

Why is this map a.s. continuous?
(d) Apply T, and then T, and conclude as u — oo

T a@)/(-))/u = sup{t,: t,ji ' < ()}
Change variables to get in R as s — oo
(1/s)/sa(s) = Y*(1)

where P[Y#(1) < x] = (®,(x))*" V. What is afs)? (Husler, 1979,
Resnick, 1986)

Check Ty is continuous when restricted to {me M(0, c0): m(1, 00) = oo}.

Suppose {X,, n > 1} is iid with common distribution F such that for a, > 0,
b,eR

F*a,x + b,) = G(x)

nondegenerate. Let £ = Y, &,.u, D€ homogeneous PRM on [0, 00)? and let
the points in [0, 00) x [0,n) be {t{”,u{”} where 0 < t{” < t{? < ---.
(a) {u{™} is iid, uniform on [0, n).
(b) Foreach n
{07 (X = b)), k 2 1} £ {a ' (F-({(1 = n7'uPY}") — ), k 2 1)

in R®.
(c) We have (F~(y'") — b,)/a, = G~ ().
(d) In M,([0, o0) x (—00,00])
Zsthn—*.a;wr“({u —n-luMmiimy—p ) g £(t4, G+ (1))

almost surely if G = A with similar results in the other cases.
(¢) Hence

a
Y. Egont.azt(x-boy = PRM
k=1

and the corollary about weak convergence to extremal processes follows
(Pickands, 1971; Resnick, 1975; de Haan, 1984a).

4.5. Extreme Value Theory for Moving Averages

In this section we analyze stationary moving average processes where the
averaged variables have distributions with regularly varying tails. Such pro-
cesses are worthy of our attention for at least two reasons. First of all, from
the didactic perspective, the analysis of such processes offers additional excel-
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lent illustrations of the usefulness and power of the probabilistic and analytic
tools thus far developed. Secondly, the autoregressive moving average pro-
cesses of orders p and q (ARMA (p, q9)) are among the most frequently used
models in time series analysis and ARMA’s driven by noise sequences with
regularly varying tail probabilities will satisfy the hypotheses of the results to
be given later.

Suppose {Z,, —o0 < k < o} is a sequence of iid random variables and
assume

P[|Z,| > x]eRV_,, a>0 (4.65)
and
. P[Z,>x] . P[Z, < —x]
lim ———=p, lIm-——"———=q, 0<p<l, p+q=1
o PUZI> X1 P S POZI> %]
(4.66)
The sequence of real constants {c;, —o0 < j < oo} satisfies
Y leP <o  forsome0<d<anl 4.67)
Jj—o

The strictly stationary sequence of moving averages is given by

Xn = i CjZ"

Jj—o

- —00 < n < . (4.68)
We study the weak limit behavior of various quantities related to the extremes
of {X,}.

An immediate issue is whether the series in (4.68) converges. Since 0 < § <
1 A a we have by the triangle inequality

E|X,I° < Y II°E|Z,j* = E|Z,[ } |¢j|* < oo,
7 i

using (4.67) and the fact that E|Z, |’ < oo (Exercise 1.2.2). Thus the series in
(4.68) must be almost surely convergent.

Note that (4.65) and (4.66) are conditions defining global regular variation
involving both tails and is thus stronger than the right tail regular variation
conditions tupically encountered in extreme value theory. Since X, is defined
by an infinite series, it is convenient for analysis of extremes and other
functionals to have firm control of left tail behavior.

The one point uncompactification: The global regular variation conditions
(4.65) and (4.66) lead to consideration of such state spaces as [0, 0]%\{0},
[—o0,0]%\{0} for some d > 1 where {0} is understood as the origin of R. In
order that (4.65) and (4.66) be equivalent to appropriate statements about
vague convergence of measures, it is essential that these spaces be understood
to have topologies obtained by removing the origin from compact sets. Thus
[— o0, 0]%\{0} is the compact set [ — o0, c0]* with 0 removed, and so on. In
such punctured spaces, compact sets must be bounded away from 0. The
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spaces may be metrized by interchanging the roles of zero and infinity. For
example, in (0, co] a suitable metric is

d(x;,x;) = |x;' — x?‘
for x; > 0, x, > 0. In [ — 00, 00]?\{0} each of the following sets is compact:
{xe[—00,00]\{0}: |x,| + |x,] > 1}, {xe[—o0, 0]*\{0}: [Ix|| > 1}

where x = (x,,x,) and ||x|| = (x? + x3)"2.

