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Preface to the Soft Cover Edition 

I always thought books should be like kids: you prepare them as well as you 
can and then send them out into the world and observe the interactions with pride 
and affection but without much interfering. However, despite my reluctance to 
write, Springer insisted I put some perspective on this new soft cover edition. 

I am not sure when the first printing of Extremes Values, Regular Variation 
and Point Processes became unavailable for purchase, but I have become increas­
ingly conscious in the past few years of people telling me they could not obtain a 
copy. There is usually a vague undercurrent to the comment as if I have let some­
one down. So I inquired about the status at Springer and was told that in this era 
of new technologies books do not go out of print. 

Of course, in October 2006 Springer published my book Heavy-Tail Phenom­
ena, Probabilistic and Statistical Modeling and it is fair to wonder what is the 
difference between the two books. There is some overlap but I labored to keep 
the overlap minimal. This older text holds up rather well as an account of ba­
sic, foundational, mathematical material on extreme value theory. It describes 
the interplay between the analytical theory of regularly varying functions and 
extremes, and also the probabilistic interplay between point processes, extremes 
and weak convergence. It presents an approach to the study of extremes that is 
still quite current and useful. The interplay between regular variation, point pro­
cesses and extremes is a clear theme leading to a coherent view of the subject. 
The book is a rather mathematical treatment and for the most part proofs are pre­
sented completely and in a self-contained manner. Applications are hinted at but 
not explicitly discussed. In particular, no explicit treatment of statistical topics is 
present. 

In the heavy-tails book, the viewpoint is similar in that point processes and 
random measures are basic but some mathematical foundational details have been 
omitted and referred to either in the 1987 book or to other sources such as the 2006 
Springer book by de Haan and Ferreira entitled Extreme Value Theory: An Intro­
duction. The focus in Heavy-Tail Phenomena is on a subset of extreme value the­
ory which I find particularly intriguing and which is critical to applied probability 
modeling in finance, networks, queues and insurance. Some of this heavy-tailed 
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applied probability modeling is presented in my 2006 book. Heavy-Tail Pheno­
mena also surveys semi-parametric statistical inference methodology, something 
which the 1987 book did not attempt. Both the 1987 and 2006 books advance the 
point of view that much of the subject is dimensionless if viewed in the correct 
framework. 

So I hope people will continue to have access to Extremes Values, Regular 
Variation and Point Processes, and that they will continue to find it companion­
ably useful. 

Ithaca,NY Sidney Resnick 
August, 2007 



Preface to the Hard Cover Edition 

Extreme value theory is an elegant and mathematically fascinating theory as 
well as a subject which pervades an enormous variety of applications. Consider 
the following circumstances: 

Air pollution monitoring stations are located at various sites about a city. 
Government regulations mandate that pollution concentrations measured 
at each site be below certain specified levels. 

A skyscraper is to be built near Lake Michigan and thus will be subject to 
wind stresses from several directions. Design strength must be sufficient 
to withstand these winds. Similarly, a mechanical component such as an 
airplane wing must be designed to withstand stresses from several sources. 

Dams or dikes at locations along a body of water such as a river or sea must 
be built high enough to exceed the maximum water height. 

A mining company drills core samples at points of a grid in a given region. 
Continued drilling will take place in the direction of maximum ore con­
centration. 

Athletic records are frequently broken. 

A common feature of these situations is that observational data has been 
or can be collected and the features of the observations of most interest depend 
on largest or smallest values; i.e., on the extremes. The data must be modeled 
and decisions made on the basis of how one believes the extreme values will 
behave. 

This book is primarily concerned with the behavior of extreme values of 
independent, identically distributed (iid) observations. Within the iid frame­
work there are surprising depth, beauty, and applicability. The treatment in 
this book is organized around two themes. The first is that the central analytic 
tool of extreme value theory is the theory of regularly varying functions, and 
the second is that the central probabilistic tool is point process theory and 
in particular the Poisson process. Accordingly we have presented a careful 
exposition of those aspects of regular variation and point processes which are 
essential for a proper understanding of extreme value theory. 

Chapter 0 contains some mathematical preliminaries. Some authors might 
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relegate these to appendices, but I believe these should be read first, before 
plunging into the following sections, in order that readers can get used to my 
way of doing things. Chapter 0 also contains a derivation of the three families 
of classical, Gnedenko limit distributions for extremes of iid variables and an 
account of regular variation and its extensions. 

Chapter 1 discusses thoroughly questions of domains of attraction. If iid 
random variables have common distribution F, what criteria on F or its 
density F' guarantee that suitably scaled and centered extremes have limit 
distributions as the sample size gets large? What are suitable scaling and 
centering constants? These results provide a theoretical underpinning to 
statistical practice as discussed, for example, in Gumbel (1958): Suppose 
data are obtained such that each observation is an extreme. For example, our 
data may consist of maximal yearly flow rates at a particular site on the 
Colorado River over the last 50 years. Suppose by stretching the imagination, 
one believes the data to be modeled adequately by the iid assumption. The 
underlying distribution of the model is unknown, so the parametric assump­
tion is made that the data comes from a limiting extreme value distribution. 
Usually it is the Gumbel, also called double exponential, distribution A(x) = 
exp{ _e-X } that is chosen, and the estimation problem reduces to choosing 
location and scale constants; this is sometimes done graphically using loglog 
paper. The underlying distribution may not be extreme value, but we robustly 
hope it is at least in a domain of attraction, so that the distribution of extremes 
is close to a limiting extreme value distribution. 

By the end of Chapter 1 much analytic technique has been developed and 
this is exercised in the specialist Chapter 2. If normalized extremes of iid 
random variables have a limit distribution, when do moments and densities 
of normalized extremes have limits? We also discuss rates of convergence 
to the limit extreme value distributions and large deviation questions which 
emphasize sensitivity to the quality of the approximation of the right tail of 
the distribution of the maximum of n iid random variables by the tail of the 
limit extreme value distribution. 

Chapter 3 shifts the focus from the analytic to the probabilistic, and is a 
thorough discussion of those aspects of point processes (and in particular the 
Poisson process) which are essential, in my view, for a proper understanding 
of the structural behavior of extremes. The core of the probabilistic results is 
in Chapter 4, which views records and maxima of iid random variables as 
stochastic processes. In a sequence of iid observations from a continuous 
distribution, the records (i.e., those observations bigger than all previous ones) 
form a Poisson process, and the indices when records occur are approximately 
a Poisson process. Several extensions to these ideas are discussed. 

Also in Chapter 4 is an account of extremal processes. If maxima of n iid 
random variables are viewed as a stochastic process indexed by n, there is a 
continuous parameter process called an extremal process, which is a useful 
approximation. The structural properties of such processes are studied and 
the uses for weak convergence problems are detailed. We also give an account 
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in Sections 3.5, 4.4, and 4.5 of a weak convergence technique called the point 
process method, which has proved invaluable for weak convergence problems 
involving heavy tailed phenomena. If it is necessary to prove some functional 
(say the maximum) of n heavy tailed random variables converges weakly as 
n - 00, it is often simplest to first prove a point process based on the n 
variables converges (n - (0) and then to get the desired result by continuous 
mapping theorems. The power of this technique is illustrated in Section 4.5, 
where it is applied to extremes of moving averages. 

The last chapter examines some multivariate extreme value problems. In 
one dimension notions such as maximum and record have unambiguous 
meanings. In higher dimensions this is no longer the case. The maximum of 
n multivariate observations could be the convex hull, or it could be the vector 
of componentwise maxima depending on the application. We concentrate on 
the latter definition, which seems most natural for the applications mentioned 
at the beginning of the introduction. We discuss characterizations of the 
limiting multivariate extreme value distributions and give domains of attrac­
tion criteria. A theory of multivariate regular variation is needed, and this is 
developed. Criteria for asymptotic independence are given, and it is proved 
that a concept of positive dependence called association applies to limiting 
extreme value distributions. 

Notation will ideally seem clear and simple. One quirk that needs to be 
mentioned is that if a distribution F has a density, it is denoted by F' (even in 
the multivariate case) and never by f The symbol! is reserved for the auxiliary 
function of a class r monotone function. Sometimes, in the completely separate 
context of point processes,! denotes a bounded, continuous real function, but 
the important point to remember is that f is not the density of F; rather F' is 
the density of F. 

Extreme value results are always phrased for maxima. One can convert 
results about maxima to apply to minima by using the rule 

-max - = min. 

For example, 2 = min{2,3} = -max{ -2, -3} = -(-2) = 2. We denote 
max {Xi: 1 :s: i :s: n} by Vf=l Xi and similarly min is denoted by 1\. Also it is 
usually clear how to adapt weak convergence results for maxima so that they 
apply to the kth largest of a sample of size n (k fixed, n - (0). The point 
process method usually makes this adaptation transparent. See, for instance, 
Section 4.5. 

The best plan for reading this book is to start from the beginning and read 
each page lovingly until the end. There is only one section that is tedious. The 
second best plan is to start from the beginning and go through, passing lightly 
over certain material depending on background, taste, and interests but 
slowing down for the important results. Chapter 2, parts of 3, 4.4.1, and part 
of 4.6 may be skimmed, but the motto to be kept in mind is "skim; don't skip." 
This includes the exercises, which contain complementary material and alter­
native approaches. The extent to which readers will actively attempt the 
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exercises will determine the extent of their progress from observer to practi­
tioner. If plans 1 and 2 seem too ambitious, readers could consider making a 
module of Chapters 0, 1, and 5 and another module of a skimmed Chapter 3 
and a heavily studied Chapter 4. 

There are a number ofthings this book is not. It is not an encyclopedia and 
it is not a history book. Using a literary analogy, think ofthis as a novel. There 
is a story to be told, and readers should pay attention to matters of style and 
exposition and to how cosmic themes and characters relate. This book provides 
excellent coverage of problems arising from iid observations and offers good 
grounding in the subject, but does not pretend to offer comprehensive coverage 
of the whole subject of extreme values. This is now so broad and vast that it 
is doubtful that one book would do it justice. Consequently, a reader needing 
a rounded view of the whole subject is encouraged to consult other books and 
sources, as well as this one. For instance, with the exception of Section 4.5 on 
extremes of moving averages, I do not give attention to the important case of 
extremes of dependent variables. Fortunately, there is already a superb book 
on this subject by M.R. Leadbetter, G. Lindgren, and H. Rootzen, entitled 
Extremes and Related Properties of Random Sequences and Processes. It is very 
well written and elegant and is highly recommended. 

Chapters 0, 1, and 2 bear the intellectual influence of my colleague and friend 
Laurens de Haan, with whom I have had the privilege and pleasure of working 
and learning since 1972. Professor de Haan has had enormous influence on 
the subject, and his 1970 monograph remains, despite the huge quantity of 
research it stimulated, an excellent place to learn about the relationship of 
extreme value theory and regular variation. 

Now the acknowledgments. It is customary at this point for authors to 
make a maudlin statement thanking their families for all the sacrifices which 
made the completion of the book possible. This may be rather out of tune in 
these pseudo-quasi-semiliberated eighties. I will merely thank Minna, Nathan, 
and Rachel Resnick for a cheery, happy family life. Minna and Rachel bought 
me the mechanical pencil that made this project possible, and Rachel gen­
erously shared her erasers with me as well as providing a back-up mechanical 
pencil from her stockpile when the original died after 400 manuscript pages. 
I appreciate the fact that Nathan was only moderately aggressive about 
attacking my Springer-Verlag correspondence with a hole puncher. 

Robyn Kelley (with timely assistance from Waydene Casey and Pat Key) 
provided excellent typing worthy of a raise, and cheerfully coped with sub­
standard penmanship, transatlantic mailings, the differences between 8t x 11 
inch and A4 paper, European hole punchers that punch in the wrong places 
for U.S. binders, and a professor who though on leave of absence kept sending 
her work. 

The U.S. National Science Foundation has been magnificent in its continuing 
support. As a young pup I was allowed to schnor from other people's grants, 
and then at a crucial stage in my career NSF made me co-principal investigator 
of a series of grants that continue to the present. Other institutions which have 
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generously provided support which has generated time away from teaching 
for thinking and learning are Erasmus University, Rotterdam; University of 
Amsterdam; Mathematics Center, Holland; Lady Davis Fellowship Trust; 
Technion, Haifa, Israel; United Kindgom Science and Engineering Research 
Council (SERC). The first two-thirds of the book were written while I was on 
sabbatical support-gratefully acknowledged-from Colorado State Uni­
versity. Duane Boes has been an enlightened and supportive chairman at 
CSU. Sussex University, Brighton, United Kingdom, provided a hospitable 
and pleasant environment, where the last third was finished while I was being 
supported by the SERC Fellowship. 

As they have been so often in the past, Joe Gani and Chris Heyde were very 
helpful and encouraging during the preparation of this book. 

Fort Collins, Colorado 
April 1987 

Sidney I. Resnick 
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CHAPTER 0 

Preliminaries 

Some of the topics discussed here are sometimes relegated to appendices. 
However, since these topics must be well understood before arriving at the 
core ofthe subject, it seems sensible to discuss the preliminary topics first. The 
reader is advised to skim 0.1,0.2 according to taste and background, but slow 
down for 0.3, which discusses the possible limiting distributions for nor­
malized maxima of independent, identically distributed (iid) random variables. 
Section 0.4 treats the basic facts in the theory of regular variation and some 
important extensions. Regular variation is the basic analytical theory under­
pinning extreme value theory, and its importance cannot be overemphasized. 

0.1. Uniform Convergence 

If J,., n ~ 0 are real valued functions on ~ (or any metric space) then J,. 
converges uniformly on A c ~ to fo if 

sup 1J,.(x) - fo(x)1 ..... 0 
xeA 

as n ..... 00. 

If U", n ~ 0 are nondecreasing real valued functions on ~ then it is a well 
known and useful fact that if Uo is continuous and UII(x) -+ Uo(x) as n -+ 00 

for all x E ~ then UII -+ Uo locally uniformly; i.e., for any a < b 

sup I U,,(x) - Uo(x)l-+ o. (0.1) 
xe[lI.bl 

One proof of this fact is outlined as follows: If Uo is continuous on [a, b], 
then it is uniformly continuous. For any x there is an interval-neighborhood 
in [a, b], Ox containing x, on which U oscillates by less than 8. This gives an 
open cover of [a, b]. Compactness allows us to prune {Ox,xe[a,b]} to obtain 
a finite subcover. Using this finite collection and the monotonicity of the 
functions leads straightaway to the desired uniform convergence. 

Another proof of (0.1) is obtained by using the concept of continuous 
convergence (Kuratowski, 1966). Suppose fl', o/J are two complete, separable 
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metric spaces and J,.: 1£ -+ 11JJ, n ~ O. Then J,. converges to f continuously if 
whenever x" E!£, n ~ 0 and x" -+ Xo we have J,.(x,,) -+ fo(xo). 

The connection with uniform convergence is this: If 1£ is compact and fo is 
continuous then J,. -+ fo continuously iff J,. -+ fo uniformly on !£. This equiva­
lence sometimes provides a convenient way of proving uniform convergence 
since it allows us to prove convergence of a sequence of points in I1JJ rather 
than having to deal with functions. 

The equivalence of the two concepts is seen readily: Let d be the metric on 
11JJ. If J,. -+ fo uniformly on 1£ and x" -+ Xo then we have 

d(J,.(x,,),fo(xo» ~ d(J,.(x,,),fo(x,,» + d(fo(x,,),fo(xo» 

~ sup d(J,.(x),fo(x» + d(fo(x,,),fo(xo». 
xefr 

The first term goes to zero as n -+ <Xl by uniform convergence and the second 
term vanishes by continuity. Conversely suppose J,. -+ fo continuously but not 
uniformly. Then there is a subsequence {n(k')} and 8 > 0 such that for all n(k') 

sup d(J,.(",)(x),fo(x» > 28. 
xefr 

Using the definition of sup we find points {x",} c 1£ such that 

d(J,.(k')(x",), fo(x",» > 8. (0.2) 

Since !£ is assumed compact there is a limit point Xo and a subsequence 
{x,,} c {x",} with X,,-+Xo' Continuous convergence and continuity of fo 
require 

d(J,.(k)(X/t),fO(X,,» ~ d(!..(",(x,,),fo(xo» + d(fo(xo),fo(XA:» -+ 0 

in violation of (0.2). The contradiction occurs because we supposed J,. did not 
converge to fo uniformly. 

We now check (0.1) by using continuous convergence: Suppose {x"' n ~ O} c 
[a, b] and x" -+ Xo' We check U,,(x,,) -+ Uo(xo). It suffices to consider two cases: 
(a) x" > Xo. (b) x" < Xo' (If necessary, partition {x,,} into two subsequences.) 
We consider only (a). The following are evident: There exists" > 0 such that 

I Uo(xo + ,,) - If, (xo)1 < 8 (0.3) 

because l.b is continuous. Furthermore there is no such that if n ~ no 

Ix" - xol < " (0.4) 

and 

I U,,(xo + ,,) - Uo(xo + ,,)1 v I U,,(xo) - Uo(xo)1 < 8 (0.5) 

since U" -+ Uo pointwise. We then have for n ~ no on the one hand 

U,,(x,,) ~ U,,(xo + ,,) 
~ Uo(xo + ,,) + 8 

~ Uo(xo) + 28 

(from (0.4» 

(from (0.5» 

(from (0.3» 



0.2. Inverses of Monotone Functions 

and on the other hand 

Un(xn) ;;::: Un(xo) 

;;::: Uo(xo) - s 

Continuous convergence follows. 

(mono tonicity) 

(from (0.5». 

3 

If Fn , n;;::: 0 are distribution functions on IR (always understood to be 
nondefective) then Fn -+ Fo pointwise and Fo continuous imply uniform con­
vergence on IR. Local uniform convergence comes from (0.1), and off a large 
interval [a, b] there is not much possibility of oscillation. Given s pick b such 
that Fo(b) > 1 - s and there exists no such that for n ;;::: no 

IFn(b) - Fo(b) I < s 
whence for x ;;::: b 

and therefore for n ;;::: no 

x>b x>b 

~ 2s + s + s. 
Similarly for x < a. Combined with uniform convergence on [a,b] this gives 
convergence uniformly on IR. 

Alternatively since Fn( 00) = 1, Fn( -00) = 0 for all n ;;::: 0 we may compactify 
IR and work on [ -00,00]. If Fn -+ Fo pointwise on [ -00,00] and Fo is con­
tinuous, local uniform convergence coincides with uniform convergence. 

EXERCISES 

0.1.1. Suppose U~;), n ~ 0 are real valued functions on IR and as n ~ 00 

locally uniformly on IR for i = 1, 2. Prove 
(a) U~l) + U?) _ U~I) + U~2) 
locally uniformly. 
(b) U~11. U~2) ~ U611. U62) 

locally uniformly. 
(c) If g: R ~ R is bounded and continuous then g(U~I) _ g(U~l) locally 

uniformly. 
Use continuous convergence. 

0.2. Inverses of Monotone Functions 

Suppose H is a nondecreasing function on IR. With the convention that the 
infimum of an empty set is +00 we define the (left continuous) inverse of Has 

H+--(y) = inf{s: H(s) ~ y}. 
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To check H+- is left continuous at x E~, suppose Xn i x but H+-(xn) i H+-(x -) < 
H+-(x). Then there exist ~ > 0 and y such that for all n 

H+-(xn) < y < H+-(x) - ~. 

The left inequality and the definition of H+- yield H(y) ~ Xn for all n, and hence 
letting n -+ 00 we get H(y) ~ x whence again by the definition of H+- we 
get y ~ H+-(x), which coupled with y < H+-(x) - ~ leads to the desired 
contradiction. 

In case the function H is right continuous we have the following interesting 
properties: 

A(y) := {s: H(s) ~ y} is closed 

H(H+-(y» ~ y 

{
H+-(Y) :S tiff y :S H(t) 

t < H+-(y) iff y > H(t). 

(0.6a) 

(0.6b) 

(0.6c) 

For (0.6a) observe if snE A(y) and sn! S then y :S H(snH H(s) so H(s) ~ y 
and sEA(y). USn i sand SnEA(y) then y:S H(sn>i H(s-)::;; H(s) and H(s) ~ y 
so sEA(y) again and A(y) is closed. Since A(y) is closed, infA(y) E A (y), i.e., 
H+-(Y)EA(y), which means H(H+-(y» ~ y. Last, (0.6c) follows from the defini­
tion of H+-. 

The probability integral transform follows: Let ([0, IJ, aJ[O, IJ,m) be the 
Lebesgue probability space; m is Lebesgue measure. Suppose U is the identity 
function on [0, IJ: i.e., U is a uniformly distributed random variable. If F is 
a distribution function (df) then F+-(U) is a random variable on [0, IJ with 
df F. This is readily checked: For t E IR 

m[F+-(U) :S t] = m[U :S F(t)] 

= F(t). 

(from (0.6c» 

A slight variant of this involves an exponential distribution rather than the 
uniform: Let X be a real random variable with distribution F. Set R = 
-log(1 - F). If prE > xJ = e-x, x> 0 then R+-(E) and X have the same 
distribution which we write as 

R+-(E),g, X. 

To check this is simple: For XE ~ 

P[R+-(E) > x] = prE > R(x)] 

= exp{ - R(x)} = 1 - F(x). 

We now discuss convergence of monotone functions. For any function H 
denote 

~(H) = {XE~: H is finite and continuous at x}. 

A sequence {Hn' n ~ O} of nondecreasing functions on ~ converges weakly to 



0.2. Inverses of Monotone Functions 5 

Ho if as n -+ 00 

H,,(x) -+ Ho(x) 

for all X ECC(Ho). We will denote this by H" -+ Ho, and no other form of 
convergence for monotone functions will be relevant. If F", n ~ 0 are (non­
defective) dC's then a myriad of names give equivalent concepts: complete 
convergence, vague convergence, weak* convergence, narrow convergence. If 
{XII,n ~ O} are random variables and X" has dfFn, n ~O then 

means 

Proposition 0.1 (cf. Billingsley, 1979, page 287). If Hn, n ~ 0 are nondecreasing 
functions and Hn -+ Ho, then H; -+ Ho. 

PROOF. Fix 6 > 0 and t E CC(Ho). Since the discontinuities of the monotone 
function Ho are at most countable, there exists x E (Ho (t) - 6, Ho (t» and 
xECC(Ho). Since x < Ho(t) we have by definition of Ho that Ho(x) < t. Since 
x E CC(Ho) entails Hn(x) -+ Ho(x) we have for large n Hn(x) < t, and again using 
the definition of inverse we get X:$; H;(t) for large n. Thus 

Ho(t) - 6 < X :$; H;(t) 

for large n implying, since 6 > 0 is arbitrary, that 

liminf H;(t) ~ Ho(t). 

(Note this half did not use tECC(Ho).) 
For a reverse inequality note that whenever t' > t we may find Y E CC(Ho) and 

Ho(t') < Y < Ho(t') + 6. 

The left-hand inequality in (0.7) and the definition of the inverse give 

Ho(Y) ~ t' > t. 

(0.7) 

Since Y E CC(Ho) we have Hn(Y) -+ Ho(Y), and so for large n, Hn(Y) ~ t and 
therefore Y ~ H;(t). From (0.7) 

Ho(t') + 6 > Y ~ H;(t) 

for large n and hence 

limsup H;(t) :$; Ho(t') 

since 6 is arbitrary. Let t' ! t and use the continuity of Ho at t to get 

lim sup H;(t) :$; Ho(t). 
n .... oo 

This completes the sandwich and gives the desired result. D 
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Proposition 0.1 allows us to prove easily the one-dimensional version of 
Skorohod's (1956) theorem relating convergence in distribution to almost sure 
convergence. 

Skorohod's Theorem. For n ~ 0 suppose X" is a real random variable on 
(0", (]l", P,,) such that X" => Xo. Then there exist random variables {X"' n ~ O} 
defined on the Lebesgue probability space ([0, 1],11[0, 1],m) such that 

(i) X" 4, X" for each n ~ 0 and 
(ii) X" -+ Xo almost surely with respect to m. 

By changing spaces and ignoring dependencies between X's we get almost 
sure convergence. Note it is not true that {X",n ~ O} 4, {X",n ~ O} as 
random elements of /Roo. 

PROOF. Let U be the identity function on [0,1], so that U is uniformly 
distributed with respect to m. Suppose the distribution of X" is F", n ~ 0 and 
define 

X" = F,,+-(U). 

The probability integral transform discussed previously shows X" 4, X"' 
n ~ 0 giving (i). 

For (ii) note that F" -+ Fo entails F,,+- -+ F;) by Proposition 0.1. Therefore 

1 ~ m{O :$ u :$ 1: X,,(u) -+ Xo(u)} 

= m{u: F,,+-(u) -+ F;)(u)} 

~ m(u: uE~(F;)} = 1 

since the discontinuities of F;) are at most countable. D 

EXERCISES 

0.2.1. For a monotone function U, check 

U;-(y):= inf{s: U(s) > y} 

is right continuous. If U is uniformly distributed on [0,1], check Fr-(U) ~ 
X where X is a random variable with distribution F(x). 

0.2.2. If U is monotone define 

Verify: 
(a) (U-)- = U­
(b) (U-)- = U-

U+(x) = lim U(y) 
yJ.x 

u- (x) = lim U(y). 
ytx 

(c) If U., n ~ 0 are monotone then U. --+ Uo implies U.± -+ Uo±. 



0.3. Convergence to Types Theorem and Limit Distributions of Maxima 7 

0.2.3. Extend Proposition 0.1 to show Un -+ Uo itT U; -+ Uo. 
0.2.4. When is it true that 

(a) U(U-(t» = t 
(b) U-(U(t» = t? 

0.3. Convergence to Types Theorem and Limit 
Distributions of Maxima 

Two distribution functions U(x) and V(x) are of the same type if for some 
A> 0, BEIR 

V(x) = U(Ax + B) 

for all x. For instance, N(O, 1, x) (normal df with mean 0 and variance 1) is 
normal type as is N(I', (12,X) = N(O, 1,(1-1 x - (1-11') for (1 > 0 I'E IR. Affine 
transformations, weak convergence, and types are related as follows. 

Proposition 0.2. Suppose U(x) and V(x) are two distributions neither of which 
concentrates at a point. 
(a) Suppose for n ~ 1 Fn is a distribution, an ~ 0, bn E IR, an > 0, Pn E IR and 

(0.8) 

weakly. Then 

(Pn - bn)/a" -+ BE IR (0.9) 
and 

V(x) = U(Ax + B). (0.10) 

An equivalent formulation in terms of random variables: 
(a') Let X"' U, V, n ~ 1 be random variables such that neither U nor V is 

almost surely constant. If 

(Xn - bn)/a" ~ U, (0.8') 

then (0.9) holds and 
v ~ (U - B)/A. (0.10') 

(b) If (0.9) holds then either of the two relations in (0.8) (or (0.8'» implies the 
other and (0.10) (or (0.10'» is true. 

PROOF OF (b). Suppose (0.9) holds and Y" := (X" - b")/a" ~ U. We must show 
(X" - p,,)/a,,~(U - B)/A. By Skorohod's theorem there exist f", 0, n ~ 1, 
defined on ([0,1], .41[0,1], m) such that f" ,g, Y", n ~ 1, 0 ,g, U and f" -+ 0 a.s. 
Define X" := a" f" + b" so X" ,g, X". Then 

(Xn - p")/an ,g, (X" - p,,)/a" = (an/a") f" + (b" - p")/a" 

-+ A-10 - BA-1 ,g, (U - B)/A 

so that (X" - p,,)/a" ~(U - B)/A. 
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PROOF OF (a). Using Proposition 0.1 the relations in (0.8) can be inverted to give 

(0.11) 

weakly. Since neither U(x) nor V(x) concentrates at one point we may find 
points Yl' Y2 satisfying 

Yl < Y2. 

U-(yd < U-(Y2) and V-(Yl) < V-(Y2)' 

Therefore from (0.11) we have for i = 1,2 

(F,,+-(Yi) - bn)/an -+ U-(Yi)' 

and by subtraction 

(Fn-(Y2) - FII+-(yd)/all -+ U-(Y2) - U+-(yd > 0, 

(Fn+-(Y2) - Fn+-(Yd)/IXn -+ V-(Y2) - V-(yd > O. 

Divide the first relation in (0.14) by the second to obtain 

IXn/an -+ (U-(Y2) - U-(ytl)/(V-(Y2) - V-(Yl» =: A > O. 

Using this and (0.13) we get 

(F,,-(ytl- bn)/an -+ U-(ytl, 

and so subtracting we obtain 

(Pn - bn)/an -+ U-(Yl) - V+-(ytlA- l =: B. 

This gives (0.9) and (0.10) follows from (b). 

(0.12) 

(0.14) 

o 
A nice by-product ofthis proofis that from (0.13) and (0.14) a suitable choice 

of the normalizing constants is 

an = F,,-(Y2) - F,:-(Ytl 

bn = Fn-(ytl· 

One of the nicest applications of the convergence to types result is to the 
derivation of the class of possible limit distributions for normalized maxima 
of iid random variables, and we now focus our attention on this result, which 
is one of the most basic in classical extreme value theory. Suppose {Xn' n ~ I} 
is an iid sequence of random variables with common distribution F(x). Set 
Mn = Vi:l Xi' The distribution function of Mn is Fn(x) since 

P[Mn ~ x] = P t6 [Xi ~ X]} = tI P[Xi ~ x] = Fn(x). 

If we set 
xo = sup{x: F(x) < I} ~ 00, (0.15) 

then 
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lim i M" = Xo a.s. 
" .... co 

To check this, observe that for x < xo, F(x) < 1 and so 

P[M" ::::;; x] = F"(x) -+ O. 

(0.16) 

Therefore M" ~ xo. Since {M,,} is a nondecreasing sequence, convergence in 
probability implies convergence almost surely. 

Analytic expressions for F" can be cumbersome even if F is completely 
known; in statistical contexts that is often not the case. Just as the normal 
distribution is a useful approximation to the distribution of Li'=l Xi' we seek 
a limit distribution to act as an approximation to F". The relation (0.16) makes 
it clear that a nondegenerate limit distribution will not exist unless we nor­
malize M". It is customary to use affine normalizations, which are also the 
most practical in statistical estimation problems. 

Proposition 0.3 (cf. Gnedenko, 1943; de Haan, 1970a, 1976; Weissman, 1975b). 
Suppose there exist a" > 0, b" e IR, n ~ 1 such that 

P[(M" - b")/a,, s; x] = F"(a"x + b,,) -+ G(x), (0.17) 

weakly as n -+ <X) where G is assumed nondegenerate. Then G is of the type of 
one of the following three classes: 

(i) <I> .. (x) = {~Xp{ -x-.. } 

for some oc > 0; 

(ii) 'I' .. (x) = {~Xp{ -( -x)"} 

for some oc > 0; 
(iii) A(x) = exp{ _e-X } 

x<o 
x~o 

x<O 
x~o 

xelR. 

We refer to <1> .. , '1' .. , and A as the extreme value distributions. 

PROOF. For t e IR let as usual 

[t] = greatest integer less than or equal to t. 

From (0.17) we get for any t > O. 

F["tl(a["tl x + qnll) -+ G(x) 

and also 

F["tl(a"x + b,,) = (F"(a"x + b,,»["tl/" -+ Gt(x). 

The convergence to types theorem applies and we are assured of the existence 
of oc(t) > 0, fJ(t)e IR, t > 0 such that 

lim a,,/a["tl = oc(t), lim (b" - q"tl)/a["tl = fJ(t) (0.18) 
" .... co " .... co 
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and 

G'(x) = G(a(t)x + P(t». (0.19) 

From (0.18) it is immediately apparent that the functions a, P are measurable. 
For instance in the case of a we observe that limits of measurable functions 
are measurable so it suffices to check for a fixed n that a"/a[,,.] is measurable. 
But since the range of a[".] is the discrete set raj} we have (assuming the aJ are 
distinct) 

{t: a[",] = aj } = [jn-1,(j + l)n-1 ) 

and this amply demonstrates measurability. 
Return to (0.19) and for t > 0, s > 0 we have on the one hand 

and on the other 

G'S(x) = G(a(ts)x + P(ts» 

G'S(x) = (GS(x»' = G(a(s)x + P(s»' 

= G(a(t){ a(s)x + P(s)} + P(t» 

= G(a(t)a(s)x + a(t)p(s) + P(t». 

Since G is assumed nondegenerate we therefore conclude for t > 0, s > 0 (cf. 
Exercise 0.3.2): 

a(ts) = a(t)a(s) 

P(ts) = a(t)p(s) + P(t) = a(s)p(t) + P(s), 

(0.20) 

(0.21) 

the last step following by symmetry. We recognize (0.20) as the famous Hamel 
functional equation. The only finite measurable, nonnegative solution is of 
the following form (for example, see Seneta, 1976): 

a(t) = t-9, (IE IR. 0 

We now consider three cases: (a) (I = 0, (b) (I > 0, (c) (I < O. 

Case (aJ, (} = O. In this case a(t) == 1 and (0.21) becomes 

pets) = P(t) + pes), 

a simple variant of the Hamel equation. The solution is of the form 

pet) = -clogt, t > 0, CE IR 

and (0.19) is 

G'(x) = G(x - clogt). (0.22) 

If C were zero, it could not be the case that G was nondegenerate. For any 
fixed x, G'(x) is nonincreasing in t, and we conclude therefore that c > O. 

If for some xo, G(xo) = 1 then from (0.22) we get 

1 = G(xo - clog t) 
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for all t, and changing variables gives G(u) = 1 for all u, a contradiction. 
Therefore G(x) < 1 for all x. Similarly it cannot be the case that G(y) = 0 for 
any y. Substitute x = 0 in (0.22) obtaining for t > 0 

G'(O) = G(-clogt). (0.23) 

Set exp{ -e-P } = G(O) e (0, 1) and u = -clogt. Since the range of tis (0, 00), 
the range of u is ( - 00, 00) and changing variables in (0.23) gives 

G(u) = exp{ -e-Pt} = exp{ _e-<c-'u+PI} 

= A(c-lu + pl· 
Case (b), () > O. From (0.21) 

a(t)p(s) + P(t) = a(s)p(t) + P(s) 

so that(t ::f: l,s ::f: 1) 

P(s) P(t) 
= , 

1 - a(s) 1 - a(t) 

i.e., the function P(')(1 - a(' WI is constant equal to c say. Therefore for t ::f: 1 

P(t) = P(s)(l - a(sWI(l - a(t» 

and (0.19) becomes 

i.e., changing variables 

= c(l- C ll ) 

G'(x) = G(Cllx + c(1 - C ll» 
= G(CIl(x - c) + c); 

G'(x + e) = G(Cllx + e). 

Set H(x) = G(x + e). Then G and H are of the same type so it suffices to solve 
for H. The function H satisfies 

(0.24) 

andHisnondegenerate.Setx = Oandwegetfrom(0.24),tlogH(0) = 10gH(0) 
for t > 0 so either 10gH(0) = 0 or - 00; i.e., either H(O) = 0 or 1. However, 
H(O) = 1 is impossible since it would imply the existence of x < 0 such that 
the left side of (0.24) is decreasing in t while the right side of (0.24) is increasing 
in t. Therefore we conclude H(O) = O. 

Again from (0.24) we obtain H'(I) = H(CIl ). If H(I) = 0 then H == 0 and if 
H(I) = 1 then H == 1, both statements contradicting H nondegenerate. There­
fore, H(I)e(O, 1). Set (J-l = a, H(I) = exp{ _p-Cl}, u = C ll so that u-CI = t. 
From (0.24) with x = 1 we get for u > 0 

H(u) = exp{ _p-Clt} = exp{ -(purCl} 

= (f)CI(PU). 

Case (c), (J < O. That this case leads to the type of 'I' II is left as an exercise. 
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EXERCISES 

0.3.1. Verify in the proof of Theorem 0.3 that the case 0 < 0 leads to type '1'«. 

0.12. The derivation in Proposition 0.3 uses the following fact: If F is a nondegenerate 
distribution and a > 0, c > 0, bE IR, dE IR, and 

F(ax + b) = F(cx + d) 

then a = c and b = d. Prove this two ways by 
(a) Considering inverse functions; 
(b) Showing it is enough to prove F(Ax + B) = F(x) implies A = 1, B = 0 by 

iterating F(T(x)) = F(x) (i.e., replacing x by (T(x) again and again) where 
T(x) = Ax + B. 

0.3.3. Suppose {X., n ~ O} are iid and there exist a. > 0, b. E IR such that for some G 
nondegenerate 

as n -+ 00. Derive a functional equation for the characteristic function of G. 

0.3.4. Suppose Y,., n ~ 1 are random variables such that there exist a. > 0, b. E IR and 

prY,. ~ a.x + b.J -+ G(x), 

nondegenerate and for each t > 0 

P[l(.,) ~ a.x + b.J -+ G,(x) 

nondegenerate. Then there exists P(t) > 0, a(t)E IR such that 

G(x) = G,(P(t)x + a(t)) 

and P(t) = t 8 and if () = ° then a(t) = clog t and if () -# 0 then a(t) = c(1 - t 8 ) 

(Weissman, 1975b). 

0.4. Regularly Varying Functions of a Real Variable 

Having established what the possible limit laws for normalized maxima are 
we must next give criteria for convergence to each type. If G is an extreme 
value distribution we say a distribution F is in the domain of attraction of G 
(written FE D( G» if there exists an > 0, bn , n ~ 1 such that 

Fn(anx + bn) -+ G(x) 

weakly. It is also important to characterize {an} and {bn}. 
Such domains of attraction questions are best understood within the frame­

work of the theory of regularly varying functions, so before continuing with 
extreme value theory we pause for a brief account of regular variation. Mas­
tering this subject is important for proper understanding of extreme value 
theory. The goal of this treatment is to provide a reader with a functional 
understanding of basics. It is not intended to be exhaustively complete, and 
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in some cases proofs deal only with special cases. Bay particular attention to 
the material on de Haan's classes nand r, which are not nearly as well known 
as they deserve to be. Further information can be found in the following 
excellent references: Seneta (1976), de Haan (1970), FeUer (1971 ), and Bingham, 
Goldie, and Teugels (1987). 

0.4.1. Basics 

Roughly speaking, regularly varying functions are those functions which be­
have asymptotically like power functions. 

Definition. A measurable function U: IR+ -+ IR+ is regularly varying at 00 with 
index p (written U E R Vp ) if for x > 0 

lim U(tx) = x p • 

1-+00 U(t) 

We call p the exponent of variation. With obvious changes we may speak about 
regular variation at O. The theories are equivalent: U(x) is regularly varying 
at 00 iff U(x- 1 ) is regularly varying at O. 

If p = 0 we call U slowly varying. Slowly varying functions are generically 
denoted by L(x). If U E RVp then U(x)/x P E RVo and setting L(x) = U(x)/x P we 
see it is always possible to represent a p-varying function as x P L(x). 

EXAMPLES. The canonical p-varying function is x p• The functions 10g(1 + x), 
loglog(e + x) are slowly varying, as is exp{ (log x)"}, 0 < IX < 1. Any function 
U such that limx-+oo U(x) =: U( (0) exists finite is slowly varying. The following 
functions are not regularly varying: eX, sin(x + 2). Note [logx] is slowly 
varying, but exp{[logx]} is not regularly varying. 

In probability applications we are concerned with distributions whose tails 
are regularly varying. Examples are 

x ~ 1, IX> 0, 

and 

x ~O. 

(f) .. (x) has the property 

1 - (f) .. (x) '" x-.. as x -+ 00. 

(Note, we write g(x) '" h(x) as x -+ 00 to mean limx-+oo g(x)/h(x) = 1.) A stable 
law with index IX, 0 < IX < 2 has the property 

x -+ 00, c>O 

and more particularly the Cauchy density f(x) = (n(1 + x 2)fl has a df F with 
the property 

1 - F(x) '" (nxfl. 



14 O. Preliminaries 

If N(x) is the standard normal df then 1 - N(x) is not regularly varying nor 
is 1 - A(x). 

The definition of regular variation can be weakened slightly. 

Proposition 0.4 (de Haan, 1970; Feller, 1971). 
(i) A measurable function U: R+ - R+ varies regularly if there exists a func­
tion h such that for all x > 0 

lim U(tx)/U(t) = hex). 
t-+co 

In this case hex) = x P for some pe Rand U eR~. 
(ii) A monotone function U: R+ - R+ varies regularly provided there are two 
sequences P.n}, {an} of positive numbers satisfying 

an - 00 

and for all x > 0 

(0.25) 

(0.26) 

lim An U(anx) =: X(x) exists positive and finite. (0.27) 
n-+co 

In this case X(x)/X(I) = x P and U eR~for some peR. 

PROOF. (i) The function h is measurable since it is a limit of measurable 
functions. Then for x > 0, y > 0 

U(txy) U(txy) U(tx) 
U(t) = U(tx) . U(t) 

and letting t - 00 gives 

h(xy) = h(y)h(x). 

So h satisfies the Hamel equation and is of the form hex) = x P for some peR 
(ii) For concreteness assume U is nondecreasing. Since an - 00, for each t 
there is a finite net) defined by 

net) = inf{m: am+1 > t} 
so that 

Therefore by mono tonicity for x > 0 

( An(t)+l)( An(t)U(an(/)x) ):::;; U(tx) :::;;( An(/) )(An(/)+lU(an(/)+lX»). 
An(t) An(/)+l U(an(/)+1) U(t) An(/)+l An(/)U(an(t» 

. U(tx) x(x) 
Now let t - 00 and use (0.25) and (0.27) to get lIm -(-) = 1-(1)' The rest 

t-+co U t X 
follows from part (i). 0 
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EXERCISE 0.4.1.1. Proposition 0.4 (ii) remains true if we only assume (0.27) holds 
on a dense set. This is relevant to the case where U is nondecreasing and 
AnU(aIlX) converges weakly. 

EXAMPLE. Suppose XII' n ~ 1 are iid with common df F(x). Find conditions on 
F so that there exists an > 0 such that 

(0.28) 

weakly and characterize {all}' 
Set Xo = sup{x: F(x) < I} and we first check Xo = 00. Otherwise if Xo < 00 

we get from (0.28) that for x > 0, allx - xo; i.e., an - XOX-l. Since x > 0 is 
arbitrary we get all - 0 whence Xo = O. But then for x > 0, F"(a"x) = 1, which 
violates (0.28). Hence Xo = 00. Furthermore all - 00 since otherwise on a 
subsequence n', all' :;;; K for some K < 00 and 

0< (J) .. (I) = lim F"'(a",):;;; lim Fn'(K) = 0 
"' ..... 00 II'-t>ro 

(since F(K) < 1) which is a contradiction. 
In (0.28) take logarithms to get for x> 0, limn .... oo n( -logF(allx» = X-II. 

Now use the relation -log( 1 - z) '" z as z - 0 and (0.28) is equivalent to 

lim n(1 - F(a"x» = X-II, x >0. 

From (0.29) and Proposition 0.4 (ii) we get 

1 - F(x) '" x-IIL(x), x - 00, for some IX > O. 

To characterize {a,,} set U(x) = 1/(1 - F(x» and (0.29) is the same as 

U(allx)/n - x .. , x > 0 

and inverting we find via Proposition 0.1 that 

U+-(ny) 1/ .. 
-y , 

an 
y>O. 

So U+-(n) = (1/(1 - F»+-(n) '" all and this determines all' 
Conversely if (0.30) holds, define an = U+-(n) as previously. Then 

I. 1 - F(allx) -
1m =X /I 

n .... oo 1 - F(all ) 

(0.29) 

(0.30) 

and we recover (0.29) provided 1 - F(an ) '" n-1 or what is the same, provided 
U(all ) '" n; i.e., U(U4-(n» '" n. Recall from (0.6c) that z < U+-(n) itT U(z) < n 
and setting z = U+-(n)(l - e) and then z = U+-(n)(l + e) we get 

U(U+-(n» U(U+-(n» U(U4-(n» 
------ < < --~~~-
U(U+-(n)(l + e» - n - U(U4-(n)(l - e»" 
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Let n -... 00 remembering U = 1/(1 - F)ERv,.. Then 

(1 + er« :::;; liminf n-1 U(U+-(n» :::;; Iimsup :::;; (1 - e)-or 
" .... 00 " .... 00 

and since e > 0 is arbitrary the desired result follows. 

EXERCISES 

0.4.1.2. Say that 1 - F is rapidly varying (de Haan, 1970), written 1 - F(x) ..., x-OO L(x) 
as x -+ 00, if 

lIm = x 00:= 
. 1 - F(tx) _ {O if x > 1 

' .... 00 1 - F(t) 00 if 0 < x < 1. 

Let {X"' n ~ I} be iid random variables with common distribution F(x). Prove 
the following result about relative stability (Gnedenko, 1943; de Haan, 1970): 
There exist constants 0 < b" i 00 such that 

Mn/b".!.1 

iff 1 - F(x) ..., x-oo L(x). Also, give a characterization of b". 

0.4.1.3. Let {X",n ~ I} beiid nonnegative random variables with Ee-AX• = p(A.), A. > 0 
as the common Laplace transform. Give necessary and sufficient conditions 
on P for there to exist 0 < a" i 00 such that 

" p L X;/a,,-+ 1 
;=1 

and give a characterization of an' Also give necessary and sufficient conditions 
on P for there to exist 0 < a" i 00 and a nondegenerate distribution G(x) such 
that 

p L~ X;/a" :::; x] -+ G(x). 

Characterize an and the Laplace transform aV.) (Feller, 1971). 

0.4.1.4. L: Rof- -+ R+ is slowly varying iff 

lim L(tx)jL(t) = 1 

for all x ~ 1. If L: R+ -+ R+ is monotone, then L is slowly varying iff there 
exists one x> 0, x * 1, for which 

lim L(tx)/L(t) = 1. 
' .... 00 

Show the last result is false without the assumption of monotonicity. 

0.4.2. Deeper Results; Karamata's Theorem 

The first result which is very useful is the uniform convergence theorem. (Cf. 
Exercise 0.4.2.1.) 
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Proposition 0.5. If U E R lj, then 

lim U(tx)/U(t) = x P 

locally uniformly on (0, (0). If P < 0 then uniform convergence holds on intervals 
of the form (b, (0), b > o. If p > 0 uniform convergence holds on intervals (0, b] 
provided U is bounded on (0, b] for all b > o. 

If U is monotone the result already follows from (0.1) since monotone 
functions are converging to a continuous limit. The extensions when p < 0 or 
p > 0 follow as in the end of Section 0.1. For the nonmonotone case see Seneta 
(1976). 

The next set of results examines the integral properties of regularly varying 
functions. For purposes of integration, a p-varying function behaves roughly 
like x p • We assume all functions are locally integrable and since we are 
interested in behavior at 00 we assume integrability on intervals including 0 
as well. 

Karamata's Theorem 0.6. (a) If p ~ -1 then U ERlj, implies I~ U(t)dtERlj,+t 
and 

I· xU(x) 1 
1m =p+ . 

%"'00 Io U(t)dt 
(0.31) 

If p < -1 (or if p = -1 and I~ U(s)ds < (0) then U E Rlj, implies I~ U(t)dt 
is finite, J~ U(t)dt E R Vp+t and 

lim xU(x) - - p - 1 (0.32) 
%"'00 I~ U(t)dt - . 

(b) If U satisfies 

. xU(x) 
hm I% U()d = AE(O, (0) 

%"'00 0 t t 
(0.33) 

then UERVJ._l. If I~ U(t)dt < 00 and 

. xU(x) 
hm Joo U()d = AE(O, (0) 
%"'00 % t t 

(0.34) 

then UERV_A_t. 

Corollary (The Karamata Representation). L is slowly varying iff L can be 
represented as 

L(x) = c(x)exp{J: Cte(t)dt} 

for x > 0 where c: R+ -+ R+, e: R+ -+ R+ and 

(0.35) 
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lim C(x) = CE(O, (0) (0.36) 

lim e(t) = O. (0.37) 

PROOF OF COROLLARY. If L has a representation (0.35) then it must be slowly 
varying since for x > 1 

!~~ L(tx)/L(t) = !~~ (c(tx)/c(t»exp {fX s-le(S)ds}. 

Given e, there exists to by (0.37) such that 

-e < e(t) < e, 

so that 

-dogx = -e fX S-l ds::;; fX s-le(s)ds ::;; e fX S-l ds = dogx. 

Therefore limt~oo J:x s-le(s)ds = 0 and limt~oo L(tx)/L(t) = 1. 
Conversely suppose L E R Vo' By Karamata's theorem 

b(x) := xL(x) / LX L(s)ds ~ 1 

and x ~ 00. Note 

L(x) = x-1b(x) f: L(s)ds. 

Set e(x) = b(x) - 1 so e(x) ~ 0 and 

IX C1e(t)dt = IX ( L(t) / J: L(S)dS) dt - log x 

= f: d(log J: L(S)dS) -Iogx 

= log (X-I LX L(s)ds / Ll L(S)dS) 

whence 

exp{{X t-1e(t)dt} = X-I f: L(S)dS/ f L(s)ds 

= L(x) / (b(X) f L(S)dS) (0.38) 

and the representation follows with 

c(x) = b(x) LI L(s)ds. 
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Remark. If U e R Vp then U has the representation 

U(x) = c(x)exp {f: C 1p(t)dt} 

where c(·) satisfies (0.36) and lim, .... oo p(t) = p. This is obtained from the 
corollary by writing U(x) = xPL(x) and using the representation for L. 

PROOF OF THEOREM 0.6(a). For certain values of p, uniform convergence 
suffices. If we wish to proceed, using elementary concepts, consider the fol­
lowing approach, which follows de Haan (1970). 

If p> -1 we show Jef U(t)dt= 00. From UeRy" we have lim ..... oo U(2s)/U(s) = 
2P > 2-1 since p > -1. Therefore there exists So such that s > So necessitates 
U(2s) > r 1U(s). For n with 2ft> So we have 

f 2"+> U(s)ds = 2 f2"+1 U(2s)ds > f2n
+

1 U(s)ds 
2"+1 2" 2" 

and so setting no = inf{n: 2ft> so} gives 

roo U(s)ds ~ L f2"+> U(s)ds > L f 2"0+> U(s)ds = 00. 

Jso ":2">$0 2"+1 "~no 2"0+ 1 

Thus for p > -1, x > 0, and any N < 00 we have J~ U(sx)ds "" J~ U(sx)ds, 
t -+ 00, since U(sx) is a p-varying function of s. For fixed x and given e, there 
exists N such that for s > N 

(1 - e)xPU(s) ~ U(sx) ~ (1 + e)xPU(s) 

and thus 

. I~ U(s)ds. x I~ U(sx)ds 
hmsup I' ()d = hmsup I' U( )d 

' .... 00 0 U s s ' .... 00 0 s s 

. x I~ U(sx)ds. p+1 I~ U(s)ds 
= hmsup I' ( )d ~ hmsup x (1 + e)I' ()d 

' .... 00 NUS S ' .... 00 NUS S 

= (1 + e)xP+1• 

An analogous argument applies for liminf and thus we have proved I~ U(s)ds e 
RY,,+l when p > -1. 

In case p = -1 then either Jef U(s)ds < 00 in which case J~ U(s)dse 
RV-1+1 = RVo or else Jef U(s)ds = 00 and the previous argument is applicable. 
So we have checked that for p ~ -1, J~ U(s)dseRJt;,+l' 

We now focus on proving (0.31) when U eRY", p ~ -1. As in the develop­
ment leading to (0.38), set 

b(x) = xU(x) It: U(t)dt 

so that integrating b(x)/x leads to the representations 
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LX U(s)ds = c exp {f: t- 1b(t)dt} 

U(x) = CX- I b(x)exp{lX 
CIb(t)dt}. 

We must show b(x) ...... p + 1. Observe first that 

liminf l/b(x) = liminf So U(t)dt 
x-oo x-oo xU(x) 

I· . fil U(sx)d = ImlU -- S 
x-oo 0 U(x) 

(change variable s = x-It) 

and by Fatou's lemma this is 

il il 1 2: liminf(U(sx)/U(x»ds = sPds =--
o x-oo 0 P + 1 

and we conclude 

limsup b(x) ::;; p + 1. 

If p = -1 then b(x) ...... 0 as desired, so now suppose p > - 1. 
We observe the following properties of b(x) 

(i) b(x) is bounded on a semi-infinite neighborhood of 00 (by 0.40), 
(ii) b is slowly varying since xU(x) E RVp +1 and SO U(S)dSE RVp +1' 

(iii) b(xt) - b(x) ...... 0 boundedly as x ...... 00. 

The last statement follows since by slow variation 

lim (b(xt) - b(x»/b(x) = 0 

and the denominator is ultimately bounded. 
From (iii) and dominated convergence 

lim fS t-1(b(xt) - b(x»dt = 0 
x-ro 1 

and the left side may be rewritten to obtain 

lim {fS C 1b(xt)dt - b(X)IOgs} = o. 
X-a) 1 

From (0.39) 

cexp{lX 

t-Ib(t)dt} = LX U(S)dSERv,,+1 

and from the regular variation property 

(0.39) 

(0.40) 

(0.41) 
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. {fo' U(t)dt} 
(p + 1)logs = !~ 10~ fo U(t)dt 

iX
• f· = lim t-1b(t)dt = lim C1b(xt)dt 

%-+00 % X""OO 1 

and combining this with (0.41) leads to the desired conclusion that b(x)-+ 
p+1. 

PROOF OF (b). We suppose (0.33) holds and check U e RVA- 1• Set 

b(x) = XU(X)/ f: U(t)dt 

so that b(x) -+ A.. From (0.39) 

U(x) = cx-1b(x)exp IX C 1b(t)dt} 

~ cb(x)ei: ,-'(b(,) - I)d'} 
and since b(t) - 1 -+ A. - 1 we see that U satisfies the representation of a 
(A. - I)-varying function. 0 

The previous results described the effect of integration on a regularly 
varying function. We now describe what happens when a p-varying function 
is differentiated. 

Proposition 0.7. Suppose U: R+ -+ R+ is absolutely continuous with density u 
so that 

U(x) = f: u(t)dt. 

(a) Von Mises: If 
lim xu(x)/U(x) = p, (0.42) 

then UeRVp. 
(b) Landau, 1916; de Haan, 1970, p. 23, 109; Seneta, 1973, p. 1057: If U e RVp• 
p e IR, and u is monotone then (0.42) holds and if p =F 0 then (sgn p)u(x) e R v,,-1' 

PROOF. (a) Set 

b(x) = xu(x)/U(x) 

and as before we find 
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so that U satisfies the representation theorem for a p-varying function. 
(b) Suppose u is nondecreasing. An analogous proof works in the case u is 
nonincreasing. Let 0 < a < b and observe 

IX" 
(U(xb) - U(xa»/U(x) = u(y)dy/U(x). 

XG 

By monotonicity we get 

u(xb)x(b - a)/U(x) ~ (U(xb) - U(xa»/U(x) ~ u(xa)x(b - a)/U(x). (0.43) 

From (0.43) and the fact that U E R Yp we conclude 

limsup xu(xa)/U(x) ~ (bP - aP)/(b - a) (0.44) 
X'" 00 

for any b > a > O. So let b! a, which is tantamount to taking a derivative. 
Then (0.44) becomes 

lim sup xu(xa)/U(x) ~ paP- 1 (0.45) 
X'" 00 

for any a > O. Similarly from the left-hand equality in (0.43) after letting a i b 
we get 

liminf xu(xb)/U(x) ~ pbP- 1 (0.46) 
X'" 00 

for any b > O. Then (0.42) results by setting a = 1 in (0.45) and b = 1 in 
(0.46). 0 

Say U: R+ -+ R+ is regularly varying with index <X) (U E R Voo) if for every 
x>O 

I· U(tx) _ 00._ {~ 
1m U() - x .-

''''00 t 
<X) 

(Cf. Exercise 0.4.1.2.) Similarly U E RV_oo if 

lim U(tx) = x-oo := {~ 
''''00 U(t) 0 

x<l 
x=l 
x>1. 

x<l 
x=1 
x>1. 

The following proposition collects useful properties of regularly varying 
functions and is modeled after the list in de Haan (1970). 

Proposition 0.8. (i) If U E R Yp, - <X) ~ p ~ 00, then limx ... oo log U(x)/log x = p 
so that 

lim U(x) = {O 
X"'" IX) 00 

if p < 0 
if p > O. 

(ii) Suppose U E R Yp, pER Take e > O. Then there exists to such that for x ~ 1 
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and t ~ to 

U(tx) 
(1 - e)xP-' < -- < (1 + e)xP+'. 

U(t) 

(iii) If UeRVp , peR, and {a,,}, {a~} satisfy, o < a,,-+ 00, O<a~-+oo, and 
a" '" a~c, 0 < c < 00, then U(a,,) '" cPU(a~). If p =F 0 the result also holds for 
c = 0 or 00. Analogous results hold with sequences replaced by functions. 
(iv) If U1 e RVp , and U2 e R v,,2 and limx .... oo U2(x) = 00 then 

U1 0 U2 eRVp ,P2' 

(v) Suppose U is nondecreasing, U(oo) = 00, and U eRVp , O:S; p :s; 00. Then 

U+-- eRv,,-,. 

(vi) Suppose U1 , U2 are nondecreasing and p-varying, 0 < p < 00. Then for 
o :s; c :s; 00 

x -+ 00 

x -+ 00. 

(vii) If U e R v" , p =F 0, then there exists a function u· which is absolutely 
continuous, strictly monotone, and 

U(x) '" U(x)·, x -+ 00. 

PROOF. (i) We give the proof for the case 0 < p < 00. Suppose U has Karamata 
representation 

U(.) ~ c(.)ex~: t-'P(t)d,} 

where c(x) -+ c > 0 and pet) -+ p. Then 

log U(x)/Iogx = 0(1) + f' C1p(t)dt I f: C 1 dt -+ p. 

(ii) Using the Karamata representation 

U(tx)/U(t) = (c(tx)/c(t»exp {f' S-l P(tS)dS} 

and the result is apparent since we may pick to so that t > to implies p - e < 
pets) < p + dor s > 1. 
(iii) If c > 0 then from the uniform convergence property in Proposition 0.5 

lim U(a,,) = lim U(a~(a,,/a~» = lim U(tc) = cP 
" .... 00 U(a~) " .... .., U(a~) , .... .., U(t) . 

(iv) Again by uniform convergence, for x > 0 
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I· UI (U2 (tx» I' U1 (U2(t)(U2(tx)IU2(t») 1m = 1m ---=---=-----
..... 00 U1 (U2 (t» ..... 00 U1 (U2(t)) 

= lim U1(yx P2 ) = x P2P ,. 
y .... oo U1 (y) 

(v) Let U.(x) = U(tx)IU(t) so that if U E Rlj, and U is nondecreasing then 
(0 < p < (0) 

U.(x) ~ x P, 

which implies by Proposition 0.1 

Ut(x)~xP-' 

t~ 00, 

as t ~ 00; 

i.e., 

lim U<-(xU(t»/t = xp-'. 

Therefore 

This limit holds locally uniformly since monotone functions are converging 
to a continuous limit. Now U 0 U<-(t) '" t as t ~ 00 (cf. Section 0.4.1), and if 
we replace x by xtlU 0 U<-(t) and use uniform convergence we get 

lim U<-(tx) = lim U<-«xtIU 0 U<-(t»U 0 U<-(t» 
..... 00 U<-(t) ..... 00 U<-(t) 

= lim U<-(xU 0 U<-(t» = xp-' 
..... 00 U<-(t) 

which makes U<- ERVp -" 

(vi) If e > 0,0 < p < 00 we have for x> 0 

1. UI (tx) l' U1 (tx) U2 (tx) P 
1m -- = 1m = ex . 

..... 00 U2(t) ..... 00 U2(tx) U2 (t) 

Inverting we find for y > 0 

lim U;-(yU2(t))/t = (e-1y),,-' 

and so 

and since U2 0 U;:(t) '" t 

lim U;-(yt)IU;:(t) = (e-1y)P-'. 

Set y = 1 to obtain the result. 
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(viii) For instance if U E R Vp ' P > 0 define 

U*(t) = J: S-1 U(s)ds. 

Then S-IU(S)ERy"_l and by Karamata's theorem 

U(x)/U*(x) -+ p. 
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U* is absolutely continuous and since U(x) -+ 00 when p > 0, U* is ultimately 
strictly increasing. 0 

EXERCISES 

0.4.2.1. Use Karamata's representation of a slowly varying function to prove the 
uniform convergence in Proposition 0.5. Hint: Use continuous convergence. 

0.4.2.2. If p > 0 verify Theorem 0.6a by using uniform convergence (Proposition 0.5). 

0.4.2.3. Supply the proofs of omitted cases in Proposition 0.8. 

0.4.2.4. If U E R Vee and U is monotone, if all - 00, a~ - 00, and a,,"" a~c (c #: 1, 
Os; c S; 00) then 

0.4.2.5. Give the Karamata representation of the slowly varying functions 

(l + X-I )togx 

and 

exp {(log x)-}, O<tx<1. 

0.4.2.6. Give an example of a slowly varying function L(x) such that 

lim L(x) 
x~ee 

does not exist. (Hint: Use the Karamata representation.) 

0.4.2.7. Suppose U is integrable on [0, N] for every Nand 

lim X-I IX U(t)dt = P 
x-oo 0 

exists finite. Then show 

exp{f: U:t) dt}ER~ 
(Seneta, 1976, page 88; Aljancic and Karamata, 1956). 

0.4.2.8. Suppose F(x) is a distribution on R+ and 

1 - F(x) ,.., x-«L(x). 

For" ~ tx show by integrating by parts or using Fubini's theorem that 
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lim SOu~F(du) = _IX_. 

x~oo x~(l - F(x)) '1 - IX 

Formulate and prove a converse. (Cf. Feller, 1971, page 283.) 

0.4.2.9. If L i : R+ --. R+, i = 1,2, are slowly varying; so is LI + L2 (Tucker, 1968, page 
1382). 

0.4.2.10. Suppose a(x)eRJt;" p #- O. If N., n ~ 0 are nonnegative random variables 
such that 

N./n!. N 
then a(N.)/a(n) !. NP. 

0.4.2.11. Suppose L(x) is slowly varying and IX > O. Then as x --. 00 

x"L(x) - sup t"L(t). 
O<t~x 

So a regularly varying function with a positive exponent is asymptotic to a 
monotone nondecreasing (regularly varying) function (Karamata, 1962). 

0.4.3. Extensions of Regular Variation: TI-Variation, r -Variation 
(de Haan, 1970, 1974a, 1976a) 

In extreme value theory domain of attraction criteria for (f)", and 'P", can be 
satisfactorily handled with a knowledge of regularly varying functions. How­
ever characterizations for the domain of attraction of A(x) require extensions 
which we now discuss. Restriction to monotone functions will be adequate. 
The revelance of the two following definitions is made precise in Proposition 
0.10 later. 

Definition. A nondecreasing function U is r-varying (written U E r) if U is 
defined on an interval (x"XO), limxtxo U(x) = 00 and there exists a positive 
function f defined on (x" xo) such that for all X 

lim U(t + xf(t» = eX. 
r-+xo U(t) 

(0.47) 

The function f is called an auxiliary function and is unique up to asymptotic 
equivalence. There are several ways to check this, but perhaps the most 
straightforward is to define for t > 0, x > 0 

Fr(x) = 1 - U(t)/U(t + x) 

so that Fr(x) is a family of distributions. If (0.47) is satisfied for both 11 and 12 
then 

Fr(J;(t)x) --+ 1 - e- X 

for i = 1,2, and hence by the convergence to types Proposition 0.2 we have 
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Conversely, if (0.47) is satisfied with J, and fl (t) ,.., f(t), then (0.47) holds with 
fl· 

In probability applications we set U = 1/(1 - F) where F is a probability 
distribution with right-end Xo = sup{x: F(x) < I}. 

Definition. A nonnegative, nondecreasing function Vex) defined on a semi­
infinite interval (z, (0) is n-varying (written Ven) if there exist functions 
aCt) > 0, b(t)e IR such that for x> 0 

I· V(tx) - bet) - I 
1m () - ogx. 

, .... 00 at 
(0.48) 

Note in (0.48) we may take bet) = Vet) since 

V(tx) - Vet) _ V(tx) - bet) _ Vet) - bet) -+ I _ I 1 - I (0.49) 
aCt) - aCt) aCt) ogx og - ogx. 

Furthermore putting x = e in (0.49) shows we may take 

aCt) = V(te) - Vet). 

The function a(·) is unique up to asymptotic equivalence: If a(·) satisfies 
(0.48) and aCt) ,.., a l (t), then a l (t) satisfies (0.48). Any function aCt) satisfying 
(0.48) is called an auxiliary function. Similarly if 

(b(t) - bl (t»/a(t) -+ 0 

then bl satisfies (0.48). 
There is a convenient relationship between nand r. 

Proposition 0.9. (a) If U e r with auxiliary function f then U .... e n with auxiliary 
function aCt) = f 0 U .... (t). 
(b) If Ve n with auxiliary function a(·) then V .... e r with auxiliary function 
f(t) = ao V .... (t). 

PROOF (a). If U e r then (0.47) holds. Inverting (0.47) using Proposition 0.1 
gives for y > 1 

I· U .... (yU(t» - t - I 
1m fi() - ogy 

Itxo t 

and so replacing t by U .... (t) we get 

1· U+-(yU(U .... (t» - U .... (t) -1 
,:~ f(U .... (t» - ogy. (0.50) 

The convergence in (0.50) is locally uniform so if U(U .... (t» ,.., t we will get 

. U .... (ty) - U .... (t) 
!:~ f(U .... (t» = logy; 
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i.e. U .... E n. To check U 0 U+-(t) ,..., t recall that y < U+-(x) implies U(y) < x 
and y > U+-(x) implies U(y) ~ x. Set y = U+-(t) ± ef(U+-(t» where e > 0 and 
we get 

U(U+-(t) - ef(U+-(t))) t U(U+-(t) + ef(U+-(t))) 
U(U+-(t» ~ U(U+-(t» ~ U(U+-(t» . 

Since U E r, if we let t ~ 00 we get 

e-£ ~ liminf tlU 0 U+-(t) ~ limsup ~ e£ 
''''00 

and since e > 0 is arbitrary the result follows. 
The proof of (b) is similar. Analogous to the preceding step where one proves 

U 0 U .... (t),..., t, in (b) we need to show 

lim (s - V(V+-(s)))/a(V+-(s)) = O . 
.... y(oo) 

Cf. Exercise 0.4.3.6. o 
The relevance of nand r to the study of domains of attraction of D(A) is 

given in the next proposition. Recall FE D(A) means there exist a" > 0, b" e R 
such that 

F"(a"x + bll) ~ A(x). (0.51) 

The following formulation is in terms of U = 1/(1 - F). This is largely a matter 
oftradition as 1/( -log F) is equally suitable from the theoretical point ofview. 

Proposition 0.10 (Mejzler, 1949; de Haan, 1970). For a distribution function F 
set 

U:= 1/(1 - F) 

so that U+- is defined on (1, (0). The following are equivalent: 

(i) FeD(A) 
(ii) U er 
(iii) U+- en 

PROOF. We first show (i) implies (iii). If (i) holds, so does (0.51). In (0.51), take 
logarithms and use -log z ,..., 1 - z, z t 1, to get 

n(1 - F(a"x + bll) ~ e-X, x e R 

which can be reexpressed as 

n-tU(a"x + b,,)~eX, xeR. 

This implies by inversion (Proposition 0.1) that 

(U+-(ny) - b")/a,, ~ logy, y > 0; 

i.e., 
(U+-(ny) - U .... (n»/all ~ logy. (0.52) 
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If we set a(t) = art] it is easy to see (0.52) is the same as saying U e IT with 
auxiliary function a(')' For if e > 0 and t is sufficiently large 

U+-([t]y) - U+-([t]) _ (U+-([t](1 + e» - U+-([t]») 
a(t) a(t) 

~ (U+-([t]y) - U+-([t] + 1»/a(t) 

~ (U+-(ty) - U+-(t))/a(t) 

~ (U+-«[t] + l)y) - U+-([t]»/a(t) 

~ (U+-([t]y(l + e» - U+-([t]»/a(t) 

and letting t - ex:> and using (0.52) we get 

logy -log(1 + e) ~ liminf(U(ty) - U(t»/a(t) ~ limsup 
,-+co 

~ logy + 10g(1 + e) 

and since e > 0 is arbitrary we see U+- e IT. 
We next check that (iii) implies (ii). From Proposition 0.9(b), if U+- en 

then (U+-r-er. Since Exercise 0.2.2 informs us that (U+-r-(x) = U-(x) = 
lim,tx U(t) it remains to see that U- er implies U er. Suppose for xe IR 

lim U- (t + xf(t»/U- (t) = eX. 
ttxo 

For e > 0 we have 

U- (t + xf(t» U(t + xf(t» U- (t + (x + e)f(t» 
U-(t) ~ U-(t) ~ U-(t) . 

Let t t Xo. We see that 

eX < liminf U(t + xf(t» < limsup < eX+£ 
- tho U (t) - tho -

and since e > 0 is arbitrary we conclude 

lim U(t + xf(t» = eX 
,txo U (t) 

(0.53) 

for x E R Set x = 0 in (0.53) and we see U(t) '" U- (t) and hence U E r. 
Last we check (ii) implies (i). Given 

U(t + xf(t» X 

U(t) -e . 

Recalling from the proof of Proposition 0.9a that U(U+-(t) '" t we see that 

U(U+-(n) + xf(U+-(n» X --,-_-,--,-_.:.....c..._-,-,- _ e , 
n 

which is the same as (set an = f(U+-(n», b" = U+-(n» 
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n(1 - F(anx + bn)) -+ e- X 

and this is equivalent to (0.51). o 
This proposition shows that a proper understanding of nand r is essential 

for the study of D(A). We now analyze the structure of a n-varying function. 
The first fact is the analogue of Proposition 0.7 and gives a connection between 
nand RV_1 • 

Proposition 0.11 (de Haan, 1976b). Suppose V: IR+ -+ IR+ is absolutely con­
tinuous with density v. 
(a) If v(x) E RV_1 then V En with auxiliary function xv(x). 
(b) If v(x) is nonincreasing and V En then v E RV_1 • 

PROOF. (a) We have for x> 1 (a similar argument applies if 0 < x < 1) 

(V(tx) - V(t»/tv(t) = f: (v(ts)/v(t»ds. 

Since the integrand tends to S-1 uniformly on [I, x] we find V En. 
Before proving (b) we note the following result: 

Proposition 0.12. If V En with auxiliary function a(t) then a(') E RVo. 

PROOF. For x> 0 

lim a(tx)/a(t) = lim (V(tX) - V(t»)/( _ (V(tx. x-1
) - V(tX»)) 

t~oo t~oo a(t) a(tx) 

= logx/(-logx-l) = 1. o 

PROOF OF PROPOSITION O.l1(b). Suppose V En with auxiliary function a(t). 
Then for x> 1 

V(tx) - V(t) = V(tx) - V(t) . tv(t) = tv(t) fX v(ts) ds 
a(t) tv(t) a(t) a(t) 1 v(t) 

and therefore 

tv(t) = V(tx) - V(t)/f" v(ts) ds 
a(t) a(t) 1 v(t) 

and using the fact that v is nondecreasing we obtain the bounds 

(V(tx) - V(t»/(x - 1)a(t) ~ tv(t)/a(t) ~ {(V(tx) - V(t»/a(t)}/V(tX) (x - 1). 
v(t) 

In the left-hand inequality, let t -+ 00 to get Qogx)/(x - 1) ~ liminft~oo tv(t)/a(t) 
and letting x! 1 gives 1 ::; liminft~oo tv(t)/a(t). The preceding right-hand in­
equality leads to 
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tv(tx)/a(t):5: {(V(tx) - V(t»/a(t)}/(x - 1) (0.54) 

so that 

lim sup tv(tx)!a(t) = lim sup tx-1 v(t)!a(tx-1) = limsup tx-1 v(t)/a(t) 

(since a(t) E R Vol 

:5: logx/(x - 1) (from 0.54) 

i.e., 

limsup tv(t)!a(t):5: xlogx/(x - 1) 

and letting x! 1 gives limsuPI_oo tv(t)/a(t) :5: 1. We conclude that 

v(t) '" C 1a(t)ERV_1 

as required. o 

Remark. Virtually the same proof shows that Proposition O.II(b) is true if one 
merely assumes that Xl v(x) is monotone in x for some t E ~. 

Now a technical lemma necessary to derive a representation of V E II. 

Lemma 0.13. Given V E II with auxiliary function a(·), for any 0 :5: " < 1 there 
is to = to("), c > 0 such that for y 2:: e (say), t 2:: to 

(V(ty) - V(t»/a(t) :5: cy~. 

PROOF. Given s > 0 there is to such that t 2:: to implies 

(V(te) - V(t))/a(t) :5: 1 + s (0.55) 

and 

a(te)/a(t) :5: 1 + s. (0.56) 

Therefore for any integer n 2:: 1 

(V(te") - V(t))/a(t) 

= " (V(tei ) - .V(tei - 1») a(tei - 1 ) 

i~ a(teJ 1) a(t) 

" :5: L (1 + s)a(te i - 1 )/a(t) 
j=1 

" i-1 
= L (1 + s) n (a(te;)/a(tei-l» 

j=1 ;=1 

" j-1 " 
:5: (1 + s) L n (1 + s) :5: (1 + s) L (1 + sy-1 

j=1 ;=1 j=1 

:5: e(1 + s)" fore> O. 
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For any y ~ e, y = exp{logy} :s; exp{[logy] + I} so 

(V(ty) - V(t))/a(t) :s; (V(te((IOgYJ+l) - V(t»/a(t) 

:s; e(l + 6)([IOgY)+I) :s; c(l + 6)IOgy (for some c > 0) 

= ce(log(1+£))logy = cylog(1+e) = cy". 0 

Proposition 0.14. If V En with auxiliary function aCt) then 

aCt) '" {1 OO 
V(s)s- 2 ds - CIV(t)] 

= t 100 u-1 V(du), as t -. 00. 

PROOF. Since 

lim (V(tx) - V(t))/a(t) = log x 

we have from Lemma 0.13 and dominated convergence that 

. fOO V(tx) - Vet) foo-2 
hm 2 () dx = x log x dx. 
' .... 00 1 X a t 1 

The right side of (0.57) is 

roo (I" u-1 du)x- 2 dx=IOO (rOO x-2 dx)u- I dU 
J"=1 u=1 u=1 Jx=u 

= 100 U-1U-1 du = 100 u-2 du = 1. 

The left side of (0.57) is 

t J~ V(u)u- 2 du - Vet) _ t J~ u-1 V(du) 
aCt) - aCt) 

(0.57) 

the last step following by Fubini's theorem. 0 

Proposition 0.15. V En itT 

K(x):= too u-1 V(du) = too u-2 V(u)du - X-I l'{x) (0.58) 

is finite and -1 varying. In this case the auxiliary function aCt) satisfies 

aCt) '" tK(t) 

and we have representation 

Vex) - Vel) = f' K(u)du - xK(x) + K(1). (0.59) 
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(This emphasizes the relation between n-variation and -1 variation introduced 
in Proposition 0.11.) 

PROOF. If Ve n then from Proposition 0.14 

K(t) '" t-1a(t).eRV_1 

since aCt) e R Yo. 
For the converse we first show we can express V in terms of K as in (0.59). 

We have 

t' K(u)du = 1:1 f.:, u-1 V(du)dt 

= f.:l (1:~% dt)U-1V(dU) 

= f.:l (u - l)u-1 V(du) + f.:% (x - l)u-1 V(du) 

= Vex) - V(I) - (K(I) - K(x» + (x - I)K(x) 

and this gives (0.59). If now K e R V-1 then 

V(tx) - Vet) = f% K(ut)du _ xK(tx) + 1 
tK(t) 1 K(t) K(t) 

so that Yen. 

Equivalence Classes 

o 

For regular variation asymptotic equivalence is the appropriate equivalence 
relation. If VI en with auxiliary function aCt), say VI and V2 are n-equivalent 
(written VI .!!, V2 ) if 

as t -+ 00. In this case V2 e n with auxiliary function aCt). 
If Ve n we may construct smoother versions which are n-equivalent to V. 

Proposition 0.16. If Ve n there exists a continuous, strictly increasing V1 .!!, V 
such that 

V1(t) > Vet) 

and 

(V1 (t) - V(t»/a(t) -+ 1. 



34 o. Preliminaries 

In jact, there exists a twice differentiable V2 E V with V2(t) > Vet) and 

-xV;'(x) '" V;(x) as x -+ 00. 

PROOF. Set VI (t) = t J:" V(u)u- 2 du so that by monotonicity VI > V and (0.57) 
translates to 

(VI (t) - V(t»/a(t) -+ 1. 

Note that almost everywhere 

V;(t) = -ctV(t) + 100 u- 2 V(u)du 

= K(t) from (0.58). (0.60) 

Next set Vo = V and 

V2(t):= t 100 Vt (u)u- 2 duo 

Then V2 E Vt and Vt E V so V2 E V. Finally to prove the last assertion 
of the proposition differentiate to get 

so that 

V;(t) = -CIVt(t) + 100 VI(u)u- 2du 

= C 1 [ - V1(t) + t 100 V1(u)u- 2 du] 

= t-1 [V2(t) - VI (t)] 

Vz'(t) = {t[V;(t) - V;(t)] - (V2(t) - Vt (t»}/t2 

and substituting the expression for V2 - Vt from (0.61) gives 

V;'(t) = {t[V;(t) - V;(t)] - tV;(t)}/t2 

= - V;(t)/t 

and from (0.60) 

V:z'(t) = - K(t)/t 

and hence 

-l/(xV{(x» = 1/K(x)eRVt 

since KeRV_ 1• 

(0.61) 

(0.62) 

For the last claim of the proposition note by (0.61) V; e RV_1 so that 
V:z(t) -+ 0 as t -+ 00. Hence 
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Va(t) = 1"0 - Va'(s)ds = 100 s-lK(s)ds 

by (0.62). Therefore, 

V.'(t) foo 
-t~a'(t) = t s-lK(s)ds/K(t) 
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and since K E RV_1 an appeal to Karamata's theorem 0.6 completes the proof. 
o 

EXERCISES 

0.4.3.1. For a monotone function Ve n prove Ve R Yo, and ifthe auxiliary function is 
aCt) show V(t)/a(t) -+ 00 (de Haan, 1970). 

0.4.3.2. Let 7t: R+ -+ R+. We do not necessarily suppose 7t is monotone. Say 7t is n+ 
varying (written 7te n+) if there exists aCt): R+ -+ R+, bet): R+ -+ R+ such that 

lim (7t(tx) - b(t»/a(t) = logx. (0.63) 
t-oo 

Similarly say 7t e n- if 

lim (7t(tx) - b(t»/a(t) = -logx. (0.64) 

Take as fact, the statement that (0.63) and (0.64) hold locally uniformly 
(Balkema, 1973). Prove 
(a) 7ten+ v n- iff for every reRVl we have 7toren+ V n-. The auxiliary 

function of 7t or is a 0 r if the auxiliary function of 7t is a( .). Moreover 

1I:or ~ 11: iff lim x-1r(x) = c > o. 

(b) 7tE n+ iff l/ne n-. The auxiliary function of 1/11: is a(· )/n2 • 

(c) Suppose LeRVo and 7ten±. Then L(t)7t(t)En± with auxiliary function 
L(t)a(t) iff 

lim (L(tX) _ 1) 1I:(t) = 0 
'-00 L(t) aCt) 

(de Haan and Resnick, 1979a). 

0.4.3.3. Suppose Ve n and for x > 0 

lim (V(tx) - Vet»~ = p logx, 

Show Vex) = c(x) + r c 1 p(t)dt where 

lim c(x) = c 

lim p(x) = p. 

forallx>O 

p>O. 
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0.4.3.4. If v., V2 e n show V + V2 e n. Hint: Use (0.58). What is an auxiliary function 
of VI + V2? 

0.4.3.5. Let U(x) = 210gx + sin(logx). Then U eRVo but U is not in n. 

0.4.3.6. Prove Proposition 0.9(b) and check that 

lim (s - V(V+-(s)))/a(V+-(s)) = o . 
.... co 

0.4.3.7. Suppose I: IR+ -+ IR+ is differentiable, Iim,"'cof'(t) = 0,1/1 is integrable and 
define 

H(x) = exp{f: (l/I(U)dU}. 

Show Her with auxiliary function I. 
0.4.3.8. Suppose I is as described in the previous exercise and U: IR+ -+ IR+ is mono­

tone. Then as t -+ 00 we have for x > 0 

U(t + xl(t» - U(t) 
-=-,---,:-:-,-:-:-~-::-:,:-,- -+ x 
U(t + I(t» - U(t) 

(0.65) 

iff 

U = Vl oH 

where H is described in 0.4.3.7. and V. en. Hint: If U satisfies (0.65) show 
UoH+-en. 

0.4.3.9. Give examples of nondecreasing Ve n such that V( 00) = 00 or V( 00) < 00. 

0.4.3.10. If U e r with auxiliary function I so that 

lim U(t + xl(t»/U(t) = eX 
''''co 

prove Iim, ... co/(t)/t = O. Hint: Use 0.4.3.1. and Proposition 0.9. 

0.4.3.11. Suppose U1, U2 e r with the same I and Xo. Show 

U1 = UoU2 

where U e R VI. Extend this result to the case where Ui e r with auxiliary 
function j;, i = 1, 2 and 11 (x) ,.., 12(x) as x f Xo (de Haan, 1974a). 

0.4.3.12. If V e rthen V(x) ,.., (U+-)+-(x) as x f Xo. 

0.4.3.13. Suppose U1 is monotone and U1 e R v;. , p > o. If V2 e r show VI ° U2 e r. 
Express the auxiliary function of VI ° U2 in terms of the auxiliary function 
of V2 (de Haan, 1970). 

0.4.3.14. Suppose U1 e rand U2 is absolutely continuous with density U e R v;. , 
p> -1. Show U1 0 U2 e r (de Haan, 1970). 

0.4.3.15. If U1 e rand U2 is absolutely continuous with density belonging to r then 
U := U1 0 U2 e r (de Haan, 1970). 

0.4.3.16. Prove the remark which follows the proof of Proposition 0.11 b. 
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0.4.3.17. Suppose Vis real valued with positive derivative V' and Iim,,_oo T V(x) = 00. If 

lim log V(x)J(xV'(x» = 1 

then V E n with auxiliary function log V (de Haan and Hordijk, 1972). 

0.4.3.18. Suppose V is a twice differentiable real valued function with positive deriva­
tive V' and limxtoo T V(x) = 00. Define 

q(t) = log V(t)jV'(t) 

and suppose q'(t) - O. Then 

lim (V(t + xq(t» - V(t»flog V(t) = x 

(de Haan and Hordijk, 1972). 



CHAPTER 1 

Domains of Attraction and Norming 
Constants 

As in Chapter 0 suppose {x", n ~ I} is an iid sequence of random variables 
with common distribution F(x). If G is an extreme value distribution then 
according to Proposition 0.3, G is of the form 

or 

or 

G(x) = (J)«(x) = {O { _II} 
exp -x , 

x<O 
x~O 

x<O 
x~O 

G(x) = A(x) = exp{ - e-X }, x e R, 

where in the first two cases, IX is a positive parameter. 
We say FeD(G) if there exist normalizing constants a" > 0, bIlE R such that 

F"(a"x + b,,) = P[M" :s; a"x + b,,] -+ G(x) (1.1) 

where as usual, Mil = VI So is,,, Xi = max{Xl' ... 'X,,}. The goals of this chapter 
are to give necessary and sufficient conditions for FeD(G) when G is one of 
the three extreme value distributions and also to characterize a" and bll • Recall 
that by taking logarithms and expanding (1.1) is equivalent to 

n(1 - F(a"x + b,,» -+ -log G(x) 

for x such that G(x) > o. (Cf. the derivation of (0.29).) 