For further results and other approaches see Rootzen (1978), Finster (1982),
Hannan and Kanter (1977), Kanter and Steiger (1974), and Davis and Resnick
(1985a and b, 1986).

Here is an outline of our approach: First, notice that (4.65) and (4.66)
are equivalent to a convergence of point processes result. To see this, let
E = [—o0,0]\{0} and

a,=(1/PL1Z,| > -1)"(n)

so that a, is the inverse function of 1/P[|Z,| > x] evaluated at n. Then (4.65)
and (4.66) are equivalent to

nPla;'Z e 15 v 4.69)
in [ —o0, 0]\ {0} where
v(dx) = pax™* 7 dx 1, (%) + qa(—x)"*dx 1 _y 0)(X),

and therefore Proposition 3.21 applies and gives

a0
,‘; Eon~1,a7120 = Zk: Ettrerind) (4.70)

as n— o0 in M,([0, ) x [—00,0]\{0}) where the limit is PRM(dt x dv).
We want a similar result involving the X’s. Define for m > 1

XM=Y ¢Z,, —0o<n<owm
lil<m

and think of X™ as a simple functional of the vector
P =(Z,-;, |jl <m)

which suggests looking at the point processes
a0

and in fact as n - oo we are able to show weak convergence of these processes.
A simple continuity argument gets us to convergence of point processes based
on (X™, —c0 < n < o) and then a Slutsky-style approximation argument
allows us to remove m.

To carry out this program in detail we need some preliminaries. The first
result is a special case of a theorem of Cline (1983a and b).
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Lemma 4.24. If {Z,} satisfies (4.65) and (4.66) and {c,} satisfies (4.67) then

. P[Y;lel1Z] > x]
lim EAf M) =Y |e|n 471
x0 PLZ,| > x] ZJ:| II ( )

PRrOOF. We begin by showing a tamer result, namely

i PLCZi] + 1eal|Zy] > x]
o PUZI>]

= leq[* + e, 4.72)

This is a standard analytical exercise (Feller, 1971), but the following alterna-
tive approach (Resnick, 1986) is more fun and some of the mechanics will be
needed later. The regular variation conditions (4.65) and (4.66) imply

nPla;'(1Z,1,1Z,))e -1 > p (4.73)

on [0, 00]*\{0} where p concentrates on the axes {(y,0), y > 0} U {(0, y),y > 0}
and for x > 0

#{(3,0):y > x} = pu{(0,y): y > x} = x™*
To check this note for x;, > 0, x, >0
nPla,(1Z,],1Z,])&(x;, 0] x (xz,0]]
=nPla,"|Z,| > x,1P[a,"|Z,] > x,]
-x7%0=0
so u has no mass in the interior of [0, c0]2. However,

{(3.0):y > x}} = lim nP[a;"1Z,] > x,a;"|Z;] > 0]

R~

= lim nP[a,"|Z,| > x] = x™*

n-+oo

Now let {Z,,ZZ,n > 1} be iid with (Z,,Z}) < (Z,,Z,), n > 1, and applying
Proposition (3.21) to (4.73) gives

a0
;;1 Eikn-1,a; 1123, ZE) = ; (e Gioon + 0, in) 4.74)

on M,([0, o) x ([0, 00]%\{0})) where the limit is PRM(y). Now define
T: [0, 0]*\{0} — (0, 0] by

T(xy,x3) = leq|xy + |ca)x,.

If for any compact set K < (0, o], T~'(K) is compact in [0, c0]*\ {0} then one
readily checks that Proposition 3.18 may be applied to (4.74) to obtain

n
kZI Bk~ az (e 1231+ le2l 2

= ; Eitiulesliip T+ ; it lealii) (4.75)
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where the limit is the sum of two independent Poisson processes and is
hence Poisson. The mean measure of Y, & |, is €asily calculated to be
dt x |¢;|"ax™*"'dx, and hence the limit in (4.75) is PRM(dt x (|c,|* +
|c;|*)ax™*"! dx). Applying Proposition 3.21 in reverse order gives that (4.75)
implies

nPa, (e, |1 Zil + leal1Z{1 € -1 (ley|* + lep|*)ax ™"t dx
on (0, c0], and this is equivalent to

i PLCIZE] + [¢3]12]] > a,x]
x> P[|Z,| > a,]
and this is readily seen to be the same as (4.72).