1.1. Domain of Attraction of A(x) = exp{ _e-X } 

(Ll') 

We begin our study with the double exponential distribution since we know 
from our discussion in Proposition 0.10 that the material about the function 
classes IT and r will be essential. We seek conditions for (Ll) to hold with 
G = A and characterizations of a" and b". 
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Define the right end Xo of the distribution F to be 

Xo = sup{y: F(y) < 1}. 

If FE D(A), it is possible for Xo to be either finite or infinite. An example where 
Xo = 00 is the exponential distribution F(x) = 1 - e-x , x > 0, since in this case 
with an = 1 and bn = log n we get for x E IR and n sufficiently large 

P(x + log n) = (1 - e-(X+logn»n 

= (1 - e:xy --+exp{ _e- X } = A(x), 

or in other notation, if {En' n ~ I} is iid from 1 - e-x , x > 0 and Y has 
distribution A(x), 

n 

V E; - log n => Y. 
;=1 

For an example where Xo < 00 consider (Gnedenko, 1943) 

F(x) ~ {: - .xp{( -x/(l - x))) 

x<O 
O~x<1 

x>1. 

(1.2) 

!fan = (1 + lognf2,bn = (logn)/(1 + log n) then it is checked readily from first 
principles that maxima Mn from this distribution satisfy 

A more illuminating approach is to derive this result from the previous one: 
If g(x):::: x/(l + x): [0,00) -+ [0, 1) then g'(x) = (1 + xf2 and 

Mn - bn g, g(~ E) - g(logn) 

(cf. Section 0.2), and by the mean value theorem the right side is 

(~ E; -IOgn)g'(Cn) 

where Cn is between log nand V;"=1 E;. Note g' E RV_ 2 and from (1.2) it is 
evident that 

n p V E;/log n --+ 1. 
;=1 

Thus it follows that Cn/log n 1:. 1 and hence from Proposition 0.8(iii) (cf. 
Exercise 0.4.2.8) g'(Cn)/g'(log n) 1:. 1. Thus 

Mn - bn g, g(Vr=1 E;) - g(log n) => y. 
an g'(logn) 
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We begin our study of D(A) by considering a special case. A distribution 
F# with right end Xo is called a Von Mises function if it has the following 
representation: There must exist Zo < Xo such that for Zo < x < Xo and c > 0 

1 - F# (x) = c exp { - L: (l/f(U»dU} (1.3) 

where f(u) > 0, Zo < u < xo, and f is absolutely continuous on (zo, xo) with 
density f'(u) and limutxJ'(u) = O. Call f an auxiliary function. 

Proposition 1.1. (a) If F# is a Von Mises function with representation (1.3) then 
F# E D(A). The norming constants may be chosen as 

bn = (1/(1 - F»<- (n) 

an = f(bn ) 

and 1/(1 - F#) E r with auxiliary function f 
(b) Suppose F is absolutely continuous with negative second derivative F" for 
all x in (zo, xo)· If 

lim F"(x)(1 - F(x»/(F'(X))2 = -1 (1.4) 
xtxo 

then F is a Von Mises function and FE D(A). We can set f = (1 - F)/F'. Con­
versely, a twice differentiable Von Mises function satisfies (1.4). 

For the proof, we need two lemmas. 

Lemma 1.2. Suppose as in the preceding definition that f(u) is an absolutely 
continuous auxiliary function with f'(u) --+ 0 as u t Xo. 
(a) If Xo = 00 then limt_oo C 1 f(t) = O. 
(b) If Xo < 00 then f(xo) = lim,t xJ(t) = 0 and limttxo (xo - t)-l f(t) = O. 

In either case 

lim (t + :if(t» = Xo 
ttxo 

for all XE R (For (a), cf Exercise 0.4.3.10.) 

PROOF. (a) We have as t --+ 00 

t-1f(t) '" c 1 It f'(u)du 
Zo 

and since the integrand goes to zero so does the Cesaro average. Therefore 

t + xf(t) = t(1 + xf(t)/t) '" t, as t --+ 00. 

(b) If Xo < 00 then 1 - F(xo) = 0 and then from (1.3) for Zo < x < Xo 

IXO (I/J(u»du = 00 



1.1. Domain of Attraction of A(x) = exp{ -e-"} 41 

whence for all x e (zo, xo) 

sup l/f(u) = 00 
"S"S"o 

and thus 

inf f(u) = O. 

So by continuity there exists a sequence Un i Xo and f(un) = 0, whence 
f(xo) = O. 

Next observe that since f(xo) = 0 

limf(t)/(xo - t) = lim - f."o (f'(u)/(xo - t»du. 
It"o It"o 1 

Change variables y = Xo - u and s = Xo - t and the preceding becomes 

lim - S-1 r' f'(xo - y)dy ."'0 Jo 
which is clearly zero since f'(xo - y) -+ 0 as y -+ o. Finally it is clear that since 
f(t) -+ 0 as t -+ Xo we have t + xf(t) -+ Xo as t -+ Xo· 0 

Lemma 1.3. Iff satisfies the conditions in Lemma 1.2 

lim f(t + xf(t» = 1 
Iho f(t) 

locally uniformly in x e R 

PROOF. We show continuous convergence. Let x(t) be a function such that 

lim x(t) = xeR 
1-,xO 

Then 

If(t + x(t)f(t» - f(t)1 ~ 11'+"(111
(1

1 f'(U)dul· 

Since from the previous lemma as t -+ 00 we have t + x(t)f(t) -+ Xo it follows 
from f'(u) -+ 0 as u -+ Xo that given e, for t ~ to(e) 

11'+"(11/(/1 f'(U)dUI ~ elx(t)f(t)1 

and therefore for t ~ to(e) 

If(t + x(t)f(t» _ 11 < 1 ()I 
f(t) - ext. 

Since e is arbitrary and Ix(t)1 is bounded the result follows. o 
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PROOF OF PROPOSITION l.1(a). From the form of F# given in (1.3) we have for 
x E IRI and t sufficiently large 

1 - F#(t + xf(t» = exp {- [t+x/(t) (l/f(U»dU} 
1 - F#(t) Jt 

= exp { - LX {f(t)/f(t + sf(t»} } ds (s = (u - t)/f(t» 

and since Lemma 1.3 ensures the integrand converges to 1 uniformly on (0, x) 
we get 

. 1 - F#(t + xf(t» _ 
hm = e x 
t-+xo 1 - F# (t) 

which says 1/(1 - F#) E r. So Proposition 0.10 asserts F# E D(A). In fact pick 
bn to satisfy 

i.e., 

bn = (1/(1 - F# »+-(n), 

and then since 1/(1 - F(bn» ~ n (cf. the proof of Proposition 0.9(a» 

lim n(1 - F#(bn + xf(bn» = e- X 

which is (1.1') so that a suitable choice of an is f(bn). o 

PROOF OF (b). Set 1 - F = exp { - R}. Then the representation like (1.3) is 
possible with f = 1/ R' and f' -+ 0 iff (1/ R')' -+ O. But R = -log(1 - F) so 
R' = F'/(1 - F) and I/R' = (1 - F)/F' and 

(I/R')' = (_(F')2 - (1 - F)F")/(F')2 = -1 - ((1 - F)F")/(F')2 

and the assertion follows. The converse is readily checked. 

EXAMPLES. (a) Let F(x) = 1 - e-X, x > O. Then F'(x) = e-x, x ~ 0, and 

f(x) = (1 - F(x)/F'(x) = e-x/e-x = 1. 

Therefore f'(x) == 0 and FE D(A). 
(b) Let F(x) = N(x), the standard normal distribution. We have 

F'(x) = n(x) = _1_e-x2/2 

fo 
-I 

F"(x) = __ xe- x2 / 2 = - xn(x) 
fo 

o 

and using Mills' ratio (Feller, 1971) we have 1 - N(x) ~ x-1n(x). Therefore 



and 
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lim (1 - F(x»F"(x) = lim -x-1 n(x)xn(x) = -1 
" .... 00 (F'(X»2 X"" 00 (n(x»2 ' 

fi( ) = 1 - N(x),..., -1 n(x) = -1 

X n(x) x n(x) x. 
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The next result gives a nice representation of F e D(A) due to Balkema and 
de Haan (1972). 

Proposition 1.4. Fe D(A) itT there exists a Von Mises function F# such that for 
xe(zo,xo) 

1 - F(x) = c(x)(1 - F# (x» = c(x)exp { -1: (1 If(U»dU} (1.5) 

and 

lim c(x) = c > O. 
t-+,xo 

If (1.5) holds then from Proposition 1.1 there exists a" > 0, b" e R such that 

n(1 - F# (a"x + b,,» -+ e-X 

and thus 

so that 

F"(a"x + b,,) -+ exp{ - ce-X } 

and FeD(A). So it is only the converse which need concern us. We need the 
following lemma. 

Lemma 1.5. Suppose Fe D(A) so that V := (1/(1 - F»,- en. Construct V1 and 
V2 as in Proposition 0.16 and define 

i = 1,2. 

Then as x -+ Xo 

PROOF. We have for x> 0 as t -+ <Xl 

V(tx) - V1 (t) V(tx) - V(t) V(t) - V1 (t) (I ) 
---'----=--- = + -+ og x-I 

a(t) a(t) a(t) 
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and inverting we get for y E R 

V<-(ya(t) + Vt (t»/t -+ exp{y + I} 

and setting y = 0 

lim V<-(Vt (t»/t = e, 

whence remembering Vt is continuous and strictly increasing 

lim V<-(s)/Vt<-(s) = e. 
0-+00 

The result for F2 is checked in an identical manner. 
Now for the rest of the proof of Proposition 1.4. Assume FE D(A) and set 

F# = F2 so 1 - F# = 11V2<- and it suffices to show F# is a Von Mises function. 
Write R = -log(l - F#) and we need to check 

(lIR')' -+ o. 
However 

so that 

Therefore 

lim (lIR'(x»' = lim (yV2'(y)/V2(y» + 1 = -1 + 1 = 0 
y-+oo 

by Proposition 0.16. The result is proved. o 

Remark. A small point, glossed over in the proof of Lemma 1.5, is this: If U E r 
then (U"')<- '" U. This was essentially proved within Proposition 0.10 and 
also assigned as Exercise 0.4.3.12. If you are hard to convince here are the 
details again: Suppose for convenience U is right continuous, as will be the 
case if U = 1/(1 - F). Then by definition 

(U<-)<-(x) = inf{y: U<-(y) ~ x} 

:::;; inf{y: U<-(y) > x} 

= inf{y: y > U(x)} (by O.6(c» 

= U(x). 

On the other hand 

(U<-r-(x) ~ inf{y: U"'(y) > x - ej(x)} 

where e > 0 and j is assumed the auxiliary function of U E r. Therefore 
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another application of (0.6(c» yields 

(U+-)'-(x) ~ inf{y: y > U(x - ef(x»} = U(x - ef(x» 

so that 

U(x - ef(x»/U(x) ~ (U .... )+-(x)/U(x) ~ 1. 

Letting x -+ Xo gives 

e-' ~ liminf(U+-)+-(x)/U(x) ~ limsup ~ 1 

and the result follows. 

Corollary 1.6. If FE D(A) then 

lim (1 - F(x»/(1 - F(x-» = 1. 
xtxo 

PROOF. Use (1.3). Since F # is continuous 

(1 - F(x»)/(1 - F(x-» = c(x)/c(x-) 

and since c(x) -+ c the result is clear. 
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o 
Corollary 1.6 can sometimes be used to check that certain distributions are 

not attracted to A(x) (or indeed, to any extreme value distribution). 

EXAMPLES. (a) Although we have seen the exponential distribution 1 - e-x , 

x > 0 is a Von Mises function, the geometric distribution written as 

1 - e-[x1, x> 0 

is not in D(A) since 

lim e-[Xl/e-[X-1 :1= 1 
x->oo 

because 

(b) The Poisson distribution is not attracted to A(x) (Gnedenko, 1943). Set 
for x > 0, A. > 0 

1 - F(x) = L e-). ).tj(k!) 
Ie>x 

and let N be a random variable with this distribution. Let r .. = El + ... + E .. 
where {E j • i ~ I} are iid, P[Ej > x] = e-).x, x> O. A well known relationship 
from renewal theory is 

P[N ~ n] = p[rll :5; 1] 

So 
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I. P[N ~ n] I. p[r" =:;; 1] 
1m = 1m --==-=---==-

""'00 P[N ~ n + 1] ""'00 p[r"+1 =:;; 1] 

. IA ).e-·b:(b:r-1 dx/(n - I)! 
= lIm II 1_ AX 

""'00 0 JI.e' ().x)" dx/n! 

. n I~e-Yy"-1 dy . ( e-A).") 

= hm IA Y "d = lIm 1 + IA Y d 
""'00 0 e y y "-+00 0 e y" y 

the last step following by integrating by parts. But observe 

I~e-YY"dy =:;; I~Y"dy = ).,,+1 = ). -0 
e AA" e AA" (n + l)e AA" (n + l)e A 

and therefore 

lim P[N ~ n]/P[N ~ n + 1] = 00. 
11"'00 

The representation in the following corollary sometimes offers more flexi­
bility than the one given in Theorem 1.4. 

CoroUary t.7. FeD(A) iff there exists Zo < Xo and measurable Junctions c(x), 
g(x), and f(x) such that 

lim c(x) = c1 > 0, lim g(x) = 1 
' ..... %0 t~xo 

and 

1 - F(x) = c(x)exp { -1: (g(t)/f(t»dt}. Zo < x < Xo (1.6) 

where f is an auxiliary function with J > 0 on (zo, xo) and f is absolutely 
continuous with f'(x) - 0 as x - Xo. 

PROOF. If F e D(A) use Theorem 1.4 with g == 1. Conversely if (1.6) holds then 
for any xeR 

1 - F(t + xJ(t» { f'+X/{') } 
lim 1 _ F( ) = lim exp - (g(s)/J(s»ds 
'-+Xo t ''''Xo , 

= lim exp {- IX g(t + sJ(t» J( J(t~(» ds. 
''''Xo Jo t + s t 

It is evident from Lemmas 1.2 and 1.3 that the integrand converges to one 
uniformly for se(O,x) and thus 

I. 1 - F(t + xf(t» _ 
1m = e X 

''''Xo 1 - F(t) 

which is equivalent to Fe D(A). o 
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EXAMPLE. Let Q be the rationals on (0, (0). Then 

F(x) = 1 - exp { - f: «1 + t-1 1Q(t))!I0gt)dt} 

ED(A) by the representation of Corollary 1.7. It is not clear how to construct 
F# of (1.3) and (1.5). 

For most practical purposes the criteria given in Proposition 1.1 are enough. 
In the case F is not differentiable, it still remains to give reasonable criteria 
for membership in D(A) and useful characterizations of an, bn• 

We begin with an integrability lemma: 

Lemma 1.8. If Xo = 00 and FE D(A) then 

IX> (1 - F(u»du < 00, leX> f.eX> (1 - F(u»duds < 00. 

Of course the result is true for Xo < 00. 

PROOF. By Theorem 1.4 we may suppose without loss of generality that 1 - F 
has representation (1.3). Given any ~ < 1/2, there exists Uo > Zo such that for 
u ~ Uo 

-~ < j'(u) < <>. 
Therefore for u > Uo 

- <>(u - uo) < f(u) - f(uo) < <>(u - uo) 

so that 

1 1 1 
------ < - < -,------
f(uo) + <>(u - uo) f(u) f(uo) - <>(u - uo) 

and hence for x > Uo there is a constant c' such that 

1 - F(x) = c' exp { - I: (l/f(U»dU} 

~ c' exp { - L: (l/(f(uo) + <>(u - Uo)))dU} 

{ f/(UO)+cl(%-UO) } 

= c' exp _<>-1 S-1 ds 
/(uo) 

= c'exp{ -Iog«(f(uo) + b(X - uo»/f(UO»cl- l } 

= c'(l + (jf(uor1(x - uo)fcl- 1 _ C"X- cl - 1 

as x -+ 00 for c" > O. The result follows. o 
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Proposition 1.9 (de Haan, 1970). FE D(A) iff 

1xo 
1xO /(1XO )2 lim (1 - F(x» (1 - F(t»dt dy (1 - F(t»dt = 1 

xtxo x y x 
(1.7) 

and all the integrals in the preceding expression are finite. In this case 
1/(1 - F) E r and for the auxiliary function f we may choose either 

or 

and 

f(t) = 1xO LXO (1 - F(t»dtdy / f:o (1 - F(t»dt 

f(t) = 1xO (1 - F(t»dt/{l - F(x» 

b" = (1/(1 - F)t-(n) 

an = feb,,) 

are acceptable choices of normalizing constants. 

PROOF: SUFFICIENCY. Suppose (1.7) holds. Set 

1 - Fo(x) = (1XO (1 - F(s»ds Y / I'O LXO (1 - F(t»dt dy. 

From (1.7) 

I· 1 - Fo(x) 1 
1m = 

rtxo 1 - F(x) 

so that 1 - Fo(x) -+ 0 as x -+ Xo. Furthermore 

(1 - Fo(x»' 

= {-1"0 f'o (1 - F(t»dtdY2(f:o (1 - F(t»dt)(1 - F(x» 

+ (f:o (1 - F(t»dtY f:o (l - F(t»dt}/(f:o 1xO 
(1 - F(t»dtdy Y 

_ <J ~0(1 - F(t»dt)(1 - F(x» {_ 2 + (J ~0(1 - F(t»dt)2 } 
- go J ;0(1 - F(t»dt dy (1 - F(x» go J ;0(1 - F(t»dt dy 

and because of (1. 7) this is negative for sufficiently large x, say x ~ zoo Thus 
1 - Fo is a distribution tail. Now set 

hex) = (1 - F(x» 1xo 1xo 
(1 - F(t»dtdy/(f:O (1- F(t»dty 

so that hex) -+ 1 as xi Xo. Check that 
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d 
dx (-log(l - Fo(x))) 

= F~(x)/(1 - Fo(x» 

= (2h(x) - 1)1 (L%O {%O (1 - F(s»ds dy I f:o (1 - F(S»dS) 

and if we set f(x) = J ~o J ;0(1 - F(s»ds dY/J ~0(1 - F(s»ds then 

Note 

d 
dx (-log(1 - Fo(x))) = (2h(x) - I)ff(x). 

f'(x) = -<J ~0(1 - F(s»ds)2 + ($ ~o $ ;°(1 - F(s»ds dy)(1 - F(x» 
(J ~0(1 - F(s»ds)2 

= -I + hex) -+ 0 

as x -+ Xo from (1.7). Write g = 2h - 1 so g(x) -+ 1 and we get for x ~ Zo 

1 - Fo(x) = (I - Fo(zo»exp { - I: (g(t)/f(t»dt} 

whence 

1 - F(x) = {: ~ ~~) (I - Fo(Zo»} exp { - I: (g(t)/f(t»dt} 

and the representation of (1.6) holds, proving Fe D(A). 
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PROOF: NECESSITY. Suppose Fe D(A). Suppose initially that F is a Von Mises 
function with representation (1.3) so that 1/(1 - F) is continuous and strictly 
increasing in some neighborhood of Xo. We know from Proposition 0.10 that 

(1/(1 - F»<- =: Ve n, 
and from Proposition 0.14 the auxiliary function aCt) for V satisfies as t -+ 00 

f. oo 1%0 aCt) ,.., t u-1 V(du) = t (1 - F(s»ds, 
I Y(I) 

where the last equality follows by the transformation theorem for Lebesgue 
integrals. The auxiliary function for 1/(1- F)e r can be taken to be ao 1/(1- F), 
and since auxiliary functions for r-varying functions are asymptotically unique 
we conclude the f appearing in representation (1.3) must satisfy 

f(t),.., 1%0 (1 - F(s»ds/(1 - F(t)) =: fl (t). (1.8) 

Recalling Lemmas 1.2 and 1.3 we have 
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t + Xfl (t) = t + X(fl (t)lf(t»f(t) ~ Xo 

for any x and 

fl(t + Xfl(t» '" f(t + xfl(t» = f(t + x(f1(t)/f(t»f(t» ~ 1 
fl (t) f(t) f(t) 

locally uniformly as t i Xo. Define a distribution tail by 

1 - F3(t) = 1%0 (1 - F(s»ds 

so that f1 (t) = (1 - F3(t»/(1 - F(t» and (1.9) can be rewritten as 

(1 - F3(t + Xf1 (t)))(l - F(t» ~ 1. 
(1 - F(t + Xf1 (t»)(l - F3(t» , 

i.e., 

(1.9) 

as t~xo for xeR Therefore 1/(1-F3)er and mimicking the argument 
which led to (1.8) we obtain 

fl (t) '" 1%0 (1 - F3(s»ds/(1 - F3(t»; 

i.e., J :°(1 - F(s»ds/(1 - F(t» '" J:o J :°(1 - F(u»du ds/J :°(1 - F(u»du which 
is equivalent to (1.7). 

If F e D(A) but F is not a Von Mises function then there exists by Theorem 
1.4 a constant e > 0 and a Von Mises function F# such that 

1 - F(x) '" e(l - F#(x» 

as x ~ Xo. F# satisfies (1.7) and it is readily seen that the tail equivalence of F 
and F# entails that F satisfies (1.7) as well. 0 

Here is another criterion for Fe D(A). 

Proposition 1.10 (de Haan, 1970). FeD(A) itT 

._ J~o(1 - F(t))fldt ~-1 
r(x).- (1 _ F(x»J~O(l _ F(t»« Idt IX (IX - 1) (1.10) 

as x ~ Xo for some IX> 1. In this case (1.10) is true for all IX> 1. 

PROOF. Suppose (1.10) holds for some IX> 1 and define 

1 - F4 (x):= f:o (1 - F(t»fldt 11%0 (1 - F(t»«-ldt. 

We will show that for all sufficiently large x, 1 - F4 is a distribution tail. First 
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of all we have from (1.10) that 

lim (1 - F4(x»)/(1 - F(x» = ex-I (ex - 1) 
t-+xo 

so that lim, .... xo 1 - F4 (x) = o. Also differentiating we get 

1 F ' _ (1 - F(x»'" { J~o(1 - F(t»"'dt } 
( - 4(X» - J~o(1 _ F(t»",-ldt (1 _ F(x»J~O(1- F(t))"'-ldt - 1 

(1 - F(x»'" 
= J~o(1 _ F(t»"-ldt {r(x) - I} (1.11) 

and since r(x) -+ 1 - ex-I < 1 we have (1 - F4(x»' ultimately negative and 
hence 1 - F4 is ultimately decreasing. Next observe that 

and using (1.11) this is 

«1 - F(x»"/J~O(1 - F(t»,,-ldt)(1 - r(x» 
J~o(1 - F(x»"dt/J~O(1 - F(t»" ldt 

(1 - F(x»"(1 - r(x» 
J~o(1 - F(t»"dt 

(1 - r(x»(1 - F(x»"/(1 - F4(x»" h(x) 
= J~o (1 - F(t»"dt/(1 - F4(X»'" =: f(x) . 

Now h(x) -+ ex-1 (ex/(ex - 1»" =: Cl. Also 

1'( ) = -(I - F4(x»"(1 - F(x»" - J~O(I - F(t»"dtex(1 - F4(x»",-1(1 - F4(x»' 
x (1 _ F4(x»2" 

= -«1 _ F( »/(1 _ F ()))" ex J~O(1 - F(t»"dt(1 - r(x»(1 - F(x»" 
x 4 x + (1 _ F4(X»"'+1J~o(1 _ F(t»'" 1dt 

= _(_ex_)" (1) exJ~o(1- F(t»"dt(1 - r(x»(1 - F(X»"'+l 
ex - 1 + 0 + (1 - F(x»J~O(1 - F(t»" ldt(1 - F4(x»,,+1 

( ex)" ( ex )"+1 = - ex _ 1 + 0(1) + exr(x)(1 - r(x» ex _ 1 + 0(1) 

= 0(1) - (ex/(ex - 1»" + ex(ex - l)ex-1ex-1(ex/(ex - 1»,,+1 = 0(1). 

Set hi = h/c1 • fl = f/c 1 • and for Zo sufficiently large and x ~ Zo 

1 - F4(x) = C exp { - f ~ (hi (t)/fl (t»dt } 

where C > O. Therefore 
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1 - F(x) = {(I - F(x»/(l - F4 (X»c}exp { -1: (h1(t)/fl(t»dt} 

satisfies the representation in Corollary 1.7 and thus FeD(A). 
For the converse suppose F# eD(A) and F# is a Von Mises function with 

representation 

1 - F# (x) = C exp { -1: (l/f# (U»dU} 

for Zo < x < xo. For any IX > 1 

(1 - F# (x»" = C exp { -1: (1/(1X-1f# (U)))dU} 

so that (1 - F#(x»" is the distribution tail of a Von Mises function with 
auxiliary function 1X-1f#(u); similarly for (1 - F#(X»"-l. From Proposition 1.9 

1X-1f#(x)"" 1xO (1 - F#(t»"dt/(1 - F#(x»" 

and 

(IX - It1f#(x)"" 1xO (1 - F#(t»,,-ldt/(1 - F#(X»,,-l 

whence dividing 

which is (1.10). 
For the general case if FeD(A) then by Proposition 1.4 there exist a Von 

Mises function F#(x) and a function c(x) -+ c > 0 such that 

1 - F(x) = c(x)(1 - F#(x» 

and since 1 - F#(x) satisfies (1.10) it is readily seen that 1 - F(x) does also. 0 

EXERCISES 

1.1.1. (a) Prove if FeD(A) then J~o xtF(dx) < 00 for every k > O. Construct an exam­
pie of F e D(A) where J~ao Ixl F(dx) = 00. 

(b) If Xo < 00 and Fe D(A) then for any n 

lim (xo - x)-"(1 - F(x» = o. 
,txo 

So F is differentiable at Xo with F'(xo) = 0.1f Xo = 00 and Fe D(A) then for 
anyn 

lim x"(l - F(x» = O. 
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1.1.2. Suppose FE D(A) with auxiliary function f Given examples where 

f(x) --+ 0, 

f(x) --+ 00, 

and Iim._ xo f(x) does not exist. 

1.1.3. Let F(x) be the lognormal. 
(i) Is FE D(A)? 

x --+ Xo 

x --+ Xo 
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(ii) Do all moments exist? If so what are they? (Remember what the moment 
generating function of the normal is.) 

(iii) Does the moment generating function exist? 
(iv) Is F determined by its moments? 
(Cr. Feller, 1971, page 227.) 

1.1.4. Suppose for U E IR, v > 0 that as x --+ 00 

1 - F(x) _ ex-Me-X". 

Check FE D(A). Find aft and bft. 

1.1.5. Let F(x) = 1 - (log X)-l, x ;;:: e. Show F f D(A). Moment considerations should 
suffice. 

1.1.6. Let F(x) = 1 - e-x-, x::> 0, IX > O. Show FE D(A). Find an and bR • 

1.1. 7. Show if (1.6) holds that there exists a monotone U E R V1 such that 

1/(1 - F) = U 0 (1/(1 - F,,» 
where F" is given in (1.3). Use this to check FE D(A) (de Haan, 1974a). 

1.1.8. Derive Lemma 1.8 from Lemma 0.13 and inversion. 

1.1.9. If Xo = 00 show FE D(A) implies rapid variation: i.e., 

I' 1 - F(tx) _ {O x > 1 
.~'! 1 - F(t) = x ao = 00 0 < x < 1 

so that FE D(A) implies weak stability. Cf. Exercise 0.4.1.2. Show the rapid 
variation two ways: 
(a) Use the representation (1.5). 
(b) If FE D(A) 

(Mn - hn)/an => Y 

("=>" denotes convergence in distribution) where Y has distribution A. Divide 
through by bn/an and use Exercise 0.4.3.1. 

1.1.10. Suppose for i = 1, ... , k that Xi isa random variable with distribution FiED(A). 
Show I\~=l Xi has a distribution in D(A) (Balkema, unpublished letter). 

1.1.11. (a) Suppose X ;;:: 0 has distribution F and Xo = 00. If F E D(A) then the distri­
bution of - X- 1 is in D(A). 

(b) Suppose T maps the open interval I onto the interval J and that T is twice 
differentiable and T' is strictly positive on I. If X is a random variable with 
values in 1 and whose distribution FE D(A), when does Y:= T(X) have a 
distribution in D(A) (Balkema)? 
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1.1.12. If F E D(A) and F·(a.x + b.) -+ A(x), prove (1 - F(a.»/(1 - F(b,,» -+ 00. 

1.1.l3. Suppose Xft , n ~ 1 are iid with common distribution F with right end Xo > O. 
If there exist aft > 0, b. E IR such that 

show 

Do this two ways: 
(a) If FE D(A) show F(x 1/2) for x > ° is in D(A). Use the representation (1.5) 

and compute norming constants for F(x 1/2) in terms of those for F. 
(b) Write 

and use Exercise 1.1.9. 

1.1.14. Suppose X is a random variable with distribution FeD(A) and suppose the 
auxiliary function is f(t). Prove if f(t) -+ 00 the moment generating function of 
X+ does not exist; it does however if f(t) -+ CE [0, 00). (Cr. Exercise 1.1.3.) 

1.2. Domain of Attraction of ~II(X) = exp{ - X-II}, X > 0 

The domain of Attraction of 4» .. (x) = exp{ _X-IX}, x > 0 is related to regular 
variation. 

Proposition 1.11 (Gnedenko, 1943). Fe D(4)> .. ) iff 1 - FeR V_ ... In this case 

F"(a.x) -+ 4»,,(x) 

with 

a,. = (1/(1 - F»+-(n). (1.12) 

So only distributions with infinite right end may qualify for membership in 
D(4)>I.J 

PROOF. 1f1 - Fe RV_ .. and a,. = (1/(1 - F»+-(n) then because 1 - F(a,.) '" n-1 

we have for x > 0 

n(l - F(a,.x» '" (l - F(a"x»/(l - F(a.» -+ x-.. 

as n -+ 00 since a" -+ 00. Therefore for x > 0 

n( -logF(a"x» -+ X-IX 
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and F"(a"x) -+ X-II. If X < 0 then F"(a"x) ~ P(O) -+ 0 = t'IlII(x) since regular 
variation requires F(O) < 1. 

Conversely suppose Fe D(<I>,,). This means there exist constants all > 0, 
b" e R such that 

F"(allx + bll ) -+ <l>rt(x). 

Taking logarithms, this leads to 

n(1 - F(a"x + bll ) -+ X-II, x > 0 

as n -+ 00. Set U = 1/(1 - F) and V = U<-. As in Proposition 0.10 we may 
invert the relation 

U{a"x + bll)/n -+ x", x > 0 

and switch to functions a(t), b(t) of a continuous variable to obtain 

(V(ty) - b(t»/a(t) -+ y1/", y > 0 

or in a more convenient form 

(V(ty) - V(t»/a(t) -+ y1/rt - 1, y>o. (1.13) 

First of all (1.13) implies a(t)e RV1/11• To see this we mimic Proposition 0.12. 
For x> 0 

lim a(tx)/a(t) = lim (V(tX) - V(t»)/( _ (V(tx. x-1) - V(tX»)) 
1-+00 1-+00 aCt) a(tx) 

= (XliII _ 1)/( _(x-1/" - 1) = xliII. 

This means that for any fixed y > 0 the function V(ty) - Vet), considered 
as a function of t, is also in R V1/11 and therefore by Karamata's theorem 0.6 

lim J~ (V(sy) - V(s»ds = _cx_ 
1-+00 t(V(ty) - V(t» cx + 1 

and taking into account the fact that 

f2Y 

lim V(s)ds/(t(V(ty) - Vet))) = 0 
t-C() 2 

(as a consequence of t(V(ty) - V(t» -+ (0) we may rewrite the limit relation as 

lim (tyr1 J~ V(s)ds - C1 J~ V(s)ds = (_OC_) (yllrt _ 1). 
1-+00 aCt) oc + 1 

Next observe that 1.13 is the convergence of monotone functions to a 
continuous limit and so the convergence is locally uniform. Therefore inte­
grating over y in (1.13) gives for 0 < b < 1 

11 (V(ty) - V(t»dy/a(t) -+ fe: y 1/rtdy - (1 - ~); 
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i.e., 

((1 - t5) Vet) - c 1 t V(S)dS) 1 aCt) -+ (1 + CXf1 + 0(t5) 

where 0(t5) = -t5 + cxt5,,-1+1/(CX + 1). This means 

{ Vet) - c 1 J: V(s)ds - t5 [ Vet) - (t5tf1 f:' V(S)dS]} 1 aCt) 

= {V(t) - C 1 J: V(s)ds - t5 [ Vet) - t-1 f: V(s)ds + t-1 J: V(s)ds 

- (&)-1 f:' V(s)ds J} 1 aCt) 

= {(1 - t5)( Vet) - c 1 J: V(S)dS) 

- t5 [C1 f: V(s)ds - (t5tf1 f:' V(s)ds J} 1 aCt) 

-+ (1 + CX)-l + 0(t5) 

and since 

we get 

[C1 J: V(s)ds - (t5tf1 f:' V(s)ds JI aCt) 

-+ cx(cx + 1)-1(1 _ c51/,,) 

( Vet) - c 1 f: V(S)dS) 1 aCt) 

(1 + CX)-l + 0(t5) + t5cx(cx + 1)-1(1 _ t51/") 
-+~--~--~~--7---~~--~ 

1 - t5 

(1 + CX)-l - t5 + cxt5,,-1+1(CX + 1f1 + t5cx(cx + 1)-1(1 - t5 1/") 
=~--~--------~~I---t5~--~--~~----~ 

= (l + CXf1 

as t -+ 00. A final rephrasing is 

Vet) - c 1 I V(s)ds = cx(t) (1.14) 

wherecx(t) '" (1 + (Xf1a(t)ER~-I. We now invert (1.14) and express Yin terms 
of cx(t): Divide (1.14) by t and integrate from 2 to y: 

f: C 1 V(t)dt - f: C 2 J: V(s)dsdt = f: t-1cx(t)dt. (Ll5) 
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The second term on the left side becomes after reversing the order of integration 

f: (f: C 2 dt) V(s)ds = f: (S-l - y-l)V(s)ds 

= f: S-l V(s)ds - y-l f: V(s)ds 

= f: S-l V(s)ds + a(y) - V(y) (from (1.14». 

So substituting in (1.15) we get 

V(y) = a(y) + J: t- 1a(t)dt. 

Therefore 

lim V(y)/a(y) = 1 + lim fY C 1a(t)dt/a(y), 
Y .... CO Y .... co 2 

and applying Karamata's theorem this is 

(1 1 
1 + Jo t,.-1-1dt = 1 + l/a = 1 + a. 

Finally as t --+ 00 

Vet) '" a(t)(1 + a) '" (1 + a)-l(1 + a)a(t) = aCt). 

Therefore VeRVl/,. and from Proposition 1.8(v) 

V+-(t) '" 1/(1 - F(t»eRYa 

so that 

1 - FeRV_,. 

as required. o 

Remark. If we start from the assumption that Fn(anx) --+ <I>,.(x) (instead of 
Fn(anx + bn) --+ <I>,.(x» then it is more elementary to check 1 - Fe RV_,.. See 
the example after Proposition 0.4. 

Corollary 1.12. Fe D(<I>,.) iff there exist measurable functions c(x) and a(x) 
defined on (1, 00) such that 

lim c(x) = c > 0 

lim a(x) = a > 0 

and 
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1 - F(x) = c(x)exp { -lx C 1a.(t)dt} 

for x ~ 1. 

PROOF. This is just the corollary to Karamata's Theorem 0.6 in disguise. 0 

EXERCISES 

1.2.l. Check Fe D(41,,) where F is Cauchy with df F(x) = 1/2 + n-1 arctan x. Find an. 
Do the same for the Pareto distribution: 

x ~ I, P>O. 

1.2.2. If F e D(41,,) and X is a random variable with distribution F then 

O<)I<a. 

Use this or any other method you like to check that if 

C 
P[X = k] = k(logk)2' k~2 

where C > 0 is chosen appropriately, then F; D(41,,) v D(A). 

1.2.3. If F e D(41,,) why is it impossible for maxima of iid random variables distributed 
according to F to be relatively stable? 

1.2.4. If Fe D(41,,) and lim.,_oo (1 - F(x))/(l - G(x» = c > 0 for some distribution G, 
then GeD(41,,). What are suitable normalizing constants for maxima of iid 
random variables from G to converge in distribution? 

1.2.5. Let X I' ... , Xn be a sample of size n from a continuous distribution F(x) with 
Xo = 00 and let X!I) be the term of maximum modulus, i.e., the Xi among 
XI' ... , X. for which IXil is the largest. (Ties among the X's occur only with 
probability zero and can thus be neglected.) 
(a) What is the distribution function of X~1)? 
(b) Prove the following relative stability result: There exist bn -+ 00 such that 

X~1)/b.!.1 itT 1 - FeRV_ oo and 

1 - F(x) '" P[lXII > x] as x -+ 00. 

(c) There exist a. -+ 00 such that X!l)/a. has a nondegenerate weak limit X(I) itT 
for some ae(O, 00] we have 1 - FeRV_" and 

lim (1 - F(x»/P[IXd > x] = C+, lim F(-x) = C 
., .... 00 P[IXII > x] 

and if a = 00 both C+ > 0, C > O. In this case the limit satisfies for x > 0 
anda<oo 

P[X(l) > x] = C+(1 - e-"-') 

P[X(1) < -x] = Ce-I.,I-· 
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and if IX = 00 we have 

p[X(I) = -1] = C (Cline, unpublished). 

Hint: Prove, using a change of variable and a Tauberian theorem, that for two 
distributions F1 , F2 

lim (1 - F2(x))/(1 - FI(x)) = le[O, 00) 

iff 

!~~ n f:", Fj-l(X)F2 (dx) = I 

(Maller and Resnick, 1984). 

1.2.6. (a) Suppose X > 0 is a random variable with distribution F e D(~«) v D(A). 
Then 10gX has distribution F(eX)eD(A). Relate the norming constants of 
10gX to those of X. 

(b) Suppose X is a random variable with distribution F e D(~«). Suppose 9 is 
defined on the range of X and 9 is continuous strictly increasing so that go X 
has distribution F 0 g~. Find conditions on 9 which insure F 0 g~ e D(A). 

1.3. Domain of Attraction of 'PIX (x) = exp{ -( -X)IX}, x < 0 

The last case is also related to regular variation. Suppose IX > o. 

Proposition 1.13 (Gnedenko, 1943). FE D('I'/l) iJfxo < 00 and 1 - F(xo - X-I) E 

RV_/l, X -+ 00. In this case we may set 

1" = (1/(1 - F»<-(n) 

and then 

F"(xo + (xo - 1,,)x) -+ 'I'/l(x), x <0. 

PROOF. Suppose Xo < 00 and 1 - F(xo - X-I) E RV_/l. Define 

{o x <0 
F.(x) = F(xo _ X-I), X ~ o. 

Then 1 - F.(X)ERV_/l and from Proposition 1.11 we may set a" = 
(1/(1 - F.»<-(n) and 

x>o 
i.e., 

x>o 

whence 

F"(xo + a;;-I y) -+ exp{ _( _ y)/l}, y<o. 

Observe 
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a" = inf{u: 1/(1 - F.(u» ~ n} 

= inf{u: 1/(1 - F(xo - u- l » ~ n} 

= inf{_l -: 1/(1 - F(s» ~ n} 
Xo - s 

= l/(xo - inf{s: 1/(1 - F(s» ~ n}) = l/(xo - y,,) 

and therefore 

Fft(xo + (xo - y,,)y) -+ 'Pcz(y), y < 0 

as required. 
Conversely: Suppose there exist an > 0, bn, n ~ 1 such that 

F"(a"x + bft) -+ 'Pcz(x). 

Letting U = 1/( 1 - F) we find 

U(anx + bn)/n -+ ( - xrcz, x < 0 

and inverting we have 

(U-(ny) - bn)/a" -+ _(y-l/CZ), y > O. 

Set V = U- and switch to a continuous variable. We obtain 

(V(ty) - V(t»/a(t) -+ 1 _ y-l/cz, 

This relation implies a(t)eRV_l /CZ since for x> 0 

lim (a(tx)/a(t» 
t-+oo 

y>O. 

= lim (V(tX) - V(t»)/( _(V(tx. x-I) - V(tX»)) 
t-+oo aCt) a(tx) 

= (1 - x-1 /CZ )/( -(1 - Xl/CZ» 

(1.16) 

We next show xo:= V(oo) < 00. It is enough to show lim,,-+oo V(2ft) < 00. 

Pick b < a-I. From (1.16) and the fact that a(t)eRV_1/CZ it is clear there exists 
no such that n ~ no implies 

(V(2"+1) - V(2"»/a(2") ~ 2(1 - 2- CZ- I) 

and 

a(2n+1 )/a(2/1) < 26r 1/cz. 

Then for any k ~ 1 (a product over an empty index set is 1) 

" V(2"o+J) - V(2/1o+J-l) "o-J-2 a(21+1) 
(V(2"o+l:) - V(2"o»/a(2"0) = J~ a(2fto+J 1) It a(2') 

It 
~ 2(1 - 2-1/CZ) L (r(cz- I-6)J-l 

j=l 
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so that 

and we readily conclude V( oc» < 00. 

An elaboration of this argument, which mimics the argument in Lemma 
0.13, produces a bound (8 < ex-I) 

V(ty) - V(t) < (1 _ 2-(I1-'-e) -(I1-'-e» 

a(t) - C Y 

valid for y > 1 and for all sufficiently large t. Dividing by y2 produces a 
uniform bound which allows an application of the dominated convergence 
theorem. In (1.16) divide by y2 and integrate over (1, (0) to get after setting 
V(t) = V( (0) - V(t) 

f' y-2(V(ty) - V(t»/a(t)dy -+ f' (y-I/I1-2 - y-2)dy = -1/(1 + ex); 

i.e., 

V(t) - t 1"0 S-2 V(s)ds = ex(t) (1.17) 

where 

ex(t) ~ a(t)/(1 + oc) E RV_I/I1 , t -+ 00. 

We now invert (1.17) and express V in terms of a(t). Divide (1.17) through by 
t and integrate: 

LX) t- I V(t)dt - 1'" 1'" S-2 V(s)ds dt = 1'" t-Ioc(t)dt. 

The second term, after a Fubini inversion, is 

-{1'" S-1 V(s)ds - y J,'" S-2 V(S)dS} 

and hence from (1.17) 

V(y) - oc(y) = y 1'" S-2 V(s)ds = 1'" s-loc(s)ds 

so that applying Proposition 0.5 

- f'" oc(ys)ds 
V(y)/oc(y) = 1 + -(-)- -+ 1 + ex 

1 ex Y s 

and 

V(y) ~ (1 + oc)oc(y) '" (1 + ex)(l + ext1a(y) = a(y) 

as y -+ 00. Therefore 

H(t):= 1/(V(oo) - V(t»ERVI/I1 
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so that 

Vet) = V( (0) - l/H(t). 

Inverting gives 

1/(1 - F(y» '" H+-«V(oo) _ y)-I) 

and setting s = (V(oo) - yfl we get finally 

1/(1 - F(V(oo) - S-I» '" H+-(S)ER~ 

(cf. Proposition O.S(v». 

We have the following representation. 

o 

Corollary 1.14. FE D('Pa) iff Xo < 00 and there exist functions b: ~+ -+ ~+ and 
a function c: ~+ -+ ~+ and a constant Co > 0 such that 

lim bet) = IX, lim c(t) = Co (US) 
ttxo ttxo 

and for x < Xo 

1 - F(x) = c(x)exp { - 1:-1 b(t)/(xo - t)dt}. 

PROOF. If FED('I'a) then 

1 - F(xo - X- 1 )ERV_a so 

1 - F(xo - X-I) = c(x)exp { -IX (J"(t)/t)dt} 

where J" and c have the properties given in (US). Letting y = Xo - X-I (so 
X = (xo - y)-I) we get for y < Xo 

1 - F(y) = c«xo - y)-l )exp { - fXO
-

Yl
-' (J"(t)/t)dt}. 

In the integral, change variables (s = Xo - t-1) to get 

1 - F(y) = c«xo - yf1 )exp { - f~-1 (~«xo - sf1 )j(xo - S»dS} 

= c(y)exp { - J:O-l (b(S)/(Xo - S»dS}. 0 

1.4. Von Mises Conditions 

Some sufficient conditions for a distribution to belong to a domain of attrac­
tion were originally given by Von Mises (1936) and are often more convenient 
to verify than some of the conditions so far presented. 
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For <l»1X' inspecting the tails often suffices to check whether or not Fe D(<I»IX)' 
For example, F(x) = 1 - X-IX, X ~ 1 is obviously in D(<I»IX) and F(x) = 1 - e-", 
x > 0 is obviously not. Sometimes when a density F' exists it is simple to 
check that F' is regularly varying near 00 and then a mental application of 
Karamata's theorem does the trick. This works, for example, with the Cauchy 
distribution whose density is in RL2 • The following result is also useful. It is 
basically a minor rephrasing of the corollary on page 17. 

Proposition 1.15. Suppose F is absolutely continuous with positive density F' in 
some neighborhood of 00. 

(a) If for some IX > 0 

lim xF'(x)/{l - F(x» = IX 

then FeD(<I»IX)' We may choose an to satisfy anF'(an) '" IX/n. 
(b) If F' is nonincreasing and FeD(<I»IX) then (1.19) holds. 

(1.19) 

(c) Equation (1.19) holds iff in the representation for 1 - F given in Corollary 
1.12, c(x) is ultimately constant, i.e., iff for some Zo and all x > zo, we have 

1 - F(x) = c exp { - L: C 11X(t)dt} 

where limt-><IJ lX(t) = IX. 

PROOF. See the corollary on page 17, and its proof. 

For 'l'1X there is an analogous result. 

o 

Proposition 1.16. Suppose F has finite right endpoint Xo and is absolutely 
continuous in a left neighborhood of Xo with positive density F'. 
(a) If for some IX > 0 

lim (xo - x)F'(x)/(1 - F(x» = IX (1.20) 
"t"o 

then Fe D('I'IX)' 
(b) If F' is non increasing and Fe D('I'IX) then (1.20) holds. 
(c) Equation (1.20) holds iff c(x) in the representation of Corollary 1.14 can be 
taken to be constant in some left neighborhood of Xo. 

PROOF. Recall FE D('I'IX) iff F.(x) = F(xo - x-1) E D(CI>IX)' But 

IX = lim xF~(x)/(1 - F.(x» = lim xF'(xo - x-1)x-2/(1 - F(xo - x-1 ) 

iff 

IX = lim F'(s)(xo - s)/(1 - F(s». o 
5-+%0 
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For A there are two results depending on how many derivatives F is 
assumed to possess (cf. de Haan, 1970). 

Proposition 1.17. Let F be absolutely continuous in a left neighborhood of Xo 
with density F'. 
(a) If 

lim F'(x) fXO (1 - F(t»dt/(1 - F(X»2 = 1 
rtxo Jx (1.21) 

then FeD(A). In this case we may take 

f(t) = iXO (1 - F(s»ds/(1 - F(x» (1.22) 

bn = (1/(1 - F»+-(n), an = f(bn ). 

(b) If F' is non increasing and Fe D(A) then (1.21) holds. 
(c) Equation (1.21) holds itT in representation (1.6), c(x) may be taken constant, 
i.e., itT 

1 - F(x) = c exp { -1: (g(t)/f(t»dt} , Zo < x < Xo, (1.23) 

where limrtxog(x) = 1 and f is absolutely continuous with density f'(x) -... 0 as 
xi Xo· 
(d) Equation (1.21) or (1.23) are equivalent to tF'«1/(l - F»+-(t»eRVo 
(Sweeting, 1985). 

PROOF. (a) With the choice of f we have 

f '( ) = -(1 - F(X»2 + J~o(1 - F(s»dsF'(x) -+ -1 1 = 0 
x (1 _ F(X»2 +. 

Furthermore if R = -log(1 - F) then R' = F' /(1 - F) = g/f where 

g(x) = F'(x) f:o (1 - F(t»dt/(1 - F(X»2 

and hence 

IX R'(s)ds = R(x) - R(I) = IX (g(s)/f(s»ds 

and 

1 - F(x) = e-R(l)e-Ji (g(s)lf(s))ds 

and so Fe D(A) by Corollary 1.7. 
(b) Since F is nondecreasing, F' ~ O. In fact in a left neighborhood of xo, 
F'(x) > 0 since otherwise if for Xl < Xo F'(xd = 0, then because F' is non­
increasing we would have F'(x) = 0, Xl ~ X ~ Xo and hence F would be 
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constant on (Xl' xo), which would contradict the definition of xo. But F'(x) > 0 
means U := 1/(1 - F) is continuous strictly increasing so that U 0 U+-(x) = 
U+- 0 U(x) = x. 

Recall Fe D(A) means U e r and a suitable auxiliary function is 

f(t) = 1"0 (1 - F(s»ds/(l - F(t». 

(Proposition 1.9). Inverting via Proposition 0.9(a) we have U+- e II with 
auxiliary function 

aCt) = fo U+-(t). 

On the other hand 

(U+-)'(t) = l/U'(U+-(t» = (1 - F(U+-(t)))2/F'(U+-(t)) 

= 1/(F'(U+-(t»t2) 

so that t2(U+-)'(t) is nondecreasing, and so by Proposition 0.11(b) and the 
remark following that proposition we have another choice for aCt): 

aCt) '" t(U+-)'(t) = l/(tF'(U+-(t)). 

Therefore since the two choices of aCt) are asymptotically equivalent we have 

1 = lim f(U+-(t))tF'(U+-(t)) 
t-+oo 

I. f(x) F' (x) I' J~o (1 - F(t))dt F'(x) 
=Im =Im 2 

xtxo 1 - F(x) xtxo (1 - F(x» 

(c) The proof that (1.21) implies (1.23) was given in (a). Ifrepresentation (1.23) 
holds, then from Corollary 1.7 and its proof a suitable auxiliary function is 
the f from the representation. From Theorem 1.9 and the asymptotic unique­
ness of auxiliary functions 

J.,xo (1 - F(s»ds/(I - F(x» '" f(x) '" f(x)/g(x) = (I - F(x»/F'(x) 

which is equivalent to (1.21). 
(d) This is practically the same as the previous steps. If (1.21) holds, U = 
1/(1 - F) e r and since J~o (I - F(s»ds/(1 - F(x» '" (I - F(x»/F'(x) we get 
from Proposition 1.9 and the asymptotic uniqueness of auxiliary functions 
that fo(x) = (I - F(x»/F'(x) is a suitable auxiliary function. This means 
U+- e II with auxiliary function fo 0 U+-(x) = 1/(xF'«I/(1 - F»+-(x))) and 
since auxiliary functions of II-varying functions are slowly varying (Proposi­
tion 0.12) the result follows. Conversely suppose tF'«l/(1 - F»+-(t»eRVo. 
Then as in (b) we have 

(U+-)'(t) = 1/(t2 F'(U+-(t)))e RV_l 

so that U+- ell with auxiliary a-function (tF'(U+-(t)))-l (Proposition 0.11) 
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and thus by inversion (U+-r- = U E r with auxiliary function fo(t) = 
(U(t)F'(U+- 0 U(t)))-l = (1 - F(t»/F'(t). Again by Proposition 1.9 a suitable 
auxiliary function is always J:o (l - F(s))ds/(1 - F(t)) and this must be 
asymptotic to fo giving (1.21). 0 

The last result of this section requires two derivatives. 

Proposition 1.18. Suppose F has a negative second derivative F" for all x in some 
left neighborhood of Xo. 
(a) If 

lim F"(x)(1 - F(x»/(F'(X))2 = -1 (1.24) 
xtxo 

then FE D(A). We may take f = (l - F)/ F'. 
(b) If F" is nondecreasing, F'(x) = J:O( -F"(u»du and FeD(A), then (1.24) 
holds. 
(c) Equation (1.24) holds iff F is a twice differentiable Von Mises function so 
that (1.3) holds. 

PROOF. (a) and (c) See Proposition 1.1(b). 
(b) Observe F'(x) is decreasing since F"(x) < O. So by Proposition 1.17, since 
Fe D(A), we get (1.21) holding. Define for x sufficiently close to Xo 

Fo(x) := 1 - F'(x) 

so that Fo is a distribution and 1 - Fo = F'. Rewriting (1.21) in terms of Fo 
gives 

lim (1 - Fo(x» [xo [xo (1 - Fo(s))dsdy/(I - FO(X»2 = 1 
xtxo Jx Jy 

so by Proposition 1.9, FoED(A). But Fa = -F" is nonincreasing so applying 
again Proposition 1.17 gives 

1xo 
lim FO(x) (1 - Fo(t»dt/(1 - Fo(X»2 = 1 
xtxo x 

which translates into 

lim - F"(x) (1 - F(x)/(F'(X»2 = 1 
xtxo 

as required. o 

It is useful to note how the various Von Mises conditions simplify the 
general representations of distributions in a domain of attraction. The Von 
Mises conditions will also be seen to playa role in local limit theory discussed 
in the next chapter. 
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EXERCISES 

1.4.1. Prove Proposition 1.17(b) without resorting to inverse functions by imitating 
the methods of Proposition O.l2(b) and Proposition 0.7(b) (de Haan, 1970). 

1.4.2. Generalize Proposition 1.17(b) to the case that F has increasing or decreasing 
failure rate, i.e, to the case that 

F'(x)/(l - F(x» 

is monotone. 

1.4.3. If F is absolutely continuous and 

lim xF'(x)/(l - F(x» = 00 

then 1 - F is rapidly varying. 

1.4.4. Check that the t and F densities satisfy a Von Mises condition. 

1.5. Equivalence Classes and Computation of 
Normalizing Constants 

Computing normalizing constants can be a brutal business, and any techniques 
which aid in this are welcome indeed. This is the focus of our discussion on 
equivalence classes. 

We say two distributions F and G are tail equivalent if they have the same 
right endpoint Xo and for some A > 0 

lim (1 - F(x»/(1 - G(x)) = A. 
xtxo 

(1.25) 

Proposition 1.19. Let F and G be distribution functions and suppose HI is an 
extreme value distribution, i = 1, 2. Suppose that FE D(H 1) and that 

F"(a"x + bn) -+ H 1(x) (1.26) 

for normalizing constants an > 0, bn ~ 1. Then 

Gn(anx + bn) -+ H2 (x) (1.27) 
iff for some a > 0, be IR 

H2(x) = H 1(ax + b), 

F and G are tail equivalent with right endpoint Xo and if 
(i) HI = <J) .. , 

(ii) HI = '¥ .. , 
(iii) HI = A, 

then b = 0 and limx .... oo (1 - F(x»/(1 - G(x» = a"; 
then b = 0 and limx .... xo (1 - F(x»/(l - G(x» = a-II; 

then a = 1 and limx .... xo (1 - F(x»/(1 - G(x» = e". 

Remark. Regarding the problem of calculating normalizing constants, this 
result suggests we switch to an easy tail equivalent distribution and compute 
constants for that one. 
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PROOF. Suppose first that F and G are tail equivalent and that (1.26) holds. 
An equivalent formulation of(I.26) is 

n(1 - F(a"x + b,,»--+ -logHI(x) 

for x such that HI (x) > O. For such x, a"x + bIt --+ Xo and hence from tail 
equivalence 

n(l- G(a"x + bit» '" nA-1(l- F(a"x + b,,»--+ _A-I log HI (x); 

i.e., 

G"(a"x + bIll --+ H(I(X). 

For the converse suppose we are given (1.26) and (1.27) and we wish to show 
F and G are tail equivalent. Set 

VG(t) = C ~ G)+-- (t) 

and equivalent to (1.26) and (1.27) are the following two statements in terms 
of inverses: 

lim (VF(ty) - b(t»/a(t) = ( I 1 H )+- (y) 
' .... 00 - og I 

(1.28) 

lim (VG(ty) - b(t»/a(t) = ( I 1 H )<-(y) 
' .... 00 - og 2 

(1.29) 

for y > O. Recall there are three mutually exclusive possibilities for aCt): 

a(t)eR¥;.,,, if HI =<1>", IX>O 

a(t)eRVo if HI = A 

a(t)eRV_1,,, if HI = '1'", IX> 0 

(Propositions 0.12, 1.11, and 1.12). 
Suppose first that HI (x) = <I>,,(x). Then aft) E RVl/" and from (1.29) we must 

have H2(x) = <I>,,(ax + b). We check easily that b = 0 as follows. Recall from 
Proposition 1.11 that VF(t) '" aCt). If we set y = 1 in (1.28) we get 

lim (VF(t) - b(t»/a(t) = 1 
' .... 00 

which requires lim, .... oo b(t)/a(t) = O. Therefore (1.29) becomes for y > 0 

lim VG(ty)/a(t) = ( I 1 H )+- (y) = (yltll - b)/a. 
' .... 00 - og 2 

However because a(t)eR¥;.,,, we also have 

lim VG(ty)/a(t) = lim (VG(ty)/a(ty»(a(ty)/a(t» = a-1(l - b)yl'lI 
' .... 00 ' .... 00 

whence for y > 0 
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which reduces to 

b = by1/a:. 

This necessitates b = O. Thus (1.28) and (1.29) reduce to 

VF(ty)/a(t) -+ yl/a: 

VG(ty)fa(t) -+ a-I i/a: 

and so 
VF(t) '" a VG(t) 

and since VF E R V1/a: we get by inverting and using Proposition 0.8(vi) 

1 _IF(t) '" a-a:(' _IG(t») 

i.e., aa: = limt _ oo (1 - F(t»/(l - G(t». 
Next suppose H1 = \fa: so that a(t)ERV_a:-" Then (1.29) becomes 

(VF(ty) - b(t»/a(t) -+ _(y-1/a:), y > 0 

so that (VF(t) - b(t»/a(t) -+ - 1. On the other hand recall from Proposition 
1.13 that (xo = VF(oo)) 

so that 

(b(t) - x )/a(t) = b(t) - VF(t) + VF(t) - Xo -+ 1 - 1 = O. (1.30) 
o a(t) a(t) 

From (1.29) we conclude H 2 (x) = \fa:(ax + b) since a(t)ERV_a:-' and we now 
show why b = O. Relation (1.29) becomes 

VG(ty) - b(t) _(y-I/,,) - b 
. ....----a(t) a 

and hence using (1.30) 

Xo - VG(ty) -+ ( -1/" + b)/a 
a(t) y for y > O. 

On the other hand 

Xo - VG(ty) = Xo - VG(ty). a(ty) -+ (1 + b)y_I/" = (y-I/" + b) 
a(t) a(ty) a(t) a a 

for y > 0 which requires b = O. We now conclude 

Xo - VG(t) '" a-I a(t) 

and 
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and therefore 

i.e., 

Xo _1 VG(t) ,..., aCo _1 Vp(t») 

and hence applying Proposition O.8(vi) we get 

( 1)- (1)-(t) ,..., a-II (t)· 
Xo - VG Xo - Vp , 

i.e., 

1 _II 1 
1 - G(xo - t-1 ) ,..., a 1 - F(xo - t 1) 

so that 

(1 - F(xo - C 1 »/(1 - G(xo - C 1» -+ a-II 

as t -+ 00 as required. 
Now suppose HI = A(x) so that 

(Vp(ty) - b(t»/a(t) -+ logy, y> O. (1.31) 

Recall a(t)eRVo and b(t)eII. Then H 2(x) = A(ax + b), which entails on the 
one hand 

(VG(ty) - b(t»/a(t) -+ ((logy) - b)/a 

and on the other 

VG(ty) - bet) VG(ty) - b(ty) a (ty) b(ty) - bet) 
-=-'-'-'-:-:c--'--'- = . -- + -'--.:'-'---:-.,--:"':'" 

a(t) a(ty) aCt) aCt) 

-+ «log 1) - b)/a + logy = -a-1b + logy. 

However 

(logy - b)/a = -a-1b + logy 

means 

a-I logy = logy 

and hence a = 1. From (1.31) 

(Vp(t) - b(t»/a(t) -+ 0 

and from (1.32) with bet) replaced by Vp(t) we get 

(VG(ty) - Vp(t»/a(t) -+ (logy) - b, y > 0 

(1.32) 
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and inverting we get for x E IR 

V;-(xa(t) + VF(t))/t -+ ex +b 

and so if x = 0 

V;- (VF(t))/t -+ eb• 

Change variables now to obtain 

V;-(s);V;-(s) -+ eb; 

i.e., 

lim (1 - F(s))/(1 - G(s)) = eb• o 

EXAMPLE 1 (Cauchy). Let F'(x) = (n:(1 + x 2n-t, XE IR. Then as x -+ 00, F'(x),..., 
(n:X2)-1 and so by Karamata's theorem 

1 - F(x) = fO F'(u)du '" J"q) n:-1U- 2 du = (n:X)-1. 

Therefore FE D(<I>l)' Instead of solving 1 - F(x) = n-1 we solve (n:X)-l = n-1 

to get an = n/n: and so 

Fn«n/n:)x) -+ <1>1 (x). 

EXAMPLE 2 (Normal). F'(x) = (2n:f1/2 exp{ - x 2 /2}, x E R. We have already 
checked F is a Von Mises function, FE D(A), and we know the auxiliary 
function f(t) satisfies 

f t = 1 - F(t) ,..., n(t)/t = l/t 
( ) F'(t) n(t) as t -+ 00. 

We now show an = (2 log n)-1/2 

bn = (2 log n)1/2 - 1/2(loglog n + log 4n:)/(210g n)1/2 

are acceptable choices of norming constants. Since 1 - F(t) ,..., n(t)/t (Feller, 
1968, page 174) we seek by tail equivalence to solve 

(2n:f1/2b;1 exp{ -b;/2} = n-1 

and taking -log of both sides gives 

(1/2)b; + logbn + 1/210g2n: = logn. (1.33) 

We will construct an expansion of bit and indicate how many terms are 
necessary. Since bit -+ 00 we see by dividing left and right sides of (1.33) by b; 
that as n -+ 00 

bit ,..., (2 log n)1/2. (1.34) 

Since an = f(bn) ,..., bn- 1 we see that an acceptable choice for an is 
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an = (2 log n)-l/2. 

This tells us that in an expansion of bn, we may neglect terms which are 
o«(log n)-l/2). For if our expansion of bn is of the form bn = Pn + o((log n)-l/2) 
then 

and the convergence to types theorem assures us Pn is acceptable. 
From (1.34) we see that 

bn = (2 log n)1/2 + rn (1.35) 

where rn is a remainder which is o((log n)1/2). Now substitute (1.35) into (1.33) 
and we find 

1/2r: + (2 log n)l/2 rn + 1/2 loglog n + 1/210g4n 

+ 10g(1 + (2 log nr 1/2 rn) = O. 

Divide through by (2 log n) 1/2 rn and we get 

rn (Ioglog n + log 4n) 
2(2 log n)l/2 + 1 + (1/2) rn(210g n)l/2 

+ 10g(1 + (2 log nr1/2 rn) = O. 
(2 log n)1/2 rn 

(1.36) 

(1.37) 

Because rn = o((log n)1/2) and since the last term is asymptotic to rn(210g n)-1/2/ 
(r,,(210g n)l/2) = 1/(2 log n) -. 0 we see that (1.37) is of the form 

0(1) + 1 + 1/2(loglogn + log4n)/(ri2 log n)1/2) = 0, 

i.e., 

r" = -1/2(loglogn + log4n)/(2 log n)l/2 + s" (1.38) 

where s" = 0(loglogn/(logn)1/2). In fact s" = o((logn)-1/2), which means we 
have done enough expanding. To see this observe that (1.36) implies 

(2 log n)l/2 rn + 1/2(1oglogn + log4n) = -log(l + (2 log nrl/2rn) - r:/2 
= -(210gnr1/2rn(l + 0(1» - r:/2-+0 

because of (1.38), and if we substitute (1.38) into the left side of this relation 
we get 

(log n)1/2 s" -.0 

as required. Hence we conclude 

bn = (210gn)1/2 - 1/2(loglogn + log4n)/(2 log n)1/2. 

EXAMPLE 3 (Gamma). Suppose F is the gamma distribution with density 

F'(t) = t"e-'/r(a. + I), t > 0, a. > O. 
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Then 

F"(t) = (-t"[' + oct,,-ie-')/r(oc + 1) 

= -F'(t)(l + ocC i ) - -F'(t) 

and furthermore by L'Hospital's rule 

. 1 - F(t) . -F'(t) 
11m F'() = 11m ---;;--() = 1 
' .... 00 t ' .... 00 F t 

and 

lim F"(t)(1 - F(x»/(F'(t»2 = -1 

so that F is a Von Mises function, FE D(A), and the auxiliary function f 
satisfies 

f(t) = 1 - F(t) -+ 1 
F'(t) 

as t -+ 00. Therefore a" may be taken equal to 1. To find bIt we solve F'(b,,) = l/n 
instead of 1 - F(b,,) = l/n since 1 - F(t) - F'(t). So we have F'(b,,) = l/n 
equivalent to 

i.e., 

bIt - oc log b" + logr(oc + 1) = logn. 

Since bIt -+ 00 we see by dividing through that 

b" -logn 

and consequently 

bIt = logn + r" 

where r" = oOogn). Substituting (1.4) into (1.39) we obtain 

logn + r" - oclogOogn + rn) + logr(oc + 1) = logn, 

i.e., 

rn + logr(oc + 1) = ocloglogn + oclog(1 + (r,,/logn», 

i.e., 

r" = -logr(oc + 1) + ocloglogn + 0(1). 

Therefore 

b" - Oogn -logr(oc + 1) + ocloglogn)/a" = o(I)/a" -+ 0 

and so 

bIt = logn + ocloglogn -logr(oc + 1) 

is an acceptable choice. 

(1.39) 

(l.40) 
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Note when Q: = 0, b" = log n, which is we)] known for the exponential 
density. 

EXERCISES 

1.5.1. For two distributions F and G with the same endpoint xo, the ratio (1 - F(x»/ 
(1 - G(x» need not have a limit as x -+ Xo. Construct examples. 

1.5.2. {X",n ~ 1} is a sequence ofiid random variables with common distribution F 
and {-r", n ~ 1} is iid, positive integer valued, and {tIl} and {X,,} are independent. 
Suppose Et I < 00 and set 

s. 
x,,= V Xl' 

j=Sn-l +1 

What is the distribution of Xi? Show {M,,} has a limit distribution itT {M,,} has 
one. In fact, there exist norming constants a" > 0, b", n ~ 1 such that 

nondegenerate, itT 

P[M" ::::;; a"x + b,,] -+ (H(X»E<, (Resnick, 1971). 

1.5.3. F and G are distributions and H is an extreme value distribution. Suppose 

F"(anx + bn) -+ H(x) 

for an > 0, bn E IR. Then 

(FGr(a"x + b.) := Fn(anx + bn)G·(a.x + bn) -+ H(Ax + B) 

itT 

(i) H = 11>«: B = 0, ° < A ::::;; 1, and 

lim (1 - F(x»/(1 - G(x» = (A-« - 1)-1; 

(ii) H = '1' .. : B = 0, 00 > A ~ 1, and 

lim (l - F(x»/(1 - G(x» = (A« - 1)-1; 
X-Xo 

(iii) H = A: A = 1, B < 0, and 

lim (1 - F(x»/(1 - G(x» == (e- B - 1fl (Resnick, 1971). 
x ..... xo 

1.5.4. There is a weaker form of equivalence than tail equivalence. Say FI , F2 , E D(A) 
are a-equivalent if there exists an > 0, WI E IR, i = 1, 2 such that for i = 1, 2 

FNa"x + WI) -+ A(x); 

i.e., the same a" can be used for both distributions but not necessarily the same b". 
(a) FI and F2 are a-equivalent itT 

( 1 )- n ( 1 )+-
1 - FI '" t - F2 

(cf. prior to Proposition 0.16). 
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(b) Let Ui = 1/(1 - Fi ) and suppose F, are Von Mises functions for i = 1, 2. 
Then Ft and F2 are a-equivalent itT 

(c) Ft and F2 are a-equivalent itT there exists a positive function b(x) with 
lim"~,,o b(x) = 1 and constants Ct , C2 > 0 such that 

1 - F t (x) ,.., C1 (l - F2(P(x))) 

as x ~ Xo where 

P(x) = C2 + t b(t)dt. 

Hint: It suffices to consider Von Mises functions. Use part (b). 
(d) Check that the standard normal distribution is a-equivalent to F(x) = 

1 - exp{ _x2 }. What is a suitable choice of P? Use this to compute aft for 
the normal distribution (de Haan, 1974a). 

1.5.5. The normal distribution has the property 

(1.41) 

Find a characterization of the distributions F with property (1.41). Cf. Exercise 
1.1.7. 

1.5.6. Suppose {Xn , n ~ 1} are iid random variables with common distribution F(x). 
Set Mn = Vi=1 Xi> mn = l\i=1 Xi' and assume there exist an > 0, IXft > 0, bft e IR, 
pft e IR such that 

and 

P[ -mn :s; IX.X + P.J ~ G2 (x) 

where G1 and G2 are nondegenerate. 
(a) Show joint convergence 

P[Mn:S; anx + bft, -mn:s; IXnY + PnJ ~ G t (x)G2(y)· 

(b) Particularize to the case where the common distribution {X.} is the standard 
normal N(x). Show the range Mn - m. has -a limit distribution which is the 
second convolution power of A(x): 

P[Mft - m. :s; anxJ ~ A ... A(x). 

(c) If in (a), G1 = G2 = CIl«, show Mft - mn has a limit distribution if 

lim F( - x)/(l - F(x» = p e [0, 00] 

exists. 
(d) If in (a), G1 = G2 = A, show Mft - mn has a limit distribution if F(x) and 

1 - F( - x) are a-equivalent (cf. 1.5.4) (de Haan, 1974b). 

1.5.7. Compute norming constants for the t and F densities. In which domain of 
attraction are these distributions? 



CHAPTER 2 

Quality of Convergence 

The previous chapters contain information characterizing possible limit distri­
butions for extremes and also discuss domain of attraction criteria. So if the 
familiar relation 

holds, we know the class of possible G's, what conditions F must satisfy, and 
how to characterize a" and b". The present chapter amplifies our knowledge 
by describing in various ways how close F"(a"x + b,,) is to G(x) and how if 
approaches G(x) asymptotically. The topics discussed include moment con­
vergence, local limit theory and density convergence, large deviations, and 
uniform rates of convergence. 

2.1. Moment Convergence (Von Mises, 1936; Pickands, 
1968) 

Suppose Xn> n ~ 1 are iid with common distribution F and FE D(G) for an 
extreme value distribution G. Then there exist a" > 0, b" E IR such that M" = 
V7=1 Xi satisfies 

P[a;l(M" - b,,) :s; x] = F"(a"x + b,,) ~ G(x). (2.1) 

We ask for which values of k > 0 it is true that 

!~ E(a;;l(M" - b"W = f:oo xkG(dx). (2.2) 

It is well known that convergence of a sequence of random variables does 
not imply that moments converge (cf. Chung, 1974, pages 94-98). The canon­
ical example is to take (0, 1) as the probability space with Lebesgue measure 
as the probability. Set X,,(w) = 2" l co,,,-')(w) so that X" ~ 0 a.s. but EX" = 
n-1 2" ~ 00. A condition which controls tail probabilities and thus prevents 
improbable large values from disturbing moment convergence is needed. 

Note that the tail conditions which comprise the domain of attraction 
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criteria are only a control on the right tail. For instance, if FE D(<I>«) then 
1 - F(x) '" X-If L(x) as x -+ 00. This implies 

{'Xl Xk F(dx) < 00 if k < I); 

(Exercise 1.2.2), but no control is provided over the left tail and it is possible 
for J~oo Ixlk F(dx) = 00 for any k > O. Similarly FE D(A) implies when Xo = 00 

that 

IOO xkF(dx) < 00 for all k > 0 

(Exercise 1.1.1) but implies nothing about behavior of the left tail. 
Thus in investigating (2.1) it is necessary to impose some condition on the 

left tail of F. 

Proposition 2. t. For an extreme value distribution G, suppose F E D( G). 
(i) IfG = <1>«, set an = (1/(1 - F»-(n),bn = O. Iffor some integer 0 < k < 0( 

f:oo IzlkF(dx) < 00 

then 

!~~ E(Mn/an)k = L: xk<l>..(dx) = r(1 - 0(-1 k). 

(ii) If G = '1'« and F has right end Xo set 

an = Xo - (1/(1 - F»-(n), 

Iffor some integer k > 0 

then 

!~~ E«Mn - xo)/an)k = S:oo xk'l'«(dx) = (-lfr(1 + 1);-1 k). 

(2.3) 

(2.4) 

(iii) If G = A and F has right end Xo with representation (1.5) set bn = 
(1/(1 - F)f+(n), an = f(bn). Iffor some integer k > 0 

f:oo IxlkF(dx) < 00 

then 

!~~ E«Mn - bn)/an)k = L: xkA(dx) = (-l)kr(k)(l) 

where r(k)(l) is the kth derivative of the gamma function at x = 1. 

(2.5) 
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Remarks. (i) Conditions (2.3), (2.4), and (2.5) can be weakened slightly. See 
Exercise 2.1.1. 
(ii) For any norming constants an' bn satisfying (2.1) (not just the ones specified 
in the statement of the proposition), we also have (2.2) satisfied provided the 
appropriate condition (2.3), (2.4), or (2.5) holds. See Exercise 2.1.2. 

We only prove (i) and (iii) in Proposition 2.1. Part (iii) requires that our tool 
box be equipped with the following inequalities. 

Lemma 2.2. Suppose FE D(A) with representation (1.5) and that an and bn are 
as specified in part (iii) oj Proposition 2.1. 
(a) Given e > 0, we have Jor s > ° and all sufficiently large n 

J(bn)/J(ans + bn) ~ (1 + es)-l 

and consequently if y > ° and n is large 

1 - Fn(any + bn» :s; (1 + e)3(1 + ey)-·-l. 

(2.6) 

(2.7) 

(b) Recall the meaning oJzo in the representation (1.5). Given e, pick Zl E(Zo,Xo) 
such that 1f'(x)1 :s; e ifx > Zl· 1henJor large nand uE(a;;l(zl - bn), 0) we have 

J(bn)/J(anu + bn) ~ (1 + elul)-l 

and consequently Jor large nand s E (a;;l (z 1 - bn),O) 

Fn(ans + bn) :s; e-(1-·,2(1+.lsl,,-1. 

(2.8) 

(2.9) 

PROOF OF LEMMA 2.2. (a) For n such that 1f'(t)1 :::;; e if t ~ bn we have for s > 0 

(f(ans + bn)/J(bn» - 1 = (an.+bn (f'(u)/J(bn»du 
Jbn 

and recalling an = J(bn) this is 

f: f'(anu + bn)du :s; es. 

Consequently J(bn)/J(ans + bn) ~ (1 + esf1 as asserted. 
To check (2.7) note that 

so that for large nand y > ° 
n(1 - F(any + bn) :s; (1 + e)(1 - F(any + bn»/(1 - F(bn» 

and from (1.5) this is 

(1 + e)c(any + bn)c-1(bn)e-f:;,·bn(1/J(S))dS. 

Since c(x) -t C > ° as x i Xo we have the preceding 

:s; (1 + e)2e- f~(J(bn)fJ(a"s+b"))ds 
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(recall an = f(bn», and applying (2.6) this is bounded by 

~ (1 + e)2e-J~(l+£·)-ld' 

Therefore 

= (1 + e)2(1 + ey)-t- 1• 

1 - Fn(any + bn) = 1 - exp{n(-logF(any + bn»} 

< n( -log F(any + bn» 
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and since -log F(any + bn) ....., 1 - F(any + bn) uniformly for y > 0 (use 
IimZ -+ 1 (-logz)/(l - z) = 1) the preceding is bounded for large n by 

~ (1 + e)n(1 - F(any + bn» 
and the result follows. 
(b) As earlier for n large and ue(a;;-l(zl - bn},O} 

fbn 
1 - f(anu + bn)/f(bn) = anu+bn (f'(w}/f(bn»dw 

1° f'(anw + bn}dw 

and since anw + bn > anu + bn > Zl the preceding integral is ~ - elul, and 
thus we have shown 

1 - f(anu + bn)/f(bn} ~ -elul; 

i.e., 

1 + elul ~ f(anu + bn)/f(bn} 

which is equivalent to (2.8). To check (2.9) write for large n 

Fn(ans + bn) = (I - (I - F(a"s + bn»)" 

~ exp{ -n(l - F(ans + bn»} 

~ exp{ -(1 - e)(1 - F(ans + bn»/(I - F(bn»} 

= exp{ -(1 - e)c(ans + b,,}C-1(bn)exp{ _l~n'+bn (l/f(U»dU} } 

and supposing Zl has been chosen so that c(zd/c(b,,) ~ 1 - e the preceding 
is bounded by 

~ exp { -(1 - e)2eJ~(f(bn)/f(anu+bn»du} 

and applying (2.8) we get an upper bound of 

~ exp { -(I - e)2 ef!h+£,ull-ldU } = exp { -(1 - e)2(1 + e\s\r- 1
}. 0 
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PROOF OF PROPOSITION 2.1. If (2.1) holds than it follows from the standard 
weak convergence theory (Chung, 1974, page 87; Loeve, 1963, page 180; cf. 
the Helly-Bray lemma) that for any L > 0 

lim E(a;;l(M" - b,,»"l l1a;;'(Mn-bn)ISLl = fL x"G(dx). 
"-'00 -L 

It is enough to show 

lim limsup E!a;;l(Mn - b,,)!"l l1a;;'(Mn-bnll>Ll = 0 (2.10) 
L-' 00 "-+00 

because of the following: Write 

I E(a;;l(M" - b,,»" - t: x"G(dx) I 
~ IE(a;l(M" - b,,)t - E(a;l(M" -b,,»"l l1a;;'(Mn-bnIISLll 

+ I E(a;l(M .. - b,,)"l l1a;;'(Mn-bnIISL1- f:L x"G(dx)I 
+ 'tLL x"G(dx) - t: x"G(dx) ,. (2.11) 

If (2.10) holds the right side of (2.11) has limL .... OO limsup" .... oo = 0 and since the 
left side of (2.11) does not depend on L, the desired result follows. So now we 
concentrate on showing (2.10). 

Set Y = la;l(M" - b,,)1 and we use Fubini's theorem to justify an integration 
by parts: 

EY"l[Y>Ll = E f: kS"-lds1[Y>Ll 

= E SoL kS"-lds1[Y>Ll + E fLOC ks"-11[Y>L,Y>Slds 

= L"P[!(a;l(M .. - b,,)! > L] + Loo ks"-l pry > s]ds 

=A+B. 

Because of (2.1) we have 

lim limsup A = lim L "(1 - G(L) + G( - L». 
L-+oo ,. ..... 00 L-+oo 

When G = <Il« and k < IX 

lim limsup A = lim L"(1 - e- L-") = lim L"L -II = 0 
L-+oo n-+co L ..... oo L ..... oo 

and when G = A 
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lim limsup A = lim Lk{l - exp{ _e- L } + exp{ _eL }} 
L-oo "-00 L-oo 

= lim Lk{e- L + exp{ _eL }} = 0 
L-+oo 

and so we must concentrate now on B. 
Write 

B = Loo ks"-l(1 - Fn(ans + bn»ds + Loo kS"-l F"( -aIls + b,,)ds 

= B1 + B2· 

Consider B1 • If G = ~II then 

1 - F"(a"s) ~ 1 - exp{ n( -log F(a"s»} 

~ n( -log F(a"s» 

and for large n we have the bound 

~ (1 + e)n(1 - F(a"s» ~ (1 + e)2(1 - F(a"s»/(l - F(a,,». 
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Now apply Proposition 0.8(ii), which tells us that given 8 > 0, if n is large and 
L> 1 then 

so that in this case 

lim limsup B1 = lim (1 + e)3 roo ksl - 1 s-II+'ds = 0 
L-C'O n .... oo L-IX) J L 

provided k - 1 - IX + 8 < -1, i.e., provided k < IX - e. Since k is assumed less 
than IX, an appropriate choice of 8 is available. 

Now consider B1 in the case that G = A. In this case apply Lemma 2.2(a) 
and so 

B1 ~ (1 + 8)3 too kSl-1(1 + 8s)-·-'ds. 

The integrand is asymptotically equal to 

(1 + e)3h-·-'sk-1-.-, 

and choosing 8 small enough, so that 

k - I - 8-1 < -1, or e < k-1 , 

we obtain 

lim limsup B1 ~ (const)lim roo Sl-l-.-, ds = O. 
L-oo "-00 £-00 J L 

This takes care of B1 and now we deal with B2 • In case G = ~II we have 
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B2 = foo ks"-l F"( -a"s)ds 

= L-:nL klsllc- l F"(s)ds/a! 

~ F"( -a,.L) f:oo klsllc- 1 F(s)ds/a! 

and because of (2.3) and the fact that a" -+ 00 we have for all L > 0 

limsup B2 = O. 
" .... 00 

where Z2 is chosen as in Lemma 2.2(b). Note that (ZI - b,.)/a" -+ -00 so 
eventually (Zl - b")/a" < -L. The reason (Zl - b")/a" -+ -00 is as follows: 
Since FeD(A) we have (PropositonO.lO) that V = (1/(1 - F»-en and hence 
for any e > 0 

limsup (Zl - b")/a" ~ limsup (V(ne) - V(n»/a" = log e 
11 .... 00 " .... 00 

by the n-variation property. Since e > 0 is arbitrary we must have 

limsup (z 1 - bll)/a" = -00. 
" .... 00 

For B21 we have be setting y = ails + b" 

fZ' B21 = -00 kly - b"I"-1 F"(y)dy/a! 

~ F"-l(zda;"k(const) f~~ (lyl"-l + b:-l )F(y)dy. 

Both a" and b" are slowly varying functions ofn, and hence since F"-I(ZI) -+ 0 
geometrically fast we get as n -+ 00 

Finally observe 

and 

F,.-1 ( ) -"bk - l 0 Zl all II -+. 

f~~ Iylk-l F(y)dy < 00 

f~~ b:-l F(y)dy ~ (const) f~~ b:-Ilyllc-l F(y)dy < 00 

by assumption (2.5). This shows limsup" .... oo B21 = O. 
Finally we deal with B22 : We have 



2.1. Moment Convergence 83 

B22 = r- L klsl l - 1 F"(ans + b,,)ds 
JZ,-bn)/an 

and applying (2.9) B22 is bounded by 

and thus 

since Isl"-1 e-(1-o)2(llsll'-' is integrable on (-00,0). o 

The following interesting corollary was pointed out by L. de Haan. 

Corollary 2.3. Suppose FeD(G) so that (2.1) holds. IfG = Cl>0! suppose a > 2. 
Suppose (2.3), (2.4), or (2.5) holds in the form 

f~: x2dF(x) < 00. 

(This condition can be weakened as in Exercise 2.1.1.) Then normalization of the 
maximum using the mean and standard deviation is possible: 

P[(M" - E(M,,»/(Var(M,,»1/2 ~ x] 

{

Cl>O!«r(l- 2a-l) - r2(1 - a-1»1/2x + r(l- a-I» 

-+ 'Pi(r(1 + 2a-1) - r2(1 + a-I »1/2 x - r(1 + a-I» 

A«r<2)(I) - (r(1)(1»2)1/2x - r(l)(I» ifG = A. 

PROOF. If G = A then from Proposition 2.1 

(EM" - bIll/an -+ - r(1)(I) 

and 

so that 

r(2)(1) - (r(1)(1»2 

= lim E(a;;I(Mn - b,,»2 - (E(a;;I(M" - bn)))2 
11-+00 

n-+oo 

11-+00 

= lim a;;2 Var M". 
"-+00 

ifG = Cl>0! 

ifG = 'PO! 

(2.12) 

(2.13) 
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The result now follows from (2.12) and (2.13) and the convergence to types 
theorem (cf. Proposition 0.2). The arguments for the other cases are the 

same. 0 

EXERCISES 

2.1.1. Condition (2.3) can be weakened to the following: There exists some integer no 
such that 

f:oo IxltF"o(dx) < 00. 