Thus the last detail in the verification of (4.72) is to check the compactness
condition of Proposition 3.18, viz

T7Y(K) is compact in [0, 0]*\{0} if K is compact in (0, c0]. (4.76)

=(lc1* + |, [)x7"

Note first T is continuous so if K is compact T*(K) is closed. If 0 < §, | 0,
we have {(d,, 0],k > 1} is an open cover of (0, o] and hence an open cover
of K, and therefore for some 6, (§,00] = K. If T7!(d, 0] is compact in
[0, 0]*\{0}, then T~'(K), being a closed subset of T7'(3, c0], must also be
compact. Thus it remains to prove T!(d, o] is compact, but since

T71(3, 0] = {(x1,%,)€[0,001°\{0}: |c, |x; + |ca]x; > 8}

is obviously bounded away from 0, the result is clear.
We now must leap from (4.72) to (4.71). For x > 0, write

P[zlc,-nzjl > x]
J
= P[z lel1Z1 > x.\/ 1112 > x] + P[Z_ I5l1Z1 > x,\/ l¢l1Z)] < x}
J J J J

= P{U I:lchZ,-I > x:l} + P[Z 1 Z| yepuzi<n > %\ 161124 < x]
J J

J

< ; P[|z,.| > x|c,.|-1] + P[; el 1Zj1 ez, > x]
and therefore applying Markov’s inequality
P[; le;l1Z;| > x:l/P[IZII > x:l
< ; P[|Z,] > x|l )/PL1Z,] > x]
+x7! ; I ENZy | Yz, < xle;-1/PLIZy | > x]

=I+1I
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For I we have by Proposition 0.8(ii) that for all j such that |c;| < 1 (i.e., all but
a finite number of j) there exists x, such that x > x, implies

PLIZy| > x|¢)| " I/PLIZ,| > x]
< (1 + )l

This bound is summable because of (4.67) and hence by dominated
convergence

In considering I1, suppose temporarily that 0 < a < 1. From an integration
by parts
E|Z\|Yyzy<n _ [§ PLIZ,| > uldu _
xP[1Z,|>x]  xP[|Z,| > x]

and applying Karamata’s theorem 0.6 this converges, as x — oo, to
1—a)'—1=a(l —a)™.

Thus E|Z,|1yz,1<x € RV, _, and hence applying again Proposition 0.8(ii) we
have, for all but a finite number of j, that for x sufficiently large and some
constant k > 0

161 ENZ1 1 1yz,) < xje)-1y

xP[|Z,] > x]
= |¢j| <EIZI'1”Z‘|SJ"CJ|“‘1> E|Zy|lyz,1<n
’ E\Zy|Yyz,1<q /xPLZ,]| > x]

< le,—l(IC,-I")““*““’ = k|Cj|&
which is summable. So we conclude

limsup I < kY J¢illel*™ =k Y |¢l°
J

X0 Jj
and hence when 0 < o < 1 forsome k' > 0
limsup P[Z 112 > x:I/P[Izll > x:| <Kk'Y gl 4.77)
x—=w j J

If « > 1 we get a similar inequality by reduction to the case 0 <« < 1 as
follows: Pick ye(x,ad™') and by Jensen’s inequality (e.g., Feller, 1971, page
153)if we set ¢ = Y ;lc;l, p; = |¢jl/c we get

<Z chHZj|) = Cy<2 PJ!Z,|) <c’ Z Pj|Zjly
J J

i

= Y g1z
J
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Then
P[Zjlcj”Zjl > x] < P[Zj|cjllzj‘y >cl7x7]
Pl1Z,|>x] — PLZ,|" > x"] '

Now use the fact that P[|Z, ' > x]€ RV_,,-1,6 < ay™! < 1,and the preced-
ing result to obtain

__PIY,lglIZ] > x]
l J 1] J
Y T P(1Z,] > x]

which is similar to (4.77).
Now we are ready to prove (4.71): For any integer m > 0

P[Z;IC,-IIZ;I>X]>P[Z|j|5mlchZ,-I>X]_> T o
PLI1Z,|>x] —  P[Z|>x] izm

by the obvious extension of (4.72) and since m is arbitrary

limian[Z PAIVARS x]/P[|z,l > x] > Y Il
j j

X

<kYlg et <0 (@4TT)
J

On the other hand for any ¢ > 0
PLY;lcilIZ| > x] < P n<mlel|Z] > (1 — &)x] + P} 1pomlcil1Z;) > ex]
PlI1Z,|>x] — PLIZ,| > x] PLiZ,| > x]
and so from (4.72) and (4.77) for some k' > 0

. PLY il Z) > x] - -
1 JV i< <(1— a 1= ke |
i TR R PR S L

for the case 0 < « < 1, with a similar bound for the second piece provided by
(4.77") when o > 1. Let m — oo and then send ¢ — 0 to obtain

limsup P[Z le)l1Z;| > x]/P |:|le > x] <Yl
X0 J j

and this combined with the liminf statement proves (4.71). |

The following exceedingly useful variant of Slutsky’s lemma is Billingsley’s
(1968) Theorem 4.2.

Lemma 4.25. Let X,,,, X,, Y,, and X berandom elements of a complete, separable
metric space S with metric p, such that for eachn, Y,, X,,,, u > 1 are defined on
a common domain. Suppose for each u, as n — o,

Xll'l:Xll
and as u - o
X, = X.
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Suppose further that for all ¢ > 0
lim limsup P[p(X,,, ¥,) > ] =0.

Then we have
Y,=X

asn— oo.

Proor. See Billingsley, 1968, page 25 or consider the following: We must show
lim,_, , Ef(Y,) = Ef(X) for bounded continuous f on S, and in fact it suffices
to suppose f is uniformly continuous and bounded (Billingsley, 1968, page 12,
or examine the statements equivalent to weak convergence at the beginning
of Section 3.5). Now write

|Ef(Y,) — Ef(X)] < E|f(Y,) — f(X.)] + |Ef(X.) — Ef(X,)]
+ |Ef(X.) — Ef(X)|

so that
limsup |Ef(Y,) — Ef(X)| < lim limsup E|f(Y,) — f(X..)|
< lim limsup E(| f(Y,) — f(X.n)l; (Yo, X.) < 8)
+ lim limsup 2 sup | f(x)|P[p(Y,, X,.,) > €]
u— N xeS
< sup{lf(x) — f)l: p(x,y) < e} + 0 >0
as ¢ — 0 since f is uniformly continuous. O

With these preliminaries out of the way we now prove the basic
convergence.

Proposition 4.26. Suppose (4.65), (4.66), and (4.67) hold so that (4.70) follows;
viz in M,([0, ) x [ —oc0, 0]\{0})

0
2, Fntaz0 = X B (470)

where the limit is PRM(dt x dv), v(dx) = apx™* "1 dx 19 (%) + ag|x|™**-
dx 1{_,, 0)(X). Fix an integer m and define vectors e;, —m < j < m of length
2m + 1 by

e, =(10,...,0),..., e, =(0,...,1)

and define random vectors

Z, = (Zyyjy—m<j<m)
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Then in M,([0, 00) x [ —o0,00]>™*'\{0})

a0
> g(krl,a.:lsz’Z > &t i) (4.78)
k=1 k jil<m

Remark. The limit process in (4.78) is obtained by taking the one-dimensional
Jji’s in (4.70) and laying them down on axis €,, and then repeating determin-
istically this pattern on each axis e, ,, ..., €,. In the proof of Lemma 4.24,
points on different axes were independent but the situation is very different
here since the pattern of points on each axis is the same.

To see why (4.78) is plausible consider the following: Any limit point process
in (4.78) can have no points off the axes. Let us check this. Define

SLEEVE = SL = {xe[—o0, 00]*"*1\{0}: At most one component of x
has modulus greater than 6}

={x:|x|<d -—-m<l<m}
U U &lxl>68lxl<dl#i-m<l<m)

-m<i<m

and

(SLY = {xe[— o0, 0]*"*'\{0}: At least two components of x
have moduli greater than 6}

so that SLEEVE consists of narrow sleeves about the axes. The significant
characteristic is that a limit process can have no points in [0,¢] x (SL)* for
any t > 0 since

E kil a(kn*‘,a;‘Zk)([O, t] x (SL)) = [nt]P[a;l Z;,G(SL)C]

< ntPla;'|Z,] > 8,4,"12,] > 6] <2m2+ 1)
2m + 1
- 07*-0=0