Check this and the analogous weakenings of (2.4) and (2.5). Give an example of 
F such that 

but for no ~ 2 

roo Ixlt Fn°(dx) < 00. 

2.1.2. If a~ - an, b~ - bn = o(an) and (2.3), (2.4), or (2.5) holds, then 

!~~ E«Mn - b~)/a~)t = t: xtG(dx). 

2.1.3. Moment convergence and relative stability: Suppose {Mn} is relatively stable (cr. 
Exercises 1.19,0.4.1.2) with Xo = 00; i.e., suppose Xo = 00 and there exists bn such 
that 

Show if 

then 

as n -+ 00 so that 

(Pickands, 1968). 

2.1.4. The following discusses when centering and scaling by means and standard 
deviations, respectively, is possible: Suppose {X.} is a sequence of random 
variables such that for some an > 0, b. E IR 

P[X. :s: anx + bn} =: F.(a.x + b.) -+ G(x), 

non degenerate. Suppose 
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EX., VarX. 

exist and are finite. Prove there exist a > 0, be IR such that 

P[(X. - EX.)/(Var X.)1/2 :s; x] -+ G(ax + b) 

itT 

lim Var X./(F;(3/4) - F ..... (1/2»2 = c > o. (2.14) 

Hints: 
(a) Suppose (2.14). Set 

Y" = (X. - F;(1/2»/(F;(3/4) - F;(1/2». 

Why does Y" converge in distribution? (Cf. the remark following Proposition 
0.2.) Then 

EY" = (EX. - F;(1/2»/(F ..... (3/4) - F;(1/2» 

Var Y" = Var X./(F;(3/4) - F;(1/2»2 

and from 2.14, VarY" is bounded. 
(b) Show EY" is bounded (cf. median inequalities on page 244 of Loeve, 1963) 

and hence Ey"2 is bounded. 
(c) Since SUP.~l Ey"2 < 00, {Y,,} is uniformly integrable, and since {Y,,} con­

verges in distribution, lim .... ao EY" exists finite (de Haan, 1970, page 59). 

2.2. Density Convergence 

Suppose (2.1) holds so that 

P[a;l(Mn - bn) :s; x] = Fn(anx + bn) -+ G(x) (2.1) 

for an extreme value distribution G. We suppose F has left endpoint XI and 
as usual denote the right endpoint by Xo so that 

XI = inf{x: F(x) > O} 

Xo = sup{x: F(x) < I} 

and -00 :s; XI :s; Xo :s; 00. We suppose F is absolutely continuous with density 
F' and ask when (2.1) implies density convergence 

gn(x):= nanF n- 1(anx + bn)F'(anx + bn) -+ G'(x). (2.15) 

We will show that local uniform convergence of gn to G' is equivalent to the 
appropriate Von Mises condition. (Local uniform convergence is convergence 
on compact subsets.) 

Convergence in various modes of the density gn has been considered by 
several authors; see Pickands (1967), Anderson (1971), de Haan and Resnick 
(1982). These efforts culminate in the nice paper by Sweeting (1985). 

We begin with a simple lemma showing norming constants an and bn can 
be chosen at our convenience without affecting results. 
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Lemma 2.4. Suppose for given a", b" we have 

g,,-+G' 

locally uniformly. If for a" > 0, b" e R 

then 

g,,(x) := na"F"(a"x + b")F'(a,,x + b,,) -+ G'(x) 

locally uniformly. The assertion remains true if"locally uniformly" is replaced 
by uniformly in a neighborhood of ± 00. 

PROOF. It suffices to show that if x" -+ x e R then g,,(x,,) -+ G'(x) (cf. Section 
0.1). However, since 

g,,(x,,) = (a"a;1 )g"(a,, (a" a;1 x" + (b" - b,,)/a,,) + b,,) 

and since a"a;1 x" + (b" - b")/a,, -+ x, the result fol1ows from the assumed local 
uniform convergence of g" to G'. 0 

Proposition 2.5. Suppose F is absolutely continuous with density F' and right 
end Xo. IfFeD(G) and 
(a) G = ell .. then (2.15) is true locally uniformly on (0, (0) itJ(1.19) holds. 
(b) G = '1' .. then (2.15) is true locally uniformly on (-00,0) iff (1.20) holds. 
(c) G = A then (2.15) is true locally uniformly on R itJ(1.21) holds. 

PROOF. We first prove the result in the case G = A. As in Lemma 2.4 we prove 
continuous convergence. Assume (1.21) holds and set 

b" = (1/(1 - F)t-(n), f(t) = rx
, (1 - F(s»ds/(1 -F(t», 

Then 

and since 

F"-1(a,,x + b,,) = (F"(a"x + b"»(,,-1)/,, -+ A(x) 

uniformly on R (see Section 0.1) we have 

g,,(xn) '" na"A(x)F'(anxn + bn) 

and so it suffices to check 

nanF'(anxn + b,,) -+ e-X • 

Since a"xn + bn -+ Xo we have upon setting fo(t) = (1 - F(t»/F'(t) 

nanF'(allxn + bll ) '" n(1 - F(anxn + bn»f(b,,)/fo(allxII + bn) 

'" n(1 - F(anxn + bn»f(bll )/ f(anx II + bn) 
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because (1.21) means f(t) '" fo(t). However 

n(1 - F(anx + bn)) -+ e-X 

locally uniformly since monotone functions are converging to a continuous 
limit and 

f(bn + xan)/ f(bn) -+ 1 

locally uniformly by Lemma 1.3. Thus the assertion is checked. 
Conversely, if(2.15) holds locally uniformly then since density convergence 

implies weak convergence it follows that Fe D(A). Set V = (1/(1 - F»+- and 
we have VeIl (Proposition 0.10). We may set bn = V(n), a(t) = f(V(t» where 
f(t) = J:o (1 - F(s»ds/(l - F(t» and a(· ) is the auxiliary function of V and is 
hence slowly varying. Then (2.15) holds with this choice of bn, a(n), and the 
convergence is still locally uniform (Lemma 2.4). Since Fn-l(a(n)x + bn)-+ 
A(x) uniformly, (2.15) implies 

na(n)F'(a(n)x + bn) -+ e-X 

locally uniformly and thus as t -+ 00 

[t]a([t])F'(a([t])x + b[f]) -+ e-x 

locally uniformly. Set 

xf = (V(teX) - V([t]»/a([t]). 

(2.16) 

Since the II-variation property holds locally uniformly (monotone functions 
are converging to a continuous limit) we get as t -+ 00 for x > 0 

Xf = (V([t] (e"t/[t]» - b[f])/a[f]-+ log eX = x 

and replacing x in (2.16) by X f and using local uniform convergence we get 

e-X = lim [t]a([t])F'(a([t])xf + bIt]) 
' .... 00 

= lim ta(t)F'(V(teX)). 
t .... oo 

(The last step uses taCt) '" [t]a([t]) which is a consequence of t '" [t], ta(t)e 
R VI and Proposition 0.8(iii).) Putting s = teX we get 

e- x = lim se-Xa(se-X)F'(V(s)) 
..... 00 

and since slow variation of a( . ) implies a(se-X) '" a(s) the foregoing is equiva­
lent to 

l/a(s) '" sF'(V(s» 

which is the same as the Von Mises condition (1.21) by Proposition 1.17(d). 
Details for the case G = ~II are similar. Jf(l.19) holds then set a(t) = V(t) = 

(1/(1 - F»+-(t) and if Xn -+ x > 0 then a(n)xn -+ 00 and 

gn(xn) = na(n)Fn-l(a(n)xn)F'(anxn) 

'" ana(n)~II(x)(1 - F(anxn»/a(n)xn 
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since the Von Mises condition is the same as F'(t) ,.., a(l - F(t»C1 • The right 
side here is 

atllCl(x)n(l - F(anxn))/xn -+ atllCl(x)x-C1- 1 = G'(x). 

Conversely if (2. 15) holds locally uniformly on (0, 00), F eD(tIlCl) and we can 
set bn = 0, an = yen) and V = (1/(1 - F»+- e R v,,-I (Proposition 0.8(v». There­
fore setting x, = xV(t)/V([tJ) -+ x we get for x> 0 

tIlCl(x)ax-C1 - 1 = lim nanF"-l(anxn)F'(anxn) 

and therefore 

ax-C1 - 1 = lim [tJF'(x V(t» V([tJ) 

= lim tV(t)F'(xV(t» 
''''00 

and setting s = xV(t) this is 

= lim V+-(sx-1 )V(V<-(sx-1»F'(s) 

(since V+- e R v,,) and so 

a = lim sF'(s)/(l - F(s» 

as desired. The treatment for 'POI is left as an exercise. D 

We now discuss how to extend this result to get uniform convergence of gn 
on all of R Getting uniform convergence in neighborhoods of +00 is no 
problem when G = tIlCl or A as it comes almost for free under the Von Mises 
conditions. When G = 'POI' some care must be taken in extending local uniform 
convergence on left, closed neighborhoods of O. 

To get uniform convergence in neighborhoods of 00 it suffices to show (see 
Section 0.1) that if Xn -+ 00 then gn(xn) -+ O. If G = A then 

gn<xn) = nanFn-l(anxn + bn)F'(anxn + bn) 

~ nanF'(anxn + bn)· 

The Von Mises condition (1.21) requires F' > 0 in a left neighborhood of 
Xo and in this neighborhood F is strictly increasing. Now an = feb,,) = 
Jb~{l - F(s»)f(1 - F(bn» ,.., (1 - F(bn))/F'(bn) = l/(nF'(bn» (by 1.21), and thus 

limsup gn(xn) ~ limsupF'(anxn + bn)/F'(bn). 

Recall from Proposition 1.l7(d) that tF'«l/{l - F»<-(t» =: L(t)eRVo so that 

F'(y) = L«l/(l - F(y»)))(l - F(y» (2.17) 
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in a left neighborhood of Xo. Since n(1 - F(a"x" + b"» -+ 0 we have for 6 > 0 

limsup F'(a"x" + b")/F'(b") 

I. L(n/(n(1 - F(a"x" + b"))))n(1 - F(a"x" + b,,» = Imsup --'--'--'---'--_--'-.:.:......:;'--~'c'-'--'----'-~"-----"-:..O. 
"-+00 L(n) 

~ limsup (1 + 8)(1/(n(1 - F(a"x" + b"))))'n(1 - F(a"x" + b") 

(by applying Proposition 0.8(iii» 

= limsup (1 + 6)(n(1 - F(a"x" + b")))l-' = O. 
"-+00 

If G = «1>,. the details are simpler: If x" -+ 00 then 

limsup g"(x") ~ limsup na"F'(a"x") 
"-+00 "-+00 

"-+00 

and supposing (1.19) holds this is 

limsup (%n(1 - F(a"x"»x;l = 0 
"-+00 

since x" -+ 00 and n(1 - F(a"x"» -+ O. 
Now consider the problem of getting uniform convergence in (2.15) on 

intervals of the form [ - M, 0], M > 0, when G = 'PII • Let x" i 0 and we seek 
conditions which guarantee g"(x") -+ 'P~(O). Since 'P~(O) = 00 if 0 < (% < 1, we 
only consider the case (%~ 1. The Von Mises condition is (1.20) and the 
norming constants are given in Proposition 1.13 so that 

g"(x") = n(xo - 'Y")F"-l(XO + (xo - 'Y")x")F'(xo + (xo - 'Y")x"). 

Since F"-l(XO + (xo - 'Y")x") -+ 'P,.(O) = 1 we must consider when 

{o ih>1 
n(xo - 'Y")F'(xo + (xo - 'Y")x") -+ 1 if(%=1. 

(2.18) 

The Von Mises condition says F'(y) '" (%(1 - F(y»/(xo - y) as y i Xo and using 
this (2.18) becomes 

n(1 - F(xo + (xo - 'Y")x"»/( - x") -+ {~ 
It is convenient to recall that Fe D('PII ) itT 

U(t):= 1/(1 - F(xo - C1»eRYr. 

(Proposition 1.13). Check that 

U+-(t) = 1/(xo - (1/(1 - F»+-(t» 

and thus (2.19) can be recast as 

ih> 1 
ih = 1. 

(2.19) 
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ifot> 1 
if ex = 1 

and setting Yn = Ixnl-1 we have (2.19) equivalent to the condition: 

For all sequences {Yn} such that 

U(U+-(n)Yn) {oo if ex> 1 
0< Y -. 00' -. 

n . Yn U(U+-(n» 1 ifot = 1 

which in tum is equivalent to the more appealing condition: 

For any function yet) such that 

U(ty(t» {oo if ex > 1 
0< yet) -. 00: y(t)U(t) -. 1 if ex = 1. 

(2.19') 

(2.20) 

(Check this equivalence!) If ex > 1 we may readily check that (2.20) is a simple 
consequence of the inequalities of Proposition O.S(ii). So we now focus on the 
case ex = 1. 

Suppose the left-hand derivative F'(xo) of F at Xo exists, is finite and 
nonzero. Then as x -. Xo - the Von Mises condition is 

and the right side is 

F'(x) "" F(x)/(xo - x) 

F(xo) - F(x) -. F'(xo) e (0, (0) 
Xo -x 

and we conclude that as x -. Xo -

F'(x) -. F'(xo) < 00. 

Thus the left side of(2.1S) is 

n(xo - Yn)F'(xo - (xo - Yn)xn) 

"" F'(xo)n(xo - Yn) = F'(xo)n/U+-(n). 

However we are assuming 

F'( ) _ I' F(xo) - F(xo - C 1 ) 
Xo - 1m 1 

1-+00 t 

I. t 
= 1m--

1-+00 U(t) 

and thus by an application of Proposition O.S(vi) 

lim U+-(t)/t = F'(xo) 
1-+00 

and hence (2. IS) holds. 
Conversely suppose (2.1S) or equivalently (2.20) holds for ex = 1. Writing 



2.2. Density Convergence 91 

U(t) = tL(t) this means we assume: 

For any function y(t) such that 

o < y(t) _ 00: L(ty(t» _ 1. 
L(t) 

(2.20') 

We wish to conclude that (2.20') implies the existence of a constant c, 
0< c < 00, such that 

lim L(t) = c. 

Suppose not. Then either (a) L(t) - 00, or (b) L(t) - 0, or (c) there exist 
o :s; C1 < C2 :s; 00 and sequences Sn - 00, tn - 00 with L(sn) - c1, L(tn) - C2. 

To see that (c) leads to a contradiction define for n ~ 1 

k(n) = inf{k ~ n: s,,/tn ~ n} 

so that k(n) - 00 and Yn:= s"(n)/tn - 00. Then from (2.20') 

1 = lim L(tnYn) = lim L(s"(n» = c1 < 1 
n-co L(tn) n-co L(tn) C2 ' 

a contradiction. To see that (a) leads to a contradiction take tn - 00 and define 
for n ~ 1 

so that Yn:= t'«II)/tn - 00 and 

1 = lim L(tnYn)/L(tn) = lim L(t"(n»/L(tn) 

a contradiction. The proof that (b) leads to a contradiction is similar. 
Thus L(t) - c whence 

c-1 = lim t/U(t) = lim F(xo) - F~xo - t-1
) 

t-+oo 1-+00 t 

and so the left-hand derivative of Fat Xo exists finite and nonzero. 
Uniform convergence on (0, 00) is readily verified from (2.18) when F e D('P/I) 

since the left side of (2.18) is zero for Xn > O. 
We now summarize these findings. 

Proposition 2.6. Suppose F is absolutely continuous with density F'(x) and the 
appropriate Von Mises condition (1.19), (1.20), or (1.21) holds. If F e D(~/I) then 
density convergence (2.15) on (0,00) is uniform on neighborhoods of 00. If 
FeD(A) then density convergence (2.15) on R is uniform on neighborhoods of 
00. Suppose FE D('P/I) and at: ~ 1. If at: > 1 density convergence (2.15) is uniform 
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on intervals of the form [ - M, 0], M > 0 (and hence uniform on all neighbor­
hoods of (0). If a = 1 this is true iff the left-hand derivative of F at Xo exists 
positive and finite. 

We now discuss how to obtain uniform convergence on all of R Similar to 
the situation in Section 2.1, behavior not controlled by right tail conditions 
must be controlled by imposing extra conditions; cf (2.21) later. 

Proposition 2.7. Suppose F is absolutely continuous with density F'(x) and that 
one of the Von Mises conditions (1.19), (1.20), or (1.21) holds. If FeD('I',,), 
suppose either a > 1 or a = 1 and the left-hand derivative of F at Xo exists 
positive and finite. Then density convergence (2.15) holds uniformly on IR iff there 
exist constants B > 0, C > 0 such that for all x 

F'(x)F(x)B:s;; C. (2.21) 

Remark. If the density F' is bounded then (2.21) is satisfied. Condition (2.21), 
devised by Sweeting (1985), is designed to allow the density to become un­
bound in right neighborhoods of x, = inf{x: F(x) > OJ. Condition (2.21) says 
that the distribution FB+1 (x) has a bounded density. 

PROOF. We start by supposing Fe D(A), (1.21), and (2.21) hold. Let Xn -+ -00 

and we must show gixn ) -+ O. There are two possibilities along subsequences 
{n'}: 
(a) an·xn· + bn· -+ Xo or 
(b) an·xn· + bn· ::;; K < Xo. 
In case (a), just as in the developments following (2.17), we have by recalling 
an"" (1 - F(bn»/F'(bn) and using Proposition 0.8(ii) that for large n' 

( ),... '(1 _ F(b »Fn'- l ( b ) L(n'/(n'(1 - F(an·xn· + bn·)))) 
gn' X n' n n' an·xn· + n' L(n') 

. n'(1 - F(an·xn· + bn.) 

:s;; (1 + e)(n'(1 - F(an·xn· + bn·)))l-eFn·-l(an·xn· + bn.) 

and remembering that F = 1 - (1 - F) :s;; e-(1-F) the foregoing is bounded by 

:s;; (1 + e)(n'(1 - F»l- t exp{ -«n' - l)1n')n'(1 - F)}. 

If n'(l - F) -+ 00 then this bound obviously approaches zero as desired. To 
check n'(1 - F) -+ 00 note that since Xn' -+ -00 we have for any M ~ 0 and 
all large n' that 

and hence 

and since M is arbitrary the conclusion is that 
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n'(1 - F(an·xn. + bn.) -+ 00. 

In case (b) when an.xn. + bIt' ~ K < 00 we have 

(by 2.21) 

gll'(xn,) = an·n'Fn·-l(all,xn· + bll·)F'(all.xlI· + bll·) 

~ n'all·CFn·-l-B(an·x". + bn·) 

~ Cn'an.F"·-l-B(K) -+ 0 
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since nan"" nL(n) and Fn- 1 - B(K) -+ 0 geometrically fast as a consequence of 
F(K) < 1. 

Conversely suppose (2.21) fails. Then with C = 1 and B = n - 1 we see there 
exists ZII e(x" xo) such that 

F'(zn) ~ F(z"r"+1 • 

Set Xn = a;l(zn - bn) and then 

gn(xn ) = nanF"-l(anxlI + bn)F'(allxn + bn) 

~ nanFn-l(zn)F-n+1(zlI) = naIl -+ 00 

so that gil cannot converge uniformly on IR to N(x). 
Now we deal with the problem assuming Fe D(<I>,,). Suppose (1.19) and 

(2.21) hold and we show uniform convergence of gIl -+,p~ on intervals of the 
form [0, M]. Suppose 0 < XII -+ 0 and again along subsequences {n'} there are 
two cases: 
(a) all' X"' -+ 00 

(b) an·xn. ~ K < 00. 

Case (b) is handled as in the discussion for A so we focus on (a): 

gil' (xn' ) = n' an·Fn·-t (all' XII' )F'(all·xn·) 

(from (1.19» 

~ exn'(1 - F(all.xn.»exp{ -(n' - 1)(1 - F(a".xlI.»}/x" .. 

Now U = 1/(1 - F)eRY,. so that since U(a,,)/U(allxlI ) = U(allxllx;l)/ 
U(allx,,) we get from Proposition 0.8(ii) for given 0 < e < ex and large n 

(1 - e)(x;l r' ~ U(all)/U(anxlI ) ~ (1 + e)(x;l r+·. 

Since n(1 - F(allxn» ,.., (1 - F(a"xlI»/(1 - F(an» = U(an)/U(a"xlI ) we have 
for large n 

(1 - e)2x;"+' ~ n(1 - F(a"xlI» ~ (1 + e)2x;"-·. 

So when n' is large, a bound on gil' (XII' ) is of the form 

ex(1 + e)2 x;."-t exp{ -(1 - e)3 X;'''+8}/XII. 

= O(X;.,,-t-l exp{ -(1 - e)3x;."+t}) -+ O. 
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To get uniform convergence on (-00,0) is easy: If xn -+ x < 0 then the 
simple argument of case (b) works. The converse is nearly the same as for A 
and is omitted. 

Checking details for FE D(VII ) is left as an exercise. 0 

Convergence of gn to G' in the Lp metric is considered in de Haan and 
Resnick (1982) and Sweeting (1985). The first reference also considers local 
limit theorems when it is not assumed that F has a density. 

EXERCISES 

2.2.1. Suppose Fe D(A) with auxiliary function f For given e > 0 there exist to such 
that for x > 0, t > to 

[ 1 -F(t) ]-. f(t + xf(t» [1 -F(t) J 
(1 - e) 1 _ F(t + xf(t» :;;; f(t) :;;; (1 + e) 1 - F(t + xf(t» 

and for x < 0, t + xf(t) > to 

_ [1 - F(t + Xf(t»]-' f(t + xf(t» < (1 )[1 - F(t + Xf(t»J. 
(1 e) 1 _ F(t) :;;; f(t) - + e 1 _ F(t) 

Hint: With U = 1/(1- F) we have foU+-eRVo. Apply Proposition 
0.8(ii) (de Haan and Resnick, 1982). 

2.2.2. Give an example of F e D(A) satisfying (2.21) but with the density F' unbounded 
near X, and g" .... G' uniformly on R. 

2.2.3. Prove the unproven statements in the '1'. case. 

2.2.4. Suppose the conditions of Proposition 2.7 hold so that g" .... G' uniformly on IR. 
For any sequence d" .... 00 and h > 0 
(a) If Fe D(41.), then lim,,_oo d"P[x < a;l M" :;;; x + d;l h] = h41~(x) uniformly 

onR. 
(b) If FeD(A), then lim"_",d,,P[x < a;l(M" - b,,):;;; x + d;lh] = hA'(x) 

uniformly on R. 
(e) If F e D('I'.), then 

lim dnP[x < (M" - xo)/(xo - 'Y,,) :;;; x + d;l h] = h'l'~(x) 

(de Haan and Resnick, 1982). 

2.3. Large Deviations 

This section is based on Anderson (1971,1976,1978,1984), de Haan and 
Hordijk (1972), and Goldie and Smith (1987). 

Since convergence in (2.1) holds uniformly in R, we may write (2.1) as 

sup IFn(x) - G(a;l(x - bn}}l = dn -+ O. (2.22) 
xeR 
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This suggests that in a statistical context, if we do not know F, we regard 
G(a-1(x - b» as the approximate distribution of extremes. This is appealing 
for two reasons. First, we have at most three parameters to estimate (a, b, and 
possibly the shape parameter (X appearing in the definition of <1> .. and'll .. ), and 
second, domain of attraction restrictions on the tail behavior of F are mild 
and satisfied by most common densities so that this procedure is fairly robust. 

Of course there are two possible sources of difficulties: the statistical estima­
tion of parameters and the approximating of Fn(x) by G(a;;l(x - bn». For the 
latter it would be useful to know something about dn appearing in (2.22), and 
this is the subject of Section 2.4. However dn is not always the best way to 
measure how close Fn(anx + bn) is to G(x). In problems concerning prob­
abilities of exceeding large values, we care about how closely 1 - G(x) ap­
proximates P[Mn > anx + bn] for large values of x. Since both 1 - G(x) and 
P[Mn > anx + bn] are likely to be very small, these quantities have little 
influence on dn and it is better instead to use relative error, which is equivalent 
to examining how close 

P[Mn > anx + bn] 

1 - G(x) 

is to one for large x. 

1 - Fn(anx + bn) 

1 - G(x) 

We seek Xn i 00, the convergence to infinity being as fast as possible, such 
that 

(2.23) 
n .... oo 

for any sequence {Yn} such that Yn = O(xn) or equivalently for any positive A 

lim sup IP[(Mn - bn)/an > x]/(l - G(x» - 11 = o. (2.23') 
" ...... 00 x~Axn 

We always assume {xn} is strictly increasing. The relations (2.23) or (2.23') 
describe those values of x such that 1 - G(x) is a good approximation to 
P[(Mn - bn)/an > x]. Obviously the faster we can allow Xn to increase to 00, 

the better the approximation. 
We begin by considering the case FED(<I> .. ). In this case 

x -+ 00 

with LERVo and we may take bn = 0, an = (1/(1 - F»+-(n). Then (2.23) can be 
written as (assume Yn -+ 00, the contrary case being covered by uniform 
convergence in (2.1» 

1 = lim (1 - Fn(anYn»/(1 - <I>..(Yn» 

= lim n(1 - F(aIlYn»/Y;;" 

(since 1 - rP .. (x) ~ x-.. , x -+ 00 and 1 - Fn(anYn) = 1 - e-n(-IOIIF(anl'n)) ~ 

n( -log F(anYn» '" n(l - F(anYn» where the asymptotic equivalences are 
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justified by the fact that F"(a"y,,) -1 implies nlogF(a"y,,) - 0). Since n-1 "" 

1 - F(a,,) the previous expression becomes 

"-+00 

,,-+00 

(2.24) 
,,-+00 

and this is equivalent to (2.23). Condition (2.24) is rephrased slightly in the 
following. 

Proposition 2.8. (Anderson, 1978). Suppose xlZ(1 - F(x» = L(x)e RVo and {XII} 
is strictly increasing, X" too. Then the large deviation property (2.23) holds itT 
there exists a non-decreasing function e(t) with e( (0) = 00 such that e(a,,) = XII 
and 

lim L(te"(t»/L(t) = 1 (2.25) 
'-+00 

locally uniformly in (j e [0, 00]. 

PROOF. Suppose (2.25) holds and we verify (2.24) when YII - 00, y" ~ Ax". 
(Again, note if a subsequence of {y,,} is bounded, then (2.24) along that 
subsequence is a direct consequence of uniform convergence; cf. Proposition 
0.5.) Since y" ~ Ax", if we set (j" = logy"jlogx" then y" = x!" = e""(a,,) and 
{(jll} is bounded. The limit in (2.24) is 

lim L(a"e""(a,,»/L(a,,) 

and this limit is 1 since (2.25) is assumed to hold locally uniformly in (j. 
Conversely if (2.24) holds then for all {(jIll c [O,lr = {(U lo U2, •.. ): Uje 

[0,1], i = 1,2, ... } 

lim L(a"x!")/L(a,,) = 1. (2.26) 
"-+00 

Define 

e(t) = x" 

and 

n(t) = sup{n: a" ~ t} 

so that 

(2.27) 

Then since a" "" a,,+l (because of a(t) = (1/(1 - F)r'(t)eRYo,-, and Proposi­
tion 0.8(iii» we get by dividing through by a,,(I) in (2.27) that as t - 00 
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Furthermore 

which implies 

te6t'I(t) '" an(/)e""I(an(/) 

and from (2.26) and Proposition 0.8(iii) 

lim L(te""I(t»/L(t) = 1 
, .... 00 
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and since {~n} is arbitrarily chosen in [0,1]00 (2.25) holds uniformly for 
o ~ ~ ~ 1. It is easy to extend this to local uniform convergence on [0, (0). 
For instance if ~(t)e [1, 2] then 

lim L(ted(/)(t» = lim L(te(t)ed(/)-l(t»L(te(t)) = 1 
, .... 00 L(t) , .... 00 L(te(t»L(t) . o 

Remark. Proposition 2.8 does not assert (2.25) holds for all e satisfying e(an) = 

xn • 

Since (2.25) strengthens the slow variation property, Anderson (1978) aptly 
termed (2.25) super slow variation. 

Definition. Let e be nondecreasing with e( (0) = 00. A slowly varying function 
is e-super slowly varying (e-ssv) if 

lim L(te"(t»/L(t) = 1 (2.25) 
, .... 00 

locally uniformly for ~ E [0, (0). 
Actually, uniformity in (2.25) is a consequence of pointwise convergence in 

~, provided the function e satisfies a growth condition. See Anderson, 1984, 
Theorem 2, and Goldie and Smith, (1987), Section 2.3. 

We now examine sufficient conditions for super slow variation and hence 
for the large deviation property. 

Suppose LeRVo has Karamata representation (cf. Corollary 0.7) 

L(x) = c(x)exp {f: C 1 S(t)dt} (2.28) 

where c(x) -+ c > 0, sex) -+ 0 as x -+ 00. Since e(t) -+ 00 we have 

L(te"(t»/L(t) '" exp{f~(/) U-1S(U)dU} 

so that the ratio goes to 1 locally uniformly in ~ iff the integral goes to zero 
locally uniformly in ~. In the integral make the change of variable z = (log u -
log t)!log e(t) and 

J. /~I(/) C" 
1 u-1s(u)du = Jo s(exp{logt + zloge(t)})loge(t)dz 
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and this goes to zero locally uniformly in £5 provided 

e(t~Z(t)) log ~(t) -+ 0 

as t -+ 00 locally uniformly in z. However (2.29) is true iff 

e(t) log ~(t) -+ 0 

(2.29) 

(2.30) 

and this is the desired sufficient condition. (To see the equivalence of (2.29) 
and (2.30) note by setting z = 0 in (2.29) we get that (2.29) obviously implies 
(2.30). Conversely if (2.30) holds, then because ~ is nondecreasing 

o = lim e(t~Z(t)) log ~(t~Z(t» 

~ lim e(t~Z(t)) log ~(t) ~ 0 

and the convergence is locally uniform in z.) 
As a special case consider what happens if the Von Mises condition (1.19) 

holds; i.e., 

a(t) := tF'(t)/(1 - F(t)) -+ a 

as t -+ 00. Then 

and thus 
e(t) = lX(t) - IX 

and sufficient condition (2.30) becomes 

log ~(t)«tF'(t)/(l - F(t))) - IX) -+ 0 

as t -+ 00. 

Another interesting special case, which covers the Cauchy, Pareto, t, and F 
distributions, is when 

as t -+ 00. In this case 

L(t) = t«(1 - F(t)) = c(t)eO 

so e(t) == 0 and all growth rates for e(t) are allowed. 
Interestingly enough, when ~ satisfies a growth condition, (2.30) is necessary 

as well. 

Proposition 2.9 (Anderson, 1978; Goldie and Smith, 1987). Suppose ~(t) -+ 00 

and 

log ~(x~(x» = O(log ~(x» (2.31) 

as x -+ 00. Then L E RVo is ~ - ssv iff L has a Karamata representation of the 
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form (2.28) with 
e(t)log ~(t) -+ 0 (2.30) 

as t -+ 00. 

Remark. In cases where ~ is differentiable, (2.31) is close to saying 10g~(eX) 
has a bounded derivative. See Exercise (2.3.4). 

PROOF. You might wish to review Exercises 0.4.3.8 and 0.4.3.11, and Lemma 
1.3. We need only prove necessity of (2.30). Define 

L#(t) = L(e') 

e*(t) = log e(et ) 

so that assuming L is ~ - ssv and satisfies (2.25) we get 

lim L#(s + l5e*(s»/L#(s) = 1 

locally uniformly in l5 and the rephrasing of (2.25) and (2.31) becomes 

~*(x + ~*(x»g*(x» ~ K. 

Pick c such that e*(t) > 0 for t ~ c. The function 

IX (1g*(u»du 

for x ~ c is continuous, strictly increasing, and since for x ~ c 

[X+~.(X) [1 
Jx (1g*(u»du = Jo ~*(x)/~*(x + u~*(x»du 

(2.25') 

(2.31') 

~ 1e*(x)/e*(x + e*(x» ~ K-1 (from (2.31'» (2.32) 

we have 

Thus the function 

U(x) = exp {LX (1/e*(U»du} 

is continuous, strictly increasing with U( (0) = 00, and U"" is well defined on 
[0, (0). We show 

(2.33) 

with Ll E RVo• Repeat the argument leading to (2.32) to get for 0 ~ l5 ~ 1 

U(x + l5e*(x»/U(x) ~ eU - 1 (2.34) 

for x ~ c and hence for VE [1,eK - 1 ] 



100 2. Quality of Convergence 

o ::;; (U+-(vU(x)) - x)/e*(x) ::;; K log v ::;; 1. (2.35) 

Thus to show Ll = L# 0 U+-eRVo we write for ve[l,eK -'] 

I· Ll (tv) I' L#(U+-(tv)) 
Im--= 1m # +-

/-+00 Ll (t) /-+00 L (U (t» 

and setting x = U+-(t) we have this equal to 

I. L#(U+-(vU(x» 
= 1m # 

x-+oo L (x) 

= !~ L# ([U+-(V~~) - x] e*(x) + x );L#(X) = 1 

since 

o ::;; (U+-(vU(x)) - x)/e*(x) ::;; 1 

and the convergence in (2.25') is uniform for oe [0,1]. This verifies 
lim/-+oo Ll (tv)/L 1 (t) = 1 for ve [l,eK -'] and a simple argument extends this to 
all v ~ 1. Hence (2.33) is checked. 

Since Ll eRVo, it has a Karamata representation 

L 1(x) = c1(x)exp {f: t-18 1(t)dt} 

where C1 (x) -+ Cl > 0,81 (x) -+ O. Thus 

L#(x) = Cl(u(x»exp {flU
(X) C 18 1(t)dt}. 

Make the change of variable s = exp{U+-(t)} so that t = U(logs), dt = 
s-lU'(logs)ds = U(logs)/(se*(logs»ds, and 

L(eX ) = L#(x) '" (const)exp {Ie" (81(U(logs»jIog e(s))s-1 dS} 

and setting 

8(S) = 81 (U(logs»jIog e(s) 

we see that L has a Karamata representation with 8(S) satisfying 

8(s)log e(s) -+ 0 

as required. o 

Now we consider (2.23) for FE D(A) supposing throughout the discussion 
that Xo = 00. Since 1 - G(Yn) = 1 - exp{ -e-Yn } '" e-Yn for y" -+ 00 we have 
(2.23) equivalent to 

eYn(1 - Fn(any" + b,,» '" eYn n(1 - F(anYn + bll ) -+ 1 (2.36) 
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as n -+ 00 where we recall that anYn + bn -+ 00 so that F(anYn + bn) -+ 1. From 
Proposition 1.4 we have for Zo < x < 00 

1 - F(x) = c(x)exp { -1: (l/f(U»dU} 

where limxtxo c(x) = c > 0, limxtxof'(x) = 0, and we may take 

bn(1/(l - F)+-(n), 

Thus (2.36) can be expressed as 

1 ,.., e"n(l - F(anYn + bn»/(l - F(bn» 

{ 
(IJn"n+bn } 

= e"n(c(a"Yn + bn)/c(bn»exp - Jb
n 

(l/f(u»du 

(1.5) 

(2.37) 

and making the change of variable in the integral v = (u - b")/a,,Yn the preced­
ing expression becomes 

e"n(l + o(l»exp { - I1 Yn/(bn)/f(bn + VanYII)dv} 

,.., exp { - I1 «f(bn)/f(bn + vanYn» - l)YndV}. 

Since Yn ~ AXil, if we set ~n = Yn/xlI E [0, A] we can write Yn = ~nxn' If ,(x) is 
nondecreasing satisfying '(00) = 00 and ,(bn) = XII then we see (2.36) may be 
rewritten as 

and sufficient for this is 

( f(x) ) 
e(x) f(x + ~f(x)e(x» - 1 -+ 0 (2.38) 

as X -+ 00, locally uniformly in ~. Finally we check that (2.38) holds if the de 
Haan and Hordijk (1972) condition holds, viz 

(2.39) 

Note first that 

I
f(X + ~f(x)e(x» _ I < (XH/(X)~(X)If'(U)1 

f(x) 1 - Jx f(x) du 

= f: If'(x + uf(x)e(x»le(x)du 

~ f: If'(x + uf(x)e(x»e2(x + rif(x)e(x»ldu 
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and this approaches zero locally uniformly in D because of (2.38). To show 
that (2.39) implies (2.38) we repeat these steps as follows: 

e(x)lf(x +~~~g(X)) - 11 = e(x)lf(X ;xD~X1~~)~(:);<X) I 
'" e(x) If(X + bf(~~~X» - f(x) I (by the previous calculation) 

~ J: If'(x + uf(x)e(x))le2(x)du 

~ s: If'(x + uf(x)e(x))e2 (x + uf(x)e(x))ldu -+ 0 

locally uniformly in b as required. 
We now summarize our large deviation results when FE D(A). 

Proposition 2.10. Suppose FE D(A) with Xo = 00 and 1 - F has representation 
(1.5). Set R(x) = J:o (llf(u»du for x > zoo Then the large deviation property 
(2.23) holds iff there exists a nondecreasing function e(t) satisfying e(oo) = 00, 

~(b,,) = x"' and 

lim (R(x + bf(x)~(x)) - R(x) - b~(x» = 0 (2.40) 

locally uniformly in (j E [0,00). Sufficient for (2.40) is the de H aan and Hordijk 
(1972) condition 

lim ~2(X)f'(X) = o. (2.39) 

PROOF. We need only check the equivalence of (2.23) with (2.40). Note that 
(2.23) and (2.37) are equivalent, so taking logarithms in the latter we obtain 

(2.37') 

or, what is the same, 

(2.37") 

locally uniformly in b, and obviously (2.37") is implied by (2.40), so we need 
to check the converse. Supposing (2.37") we define 

~(x) = x" 

If XE [bll ,b"+1) we may write x = b" + O(b"+l - b,,) for 0 ~ 0 < 1. We assume 
FE D(A) so that V = (1/(1 - F»<- E n with auxiliary a-function f 0 V (Prop­
ositions 0.9 and 0.10). Thus for any e > 0 

o ~ lim sup (b"+l - b,,)lf(b,,) = limsup (V(n + 1) - V(n»lf 0 V(n) 

~ limsup (V(n(l + e» - V(n»lf 0 V(n) 

= log(l + e), 
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and hence we conclude 

Recall 

limf(t + ()f(t))/f(t) = 1 

locally uniformily in () (Lemma 1.3) and therefore for x E [bn, bn+1) 

f(x) f(bn + O(bn+1 - bn)) 

f(bn) = f(bn) 

as n -+ 00. Since ~(x)isconstant on [bn , bn +1) and R is monotone nondecreasing 

R(x + ()f(x)~(x)) - R(x) - ()~(x) 

~ R(bn + (()~~:»)f(bn)~(bn») - R(bn+1) - ()~(bn) 

= R (bn + (() ~~~)f(bn)~(bn») - R(bn) - ()~(bn) 
- (R(bn+1) - R(bn))· 

From the definition of R 

R(bn+tl- R(bn) = -log«1 - F(bn+1 ))/(1 - F(bn») 

+ log c(bn+ 1 )/c(bn } -+ 0 

and we get on applying (2.41) and (2.37") 

liminf (R(x + ()f(x)~(x» - R(x) - ()~(x» ~ o. 

For an inequality in the reverse direction write for x E [bn, bn+tl 

R(x + ()f(x)~(x)) - R(x) - ()~(x) 

( f(X}) 
$; R(bn + O(bn+1 - bn} + () f(bn} f(bn)~(bn» - R(bn) - c5e(bn} 

( ( O(bn+1 - bn ) f(x) ) ) 
= R bn + f(bn)~(bn} + c5 f(bn) f(bn)~(bn} - R(bn) - c5~(bn} 

and since 

we get from (2.37") that 
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lim sup (R(x + <5f(x)~(x» - R(x) - <5~(x) ~ 0 

and thus we have shown that 

lim (R(x + <5f(x)~(x» - R(x) - <5~(x» = O. 
"-+00 

Checking local unifonn convergence is no problem using continuous conver­
gence (Section 0.1), and thus we are done. 0 

As an example consider the normal distribution N(x) with density 

n(x) = (21tt 1l2e-,,2/2• 

Then 

f(t) = (1 - N(t»/n(t) '" c 1 

(Feller, 1968, page 175), and since 

!'(t) = -1 + t(l - N(t»/n(t) 

and 

ret) = -t + (1 + t2 )(1 - N(t»/n(t) ~ 0 

we have f'(t) nondecreasing and an application of Proposition 0.7(b) gives 

f'(t) '" _c2 

and (2.39) becomes 

i.e., 

~(t) = oCt). 

Since bn '" (2 log n)1/2 (Example 2, Section 1.5) we see that the large deviation 
property holds for 

If Von Mises condition (1.21) holds, then from the proof of Proposition 
1.17(a) we see that (2.39) can be fonnulated 

I· J:2( )(-1 + F'(x)J;' (1 - F(U»dU) = 0 
,,~.. x (1 _ F(X»2 

and if Von Mises condition (1.24) holds, condition (2.39) becomes 

I· J:2( )(1 (1 - F(X»F"(X») = 0 
1m.. x + ('( »2 . 

"-+00 F x 
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Rewriting (2.40) as 

lim e(x) (R(X + «5f(x)e(x» - R(x) _ «5) = 0 
"' .... <Xl e(x) 

makes it clear that (2.40) describes a rate on how fast 

R(x + «5f(x)e(x» - R(x) -+ «5. 
e(x) 

The latter condition suggests that 

R = noH 
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where n E n, HEr, and under suitable growth conditions on ~(x) this should 
enable one to show that (2.39) is necessary. However this interesting conjecture 
has yet to be fully verified. See Exercise 2.3.8 for evidence in support of this 
conjecture. 

EXERCISES 

2.3.1. When FE D(cI»«), if (2.23) holds for a certain choice of normalizing constants 
a. > 0, b. E IR, then it holds for every choice; i.e., if (2.23) holds and a. '" ex., 
b. - fl. = o(a.), then (2.23) holds with (ex., fl.) replacing (aft, bft). 

2.3.2. Even ifthe Von Mises condition 1.19 fails, we may set 

ex(t) = (1 - F(t» 11'" s-1(1 - F(s»ds 

so that ex(t) --+ ex and 

Thus 

e(t) = ex(t) - ex 

and condition (2.30) becomes 

2.3.3. Derive large deviation results for FE D('I'«) either ab initio or by using the fact 
that if FE D('I'.), 

is in D(cI»«). 

x<o 
x>O 
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2.3.4. (a) If ~*(t) = log ~(e') is the integral of a bounded derivative then 2.31 holds. If 
(~*)'(t) is nondecreasing, then (2.31) or (2.31') implies (~*)' is bounded. 

(b) Show that any power function of the form ~(t) = t a, a> 0, satisfies (2.31). 

2.3.5. If ~1 grows so fast that 

f" (1/~r(u»du < 00 

in violation of (2.31), then (2.30) implies L(oo) < 00 and L is ~l-SSV, and in fact 
L is ~-ssv for any ~ nondecreasing with ~(oo) = 00 (Anderson, 1984). 

2.3.6. If ~:(t) = t', P > 0, L*(t) = log3 t then for 0 < P :s; I, (2.30) and (2.31) hold, and 
for P > 1 (2.30) and (2.31), do not hold, Ji (1/~:(u»du < 00 but L is ~,-ssv. So 
(2.30) can be too strong and the super slow variation property can hold without 
it (Anderson, 1984). 

2.3.7. For which sequences {xn} does the large deviation property hold when F is 
gamma, Weibull, lognormal? 

2.3.8. (a) Observe from the proof of (2.38) that f'(x)~(x) ..... 0 implies 

f(x)lf(x + of(x)~(x» ..... 1 

locally uniformly. By symmetry, if we suppose ~ is the integral of a density 
~', then ~'(x)f(x) ..... 0 implies ~(x)/~(x + of(x)~(x» ..... 1 locally uniformly. If 

lim f'(X)~2(X) = c > 0 

then show 

(de Haan and Hordijk, 1972). 
(b) IfIimf'(x)~(x) = Iim,,_oo ~'(x)f(x) = 0 and (2.40) holds, then locally uniformly 

!~~ s: ~2(X + sf(x)~(x»f'(x + sf(x)~(x»ds = o. 

If f' does not change sign and If'I is nonincreasing 

lim ~2(x)f'(X) = o. 

(c) Iflim,,_oof'(x)~(x) = Iim,,_co ~'(x)f(x) = 0 then 

H(x) := exp {f (l/(f(U)~(U)))dU} 
is in class r with auxiliary function f ~ and 

n(x):= f u-I~(W--(u»du 
is in class n with auxiliary a-function ~ 0 W--. Furthermore 

R = noH. 
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2.4. Uniform Rates of Convergence to Extreme Value Laws 

We now survey some results which describe the rate of convergence of 

dn = sup IFn(anx + bn) - G(x)1 
xeR 

to zero when FeD(G). As in the previous section, we are interested in how 
good an approximation G(a;l(x - bn)) is to Fn(x), and dn is another way to 
measure the goodness of the approximation. 

Such problems have been considered in the literature dating back to Fisher 
and Tippett (1928). We have found the following references very instructive: 
Anderson (1971), Davis (1982b), Hall (1979), Hall and Wellner (1979), Cohen 
(1982a, b), and Smith (1982). In particular, when FeD(W,,), Smith relates 
uniform rates of convergence to the concept of slow variation with remainder 
(Goldie and Smith, 1984). 

In contrast to the approach based on slow variation with remainder, our 
method centers around the representation results for distributions Fe D( G) 
(Proposition 1.4, Corollary 1.12, Propositions 1.15, 1.17, and 1.18). In this 
section, in the interest of usability, we are less than completely general and 
assume that F(x) satisfies Von Mises conditions so that the convenient repre­
sentations of Fe D( G) exist as described in Propositions 1.15 and 1.18. We feel 
this is the appropriate level of generality, but in any event our methods can 
be generalized by making use of the more general representations for F. (cf. 
Cohen, 1982b). We concentrate on W" and A and leave results for 'P" to the 
reader. 

The representations described in Propositions 1.15 and 1.18 are in terms of 
1 - F. However, in this section, it is preferable to work with -log F because 
tighter bounds are then obtained. Since -log F(x) = c(x)(l - F(x)), c(x) -+ 1, 
there is little involved in obtaining new representations. The cost of working 
with -log F results from the obvious fact that more common distributions 
are described in terms of 1 - F and not -log F. 

Some of the approaches discussed later arose from discussions with 
A. Balkema and L. de Haan. 

2.4.1. Uniform Rates of Convergence to tf)(Z(x) 

Write F = exp{ -e-~} and suppose F is differentiable. A Von Mises condition 
guaranteeing Fe D(W,,) analogous to 1.19 is 

, xF'(x) 
h(x) := xf/J (x) - IX = F(x)( -log F(x)) - IX -+ 0 (2.42) 

and we suppose there exists a nonincreasing continuous function g and 

Ih(x)1 5: g(x)! 0 (2.43) 

as x -+ 00. Typically we take g(x) = suP,,~x Ih(y)l. Set exp{ - f/J(an)} = 
-logF(an) = n-1 so that 
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</J(anx) - </J(an) = IX c l (a + h(ant))dt -+ a log x, x -+ 00, 

for x > 0 showing that (2.42) is sufficient for F E D(<I>a). The rate of convergence 
will be given in terms of g. 

We begin with the following simple lemma: 

Lemma 2.11. For aI' a 2 > 0, 

sup l<I>a,(x) - <l>a2(X)1 :-s; (.2701)la1 - a21/(a 1 /\ ( 2)· 
x>O 

PROOF. Observe for x > 0, :/3 <l>p(X) = <l>p(X)X-P log x and so assuming a l < a2 

sup l<I>a,(x) - <l>a2(X) 1 :-s; sup sup l<I>p(x)x-Plogxlla2 - ad 
x>O x>O pe[a"a2] 

The supremum is found numerically to four decimal places. o 

It is now easy to obtain the rate of convergence on the interval [1, (0). 

Proposition 2.12. If (2.42) holds and exp{ -</J(an)} = n- l then 

sup IFn(anx) - <I>,,(x)1 :-s; (.2701)(a - g(anWlg(an) = O(g(an)). 
x~l 

PROOF. For x ~ 1 

</J(anx) - </J(an) = IX (a + h(ant))t-ldt:-s; IX (a + g(ant))t-ldt 

:-s; (a + g(an))log x. 

Obtaining a lower bound in a similar way we finally get 

(a - g(an))log x :-s; </J(anx) - </J(an) :-s; (a + g(an))log x 

and taking negative exponentials twice gives for x ~ 1 

<I>(a-g(an))(x) :-s; Fn(anx) :-s; <I>(,,+g(an))(x) 

and an application of Lemma 2.1 gives the desired result. 

(2.44) 

o 
On the region (-00,1), more care must be taken. We first present a method 

which works quite generally, and then we show that if more is assumed about 
g a better bound can be obtained. 
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If x < 1 we find in the same way as (2.44) was obtained that 

(J)(a+g(an,,»(x) ~ F"(anx) ~ (J)(a-g("n"»(x) (2.45) 

and hence IFn(anx) - (J)a(x)1 ~ (.2701)(oc - g(anxWlg(anx) from Lemma 2.11. 
Now suppose {xn} is a sequence (to be specified) satisfying Xn -+ 0 and anXn -+ 00. 

Then we conclude that 

sup IFn(anx) - (J)a(X) I ~ (.2701)(oc - g(anxn>rlg(anxn). 
xn:Sx<oo 

For x ~ Xn observe from (2.45) that 

Fn(anx) ~ F"(anxn) ~ (J)(a-g(an"n»(xn) 

and for Xn ~ 1 

(J)a(Xn) ~ (J)(a-g(an"n»(xn) 

and so the uniform bound becomes 

" 
The way to choose Xn so that the right side of (2.46) is minimized is to pick Xn 

to satisfy 

or equivalently 

anxn( -log«.2701)(oc - g(anxn»-lg(anxn)))(a-lI(an"n))-' = an' 

To get an expression for Xn it is convenient to switch to a continuous variable. 
Define 

a(t) = ( / )<- (t) = inf{u: 1/(-logF(u» ~ t} 
- ogF 

and define a nondecreasing function p(t) by 

p(a(t» = a(t)x(t) 

where x(t) is an unknown function decreasing to zero, while a(t)x(t) increases 
to 00. Then we have 

p(a(t» { -log(.2701)(oc - g(p(a(tmflg(p(a(t))) }(a-g(p(,,(r»WI = a(t). 

Change variables replacing a(t) by t. If we let p<-(t) be the inverse of p we obtain 

p<-(t) = t( -log«.2701)(oc - g(t))-lg(t)))(a-g(rw'. (2.47) 

It may be difficult to invert this expression, but an asymptotic inversion can 
usually be performed. Note that it is clear that 

lim i p+-(t)/t = 00 
r~oo 
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and hence (Proposition O.8(vi» 

lim! p(t)/t = 0 

so from the definition of p we get x(t) = p(a(t»/a(t)! O. Since p(t) t 00 we get 
a(t)x(t) t 00 and so x(t) has the desired properties. 

We now summarize our findings. 

Proposition 2.13. Suppose (2.42) holds so that F E D(~Il)' Then 

sup IFn(anx) - ~ix)1 ~ (.2701)(0( - g(p(an)))-lg(p(an)) 
xeR 

where p is given in terms o/its inverse by (2.47). 

Remark. One sometimes gets the impression from results in the literature that 
O(n -1) is the best convergence rate, possible. This is not the case. Since the 
function 9 can be any function converging monotonically to zero, a wide 
variety of convergence rates are to be expected. For example, suppose g(t) = 
e- t and we define a distribution F by 

F(x) = {O, x < 1 
exp{ -exp{ - n (1 + e-U)u-1du}}, x~l. 

Then p<-(t) '" t( -log(t»(l-g(t))-' '" t2 so that p(t) '" t 1/2 . Since log t = 
H(t)(l + e-U)u-1du we have loga<-(t) = J~ (1 + e-U)u-1du = logt + C + 0(1), 
and thus a<-(t) = tec(1 + 0(1» and aCt) = te-c(l + 0(1». So an order of con­
vergence g(p(an» is of the form exp{ _kn-1/2 }, k > O. 

It is an interesting fact that, as shown by Rootzen (1984), the convergence 
rate cannot be faster than exponential without F actually being an extreme 
value distribution. 

The convergence rate on [1, (0) is g(an ), but the preceding technique gives 
the overall rate g(p(an». When 9 satisfies growth conditions of regular varia­
tion type it is possible to improve the bound from O(g(p(an))) to O(g(an» as 
is done in Smith (1982). Indeed when 9 is regularly varying with index - p < ° 
we have 

I· g(p(an)} I' g(an(p(an)/an)} I' « )/ )_R '"" 1m = 1m = 1m p a a ,. = VJ 

n .... <Xl g(an» n .... <Xl g(an) n .... <Xl n n 

(recall p(t)/t -+ ° as t -+ (0) so that O(g(an}} is a significant improvement over 
O(g(p(an)))· 

We show that O(g(an» is a valid convergence rate under the following 
assumption: Pick ~ so large that g(~) < 0(. Then for n such that a;;l~ < 1 we 
assume 

(2.48) 

where p > 0. 
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Remark. There are two circumstances in which (2.48) is easy to verify. The 
first is when g is of the form g(x) = x-fl , which occurs in several common cases. 
The other situation is when g is regularly varying, is differentiable, and satisfies 
tg'(t)/g(t) -+ - p, as t -+ 00. 

We need a variant of Lemma 2.11. 

Lemma 2.14. Suppose (2.48) holds and ~ > 0 is chosen so that g(~) < oc. We have 
for n such that a;;l~ < 1 

sup (I<I>(,,-g(a"x))(x) - <I>,,(x) I V 1<I>(,,+g(a"x))(x) - <I>,,(x) I ~ c(oc, 13, ~)g(an) 
a;;I":5:x:5:1 

where 

and 

c(oc,p,~) = p-l(} sup {sl+fI(logs)e-S } 

.~1 

(} = p/(oc - g(~». 

(2.49) 

PROOF. Since <l>y(x) = A(y log x) for x> 0 and N(y) is increasing for y < 0 we 
have 

sup 1<I>,,(x) - <I>("-9(a"x))(x)1 ~ sup fOE N(y log x)llogxldy 
a;;I":5: x:5: 1 a;;I":5:x:::;;1 "-g(a"x) 

~ sup N«oc - g(anx»logx)llogxlg(anx) 
a"lel$>:$1 

~ sup N«oc - g(~»logx)llogxlg(anx) 
a;;16$x:5:1 

~ sup N«oc - g(~»logx)llogxlx-flg(a .. ) 
O<x$1 

= sup {y-l e- y- l llogyly-fl(}P-l }g(a .. ) 
O<y<1 

= C(OC, 13, ~)g(an)' 
The bound for 1<I>,,+g(a"x)(x) - <I>,,(x)1 is dominated by the one just presented, 
so we are done. 0 

Remark. The constant c(oc, p,~) must be computed numerically once g, ~, and 
13 are specified. For example: 

(J .25 .5 2 3 4 

sup {s1+'(logs)e-'} .2372 .2976 .4928 1.6392 6.8703 35.058 
.~1 

Proposition 2.1S. Suppose that (2.48) holds and ~ > 0 is chosen so large that 
g(~) < oc. Thenfor n such that a;;l~ < 1 
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sup IF"(a"x) - Cl>1X(x)1 :::;; (.2701)(1X - g(a"W1g(a,,) v C(IX, p, t»g(a,,) 
"eR 

PROOF. Proposition 2.12 is still applicable. From Equation (2.45) and Lemma 
2.14 we have 

sup IF"(a"x) - Cl>1X(x)1 :::;; C(IX, p, t»g(a,,). 
a;; ' 6::;; ,,::;;1 

Finally 

sup IF"(a,.x) - Cl>1X(x)1 :::;; F"(c5) v Cl>ia;lc5). o 
,,::;;a;;'6 

For many distributions it is convenient to work with 1 - F rather than 
-log F. In cases in which the convergence rate is slower than lin, the following 
result is useful. Set i = 1 - F. 

Proposition 2.16. Suppose (2.42) holds and set 

co i"(x) 
B(x) = "~1 k(k + 1) so that 

F(x)/2 :::;; B(x) :::;; tF(x)(1 + F(x» 

and B(x) ...., tF(x) as x -. 00. Then - Flog F = F(1 - B) and hence 

xF'(x) xF'(x) xF'(x)B(x) 
F(x)( -log F(x» - IX = F(x) - IX + F(x)(1 _ B(x» (2.50) 

so that 
xF'(x) xF'(x) -

F(x)(-logF(x» -IX = F(x) -IX + c(x)F(x) (2.51) 

where c(x) -. 1X/2. 

Unless (xF'(x)/i(x» - IX goes to zero more slowly than i(x), the use ofthis 
formula will lead to a convergence rate of 0(n-1). This will be the case, for 
instance, with the Cauchy distribution. Cf. Exercise 3.4.3. 

EXAMPLE (Cf. Smith, 1982, Example 1). Suppose for x ~ 1 

i(x) = CX-IX + dx-II - IX 

where c > 0, d > 0, ° < p < IX, c + d = 1. We find 

x~'(x) = 1X(1 + d(1X + P)C-1a.-1x-lI) 

F(x) 1 + dc-lx-II 

and so 
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which implies 

IX;:~~) -al ~ c1x-B 

where C1 = dpc-1. Set Cz = a + d(a + fJ)c- 1 and for x> 1 we have 

I xF' (x) B(x) I B(x) cztF(x)(l + F(x» 
~ Cz < ----'-=-=-----=--

F(x)(l - B(x» 1 - B(x) - 1 - tF(x)(l + F(x» 

~ czF(x)/(l - F(x» ~ 2czF(x) 

provided F(x) < 1, as will be the case if x ~ Xo and Xo = (4c)l'« V (4d)lf(<<+B) V 1 
is a suitable and convenient choice. 

According to (2.50) we have for x ~ Xo 

I xF'(x) I 
F(x)( -logF(x» - a ~ X-B[Cl + 2cz(cx-(<<-PJ + dx-«)] ~ kx-P =:g(x) 

where k = C1 + 2cz(c + d) = Cl + 2cz. 
We do not find a" but instead compute a" ~ a", which will be more con­

venient but still give a valid bound O(g(a,,». Recall that a" is the solution of 
-logF(x) = n-l. Let a~ be the solution of F(x) = n-l. Since -logF ~ F we 
have a" ~ a~. Also F(x) ~ cx-« so if we set a" = (cn)l'« we have a~ ~ a" and 
also a" -- a~ ,..., a" as n ~ 00. 

If we pick J ~ Xo we then have for all n such that a" > J (i.e., n > c-1J«) 

sup IF"(a"x) - cD«(x) I 
x 

~ (.2701)(a - g(a"W1g(a,,) v c(a, p, J)g(a,,) v F"(~) v cD«(a;lJ) 

where g(x) = kx-P, an = (cn)l'«. The order of convergence is O(n-P'«). 
To get a better feel for the method, suppose a = 1/2, P = 1/4, c = 3/4, 

d = 1/4. Then we find Xo = 9, Cl = .0833, Cz = .75, k = 1.5833. We pick ~ to 
give a reasonable value for 8 and hence for c(a, p, c5). If 8 = 1 then ~ = 
1608.9012 and c(a,p,~) = 1.9712. The condition a" ~ ~ requires n ~ 54, and 
on this range the dominant term in the bound is c(a, p, c5)g(a,,), showing the 
dependence of the bound on c(a, p, c5). Some values for the bounds are given 
in the following table to four decimal places. 

n (.2701)(a - g(a">r1g(a,,) c(a, p, «5)g(a,,) P"(<<5) ell .. -
a" 

54 .2675 .4904 .0393 .0000 
75 .1974 .4161 .0112 .0000 

100 .1557 .3604 .0024 .0000 
150 .1150 .2943 .0000 .0000 
300 .0723 .2081 .0000 .0000 
500 .0528 .1612 .0000 .0000 

1,000 .0353 .1140 .0000 .0000 
5,000 .0148 .0510 .0000 .0000 

10,000 .0102 .0360 .0000 .0000 
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2.4.2. Uniform Rates of Convergence to A(x) 

Again write F = exp{ -e-;} and suppose that F is twice differentiable. The 
Von Mises condition analogous to (1.24) guaranteeing FE D(A) is 

h(x) = (l/iP'(x»' = -log F(x) - { - F(x)(~:~;;~g F(x) + I} -+ 0 (2.52) 

as x -+ Xo := sup{y: F(y) < I}. There exists a nonincreasing function 9 with 

Ih(x)1 ~ g(x)! 0 

Since f' = h -+ 0 we have by Lemma 1.3 that 

f(bn + f(bn)v) -+ 1 
f(b,,) 

locally uniformly in v as n -+ 00, and thus we see that 

iP(anx + bit) - iP(b,,) -+ x 

(2.53) 

as n -+ 00, showing FE D(A). The function 9 will again yield the rate of 
convergence. The following estimates are basic to our approach. 

Proposition 2.17. For a positive real number 9 define the distribution functions 

F(g,x) = {~Xp{ -(1 + gx)-g-'} 

( ) {
exp{ -(1 - gxY-'} 

F -g,x = 1 

Then for 0 < 9 < 1 

ifx< _g-1 

if x > _g-1 

if x < g-1 

if x > g-l. 

sup IF(±g,x) - A(x)1 ~ e-1g:::: .3679g. 
xeR 

Remark. It is possible the constant e-1 can be improved by using techniques 
of Hall and Wellner (1979). Hall and Wellner have proved 

sup 1(1 - n-1 x)" l[o,nj(x) - e-xi ~ (2 + n-1 )e-2 n-1 = O(n-1 ). 

x~o 

PROOF. The method follows Ailam (1968) and Hall and Wellner (1979). We 
consider only the bound on F( - g, x) - A(x), the other case being similar. We 
have 
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sup IF( -g,x) - A(x)1 = sup IF - AI v sup IF - AI v sup IF - AI 
xeR x<O OSXStr' x>tr' 

=AvBvC. 

Now 

C = sup 11 - e-e-"I = 1 - exp{ -e-'-'} ~ e-'-'. 
x~g-' 

Note that e-Il -' ~ e-1g for 0 < g < 1 since xe-X is decreasing on [1,00). For 
A we have 

x<O 

= sup (exp{ -(1 + yy-'} - exp{ -eY/Il }) = sup q(y). 
y>O y>O 

Check that the supremum of q(y) can be found by solving q'(y) = 0 for the 
nonzero root. Since q'(y) = 0 gives 

exp{ -(1 + y)Il-'}(1 + yy-'-l = exp{ -eY/'}eY/1l 

we have 

A ~ sup (exp{ -eY/'}eY/'(1 + y)l-,-, - exp{ -eY/'}) 
y>O 

= sup (eY/ll exp{ -eY/Il }«1 + y)l-,-, - e-Y/Il» 
y>O 

~ e-1 sup «1 + y)l-,-, - e-Y/') = e-1 sup q(y) 
y>O y>O 

since SUPy>oye-Y = e-1• Again check that supq(y) is achieved at the nonzero 
root of q'(y) = O. The equation q'(y) = 0 yields 

e-y/g = (1 - g)(l + y)-'-' 

so 

y>O y>O 

= sup ((1 + y)-'-'(y + g» = g 
y>O 

since the supremum is achieved at y = O. The bound for B is obtained by a 
similar but simpler argument than the one used on A and is omitted. 0 

On the region [0,00) we have the following result. 

Proposition 2.18. If (2.52) and (2.53) hold and an and bn are as specified after 
(2.53) then 

sup IFn(anx + bn) - A(x)1 ~ e-1g(bn). 
x~O 
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PROOF. Recalling that f = IN/ we have for v > 0 

/
f(b" + a"v) - f(b,,) / < fbn+anv 1f'(u)ldu < g(b")a,,v = (b) 

f(bn) - J bn f(b,,) - f(b,,) g" v. 

Therefore for v > 0 

and taking reciprocals we have, assuming that g(b,,)v < 1, that 

1 f(b,,) 1 
---,-< < . 
1 + g(b,,)v - f(b" + a"v) - 1 - g(b,,)v 

For x such that x > 0 and g(b,,)x < 1 we get by integrating 

-Iog( -log F(g(b,,), x» ::;; lP(a"x + bIt) - lP(b,,) 

::;; -Iog( -log F( - g(b,,), x». 

Taking negative exponentials twice the following is true for x > 0: 

F(g(b,,), x) ::;; F"(a"x + bIt) ::;; F( - g(b,,), x). 

The desired result follows by means of Proposition 2.17. 

(2.54) 

o 

We now obtain a bound on the region (- 00, 0) which will be generally 
applicable. For x < 0, the analogue of (2.54) is 

F(g(a"x + bIt), x) .:::; F"(a"x + b") .:::; F( - g(a"x + bIt), x) (2.55) 

and so 

IF"(a"x + b") - A(x)1 ::;; e-1g(a"x + b") 

by an appeal to Proposition 2.17. Let {x"} satisfy 

x" ! - 00 and a"x" + b" -+ 00. 

Combining (2.56) and Proposition 2.18 gives 

sup IF"(anx + b") - A(x)1 ::;; e-1g(a"x" + b"), 

and using (2.55) we obtain 

sup IF"(a"x + bIt) - A(x)1 
x 

::;; e-1 g(a"x" + bIt) v F( -g(a"x" + bIll, x,,) v A(x,,). 

It is easy to check that 

F( - g(a"x" + bIt), x,,) ~ A(x,,) 

so that the uniform bound becomes 

e-1g(a"x" + bIt) v F( -g(a"x" + bIt), x,,). 

(2.56) 

(2.57) 
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At this point we see the bound is minimized if we pick {x,,} to satisfy 

e-1 g(a"x" + b,,) = F( - g(a"x" + bn), x,,). (2.58) 

It is necessary to check whether this choice of {XII} satisfies (2.57). Suppose to 
get a contradiction, that {xn} does not converge to -00 so that for a sub­
sequence {n'l and a number K, x"' ~ K. Then a",x,,' + b", --+ 00 and the left 
side of (2.58) converges to zero as n' --+ 00. However, the right side is of the 
order of A(x",), which does not converge to 0, and this gives the desired 
contradiction. Next suppose a"x" + b" does not converge to 00 so that for a 
subsequence {n'l and M < 00 we have an' X"' + b",::::;; M. Theng(an·xn· + b".) ~ 
g(M) > 0 and g(an.x". + bn,)xn. --+ -00. So the left side of (2.58) does not 
converge to zero but the right side does, again giving a contradiction. 

We summarize our findings. 

Proposition 2.19. Suppose (2.52) and (2.53) hold so that Fe D(A) and suppose a", 
bn are chosen as specified after (2.53). Then with {x,,} chosen as in (2.58) we have 

sup IFn(a"x + bn) - A(x)1 :::;; e-1g(anxn + bIll. 
x 

This bound may be compared with the more attractive bound e-1 g(b,,) valid 
for x e [0, 00). When g satisfies conditions of regular variation type we may 
extend the bound g(bn ) to cover all xelR. If 1f'1 is regularly varying then 
1f'(x)1 ~ g(x) = SUPy~x 1f'(y)1 as x --+ Xo (cr. Exercise 0.4.2.11), and so by Kara­
mata's theorem we hope 

f(x) 
-(-) --+ constant 
xg x 

as x --+ xo. So with the regular variation case in mind we assume there exists 
k E (0, 00) such that for n ~ no 

f(bn) :::;; k 
bng(bn) 

and for c < k- 1 and n ~ no, p > 0, y > 0 

g(b,,{l - ck» :::;; y(1 - ck)-fl g(bn). 

Proposition 2.20. If (2.59) and (2.60) hold then for n ~ no 

sup IF"(anx + bn) - A(x)1 
xeR 

PROOF. From (2.56) 

sup IFn(a"x + bn) - A(x)1 ::::;; sup e-1g(a"x + bIll 
-c/g(bn ) ~ x ~ 0 -c!g(bn ) ~ x ~ 0 

(2.59) 

(2.60) 
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and by mono tonicity of 9 this is 

~ e-1g(an( -c/g(bn» + bn) = e-1g(bn( 1 - :;~;!»)) 
and using (2.59) and the fact that 9 is nonincreasing we have the preceding 
bounded by 

and from (2.60) this is 

~ ye- 1g(bn)(1 - cktP• 

Combining this with Proposition 2.18 gives the result. 

Remarks. From (2.56) and (2.60) we see that 

Fn(an( -c/g(bn» + bn) ~ A( -c/g(bn» + ye-1g(bn)(1 - ck)-P 

o 

for n ~ no. Hence the order of the bound in Proposition 2.20 is O(g(bn». If 9 
is regularly varying, we have that g(bn ) is a slowly varying function of n since 
bn is slowly varying (cf. Proposition 0.8(iv» and hence the bound converges 
to zero at a slow rate. 

As in Section 2.4.1, we often prefer to work with P:= 1 - F rather than 
-logF. Recall B(x) = Ik"=l pk(x)/(k(k + I» and B(x) '" F(x)!2. 

Proposition 2.21. Set p(x) = P(x)/F'(x). Then since f = 1/r/J' = p(1 - B) 

( 1 )' 00 r/J'(x) = p'(x)(1 - B(x» + k~l ffk(x)/(k + 1) 

where c1 (x) -+ 1, C2(X) -+ O. 
Note 

00_ 1- _00_ 

~ Fk/(k + 1) = 2,F + F J2 Fk-1/(k + 1) 

1- 1-- -
~ 2,F + 3F(F/F) ~ F 

provided F ~ 3/5. 

EXAMPLE (Weibull Distribution). Suppose for x> 0, p > 0, p '" 1 

F(x) = exp{ -xP}. 

Then F'(x) = F(x)pxP- 1 and 

(2.61) 

(2.62) 
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(x) = F(x) = F(x) = p-l x-(II-l) 
P F'(x) F(X)PXIl-l 

p'(x) = - P-l(P - 1)x-lI• 

Using (2.61) and (2.62) gives 

1(~'~xJ I =:;; IP - IIp-l x-II + e-JC
' =: g(x) 

for x such that F(x)=:;;3/5; i.e., x~(log5/3)l/ll. We have f(x)=p- l x-(fI-l)(I-B(x» 
and so 

f(x) p-l x-(II-l) 1 
--< =--='k 
xg(x) - xlP - liP lx-II IP - 11 .. 

For S ~ So ~ 1 (where So is the solution of sge-sf, = «5) we have exp{ -sll} =:;; 
«5s-11 and therefore 

g(x) =:;; (IP - IIP-l + «5)x-lI• 

So for x ~ (so v (log 5/W11I )/(1 - e) 

g(x(l - e» < (<<5 + P-lIP - 11)(1 _ til 
g(x) - P-liP _ 11 e 

and so we get}' = (<<5 + p-liP - 11)/(P-l IP - 11). 
For concreteness, suppose P = 2. Then k = 1, bIt = (-log(1 _ e-,,-I»l!2. 

an = feb,,) ~ !b;l(1 - te-ba(1 + e-ba» =: 01:". A moderate value of c must 
be chosen, otherwise the very slow decrease of g(b,,) will prevent A( - e/g(b,,» 
from being small for reasonable sample sizes. We choose e = .1, So = 1.75 so 
that «5 = .1432, }' = 1.2864, and the bound in Proposition 2.21 is valid for 
n ~ 44. Some typical values are given in the table. 

n e-1.y(1 - c)-2g(b.) A( - c/g(b.» F·(a.( -c/g(b.» + bll) 

44 .0901 .1477 .1548 
75 .0753 .1139 .1220 

100 .0692 .0976 .1060 
250 .0552 .0561 .0644 
500 .0482 .0346 .0418 

1,000 .0429 .0201 .0258 
10,000 .0318 .0019 .0032 

In Proposition 2.20 we considered the situation where f'(x) -+ 0 roughly 
like a negative power of x. We consider now what happens when f' decays to 
zero roughly like an exponential function. More precisely we suppose 0 =:;; 
f'(x)! 0 and I/f' E r. Thinking of f' as a distribution tail (as in Proposition 
1.18) we get from Proposition 1.19 

!~ f'(x) to f(u)du/j2(x) = 1. (2.63) 
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Also from Proposition 1.9 we get that the auxiliary function of ljf' can be 
taken as fjf' so that locally uniformly in x E R we have 

limf'(t + x(f(t)jf'(t)))jf'(t) = e-Je• (2.64) 

With this case in mind, we state the final result. 

Proposition 2.22. Suppose FE D(A) and for e > 0, c > 0, and n ~ no we have 

g(bn - canjg(bn» ~ eC+·g(bn). (2.65) 

Then for n ~ no 

sup IP(anx + bn) - A(x)1 
JeeR 

~ Fn(an( -cjg(bn» + bn) V A( -cjg(bn» V eC+.-1g(bn). 

The proof is virtually identical to the proof of Proposition 2.20 and is left 
as an exercise. Again the order of convergence is O(g(bn». If 0 ~ f'(x)! 0 and 
(2.63) holds then 

Note if we change variables u = b(s):= ;<-(Iogs) then 

ra> f(u)du = fa> f(b(s»b'(s)ds 
Jb(n) " 

and since 

we have 

b'(s) = lj{;'(;<-(logs»s} = lj{;'(b(s»s} 

= f(b(s»js =: a(s)js 

g(bn) '" a2(n)j fO a2(s)s-1 ds. 

According to Proposition 0.11 (a), J~ a2(s)s-1 ds =: n(x) being the integral of 
a -I-varying function is n-varying with auxiliary function a2(.). So g(bn) -+ 0 
like the reciprocal of a n-varying function divided by its auxiliary function. 
Both nand a2(.) are slowly varying so again the convergence rate is rather 
slow. 

EXERCISES 

2.4.1. If g is differentiable and satisfies 

lim tg'(t)/g(t) = - fl < 0 

show (2.48) is satisfied. What is a suitable fJ? 
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2.4.2. If 1 - F(x) = t~. x<1 
set a = nil. and show 

x ~ 1 n 

xeR 

and using Hall and Wellner (1979) 

O(n-l) = (2 + n-l )e-2n-l . 

The same calculations give a rate of convergence for 1 - F(x) = e-x , x > O. 

2.4.3. Suppose F concentrates on [0, 00) and the density F'(x) is of the form 

F'(x) = c(x)x-', x > 0 

for fJ > 1, where Iimx~oo c(x) = c > O. Suppose 

Ic(x) - cl s; g(x)! 0 

as x -+ 00. Check 

I xF'(x) I 2g(x) 
1 _ F(x) - (fJ - 1) S; (fJ - 1) c _ g(x) = O(g(x» 

so that Proposition 2.16 leads to a convergence rate no better than O(g(aft) v 
n- l ). Illustrate this by analyzing the Cauchy, t, and F densities. 

2.4.4. Check the algebra in Proposition 2.21. 

2.4.5. Prove Proposition 2.22. 

2.4.6. Check that for the normal distribution, the bound is of order O(I/logn). Check 
that (2.59) and (2.60) are satisfied and a suitable 9 is 

g(x) = x- 2 + 1 - N(x). 

See Hall (1979) for a more precise result. Find the order of the bound for the 
gamma distribution. 

2.4.7. (a) Show dn ~ d~. 

(b) Consequently if dn = o(on) for all 0> 0 then d1 = 0 and F is an extreme 
value distribution 

(c) If G is an extreme value distribution define F for fixed Oe(O, 1) by 

Show 

{
G(X) 

F(x) = : 
x> G-(O) 

G-(8) > x ~ G-(8) - 1 

G-(8) -1> x. 

0< dft S; 8". 

Thus despite the remarks following Propositions 2.20 and 2.22, the conver­
gence rate can be exponentially fast. 

(d) However the convergence rate can be arbitrarily slow. Let 

F*(x) = 1 - e-x + 

and suppose {8ft} is any sequence whatever satisfying 8"! o. Define 
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and set for large n 

2. Quality of Convergence 

xe[n,n + ~n) 
otherwise. 

Show F", F* so that F and F* are tail equivalent and Fe D(A). With 
an = 1, bn = log n, show dn ~ 6n for all large n. (Hint: Show for large n 

Fn([logn]) - P([logn]-) ~ e-e~[Jolftl 

(Rootzen, 1984).) 



CHAPTER 3 

Point Processes 

For a thorough understanding of many structural results in extreme value 
theory, knowledge of point processes is desirable. We present a brief account 
of those parts of the theory that are useful for understanding the behavior 
of extremes. Some skimming may be advisable. Parts of this account are 
fashioned after Neveu (1976). An additional excellent reference is Kallenberg 
(1983). 

3.1. Fundamentals 

A point process is a random distribution of points in space. How can we make 
a model for this? 

We begin by specifying some notation. The state space where the points live 
will be denoted by E. It is convenient to suppose E is locally compact with 
a countable basis. (By this we understand that E is Hausdorff, every x E E has 
a compact neighborhood, and there exist open Gn , n ~ 1 such that any open 
G can be written G = UIZEI GO! for I a finite or countable index set.) For us, 
E will always be a subset of a compactified Euclidean space of finite dimension, 
and the reader with little background or interest in topology is urged to 
consider E in this way. Let 8 be the Borel u-algebra of subsets of E, i.e., the 
u-a1gebra generated by the open sets. 

For x E E, define the measure £x on " by 

£x(A) = {~ xeA 

x¢A 
for Ae8. 

A point measure on E is a measure m of the following form: Let {Xi> i ~ I} be 
a countable collection of (not necessarily distinct) points of E. Then 

00 

m·- ~ £ ·-L .x, 
i=1 

and if K E 8 is compact then m(K) < 00 (i.e., m is Radon meaning the measure 
of compact sets is always finite). 
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Let Sm = {xeE: m({x}) -# O} so that Sm is the set of points charged by m, 
i.e., the distinct points of {xi,i ~ I}. We may check that Sm is the support of 
m; i.e., Sm is the smallest closed set F such that m(P) = O. If x e Sm' call m( {x}) 
the multiplicity of x and call m simple if m( {x}) ~ 1 for all x e E. 

Designate by Mp(E) the space of all point measures defined on E and define 
au-algebra .Ap(E) of subsets of Mp(E) to be the smallest u-algebra containing 
all sets of the form {me Mp(E): m(F)eB} for FES, BE~([O, 00]). (Since m(F) 
has range {O, 1, ... ,00}, it is excessive to take BE~([O, 00]), but for generaliza­
tions to random measures later, this is the most convenient formulation.) 
Alternatively, .Ap(E) is the smallest u-algebra making all evaluation maps 
m -+ m(F) (from Mp(E) -+ [0, 00]) measurable for all FES. 

A point process on E is a measurable map, call it N, from a probability space 
(n, .91, P) -+ (Mp(E), .Ap(E»; i.e., a point process is a random element of Mp(E). 
The probability law, denoted by PH of the point process N, is the measure 
po N-1 = P[N E .] on .Ap(E). 

So if we pick w, then N(w, .) is a point measure and N(w, F) is the number 
of points in F for the realization w. 

Just from the definition of a point process one would think it difficult to 
verify that a map N: n -+ Mp(E) is a point process. The following is a more 
palatable criterion in that it says N is a point process iff N(F) is an (extended 
real valued) random variable for each FE 8. 

Proposition 3.1. N is a point process iff the map w -+ N(w, F) is measurable from 
(n,d) -+([0, oo],~([O, 00]) for every FEG. 

PROOF: NECESSITY. If N is a point process, then w -+ N(w, .) is measurable from 
(n, d) -+ (Mp(E), .Ap(E», and m -+ m(F) is measurable from (Mp(E).Ap(E»-+ 
([0, oo],~([O, 00]» by the definition of .Ap(E). Therefore w -+ N(w, F) is 
measurable since it is the composition of these two measurable maps. 

PROOF: SUFFICIENCY. Suppose w -+ N(w,F) is measurable, i.e., {w: N(W'F)E 
B} Ed for BE~([O, 00]) and FES. Define 

<§ = (AE.Ap(E): N-1AEd}. 

It is easy to check that <§ is a u-algebra. Note that <§ contains all sets of the 
form {m: m(F)EB} since 

N-1{m: m(F)eB} = {w: N(w,F)EB} Ed 

by assumption. Hence 

<§::::J u{ {m: m(F)EB}, FES. BE~([O. oo])} = .Ap(E). 0 

The notation u(AIl • ex E I) is standard and means the smallest u-algebra 
containing the collection All' ex E I. 

Further simplifying criteria are given later. 
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Reminders. See, for example, Billingsley (1979) for the following: If ff c 8, 
call ff a ll-system if ff is closed under finite intersections; i.e., if A, BE ff then 
An BEff.1f fcC, call f a A.-system (u-additive class) if 

(i) EEf, 
(ii) If A, BEf, and A::::> B then A - BEf, 

(iii) If All E f and All c A II +1 then 

lim i AliEf· 
11-+00 

The following is very useful: 

Dynkin's Theorem. If ff is a ll-system and f is a A.-system than f ::::> ff implies 
f::::> u(ff). 

A useful corollary: If two probability measures are equal on a ll-system which 
generates the u-algebra then they are equal on the u-algebra. Cf Exercise 3.1.3. 

To check that N is a point process, one does not have to check that 
w -... N(w, F) is measurable for all F but just for F in a restricted class, say for 
bounded rectangles in case E is Euclidean. 

Proposition 3.2. Suppose ff are relatively compact subsets in 8 satisfying 
(i) fJ is all-system. 

(ii) u(ff) = 8. 
(iii) Either (a) there exist EnEff, En i E or (b) there exist {En}, a partition of 
E, with LEj = E and EIIEff. 

Then N is a point process on (n,d) in (E,8) iff w -+ N(w, I) is measurable 
from n -+ [0, oo} for each IE ff. 

PROOF. Suppose w -+ N(w, J) is measurable for all JEff and define for n fixed 

f§ = {F E C: w -+ N(F n En} is measurable from n -+ [0, oo]}. 

Suppose (iii(a» holds; the proof under (iii (b}) is similar. We note the following 
properties of f§: 

1. f§::::> ff because if FE ff then F n En E fJ since ff is a ll-system and thus 
w -+ N(F n En) is measurable. 

2. f§ ::::> E since w -+ N(En) is measurable. 
3. f§ is closed under proper differences: If F1 , F2 E f§, Fl ::::> F2 then 

N«Fl - F2) n En) = N(Fl n En) - N(F2 n En). (3.1) 

Note N(Fl n En) :::;;; N(En) < 00 since En E ff and is relatively compact and all 
point measures m have the property m(K) < 00 if K is compact. Therefore 
the difference in (3.1) is that of two finite measurable functions and hence is 
measurable. 

4. f§ is closed under nondecreasing limits. 
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Properties 2, 3, and 4 indicate that f'§ is a A.-system. Also f'§ => ~ so f'§ => 
u(~) = I by Dynkin's theorem. So for any Fe I, w -. N(F ("'\ En) is mea­
surable. Measurability is preserved by taking limits so let n -. 00 (which sends 
En i E) to get w -. N(F) is measurable for any F. 0 

Corollary 3.3. Let ~ satisfy the hypotheses of Proposition 3.2 and set 

,I = {{m: m(I) = n), 1 ~j ~ k},k = 1,2, ... ,lje~ and nj ~ ° integers}. 
(3.2) 

Then u(,1) = Jtp(E) and,l forms all-system. 

PROOF. In the previous proposition, set n = Mp(E). Then by definition 

Jtp(E):= u{ {m: m(F)eA},Fel,A e£f([O, 00]) 

and Proposition 3.2 assures us that also 

Jtp(E) = u{ {m: m(/)eA},l e~,A e£f([O, oo]}. 

Since m(') has range {O, 1, ... ,00}, it is clear the right side in the preceding line 
~~u~ 0 

IfQ isa probability measure on (Mp(E), Jtp(E» then defining N(m, .) = m(·) 
gives a point process with law Q, called the canonical point process. 

For Fel, N(F) is a random variable. So for Fl , ••• , Fkel. (N(F;),i ~ k» is 
a random vector. The set oC finite dimensional distributions of such random 
vectors determines the law po N-l = PN as is proved next. 

Proposition 3.4. Let N be a point process in (E,8) and suppose f/ satisfies the 
hypotheses of Proposition 3.2. Define the mass functions 

P1 , •...• l k (nl> ... ,n,,) = P[N(lj) = ni , 1 ~j ~ k] 

for lle~, nl ~ ° integers, 1 ~ i ~ k. Then Pn is uniquely determined by knowl­
edge of 

{P1, ..... l k 'k = 1,2, ... ;lje~}. 

The prooC is made apparent iC we Cormulate the result in an alternate way: 
If P and Q are probability measures on Jtp(E) and P = Q on,l (defined by 
(3.2» then P == Q. (From Corollary 3.3, P == Q on a I1-system generating the 
Cull u-algebra and hence everywhere.) 

This uniqueness result does not say much about how to construct point 
processes. A construction oC a Poisson process is given later. 

Let (n, d, P) be a probability space and let (EI.81) be state spaces. If 
NI : n -. Mp(EI ), i ~ 1 are point processes we say NI , i ~ 1 are independent if 
the induced u-algebras 

NI- 1(Jtp(E;», i ~ 1 

are independent. In particular if F;e8l , 1 ~ i ~ k, and Gj e82 , 1 ~j ~ I then 
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the vectors 

(Nt (Fi)' i ~ k) and (N2(Gj ),j ~ I) 

are independent vectors. (The converse holds as well; cf. Exercise 3.1.5.) 
The intensity or mean measure of a point process N is the measure Jl defined 

as 

Jl(F) = EN(F) = In N(w,F)P(dw) 

:!:: r m(F)PN(dm) 
JMp(El 

for FE 8. (Check that Jl really is a measure; Exercise 3.1.4.) Warning: Jl need 
not be Radon. 

Suppose I: (E,8) ..... ([0, oo],a([O, 00]» is measurable. Recall there exist 
simple f" with ° ~ In i I and f" is of the form 

Define, as usual, for WEn 

N(w,f) = tI(X)N(W,dX) ~ 00. (3.3) 

This is a random variable since by monotone convergence 

N(w,f) = lim t N(w,f,,) 

and each 

is a random variable. (If N is canonical so that n = M,,(E) and N(m, .) = m(·) 
then this argument shows that m ..... m(f):= fEI(x)m(dx) is measurable from 
M,,(E) ..... [0, 00].) Furthermore 

EN(w,f) = Jl(f):= tIdJl 

since 

" EN(f) = lim t EN(f,,) = lim t E~ c\"IN(w,A\"1) 
,.-ten n-+(J) 1 

= lim t t c\"1 Jl(A\"1) = lim i r f,,(x)Jl(dx) 
n .... oo 1 11 .... 00 JE 

= t (!~~ t III(X») Jl(dx) = fI(X)Jl(dX). 

If I ELI (Jl) but I is not necessarily non-negative we may still define N(f) by 
N(f) = N(I+) - N(f-) since N(f±) < 00, a.s. 
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EXERCISES 

3.1.1. Show ROO and qo, 1] are not locally compact. (Here 

Roo = {(X I,X2, ... ): x;elR,i = 1,2, ... } 

and C[O, 1] = all real valued continuous functions on [0,1].) 

3.1.2. Verify that the O'-algebra generated by the sets {me Mp(E): m(F)eB}, Fe8, 
BetB([O, 00]) is the same as the O'-algebra generated by the maps 

m -+m(F) 

for Fe8. 

3.1.3. Verify using Dynkin's theorem that if two probability measures are equal on a 
n-system which generates the O'-algebra then they are equal on the O'-algebra. 
(The collection of sets where the two probability measures are equal is a A.-system 
containing the 1t-system.) 

3.1.4. Check that the intensity measure of a point process is indeed a measure. Give 
an example to show it need not be Radon. 

3.1.5. Suppose N I , N2 are point processes defined on (O,sI,P) with state spaces E I , 

E2 , respectively. Then independence of 

(NI (F;), 1 :::;; i :::;; k) and (N2(Gj ),1:::;; j :::;; 1) 

for any k, 1, FI , .•• , Fk e 8 1 , GI , •.• , G, e 82 implies N I , N2 independent. Generalize 
to the case that the F's and G's are selected from subclasses of 8 1 and 82 , 

respectively. 

3.1.6. Suppose N is a point process with state space jRk. If t is a random vector in IRk 
show N(' + t) is a point process. Note the value of N(' + t) on set F for 
realization OJ is N(OJ,F + t(OJ» where F + t = {x + t,xeF}. 

3.1.7. A common way of specifying a point process is as follows: Let {X.,n ~ 1} be 
random elements of E defined on (0, sI). Show 

00 

is a point process. 

N = I ex, 
i=1 

3.1.8. Suppose ff is a n-system of subsets of E and Yf is a linear function space of 
real valued functions on E satisfying 
(a) leYf and lAeYf for all Aeff, 
(b) if 0:::;; Jj :::;; Jj+1 E Yf and f = sup Jj is finite, then f E Yf. Prove Yf con­

tains all functions which are O'(ff) measurable (Jagers, 1974). 

3.2. Laplace Functionals 

Let Q be a probability measure on (Mp(E),.Rp(E)). The Laplace transform of 
Q is the map '" which takes non-negative Borel functions on E into [0, (0) 
defined by 
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t/I(f):= f M ptE) (exp { - t f(x)m(dx) } ) Q(dm). 

If N: (Q, d) ~ (Mp(E), .,Hp(E)) is a point process, the Laplace functional of N 
is the Laplace transform of the law of N: 

t/lN(f):= Eexp{ -N(f)} = In exp{ -N(w,f)}P(dw) 

= r (exp {_ r f(x)m(dX») PN(dm). 
JMp(E) JE 

Proposition 3.5. The Laplace transform t/I of Q uniquely determines Q. The 
Laplace functional t/lN of N uniquely determines the law of N. 

PROOF. For k ~ 1 and F1 , ••• , FkEIff, and A; ~ 0, i = 1, ... , k define f: E ~ 
[0,00) by 

k 

f(x) = L A;lF.(X)' 
;=1 

Then 

and 

t/lN(f) = E exp { - it A;N(F;)} 

which is the joint Laplace transform ofthe random vector (N(F;), i :s;; k). Using 
the uniqueness theorem for Laplace transforms of random vectors we see t/lN 
uniquely determines the law of (N(F;), i :s;; k) for any Fj, ... , Fk E Iff. The proof 
is completed by an appeal to Proposition 3.4. 0 

Laplace functionals are useful for studying weak convergence of point 
processes. We will compute some after discussing Poisson processes. 

A final comment: Moments of N can be determined from t/lN' For example, 
for f ~ ° and measurable 

p.(f) = EN(f) = lim t-1(1 - t/lN(tf)· 
q.O 

To check this observe that 

lim i t-1 (1 - e-1N(f) = N(f) 
'+0 

and taking expectations and using monotone convergence give the result. 
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3.3. Poisson Processes 

3.3.1. Definition and Construction 

Given a Radon measure p. on 8, a point process N is called a Poisson process 
or Poisson random measure (PRM) with mean measure p. if N satisfies 
(a) For any FE 8, and any non-negative integer k 

P[N(F) = k] = {~Xp{ -p.(F)}(p.(F)Nk! 

and 

if p.(F) < 00 

if p.(F) = 00, 

(b) For any k ~ 1, if Fl , ... , Fk are mutually disjoint sets in 8 then 

N(Fi ), i ~ k 

are independent random variables. 
It follows from (a) that if p.(F) = 00 then N(F) = 00 a.s. and that p. is the 

intensity of N. As a shorthand for "Poisson process with mean measure p." we 
will sometimes write PRM(p.). 

Proposition 3.6. (i) PRM(p.) exists! Its law is uniquely determined by (a) and (b) 
in the previous definition. 
(ii) The Laplace functional of PRM(p.) is given (for f ~ 0, measurable) by 

'II N(f) = exp { - L (1 - e - f(Xl)p.(dx) }. (3.4) 

and conversely a point process with Laplace functional of the form (3.4) must 
be PRM(p.). 

PROOF. We begin by proving that any point process satisfying (a) and (b) has 
a Laplace functional (3.4), and conversely any point process with Laplace 
functional (3.4) satisfies (a) and (b). Then we give a construction of a point 
process satisfying (a) and (b). Since the distribution of a point process is 
uniquely determined by the Laplace functional, we will be done. 

So suppose N is a point process for which (a) and (b) hold. If c > 0, FE 8, 
f(x) = c1F(x) then N(f) = cN(F) and from (a) 

t/lN(f) = Eexp{ -N(f)} = Eexp{ -cN(F)} 

= exp{(e-C - 1)p.(F)} (since N(F) is a Poisson random variable) 

= exp { - L (1 - e-f(Xl)P.(dX)} 

which is the form given in (3.4). Next suppose Ci ~ 0, Fl , •.. , Fk are disjoint in 
8. Then N(Fl ), •.. , N(Fk) are independent and if f(x) = L~=l Ci 1F.(x) we have 
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It. 

= n Eexp{ -CiN(Fi)} from independence 
i=1 

= exp { - I (1 - e-n,.lC,1 F'(X»J.L(dX)} 

= exp { - I (1 - e-/(X»P(dX)} 

from the previous step 
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which again gives (3.4). Now for general f ~ 0, measurable, there exist simple 
f" of the form just considered,f" = L~::'1 c!n) IFln) with c[n) ~ 0, {Fin), 1 :S i :S kn} 
disjoint, and 0 :S f" if By monotone convergence 

N (f,,) i N (f) 

for all ro. Since e-N(g):s 1 for any measurable g ~ 0 we have by dominated 
convergence as n --+ 00 

I/IN(f,,) = Eexp{ -N(f,,)} --+ Eexp{ -N(f) = I/IN(f)· 

On the other hand (3.4) holds for f" so 

I/IN(f,,) = exp { - L (l - e-fn)d/.} 

Iff" i fthen also 1 - e-fn i 1 - e-/ and monotone convergence applies to give 

I (1 - e-fn)dJl i I (1 - e-f)dJl 

and so we conclude (3.4) holds for f as required. 
Conversely, suppose a point process N has Laplace functional given by (3.4). 

Setting f = AIF' FE rf gives 

Ee-N(f) = Ee-AN(F) = exp{ -(1 - e-A)J.L(F)}, 

which is the Laplace transform of a Poisson random variable with parameter 
J.L(F). So (a) holds in the definition of PRM. Likewise for F1 , ••• , Fit. disjoint in 
rf and with f = L~=1 Ai IF" Ai ~ 0 we get 
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= exp{ - L (1 - e-:-D.l.'lF,)dJl } 

= exp { - L t (1 - e-.l.,lF, )dJl} = ¢ exp{ -(1 - e-.l.')Jl(Fj )} 

k 
= n Ee-.l.N(F,) 

1 

and so (N(FI), ... , N(Fk» are independent; this verifies (b) in the definition 
ofPRM. 

We now focus on the construction of PRM(Jl). Suppose initially that the 
given measure Jl is finite (Jl(E) < (0) so we can write Jl = ev where v is a 
probability measure. Construct a probability space which supports indepen­
dent random elements 

where or is a Poisson random variable with parameter e > 0 and {Xj,j ~ I} 
are iid random elements of E with distribution v; i.e., P[XI E F] = v(F), F E~. 
(Note, we may take Q = N x E x Ex ... , where N is the non-negative in­
tegers. Give Q the product u-algebra and product measure.) Now define N* 
onQby 

on [r > 0] 

=0 on [or = 0]. 

We first verify that N* is a point process and for this its suffices to check 
whether N*(F) is a random variable for any F E~. For k ~ 1 

[N*(F) = k] = ,~([t IF(Xj ) = kJ n [or = I]) 
and so [N*(F) = k] is measurable. A similar argument works for k = O. In 
fact N*(F) is a Poisson distributed random variable. For k ~ 1: 

P[N*(F) = k] = ,~ pLt IF(Xj ) = kJP[or = 1]. 

The first probability on the right is binomial so 

<Xl 

P[N*(F) = L a)(v(F»)k(l - v(F»l-ke-ce'/I! 
'=k 

= f (e(l - V(F»)'-k e-C(ev(F»k = ec(1-v(F» e-C(ev(F»k 
'=k (l - k)! k! k! 

= e-CV(F)(ev(FW/k!. 
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So N* is a point process and for fixed F, N*(F) has a Poisson distribution. 
We now verify that the independence property (b) holds for N*. To accomplish 
this, let Fo, "., Fk be a measurable partition of E(F; E 8, F; n Fj = ,p, i =F j, 
L~=1 F; = E). Suppose ni , i = 0, ... ,k are non-negative integers and L~=1 n; = n 
and for n ~ 1 (similar procedures for n = 0) 

P[N*(Fo} = no • ... , N*(FIt) = nIt] 

= P[N*(Fj) = nj, i = 0, "., k; t = n] 

=pL~ 8x,(Fo) = no,· .. , j~ 8x,(F,,} = n"Jp[t = n] 

and recognizing the first probability as a multinomial we get 

n' It e-Cc" 
~ .. ' n (V(Fj»"i -,-n,=o n,. ,=0 n. 

and since t = L~=o v(Fj) and n = L~=o nj the preceding is 

" " n e-CV(Fi'(cv(Fj})"i/nj! = n P[N*(Fj) = n;]. 
j=O j=O 

Now suppose F1 • ... , F" are any disjoint sets in 8. Set Fo = E - L~= 1 Fi so 
that Fo • ... , Fk is a partition of E. For any non-negative integers n1 , ••• , nIt 

P[N*(F1) = n1"'" N*(F,,} = nit] 
00 

= L P[N*(Fo) = no, N*(F1 } = n1•· '" N*(F,,} = nIt] 
"0=0 

00 " = L P[N*(Fo} = no] n P[N*(Fi} = nJ 
"0==0 i=1 

It 

= n P[N*(Fj} = nJ, 
j=1 

which is property (b) in the definition of PRM. 
It remains to indicate the construction when Jl(E} = 00. In this case we 

decompose Jl as Jl = Li Jl" and we do this as follows: Take a partition 
{Fk' k ~ I} of E by relatively compact sets of 8 and define Jlk = Jl(' n F,,) so 
that Jl" concentrates on F". Since Jlk is finite (Jlk(E) = Jl(E n F,,) = Jl(Fk) < 00 

since F" is relatively compact and f.l is Radon) we know how to construct 
PRM(Jl,,). Let N,,* be such a process and we may suppose Nk*. k ~ 1 are 
independent. Then we assert N*:= L" Nk is the desired PRM(Jl) and we prove 
this assertion via Laplace functionals. Let f ~ 0 be measurable. Then 

r/lN*(f) = Eexp { - ~ N,,*(f)} 

= lim E exp{ - t NIt*(f)} 
'-+00 k=1 
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r 

= lim n Eexp{ -N,,*(f)} 
r .... oo "=1 

= lim n exp{- r (1 - e-/)dJLk } 
r .... oo k=1 J E 

(since Nk is PRM(JLk» 

=!~ exp { - I (1 - e-/(X»(*JLk)(dX)} 

= exp { - I (1 - e-/(X» (~JLk) (dX)} 

= exp { - I (1- e-/)dJL } 

as required since L JL" = JL. o 

3.3.2. Transformations of Poisson Processes 

There are several transformations of Poisson processes that are enormously 
useful in limit theory. Much of this material was learned from Cinlar (1976). 
Additional applications are contained in Resnick (1986). 

We first show that mapping the points of a Poisson process yields a new 
Poisson process. 

Proposition 3.7. Let Eb i = 1,2 be two locally compact spaces with countable 
bases. Let Ii' i = 1,2 be the associated u-fields. Let T: (E 1,ld-+(E2 ,12 ) be 
measurable. If N is PRM(JL) on E1 then 

N:= No T-1 

If we have a representation 

then 

N = L6x, 
i 

N = No T-1 = L 6rx,· 
i 

PROOF. Let 12: E2 -+ [0, (0) be measurable. Then 

"'N(f2) = Eexp{ -N(f2)} = Eexp { - I2 12(x2)N 0 T-1«((), dX2)} 

= Eexp { - I1 12(TXdN«((),dxt>} 

by the transformation theorem for integrals. Now f20 T is non-negative and 
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measurable on El and N is PRM(Jl) on El so by (3.4) 

"'N(f2) = exp { - II (1 - e-hOT)dJl} 

= exp { - L2 (1 - e-h(X')Jlo T-1(dX)}, 

which is the Laplace functional of PRM(Jl 0 T-1 ) on E2. 

135 

o 
The next result shows that starting from PRM, we may construct a new 

PRM whose points live in a higher dimensional space. 

Proposition 3.S. Let (Eb~) be two state spaces as in the previous proposition. 
Suppose 

is PRM(Jl) on (Et>8d and let K: El x 82 -+ [0, 1] bea transition function from 
El -+ E2; i.e., K(· ,F2) is 8 1-measurable for every F2 e82 and K(x,) is a prob­
ability measure on 82 for each xeE1 • Let {J;} be E2-valued random elements 
which are conditionally independent given {Xj}: 

P[J/eF2I{Xn }, {JIZ , IX #: i}J = K(X"F2) 

for any i and F2 e 82 , Then 

is PRM on El x E2 with mean measure 

Jl*(dx,dy) = Jl(dx)K(x,dy). 

(3.5) 

Special Case: {Jj} are iid and independent of(Xj}' Suppose {Jj} have common 
distribution F. Then L ll(x •• J., is PRM with mean measure which is the product 
Jl(dx)F(dy). 

E2 
X 

X 
J3 

X 
J2 

X 
J1 J4 

Xl X2 X3 X4 
El 

Before the proof, we need two lemmas which interpret (3.5). 

Lemma 3.9. Suppose f: El x E2 -+ [0, (0) is bounded. Then a.s. 

E(f(Xj,Jj)I{Xn }) = [ f(Xj,y)K(X;,dy). 
JE2 

(3.6) 
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PROOF. Let 

:Tt' = {J: I ~ 0, bounded, 8 1 x 82 measurable, and I satisfies 3.6}. 

First note :Tt' contains functions of the form I(x, y) = 11 (X)/2(Y) where J; ~ 0, 
bounded, and 8 i measurable, i = 1,2. To check this note that 

E(/(Xi, Ji)1 {Xn} ) = E(/l (Xi)/2(Ji)I {XII}) 

= 11 (Xj)E(/2(Jj)I {XII}) 

and applying (3.5) this is 

= 11 (Xi) r 12(y)K(Xjody) 
JE2 

This means that if Ai e 8 i , i = I, 2 then 

IA • X A2 e:Tt'. 

Now let f{j = {Ge81 x 8 2 : IGe:Tt'} and observe that 

(i) El x E2 ef{j; 
(ii) f{j is closed under proper differences, 

(iii) f{j is closed under nondecreasing limits. 

Hence f{j is a .A.-system containing the 1t-system ofrectangles At x A 2 , Aj E8" 
i = 1,2 and so by Dynkin's theorem f{j::J u{rectangles} = 41 x 42, Now it is 
easy to check that if Gt , •.. , Gt are disjoint in 41 x 42 and Cj ~ 0, i = 1, ... , k 
then 

(3.7) 

Finally any I ~ 0, bounded and 41 x 42 measurable can be written as the 
monotone limit of functions of the form (3.7). The monotone convergence 
theorem then shows le:Tt' as desired. 0 

Lemma 3.10. II g: El x E2 -.. [0, 1] is 41 X 42 measurable then a.s. 

E(fi g(Xi,.Jj)I{XII}) = fi E(g(Xj,Ji)I{Xn }). 

The proof of this result can be accomplished in a manner similar to the proof 
of Lemma 3.9 and is left as an exercise. 

PROOF OF PROPOSITION 3.8. We proceed by using Laplace functionals. Let 
I ~ ° be 41 X 42 measurable. Then 



3.3. Poisson Processes 

'PN*(f) = Eexp{ -N*(f)} = Eexp { - ~f(Xi,Ji)} 

= E( (I e-f(Xi,J.l) = E( E((I e-f(X"J,II{Xn })) 

and via Lemma 3.10 this equals 

E( Q E(e-f(X;.J,II{Xn })) 

(from (3,6)). 

Now set O(X;) = JE2e-f(Xi,YIK(Xi,dy) so that 0:::;; 0:::;; 1 and 

'PN*(f) = E Q O(Xi) = E(exp { - ~ (-IOg9(Xi))}) 

= E exp { - II (-log 9(x))Nl (dX)} 

= 'PNI ( -logO) 

and because Nt is PRM(Jl) we get from (3.4) that 

'II N*(f) = exp { - II (1 - e-(-IOg9(X)))Jl(dX)} 

= exp { - II (1 - O(X))Jl(dX)} 

= exp { - tl (1 - t, e-f(X,YIK(x, dY)) Jl(dX)} 

and by Fubini's theorem we get 

= exp {- r (1 - e-f(X,YI)Jl(dx)K(x, dY)} 
JE I xE, 

= exp{-f (1 - e-f(X,YI)Jl*(dX,dY)}, 
EI XE, 
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which is the Laplace functional of PRM(Jl*), and this completes the proof. 
o 

EXAMPLE. Let Ir;l [;x, be PRM(Jl) on IRd. Displace each point Xi by an 
independent amount Ji where {Ji} are iid with common distribution F and 
{X;} is independent of {Ji }. The resulting point process is PRM(Jl * F) where 
* denotes convolution. To see this observe that by Proposition 3.8 

N* = I [;(X,.Ji ) 
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is PRM on IRd x IRd with mean measure Il x F. Define T: IRd x IRd -+ IRd by 
T(x, y) = x + y. Then by Proposition 3.7 

N* 0 T-1 = L BT(X,.J,) = L Bx,+J, 
i i 

is PRM«1l x F) 0 T- 1 ) and for B E ~(lRd) 

Il x FoT-1(B)=1l x F{(x,j):X+jEB} =1l*F(B) 

where * denotes convolution. 
Observe that if Il is Lebesgue measure on IRd then 

Il * F(B) = r F(dY)Il{ x: x + Y E B} lRd 
= r F(dY)Il(B) = Il(B). lRd 

When Il is Lebesgue measure we usually call the process homogeneous espe­
cially if the dimension d = 1. So independent displacement of the points of 
a homogeneous Poisson process results in a homogeneous Poisson process. 

EXERCISES 

3.3.1. Prove Proposition 3.1 directly without using Laplace functionals. Check that 
IV satisfies (a) and (b) in Section 3.3.1. 

3.3.2. Prove Lemma 3.10. 

3.3.3. Let N be PRM(Jl) on E. Show that N is simple a.s. iff Jl is diffuse (atomless) on 
E. Show N(· 11 F) is PRM where FE 8. What is the mean measure? 

3.3.4. Let N be PRM(Jl(dt) = c1dt) on (0, (0). Express N as a time changed homo­
geneous process. 

3.3.5. Let N be a nonhomogeneous Poisson process on IR with mean measure 

Jl(B) = L A.(s)ds 

where A. is locally integrable. Express N as a function of a homogeneous PRM. 
Of particular interest later will be the cases 
(a) E = (0,00], A.(s) = IXS-«-t, IX> 0 
(b) E = ( -00,00], A.(s) = e-s, -00 < s < 00. 

3.3.6. M/G/oo Queue: Calls arrive to a telephone exchange according to a homo­
geneous Poisson process at times {Xd (Xi E ( - 00, (0)). Lengths of calls are iid 
random variables (Ja with common distribution F. Times when calls terminate 
form a homogeneous Poisson process if {JJ and {Xi} are independent. 

3.3.1. (a) Let {Ei' i ~ I} be iid exponential random variables on [0, (0): P[Ei > x] = 

e-x, x > O. Let r. = Ir=1 Ej • Show that I.er• is a homogeneous Poisson 
process on [0, (0). 
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(b) Use Proposition (3.8) and (a) to construct homogeneous PRM on [0,(0) x 
[0, (0). 

(c) If~>;(x,.J,) is homogeneous PRM on [0, (0) x [0,1) then ~>;x, is PRM on 
[0, (0) and {JI} is iid uniform on [0, 1). 

3.3.8. Let {r.} be as in the previous proposition and suppose {U.,n ~ I} are iid, 
uniform on [0,1]. Suppose v is a measure on IR with Q(x):= v(x, (0) < 00 for 
all x E IR. Define for y > ° 
Show 

is PRM on [0, 1] x R with mean measure du x v(dx). 

3.3.9. Two point process Nt and N2 on E are equal in distribution (Nt ,g, N2 ) itT for 
each f ~ ° bounded and measurable we have 

Nt (f) ,g, N2(f) 

as random variables. (It is only necessary to check Nt (f) = N2(f) for f E C':-(E); 
cr. Section 3.4.) 

3.3.10. Suppose NI are PRM(JlI) with domain (n, d) and state space (E,8), i = 1, 
2, .... If~>1 is Radon, LNI is PRM(LJlJ 

3.4. Vague Convergence 

Weak convergence of point processes is a basic tool in the study of stochastic 
process behavior of extremes and records. In order to discuss weak con­
vergence of point processes we need a notion of convergence in M p(E), and in 
fact we will show how to make Mp(E) into a complete, separable metric space. 
There is little extra cost if we discuss these issues in the context of random 
measures. 

Let (E,8) be a state space as before and let p be a metric on E which makes 
E a complete, separable metric space. We have need for additional notation 
which parallels and amplifies what was introduced in Section 3.1. 

Let CK(E) be the continuous, real valued functions on E with compact 
support so that f e CK(E) means there exists a compact set K and the con­
tinuous function satisfies f(x) = 0 for x e K C• C;(E) is the subset of CK(E) 
consisting of continuous, non-negative functions with compact support. Let 
M+(E) be all non-negative Radon measures on (E,8) and define J/+(E) to 
be the smallest O'-algebra of subsets of M + (E) making the maps m -+ m(f) = 
JEf dm from M+(E) -+ R measurable for all feC;(E). 

Some equivalent descriptions of J/ + are 

J/+(E) = O'{ {meM+(E): m(f)eB},fe C;(E), Be£f([O, oo])} 

= 0' {m -+ m( G), G open, relatively compact} 

= O'{m -+ m(G),Ge8} 
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and so on. The monotone class arguments needed to verify the equivalent 
descriptions of M + will be omitted. 

Since point measures are the primary objects of interest, it is natural to 
wonder whether Mp(E) is measurable; i.e., is Mp(E)e .A+(E)? This is certainly 
the case, and a method to check this is outlined in Problem 3.4.2. Alternatively 
we will see that if M+(E) is topologized with the vague topology, .A+(E) 
coincides with the Borel a-algebra (the a-algebra generated by the vaguely 
open sets) and Mp(E) is vaguely closed and hence measurable. 

Random Measures 

~ is a random measure if it is a measurable map from a probability space 
(n, d, P) into (M+ (E),.A + (E». If ~ takes all its values in MiE) then, is a 
point process. The Laplace functional of , is the map 'P ~ from positive, 
If-measurable functions to [0,1] defined by 

'P~(f) = Eexp{ -'U)} = In exp { - Lf(X),(W,dX)}P(dW) 

= f exp {- r f(x)m(dX)} P~(dm) 
M+(E) JE 

where P~ = Po ,-1. The Laplace functional restricted to C~(E) uniquely deter­
mines the distribution P~ of the process ~ (Exercise 3.4.3.; cf. Lemma 3.11). 

Two random measures '1' '2 on (n, d, P) have the same distribution if 
P~I = P~2· In this case we sometimes write ~1 4: ~2. Check ~1 4: '2 itT for any 
k and he C~(E), i ~ k we have 

(~1 (h), i ~ k) ,g, (~2(h), i ~ k» in IRk. 

In order to discuss weak convergence of random measures and point 
processes we must topologize M+(E). Ideally this topology will be metrizable 
as a complete separable metric space to facilitate link-ups with standard 
accounts of weak convergence theory such as that of Billingsley (1968). 

For Jl.n, JI. e M + (E) we say Jl.n converges vaguely to JI. (written Jl.n ~ JI.) if 
Jl.n(f) - JI.(f) for all f e C~(E). A topology on M+ giving this notion of con­
vergence is obtained as follows: A sub-base for this topology consists of sets 
of the form 

{Jl.eM+: S < JI.(f) < t} 

for some f e C~ and S < t. Finite intersections of such sets (example, {JI. e M+: 
JI.(};) e (Sj, til, i = 1, ... , k} ) form a basis, and open sets are obtained by taking 
unions of basis sets. A basic neighborhood of Jl.eM+ is a set ofthe form 

{veM+: /V(h) - JI.(h)/ < 8,i = 1, ... ,k}. 

For a topological space such as M+(E), a natural u-algebra is the Borel 
a-algebra ~(M + (E», which is just the u-algebra generated by open sets. 
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Since we have already discussed a IT-algebra, namely .H+(E), for M+(E) it is 
important to know the relation between the two. However 

so that either description of the measure structure can be used, depending on 
convenience. Cf. Jagers, 1974, or Exercise 3.4.5. 

Developments thus far seem to be emphasizing integrals over sets. From 
your knowledge of weak convergence of probability measures on IR it is 
plausible that {Jl(f),J E C;(E)} holds the same information as {Jl(A), A E t9'}. 
Integrals are frequently more convenient to deal with (at least theoretically). 
We interpret Jl(f) as the value of Jl at coordinate f. Compare this with a 
function x(·) = {x(t), t ~ O} of a real variable where x(t) is the value of x(·) at 
coordinate t. 

Theoretical justification for looking at integrals rather than sets is given by 
the next result, which is a variant of Urysohn's lemma (e.g., Simmons, 1963, 
page 135) as presented in KaUenberg (1983). 

Lemma 3.11. (a) Let K be compact. There exist compact Kn! K and a non­
increasing sequence Un}, in E C; (E) and 

IK ~ in ~ 1Kn! lK· 

(b) Let G be open, relatively compact. There exist open, relatively compact 
Gn i G and a nondecreasing sequence {f"},f,,EC;(E) and IG ~ f" ~ IGn i IG· 

PROOF. We use the fact that if E is locally compact with countable base, then 
it is metrizable as a complete, separable metric space. Call the metric p. For 
BeE let B- be the closure and BO be the interior of B. 
(a) Let {Bd be open, relatively compact and Bk i E. If K is compact, {Bk} is 
an open cover of K and hence there exists ko such that K c Bko . Furthermore 
p(K, ~o) > 0 since if p(K, ~o) = 0, K and Bko both being closed, there would 
be x E K n Bko and this would contradict K c Bko. Suppose p(K, ~o) > e > 0 
and define 

K,} = {xEE: p(x,K) ~ <5} 

to be the <5-swelling of K. For n such that n- I ~ e set Kn = KIln and note that 
Kn is closed and 

Kn c Bko C Bk~. 

Since Bko is relatively compact, Kn is compact. Also Kn! K. 
Definein(x) = 1 - (np(x,K) 1\ I) so that 0 ~in ~ 1,f"EC;(E) and Un} is 

nonincreasing. To check 1Kn ~ in ~ lK observe first that on K, 1 = lKn = in = 
lK so everywhere in ~ IK· To verify 1Kn ~ in observe that 

(i) If x E K n, then IK = 1 ~ in(x) and 
(ii) If x E K~ then by definition of Kn, p(x, K) > n- l and in(x) = 1 -

(np(x,Kn) 1\ 1) = 1 - 1 = O. 
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(b) Every open set in E is an F" and since G is assumed relatively compact 
there exist compact K" f G from which it is easy to construct open, relatively 
compact G" f G (cf. Cohn, 1980, page 198) such that G; c G,,+1. This last 
property forces p( G", GC ) > 0 since if not, then 

o = p(G", GC) ;;:: p(G;, Gt) 

implies that there exists 

XEG;; 11 Gt C G,,+lll Gt = 0, 

a contradiction. Now set 

( ) = 1 _ ( p(x, G,,) ) 1 
gIl x p(Gt, G,,) 1\ 

so that 0 ~ gIl ~ 1. If x E G, then for large n, x E G" and hence p(x, G,,) = 0 and 
g,,(x) = 1. If x E Gt then for all n 

p(x, G,,);;:: inf p(y, G,,) =: p(Gt, G,,) 
yeG< 

so that p(x, G,,)/p(Gc, G,,) ;;:: 1 and g,,(x) = O. If we define f" = V~=l g/ then {f,,} 
is nondecreasing and lG ;;:: f" ;;:: lGn • 0 

Remark. The proof of (a) shows that if K is compact, then for all small ~ > 0, 
K6 is compact. 

With Lemma 3.11 under our belts, we can now give some interpretations 
of vague convergence in terms of sets. 

Proposition 3.12. Let JI., Jl.l' Jl.2' ... be in M+(E). The following are equivalent: 

(i) Jl.n.!. JI.; 
(ii) JI.,,(B) -+ JI.(B) for all" relatively compact B for which JI.(aB) = 0; i.e., the 

boundary of B has JI. measure 0; 
(iii) limsup,,-+oo JI.,,(K) ~ JI.(K) andliminf,,-+oo JI.,,(G) ;;:: JI.(G) for all compact K and 

all open, relatively compact G. 

PROOF. (i) -+ (iii): If K is compact then by Lemma 3.11 there exist compact K", 
f"ECi, and 

Then for m fixed 

"-+00 ,,-+00 

Since fm ~ lK for m ;;:: mo and lK is JI.-integrable we find by dominated 
convergence that letting m -+ ex) give~olimsup,,-+oo JI.,,(K) ~ JI.(K) as desired. The 
second result for open, relatively compact G is proved similarly by using 
Lemma 3.11(b). 
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(iii) ..... (ii): Suppose B is relatively compact with J1.(oB) = O. Then BO c 
B c B-, and by applying (iii) we get 

J1.(BO) :s; liminf J1.n(BO) :s; liminf J1.n(B) :s; lim sup J1.n(B) :s; lim J1.n(B-) :s; J1.(B-) 

and since J1.(oB) = 0 implies J1.(BO) = J1.(B) = J1.(B-) (ii) follows. 
(ii) ..... (i): Let fEet (E) and suppose F is the support of J, so that F is 

compact. We must show that J1.n(f) ..... J1.(f). 
A simple helpful preliminary is the following: Let (E i , gil, i = 1, 2 be two 

metric spaces and suppose T: EI ..... E2 is continuous. Then if A2 E $2 

(3.8) 

(Note on the left, 0 is an operator on EI but on the right 0 operates in E2.) 
You may check this as Exercise 3.4.8. 

Let jbe the restriction of J to F. Define 

rn := {y > 0: J1.{xEF:j(x) = y} > n-I } 

and r := Un rn. Now the sets {x E F:j(x) = y} are disjoint for different values 
of y so that rn is finite and hence r is countable (remember that J1.(F) < 00). 
Note that r = {y > 0: J1.0j-l{y} > O} is the set of atoms in (0,00) of the 
measureJ1.0j-1 on IR+. 

There exists p > 0, such that on F, 0 :s; j :s; p. Given B > 0, there exist lXi Ere, 
o :s; i :s; k with 

and 

OnF, 

sup (lXi - lXi-I) :s; B. 
l$i$k 

(3.9) 

(3.10) 

and also {x E F:!(x) E (lXi-I' lXa} is relatively compact since it is a subset of 
compact F. Finally observe that by (3.8) 

J1.(oj-1 (lXi-I, aa) :s; J1.(j-l(o(ai_t> aJ» 

= J1.(j-l {ai-I' a;}) = J1.(j-l {a;}) + J1.(j-l {ai-d) = 0 

since ai-I, ai E r. 
From (3.10) we have 

±lXi-lJ1.[JE(lXi-I,lXiJJ~J1.(J)= r jdJ1.~±lXiJ1.[jE(lXi-I,IX;]J (3.11) 
1 JF 1 

and the difference in the extremes of the inequalities is 

(3.12) 
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from (3.9). Therefore 

limsup Iln(f) = limsup r !dlln 
" ..... 00 "-+00 JF 

from (3.10) 

" = limsup L ailln{X:!(x)e(ai-toaJ} 
II-+cx) 1 

" = L alll{x:!(x) e(lXi - 1 ,lXa} (applying (ii» 
1 

from (3.11) and (3.12). 

Similarly 

n"'oo 

and we find that Iln(f) -+ Il(f); i.e., (i) holds. o 

Vague convergence of point measures, mn -!. m, has the following inter­
pretation in terms of convergence of the points of mn to the points of m. 

Proposition 3.13. Suppose mn, meMiE) and mn -!. m. For K compact and 
satisfying m(oK) = 0 we have for n ~ n(K) a labeling of the points of mn and 
m in K such that 

and in E" 

p 

me· nK) = Lex, 
i=1 

as n -+ 00. 

(Of course, E" has the product topology so that convergence of vectors in E" 
means componentwise convergence.) 

PROOF. We may write 

s 

me· n K) = L c,e'r 
1 

where Yl' ... , Ys are the atoms ofm in K (in fact, in KO, since m(oK) = 0) and 
c l' .•. , Cs are integers giving multiplicities. 

For each y, choose a neighborhood G, c KO, G1 , ••• , Gs disjoint and 
m(oG,) = O. Then limn ... oo mn(G,) = meG,), 1 ::s;; r ::s;; s, and for n sufficiently large, 
n ~ n(K) say, mn(G,) = meG,) = c" 1 ::s;; r ::s;; s, and mn(K) = m(K). Labeling 
points properly now gives the result. 0 
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Next is a proposition which assures us that topological or metric infor­
mation about M+{E) may be transferred to Mp{E). 

Proposition 3.14. Mp{E) is vaguely closed in M+{E). 

The following lemma precedes the proof. 

Lemma 3.15. Suppose K is compact and p, E M +. There exist On ! 0 and K6n ! K 
and p,{OK6n ) = o. 

PROOF OF LEMMA. By the remark following Proposition 3.11, K~ is compact 
for all sufficiently small 0, 0 ~ 00 say. Now p,{K60 ) < 00 since p, is Radon. Also 

oK8 c {x: p{x, K) = o} 

and therefore 

{oK6,O < 0 ~ Oo} 

is a disjoint family of sets. It follows that 

{OE(O,Oo]: p,{OK6) > n- l } 

is finite since otherwise p,K6o = 00. Therefore 

{OE(O,bo]: f.l{oK 6 ) > O} 

is countable. o 
PROOF OF PROPOSITION 3.14. Suppose P,nEMp{E), p,EM+{E), and P,n ~ p,. We 
show that f.lEMp{E). Let Gn be relatively compact, Gn i E, and p,{oGn ) = O. 
(If your favorite covering sequence happens to have p,-mass on a boundary, 
Lemma 3.15 assures us that by swelling a bit we can find an equally serviceable 
covering set with no mass on its boundary.) Define 

!!Ill = {BEtS': B is relatively compact, f.l{oB) = O}. 

Observe that !!Ill is a IT-system since for BiEtS', i = 1,2 

O{BI n B2 ) c oBI U oB2 • 

Let 

~n = {BEtS': p,{B n Gn) is a non-negative integer}. 

By Proposition 3.12 

(3.l3) 

so that f.l(B) is a non-negative integer and therefore since BE!!I1l implies 
B n Gn E!!I1l we have ~n ;:) !!Ill" One readily checks that ~n is a A.-system and 
hence by Dynkin's theorem 

~n ;:) a(!!IIl) = tS'. 
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(Why is u(£f,,) = 8? If K is compact, Lemma 3.15 assures us there are Kn! K, 
KnE£f,.. Therefore u(£f,,):::> u(compact subsets of E) = 8.) We conclude that 
Jl(A Il Gn) is integer valued for any A E 8 and any n. Hence Jl is a point 
measure. 0 

Now we consider a criterion for relative compactness in Mp or M+. 

Proposition 3.16. A subset M of Mp(E) or M+(E) is vaguely relatively compact 

itT sup Jl(f) < 00 for each f E Ci(E) 
"eM 

itT sup Jl(B) < 00 for each relatively compact BEl. 
"eM 

PROOF. Since Mp(E) is a closed subset of M+(E), it suffices to prove the result 
for M+(E). We prove only the first equivalence; the second one is left as an 
exercise. 

We observe first that for each f E Ci(E) 

sup Jl(f) = sup Jl(f). 

This is almost obvious since the map T,Jl = Jl(f) is continuous; here are 
details. Note that there are Jln E M- such that Jln(f) -+ sUP"eM- Jl(f). By the 
definition of the vague topology there exists for each n, Vn E M such that 

Therefore 

sup Jl(f) ~ Vn(f) -+ sup Jl(f) ~ sup Jl(f) 
"eM "eM- "eM 

and the result follows. 
If M- is compact then for f E Ci(E) define T,: M + -+ [0,(0) by T,Jl = Jl(f). 

The map T, is continuous on M+ by definition of the vague topology, 
and hence the image of M- under T, is compact; i.e., {T,Jl,JlEM-} = 
{Jl(f), Jl E M-} is compact in [0, (0). Compact sets on [0, (0) are bounded 
so SUP"eM-Jl(f) < 00. 

For the converse, suppose that for eachf E Ci(E), sUP"eM- Jl(f) < 00. Then 

1,:= [0, sup Jl(f)] 
"eM-

is a compact subset of [0, (0) and hence by TychonotT's theorem (Simmons, 
1963, page 119) 

1:= n I, 
'eC~(E) , 

is a compact subset of IRC;(E) = n,eC;(E) IR with product topology. 
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Identify J.l E M- with {J.l(f):1 E C~} E I. This defines a map T from M- into 
I, and the topologies on M- and on T(M-) coincide since J.ln -+ J.l in M- means 
J.ln(f) -+ J.l(f) for all I E C~(E) and the latter statement is just componentwise 
convergence in the product topology on I. Thus M- and T(M-) are homeo­
morphic. Since M- is closed, T(M-) is a closed subset of I and hence T(M-) 
is compact. Thus so too is M- a compact set. 0 

We now metrize Mp(E) and M+(E). 

Proposition 3.17. The vague topology on Mp or M+ is metrizable as a complete, 
separable metric space. 

PROOF. From Proposition 3.14 it is enough to consider M+. The idea of 
the proof is to find a countable collection {hi} in C~(E) such that if J.ln' 
J.l EM + (E) we have J.ln ~ J.l itT J.ln(h,) -+ J.l(h,) for all I. An explicit construction 
(cr. Kallenberg (1983» is as follows. 

Let {Gi , i ~ I} be a countable base of relatively compact sets and suppose 
without loss of generality that {Gi } is closed under finite unions and finite 
intersections. (If the G-family you started with does not have this property, 
switch to finite unions of sets of the form niel Gi where I is a finite subset 
ofthe non-negative integers.) From the approximation Lemma 3.11 there exist 

h.n' g'.nEC~(E) and 

lim i h.n = IG" 
n .... oo n .... oo 

Enumerate {h,n,gi,n,i ~ l,n ~ I} as {hl,h2""}' 
Any J.lEM+(E) is uniquely determined by {J.l(h,),l ~ I}. For any i, J.l(G,) = 

limn .... oo t J.l(h.n) and hence {J.l(h,)} determines {J.l(Gi )}. Since {G,} is a O-system 
generating the u-algebra tI, J.l is determined everywhere. 

Next we observe that for J.ln' J.l E M + (E), J.ln ~ J.l itT 

For each I, there exists a finite positive constant 
c, and J.ln(h,) -+ c,. In this case c, = J.l(h,). (3.14) 

To verify this we suppose that (3.14) holds and as a first step to showing J.ln ~ J.l 
we show that {J.ln} is relatively compact in M+(E). We proceed by means of 
the criterion in Proposition 3.16. Take any I E C~ (E) and suppose the compact 
set K is the support of I. Compactness implies there is a finite subset I of the 
integers and 

iel 

Since {Gi } is closed under finite unions, for some io, Gio = UielGi and 
K c Gio ' Therefore if 11/11 = sup{!(x): xEE} we have 

Is 11/11 lK s II/lIIG,o s IIlII 1a,o s 11111 g'o.I< 
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for any fixed k and so 

sup JI.,,(f) ~ IIfII sup JI.,,(gio,k) < 00 

" " 
since {JlII(h,)} is a convergent sequence for each I and hence bounded. So 
Proposition 3.16 implies that {Jl,,} is relatively compact. 

Since {Jl,,} is relatively compact, there exists a subsequence {n'} and Jl.E 
M+(E) such that Jl.1I' ~ JI. as n' -+ 00. So we have on the one hand 

JI.",(h,) -+ C, 

and on the other 

Jl.1I,(h,) -+ JI.(h,). 

Any limit point I' thus has the property Jl(h,) = c, and since any measure in 
JI.+(E) is uniquely determined by its values on {hi} we conclude that all limit 
points of {JI.,,} must be the same and hence JI." ~ JI. as desired. 

Since JI.,,(h,) -+ JI.(h,) for all I is enough for JI." ~ 1', the following is a satis­
factory metric on M+(E) for the vague topology: For JI., JI.' EM+(E) define 

ao 
d(JI.,JI.') = L 2-i(1 - exp{ -IJI.(hi ) - JI.'(hi)I})· 

i=1 

The metric is complete: If d(Jl", I'm) -+ 0 then for each I we have 

IJl,,(h,) - Jl.m(h,)I-+ 0 

and so {JI.,,(h,), n ~ I} is a Cauchy sequence of real numbers. Consequently 
there exists c,: lim" .... ao JI.,,(h,) and from (3.14) we conclude there exists Jl.E M+(E} 
with Jl.n ~ JI.; i.e., d(Jl.n, JI.) -+ O. The metric is also separable: A countable base is 

{ {JI. E M +: JI.(h,) E (ri' r1)}' I = t, 2, ... , ri , rJ rationai}. o 
Applications of weak convergence theory, discussed later, require a knowl­

edge of what functionals are continuous. The following is very useful. 

Proposition 3.tS. Suppose that E, E' are two spaces which are locally compact 
with countable bases. 

Suppose T: E -+ E' is continuous and satisfies 

T-1(K') is compact in E for every compact K' in E'. (3.15) 

Then f: M+(E) -+ M+(E') defined by 

fJl. = Jl.O T- 1 

is continuous. 
Note f restricted to Mp(E) is of the form 

f(L Ilx) = L IlTxi 



3.4. Vague Convergence 149 

so that a continuous function on the points which also satisfies (3.15) induces 
a continuous function on the point measures. 

PROOF. For J1.1I' ItEM+(E) suppose It" ~ It. If fEC;'(E') then 

11t,,(f) = J1." 0 T-1 (f) = J1.,,(f 0 T). 

Because of (3.15) we have f 0 TEC;(E) since the support of fo T is 
T-1 (support of f) which is compact in E. Therefore J1." ~ It implies 

fJ1.,,(f) = J1.,,(f 0 T) -+ J1.(f 0 T) = J1. 0 T-1 (f) 

and thus 

o 
Remark. For continuous T, the compactness requirement (3.15) is satisfied 
whenever either T is a homeomorphism or E is compact. Sometimes neither 
is the case, and if one is desperate to apply Proposition 3.18 an approximation 
procedure which restricts attention to a compact subset of E must be applied. 

EXERCISES 

3.4.1. Verify that the different descriptions of J( + (E) are equivalent. 

3.4.2. Let Gj , j ~ 1 be a countable base of the topology of E such that GJ is open and 
relatively compact. (For example, if E = IR" then {Gj } can be taken to be open 
rectangles with rational vertices.) 
(a) The only positive Radon measures on E which take non-negative integer 

values on Gj , for eachj, are the point measures. 
Hint: If m is such a measure. then for all x e E there is an open neighborhood 
v"e{Gj } of x such that m{x} = m(Vx). For compact K, a finite collection 
S = {XI" ..• xt } of points of K exists such that m{x} ;?; 1. xeS, and if 
A ("\ S = ,po A closed and A c K. then meA) = O. Write 

m(' ("\ K) = L m{x}8x. 
xeS 

(b) Check Mp(E) = n;;'1 {meM+(E): meG)~ is non-negative integer valued} so 
that Mp(E)EJ( +(E) and 

J(p(E) = J(+(E) ("\ Mp(E) 

:= {A ("\ Mp(E): AeJ(+(E)} 

(Neveu. 1976). 

3.4.3. Use Lemma 3.4.3 to prove that the Laplace functional of a random measure, 
restricted to C;(E) uniquely determines the distribution of ,. 

3.4.4. Two random measures, I and '2 are equal in distribution if for every k and 
fl' ...• he e C;(E) we have in IRt 
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Formulate and prove an analogous result with sets replacing the f's. 

3.4.5. Prove .It+(E) = £f(M+(E). Hint: Since m -+ m(f) is .It+(E) measurable, every 
basis set of M+(E) is .It+(E) measurable. Since M+(E) has a countable basis, 
£f(M+(E» c .It+(E). For the converse, m -+ m(f) is continuous and hence 
m -+ m(f) is £f(M+ (E)measurable for eachfe C;(E). Som -+ m(6)is£f(M+(E) 
measurable for each relatively compact, open 6 (use Lemma 3.11) and hence 
.It+(E) c £f(M+(E). 

3.4.6. Check (3.8). 

3.4.7. Check u(compact subsets of E) = I. 

3.4.8. Prove the second equivalence in Proposition 3.16. 

3.4.9. We know M+(E) is a complete, separable metric space. Is it locally compact? 

3.4.10. Show that the following transformations are vaguely continuous: 
(i) ll:M+(E) x M+(E)-+M+(E) 

11(1', v) = I' + v 
(ii) T2 : M+(E) x (0, (0) -+ M+(E) 

T2 (1', A) = AI' 
(Kallenberg, 1983). 

3.4.11. If K elif is compact, show that {l'eM+(E): I'(K) < t} is open in M+(E). If 6 is 
open, relatively compact show {l'eM+(E): 1'(6) > t} is open in M+(E). cr. 
Proposition 3.12 (Kallenberg, 1983). 

3.4.12. Suppose x.' xeE, c. ~ 0, c > O. Then 

itT c. -+ c and x. -+ x (Kallenberg, 1983). 

3.4.13. If E = (0, (0)2, is (3.15) satisfied for the following T: 

T(x,y) = x + y 

T(x,y) = xy? 

If E = (0,00) how about Tx = 2x? 

3.4.14. Let m. = L~I n-1ei/. be a discrete version of Lebesque measure m on [0,00]. 

Showm.~m. 

3.5. Weak Convergence of Point Processes 
and Random Measures 

We first review some facts from the theory of weak convergence in metric 
spaces (cf. Billingsley, 1968). 

Let S be a complete, separable metric space with metric d and let g be the 
Borel u-algebra of subsets of S generated by open sets. Suppose (0, d, P) is a 
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probability space. A random element X in S is a measurable map from such 
a space (0, .91) into (S, Sf). The most common examples are 

= ~d 

= C[O, co), the space of 
real valued, continuous 
functions on [0, co) 

= D [0, co), the space of 
real valued, right continuous 
functions on [0, co) with finite 
left limits existing on (0, co) 

X = random variable 

= random vector 

= random process 
with continuous paths 

= random process with 
jump discontinuities 

= Mp(E) 

= M+(E) 

= stochastic point process 

= random measure. 

Given a sequence {X"' n ~ O} of random elements, there is a corresponding 
sequence of distributions 

P" = PoX;1 on Sf, n ~O. 

Then X" converges weakly to Xo (written X" => Xo or P" => Po) if whenever 
J E C(S), the class of bounded, continuous real valued functions on S, we have 

EJ(X,,) = Is J(x)P,,(dx) -+ EJ(Xo) = Is J(x) Po (dx). 

This is equivalent (Billingsley, 1968, page 12; cf. Proposition 3.12) to 

lim P[XIIEA] = P[XoEA] for all AESf (3.16) 
"-00 

such that P[Xo E a A] = 0 or 

limsup P[X"EF] 5 P[XoEF] for all closed FE Sf or (3.17) 
"-00 

liminfP[X"EG] ~ P[XoEG] for all open G'E Sf. (3.18) 
"-00 

A nice way to think about weak convergence is from Skorohod's theorem 
(Billingsley, 1971; cf. Proposition 0.2): X" => Xo iff there exist random elements 
{X:,n ~ O} on the uniform probability space ([0, 1], ~[O, 1],m) where m is 
Lebesgue measure such that 

X !x* 
" " 

for each n ~ 0 

and 

X: -+X3 a.s. 

The second statement means 
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m {t E [0,1]: lim d(X:(t), Xcf(t» = o} = 1. 
11--00 

The power of weak convergence theory comes from the fact that once a 
basic convergence result has been proved, many corollaries emerge with little 
effort. The arguments usually involve continuity. Suppose (Sj, dj ), i = 1, 2, are 
metric spaces and h: SI -+ S2 is continuous. If X., n ~ 0 are random elements 
in (SI'9;.) and X. = Xo then h(X.) = h(Xo) in (S2,92). To check this is easy: 
Letf2 e C(S2) and we must show that Ef2(h(XII ) -+ Ef2(h(Xo». Butf2(h(XII» = 
f2 oh(XII ) and since f2 ohe C(Sl) the result follows from Xn =Xo. 

In fact h need not be continuous everywhere. 

Continuous Mapping Theorem (Billingsley, 1968, page 30). Let (Sj,d j ), i = 1,2 
be two metric spaces and suppose XII' n ~ 0 are random elements of (SI'9;.) 
and XII = Xo. If h: SI -+ S2 satisfies 

P[XoED,,] = P[XoE{SI ES1 : h is discontinuous at sIlJ = 0 

then 

This is an immediate consequence of Skorohod's theorem. Alternatively 
proceed from first principles as follows. Let F2 e 92 be closed and we must 
show that 

.-+00 

But 

limsup P[h(XII)eF2J = limsup P[X.eh-1(F2)] 
n--oo 

11--00 

However, (h- 1(F2>r c: D" u h-1(F2) since if SI e(h-1(F2»- ('\ Dr. there exist 
s.eh-1(F2) and s. -+ SI implying h(s.) -+ h(Sl). Since h(sn)eF2 and F2 is closed 
we get h(sdeF2 and therefore Sl eh-1(F2 ). Finally 

limsup P[h(XII ) e F2] :s; P[Xo e D" u h-1(F2)] = P[Xo E h-1(F2)] 
.--00 

= P[h(Xo)eF2 ] 

and so weak convergence follows by equivalence (b) subsequent to the defini­
tion of weak convergence. 

Often to prove weak convergence subsequence arguments are used and the 
following is useful. A family n of probability measures on a complete, separable 
metric space is relatively compact if every sequence {PII } c: n contains a 
weakly convergent subsequence. Relative compactness is theoretically useful 
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but hard to check in practice so we need a workable criterion. Call the family 
n tight (and by abuse of language we will refer to the corresponding random 
elements also as a tight family) if for any e, there exists a compact K. e!l' such 
that 

P(K.) > 1 - e for all Pen. 

This is the sort of condition that precludes probability mass from escaping 
from the state space. Prohorov's theorem (Billingsley, 1968 or Williams, 1979) 
assures us that when S is separable and complete, tightness of n is the same 
as relative compactness. 

We now are prepared to give a usable criterion for weak convergence in 
M+(E) or Mp(E). 

Proposition 3.19. Let P", n ;;::: 0 be probability measures on M + (E). Then P" => Po 
itT Laplace functionals converge, i.e., itT for any f e C; (E), 'I' ~ (f) -4 'I'l'i (f). 

.. 0 

Equivalently if e", n ;;::: 0 are random measures (i.e., random elements in M+(E», 
then e" => eo itT'I'~,,<f) -+ 'P~o(f), for all feC;(E). 

PROOF. Suppose en => eo in M+(E). For feC;(E) define the continuous map 
1/: M+(E) -+ [0, (0) by 1/Jl = Jl(f). The continuous mapping theorem assures 
us that e" => eo entails T,e" = e,,(f) => 1/eo = eo (f)· By the dominated con­
vergence theorem 

'P~ .. (f) = E exp{ - e,,(f)} -+ E exp{ - eo (f) } = 'I'~o(f). 
For the converse we need the following lemma. o 

Lemma 3.20. {en} is tight in M+(E) iff for any feC;(E) we have {en(f)} tight 
in IR. 

PROOF. Suppose gn(f)} is tight in R for any feC;(E). Pick gieC;(E) with 
gl t 1. Since {en(g;), n ;;::: I} is tight, for any e there exists CI large enough that 
for all n 

p[e,,(gl) > ca ~ e/2i+l. 

The set M = nl~1 {JleM+(E): Jl(gi) ~ CI} is relatively compact by Proposi­
tion 3.16 since for any f E Ci(E) 

sup Jl(f) < 00. 
peM 

To see this, note that given J, there exists some io and a constant Ko such that 
f ~ Koglo and hence 

sup Jl(f) ~ Ko sup Jl(glo) ~ KOClo' 
"eM peM 

Furthermore for all n 
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p[en ~ M-] :s; p[en ~ M] = P {u [en(gi) > C;]} :s; ~ p[en(gi) > c;] 
i~l , 

ao 
:s; L e/2i+l = e, 

1 

which shows that {en} is tight. The converse is an easy exercise. 0 

Now for the converse to Proposition 3.19. Suppose 'P~Jf) -. 'P~o(f), for all 
/ E ct(E). Then for any ..1. > 0, replacing / by AI gives 

Eexp{ -..1.en(f)} = Eexp{ -en(..1.f)} = 'P~J..1.f) 
-. 'P~o(AI) = Eexp{ -~o(A.f)} = Eexp{ -A.~o(f)}· 

Thus the Laplace transform of the random variable ~n(f) converges to the 
transform of ~o(f) and hence ~n(/) => ~o(f) in R A convergent sequence is 
certainly relatively compact and hence, by Prohorov, {~n(f)} is tight. From 
the lemma {~n} is tight in M+(E) and hence relatively compact in M+(E). 
So given any subsequence {n"} c {n} there exists a further subsequence 
{n'l c {n"} and for some random measure ~EM+(E) 

~n' =>~. 

From the first half of this proposition we get 'P~n.(f) => 'P~(f) for every 
/ E Ct(E). By assumption 'P~Jf) -. 'P~o(f) and hence 'P~(f) = 'P~o(f). This 
means e ~ eo and so all weak subsequential limits of {en} are equal in 
distribution to ~o and hence en => eo in M+(E) as desired. 

Typical of the applications of Proposition 3.19 is the next result, which, 
though rather simple, has far-reaching implications and provides the link 
between regular variation and point processes to be discussed in the next 
chapter. 

Proposition 3.21. For each n suppose {Xn,i,j ~ I} are iid random elements 0/ 
(E,4) and J,l is a Radon measure on (E,4). Define ~n:= Li=l eUn-',XnJ) and 
suppose e is PRM on [0, 00) x E with mean measure dt x dJ,l. Then ~n => ~ in 
MP([O,oo) x E) itT 

nP[Xn, 1 E'] ~ J,l onE. (3.19) 

PROOF. As a warm-up, we prove the following simpler result: If N is PRM(J,l) 
on E then 

n 

Nn = Lex =>N 
j=l n.J 

itT (3.19) holds. To see this we show convergence of Laplace functionals so if 
/ECt(E) we have 
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I/INJf) = Eexp{ -N,,(f)} = Eexp { - it f(X",})} 

= (Eexp{ -f(X",d})" 

= (1 _ fE(1 - e-/(XJ):P[X",l edX])" 

and this converges to 

exp { - L (1 - e-/(XJ)J.l(dX)}, 

the Laplace functional of PRM(J.l) (cf. (3.4» iff (3.19) holds. 
This illustrates the method in a simple context, and we now concentrate on 

showing the full result of Proposition 3.21. For fe ct([O, 00) x E), the Laplace 
functional of ell is 

'P~Jf) = Eexp{ -e,,(f)} = Eexp { - ~f(kn-t,X",")} 

= Q(I- L (1- e-/(l,,-I'XJ)P[X",l edX]) 

and 'P ~Jf) -+ 'P ~(f) iff 

-log'P~Jf) 

= -~IOg(l- L (1- e-/(l,,-I'XJ)P[X",l edX])-+ -log'P~(f). 

Suppose (3.19) holds. Define l" by 

A,,(ds,dx) = L el"-.(ds)P[X,,, 1 edx] 
1 

so that by (3.19) 

Then 

A,,(ds, dx) ~ dSJl(dx). 

L r (1 - e-/(""-I,XJ)p[X,,, 1 edx] 
1 JE 

= f r (I - e-/)dl" -+ ff(1 - e-/(s.xJ)dsJ.l(dx) (3.20) 
J[O.OOJXE 

as n -+ 00. Furthermore if K is the compact support of fin [0,00) x E, there 
is some compact A c: E such that 

sup r (l-e-/(""-I,xJ)P[X,,.ledx] ~P[X".leA]-+O (3.21) 
l~l JE 

as n -+ 00 by (3.19). 
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From the elementary expansion 

10g(1 + z) = z(1 + e(z», le(z)1 ~ Izl if Izl ~ 1/2 

we have 

I-IOg'l'~Jf) - ~ L (l - e-f(kn-',x)P[Xn,1 Edx]1 

~ f (r (1 - e- f(kn-',x)P[Xn,l E dX])2 
k=l JE 

(for n sufficiently large) 

~ (sup r (1 - e-!(kn-',x)P[Xn,l E dX]) 
k:20 1 JE 

X f r (1 - e-!(kn-',x)P[Xn,1 Edx] -+ 0 
k=l JE 

as n -+ 00 by 3.20 and (3,21), Therefore if(3.l9) holds 'I'df) -+ 'I'~(f) by (3,20) 
since the right side of (3,20) is -log of the Laplace functional of PRM with 
mean measure ds x dll. 

Conversely if we know 'I'~ .. (f)-+'I'~(f) for all fECi([O,oo) x E), set 
f(s, x) = l[o,1](s)g(x) where 9 E Ci and we get 

'I'df) = E exp { - ktl 9(Xn,k)} -+ exp { - L (1 - e-g)dll}. (3.22) 

Note this f is not in C:([O, (0) x E) but by writing 

h,(s)g(x) ~ f(s, x) ~ hi(s)g(x) 

where 0 ~ h,(s)f 1[0, 1 1 (s), hi(s)! l[o,1](S) as 1-+ 00 for h,± E Ci([O, (0» we get 
(3.22) by a standard approximation argument. Now (3,22) says I:=1 eX ... k 

converges weakly to PRM(Il) and so (3.19) follows by the discussion in the 
warm-up. 0 

Propositions 3.19 and 3.21 will be adequate for almost all our needs in the 
next chapter. However, for many limit theorems involving point processes, 
particularly in extreme value theory of dependent stationary sequences (cf. 
Leadbetter, Lindgren, Rootzen, 1983), the following striking result of Kallen­
berg has been very useful. (Cf. Kallenberg, 1983; Jagers, 1974.) 

Call a point process e simple if its distribution concentrates on the simple 
point measures of Mp(E). This means 

p[e({x}) ~ 1 for all xEE] = 1. 

Proposition 3.22. Suppose e is a simple point process on E and ff is a basis of 
relatively compact open sets such that Y is closed under finite unions and 
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intersections and for I e or 

p[~(aI) = 0] = 1. 

If en, n ;?: 1, are point processes on E and for all lEfT 

(3.23) 
n .... oo 

and 

(3.24) 
n .... oo 

then 

Remark. Typically if E is Euclidean, fT consists of finite unions of bounded 
rectangles. 

Before the proof we need to develop a uniqueness result which essentially 
says that the distribution of a simple point process ~ is uniquely determined 
by knowledge of p[e(I) = 0], I E fT. 

For me Mp(E), if S is the support ofm we may write 

m = L cre)'r 
)'r eS 

where Cr are non-negative integers, Cr ;?: 1, and Cr represents the weight or 
multiplicity given location Yr. Define T*: Mp(E) -+ MP(E) by 

T*m = L eYr =: m*, 
yreS 

(3.25) 

so that by construction m* is simple. Later we will show that T* is measurable 
(in fact more will be shown). Now the uniqueness result will be stated and 
proved. 

Proposition 3.23. Suppose eio i = 1,2 are point processes on E, and fT is a basis 
of open, relatively compact sets closed under finite unions and intersections. 
Then T* defined by (3.25) is measurable from (Mp(E), (1({meMp(E): m(l) = O}, 
lEfT» into «M p(E),..It p(E» and if 

for all lEfT, then 

P[~1(l) = 0] = P(~2(I) = 0] (3.26) 

J:* ~ J:* "1 -"2 

PROOF OF PROPOSITION 3.23. Set 

~ = {{m E Mp(E): m(l) = O}, lEfT}. 
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First of all observe that ~ is a n-system. It is closed under finite intersections 
because 

{m: m(ll) = O} II {m: m(l2) = O} = {m: m(ll v 12) = O} 

and since I l' 12 e ff implies I 1 V 12 e ff by assumption, this last set is in ~. 
Let ~ := po C;;l be the distribution of C;i' Assumption (3.24) says Pl = P2 

on the n-system ~ and hence by Dynkin's theorem we have Pl = P2 on O"(~ 
(cf. Exercise 3.1.3). 

We now must check T* is a measurable map from 

(M,,(E),O"(~) .... (M,,(E),.A,,(E» 

and as in Proposition 3.2 it suffices to check for each Ie ff that 

Tl*: m .... m*(/) 

is measurable from (M,,(E), O"(~) .... {O, 1, ... }, this being much easier than 
checking the measurability of T* directly. Since I is relatively compact, it is 
possible for each n to cover I by a finite number of sets A",} e I, 1 5. j 5. k" such 
that the diameter of A",} = sUP,x,yeAn.JP(X,y) is less than n- l • Furthermore we 
may suppose the {A",}; 1 5.j 5. n}":i! 1 family is nested so that A"+l,i c A",i for 
some i. Thus 

kn 

Tl*m = m*(I) = lim f L (m(A,,) AI). 
n~CXl j=l 

Defining T2*m = meA,,) A 1 we have 

(T2*)-l({0}) = {m: m(A",j) = O}eO"(~ 
so that T2* and hence Tl* is O"(~ measurable as required. 

It is now easy to prove C;! = C;!. We have for BeM,,(E): 

P[c;!eB] = p[T*el eB] = p[el e(T*)-l(B)] = Pl«T*)-l(B». 

Since (T*)-l(B)eO"(~ and Pl = P2 on O"(~), the preceding equals 

P2«T*rl(B» = pre! e B]. 0 

PROOF OF PROPOSITION 3.22. Condition (3.24) implies that {e,,} is tight since 
for Ie ff we have by Chebychev's inequality 

lim limsup p[e,,(I) > t] 
t-too "-+00 

5. lim limsup C l Ee,,(/) = lim C 1 Ee(I) = 0 
' .... 00 

and therefore by covering any compact K with a finite number of I's from ff 
we get 

lim limsup p[e,,(K) > t] = 0 

which is equivalent to tightness. (Cf. Lemma 3.20 and Exercise 3.5.2.) 
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From tightness we have for any subsequence {n"} that there exists a further 
subsequence {n'l c {nil} such that {en'} converges weakly to a limit which we 
call fl. From Proposition 3.14 f/ must be a point process. We need to know 
two facts about ,,: 

"is simple (3.27) 

and 

P[WJA) = 0] = 1 implies p[f/(aA) = 0] = 1 (3.28) 

for any relatively compact A. Accept these two facts as true temporarily. 
From (3.28), for IE!T, the map m -+ m(l) is a.s. continuous with respect to f/ 
(Proposition 3.12(ii» and thus 

en'=" 
in M p(E) entails for IE!T 

en' (I) = ,,(1) 

in ~ so that 

p[e .. ·(l) = 0] -+ P[f/(l) = 0]. 

On the other hand, we have assumed 

so that 

Hence 

P[en(l) = 0] -+ p[e(I) = 0] 

p[e(I) = 0] = P[f/(I) = 0]. 

=" 

(e* is assumed simple) 

(Proposition 3.23) 

(3.27). 

So any subsequential limit " of {e .. } has the property" ! e and hence ell = e. 
So it only remains to prove (3.27) and (3.28). 

We check (3.28) first and this will be proved if we show for any compact K 

(3.29) 

since aA is compact for A relatively compact. From the approximation Lemma 
3.11, there exist}jE ct(E) and compacta Kj such that asj -+ 00 

Therefore 

lK ::s;; }j ::s;; lK) lK' 

P[,,(K) = 0] ;?! P[f/(}j) = 0] 

= P[f/(}j) S; 0]. 
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Since /;".(jj) => ,,(ij) and {t: t ~ O} is closed we get from (3.17) that the preceding 
is not less than 

~ limsup p[e".(jj) = 0] 
"· .... 00 

~ limsup p[en·(Kj ) = 0] 
,,' ..... CX) 

and because /T contains a basis, there exist Ij E /T such that Kj C Ij! K. The 
previous limsup thus has a lower bound of 

~ limsup p[ell.(/j ) = 0] 
,.· .... 00 

(from 3.23) 

and since e(lj)! e(K) the proof of (3.29) is complete. 
Now concentrate on (3.27). To show,., is simple we pick a relatively compact 

IE /T and show 

P[" has a multiple point in I] = o. (3.30) 

If (3.30) is true, we can cover E with a countable collection of relatively 
compact sets from /T and easily replace I with E in (3.30). 

Now the probability on the left of (3.30) is 

P[,,(l) > ,.,*(/)] = P[I,,(1) - ,,*(1)1 > 1/2] 

S 2(E,,(1) - E,,*(I)). 

However /;"" => " and the already proven (3.28) imply as before that 

p[e(l) = 0] = P[,,(J) = 0] 

for all J E /T so that by Proposition 3.23 we have e ~ ,,*. Thus for J E /T 

Ee(l) = E,,*(J) ~ E,,(J) 

and by Fatou's lemma this is 

~ liminf Een·(/) ~ limsup Een·(l) 

= Ee(l) 

this last step following by assumption (3.24). We therefore conclude E'1(I) = 
E,,*(/), whence 

P[,.,(/) > ,.,*(1)] = 0 

as desired. 

EXERCISES 

3.5.1. For random measures en, e we have 

e .. => e in ..I{+(E) 
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iff for all fee; (E) 

3.5.2. The sequence of random measures gIl} is tight in .I(+(E) iff for every relatively 
compact Be" 

lim Iimsup p[e,,(B) > t] = O. 

3.5.3. Let X"' n ~ 0 be random elements of (S, 9') and suppose X" => Xo in S. Suppose 
h", n ~ 0 are real valued, uniformly bounded, and continuous with h" -+ ho 
locally uniformly. Show h,,(X,,) => h(Xo) in R. 

3.5.4. In the converse to Proposition 3.21 prove the map 

L 6(tk.M -+ L 1[o.1)(tt)6Jk 
k t 

from M,,([O, 00) x E) -+ M,,(E) is a.s. continuous. 

3.5.5. If e is PRM(Jl) and Jl is atomless, what is a suitable IF for Proposition 3.221 (cr. 
Exercise 3.3.3.) 

3.5.6. Prove that if e is a random measure then 

11 = {Ae": PwaA) = 0] = I} 

contains a topological base. Thus the difference in hypotheses for IF between 
Propositions 3.22 and 3.23 is not theoretically significant (cf. Lemma 3.15) 
(KalJenberg, 1983, pages 32-33). 

3.5.7. Let {Xt .", 1 ~ k ~ n,n ~ I} be random elements of(E,") and suppose for each 
n, {Xt .", 1 ~ k ~ n} is iid. For 0 < a" roo and some Jle.l(+(E) show 

in .1(+ (E) iff 

Jl..:= a;lnP[X1."e·]..!. Jl (Resnick, 1986). 



CHAPTER 4 

Records and Extremal Processes 

Many natural questions about extremes need a stochastic process context for 
precise formulation.lmagine observing Xl' X 2 , ••• at a rate of one per unit of 
time. Suppose-while observing we compute the maxima M l , M 2 , •••• We may 
ask how often or at what frequency does the maximum change. A change in 
the maximum means a record was observed, a record being a value larger than 
previous values. So the previous question is equivalent to asking how often 
records occur. Also, at what indices do records occur and do the actual record 
values have any pattern? 

These and related questions requiring a stochastic process point of view are 
dealt with in this chapter for an iid sequence {XII' n ~ I}. The careful study of 
point processes in the previous chapter will pay rich dividends, as many 
processes which explain the time varying behavior of extremes are based on 
simple point processes. 

In Section 4.1 the structure of records times is explored. The Markov 
character of {M,,} is discussed. The indices {L(j),j ~ I} where the process 
{Mil} jumps are called record times and the values {MLUl,j ~ I} = {XL(.i)' 
j ~ I} are the record values, i.e., those values larger than previous ones. When 
the underlying distribution is continuous, the record values form a Poisson 
process and the record times are asymptotically Poisson in a sense to be made 
precise. There is a very elegant structure to record value processes, and ideally 
this brief description will whet your appetite for the more detailed results to 
come. 

The stochastic process orientation is temporarily suspended in Section 4.2, 
where we return to the analytic arena to classify the class of limit laws for 
records and the domains of attraction of these limit laws. Surprisingly (at first 
glance) these limit laws are different from the Gnedenko classes given in 
Theorem 0.3. 

In Section 4.3 we introduce a class of continuous time stochastic processes 
called extremal processes. Any sequence of maxima {Mil, n ~ I} of iid random 
variables can be embedded in a continuous time extremal process {Y(t), 
t > O} so that 
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in Roo. Sometimes structural properties stand out more clearly in continuous 
time than in discrete time, and thus our pattern of investigation could be to 
discover some fact about {Y(t),t > o} and then see how it applies to {M,,}. 
Also it will be shown that if the underlying distribution is in a domain of 
attraction, the sequence of maxima converges (in a powerful stochastic process 
sense) to a limiting extremal process and thus many properties of extremal 
processes will be true asymptotically for {Mil} through the magic of the 
invariance principle. 

Thus extremal processes are important because of finite time structural 
results arising out of embeddings and because of asymptotic theory and weak 
convergence applications. Both uses of extremal processes require detailed 
knowledge of the properties of extremal processes, and these results are given 
in Section 4.3. In Section 4.4 the basic weak convergence results are given, and 
many applications from the continuous mapping theorem (see Section 3.5) are 
discussed. 

Section 4.4.1 is a technical section which discusses how to metrize D(O, (0) 
(the class of functions on (0, (0) which are right continuous with finite left 
limits), which is the natural space where extremal processes live. You are 
advised to skim this section, especially if your knowledge of weak convergence 
at the level of Billingsley (1968), say, is good. 

The weak convergence techniques in Section 4.4 are based on the point 
process method: In order to prove that (M" - bIll/a,. converges in a stochastic 
process sense, we prove that the sequence of point processes with points 
{(k/n, (XI: - bIll/a,,), k ~ I} converges as n -+ 00 to a limiting point process and 
then apply a suitable functional to get weak convergence of extremes. This is 
a powerful technique and in Section 4.5 we apply it to an important class of 
stationary dependent variables, namely the infinite order moving averages 

{Xn = j2 CjZ,,_j,n ~ I} 
}--OO 

where {cj } are real constants and {Z", - 00 < n < oo} are iid with a distribu­
tion whose tails are regularly varying. 

In the last section we discuss recent results about the process of k-records, 
i.e., those observations which have relative rank k upon being observed. If we 
observe over n time units the collection of k-record processes for 1 :s; k :s; I, 
we obviously have more information than if we just note records, and in 
restricted circumstances the k-record process can be of inferential use. For 
different k, the point processes based on k records are iid, a surprising and 
very attractive result. In Section 4.6 we also discuss behavior of records when 
the underlying distribution is not assumed continuous. 

The importance of extremal processes became apparent with the simul­
taneous appearance of the two articles by Dwass (1964) and Lamperti (1964); 
the Dwass paper was followed by Dwass (1966, 1974). See also Tiago de 
Oliveira (1968). The study of record times was stimulated by Renyi (1962) 
and Dwass (1960). The importance of Poisson processes was emphasized 
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in Pickands (1971), Shorrock (1972, 1973, 1974,1975), Resnick (1974, 1975), 
and Weissman (1975a, b, c, 1976). The use of embeddings and various 
strong approximations was discussed in Shorrock (loc. cit.), Resnick (loc. 
cit), Pickands (1971), and Deheuvels (1981, 1982a, 1983). Useful surveys are 
Resnick and Rubinovitch (1973), Resnick (1983, 1986), de Haan (1984a), 
Goldie (1983), and Vervaat (1973a). 

4.1. Structure of Records 

Let us recall some relevant facts from the theory of Markov processes (Brei­
man, 1968, Chapter 15). Let {Y(t), t e T} be a Markov process with state space 
R The index set T will be either (0, (0) or {I, 2, ... }. Suppose there are 
stationary transition probabilities and there is a family of Markov kernels 
K,(x, B) for t e T, x e ~, B e £i'(~) and 

P{Y(t + t)eBI Y(s),se T,s S; t} = Kt(Y(t),B) 

for all t e T, t + t e T, t > 0, B e £i'(~). The finite dimensional distributions of 
the process Y have the form 

P[Y(to)edyo, Y(tdedYl'"'' Y(tk)edYk] 

= 1to(dYo)K,,_,o(Yo, dYl)'" K'k-'k-I (Yk-l, dYk) (4.1) 

for tie T, i = 0, ... , k, and 1to is the distribution of Y(to). For our purposes we 
will take Y to be a pure jump process. This means there is a sequence (possibly 
doubly infinite for the case T = (0,00» of jump times {t,,} and tIl < t,,+h {t,,} 
has no cluster point, and yet) is constant for tIl ~ t < t,,+l' In case T = (0,00) 
we assume Y has right continuous paths. The times between jumps when 
T = (0, (0) are conditionally exponentially distributed: Given that the process 
is in state x, the holding time has an exponential distribution with parameter 
.l(x). Given that the process is finished holding in state x, it moves to a new 
state in set B with probability II(x, B). The relation of K,(', .) to 1(·) and 
11(', .) is 

K,(x, {x}) = 1 - A,(x)t + oCt), t -+ ° (4.2) 

K,(x, B) = (A,(x)t + o(t))II(x, B) t -+ 0, X e fJC. (4.3) 

When T = {I, 2, ... }, the holding time distributions are conditionally geo­
metrically distributed. 

The process {Y(t,,)} is Markov with discrete index set, and it has stationary 
transition probabilities 11 (x, B): 

P[Y(t,,+l)eBIY(t,,) = x] = II(x,B). 

Observe that {yet,,)} represents the succession of states visited by the process 
{Y(t), te T}. Given {y{t,,)}, the variables {1:1I+1 - 1:,,} are conditionally indepen­
dent and exponentially distributed in the case T = (0, (0): 

P[1:",+l-1:",>xl{Y(1:,,)},{1:k+l-1:k,k-:/=m}] =e-A(Y(tmllx. (4.4) 
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In the case T = {I, 2, ... } the variables {'tll+l - 'til} are conditionally indepen­
dent and geometrically distributed. 

Now let {X", n ~ 1} be iid with common distribution function F. For n ~ 1 
set M" = V7=1 Xi and consider the stochastic process {Mil, n ~ I}. Let us write 
down the finite dimensional distributions of this process. In the bivariate case 
we have for Xl < X2, tl < t2, and t l , t2 non-negative integers 

P[MI' ::::;; xl,M,,::::;; X2] = P[MI' ::::;; Xl' ._V Xl::::;; X2] 
)-'.+1 

In case Xl > X 2 , 

so in general 

P[M" ::::;; Xl' M'2 ::::;; X2] = F"(Xl /\ X2)F'2- 1'(X2)' 

Following this pattern we get for the k-variate case 

P[M,.::::;; x l ,M,2 ::::;; x2, .. ·,M,k ::::;; Xl] 

for tl < t2 < '" < tk , k ~ 1, and tj non-negative integers. 

(4.5) 

Comparing (4.5) and (4.1) we see that {M,,} is a Markov process with 
stationary transition probabilities. The transition kernels are given by 

{ FI(Z) 
K,(x,( -<Xl,z]) = 0 

z~X 

z <x. 
(4.6) 

(This is checked by substituting (4.6) into (4.1) to verify (4.5).) The paths of 
{Mil} are constant except for those indices n such that Mil> MII - l , which are 
call record times. Define L(t) = 1 and inductively for n ~ 1 

L(n + 1) = inf{j > L(n): Mj > ML(II)}' 

So the record times {L(n), n ~ I} are the times when the Markov process {Mil} 
jumps. The succession of states visited {XL(II)' n ~ I} = {ML(II), n ~ I} is called 
the record values and constitute the embedded Markov process of states 
visited. 

Proposition 4.1. (i) {X L(II)' n ~ I} is a Markov process with stationary transition 
probabilities and for n ~ 1 

n(x,(y, <Xl» = P[XL("+1) > yIXL(II) = x] 

{i1 - F(y»/(l - F(x» y>x 
y::::;; x. 

(ii) If F(x) = 1 - e-", x > 0, then {XL(II),n ~ I} are the points of homogeneous 
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PRM on (0, (0). This means 

{XL(n),n ~ I} ~ {rn,n ~ I} 

in Roo where rn = El + ... + En and {Ej,j ~ 1} are iid, P[Ej > x] = e-x , x> O. 
(iii) Suppose R(t) = -log(l - F(t» and set XI = inf{y: F(y) > O}, Xo = 
sup{y: F(y) < 1}. Suppose F is continuous. Then R: (XI' xo) --+ (0, (0) so that 
R+-: (0,00) --+ (XI> xo). Then {XL(n), n ~ I} are the points of P RM on (x" xo) with 
mean measure 

R(a, b] = R(b) - R(a) 

for XI < a s b < xo. 
(iv) If F is continuous, {XL(k),L(k + 1) - L(k),k ~ 1} are the points of a two 
dimensional PRM on (XI' xo) x {1, 2, 3, ... } with mean measure 

Jl*«a, b] x {j}) = (Fj(b) - Fj(a»/j 

for XI < a < b < xo,j ~ 1. 

PROOF. (i) Since {XL(n)} is the embedded jump chain of {Mn} we already know 
that {XL(n)} is Markov with stationary transitions. To compute n(x,dy) 
observe for y > X and 1 - F(x) > 0 

n(x,(y, (0» = P[XL(2) > yIXL(l) = x] 
00 

= L P[XL(2) > y,L(2) = nIXL(l) = x] 
n=2 

00 

= L Fn-2(x)(1 - F(y» = (1 - F(y»/(1 - F(x». 
n=2 

(ii) In case F(x) = 1 - e- X we have for y > X 

n(x,(y, oo» = (1 - F(y»/(l - F(x» = exp{ -(y - x)} 

= p[rn+! > y I rn = xl 

Since also XL(l) = Xl 4 r l , we have 

{XL(n),n ~ 1} 4 {Ij,j ~ 1}, 

since two Markov sequences with stationary transition probabilities are equal 
in distribution if their initial distributions and transition kernels coincide. 
(iii) If X is a random variable with distribution F then the variant of the 
probability integral transform discussed in 0.2 gives R+-(E d 4 Xl and 
similarly 

{~R+-(Ei),n ~ I} 4 {Mn,n ~ I}. 

Since R+- is nondecreasing 
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Furthermore R continuous makes R+- strictly increasing and hence 

{R+-(EL(nl),n ~ 1} 4, {XL(nl,n ~ 1} 
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(4.7) 

where notation has been slightly abused; the L{n) on the left refers to record 
times of {Ej,j ~ I}, and the L(n) on the right refers to record times of 
{Xi,j ~ I}. {Observe that without the assumption that R+- is strictly in­
creasing, there would be the potential that intervals of constancy of R+- would 
cause records of {Ei} to be ignored in the left side of (4.7).) 

Notice that {R+-(EL(n)} are the points {EL(n)} of homogeneous PRM trans­
formed. A glance at Proposition 3.7 assures us that {R+-{EL(n)} are the points 
of PRM with mean measure m 0 (R+-r 1 where m is Lebesgue measure. For 
X, < a S b < Xo 

mo (R"T1{a,b] = m{s: a < R+-(s) S b} 

and applying 0.6(c) this is 

= mrs: R(a) < s s R{b)} = R(b) - R{a). 

(iv) We have from the discrete time analog of (4.4) that 

P[L(n + 1) - L(n) = j/{XL(jI,j ~ OJ, {L(i + 1) - L{i),i # n}] 

= P[L{n + 1) - L{n) = j/XL(na 

= F(XL(n)i-1(1 - F(XL(II») (4.8) 

for j ~ 1. From (4.8), the fact that L~=1 8xUO) is PRM{R), and Proposition 3.8 
we conclude that 

00 

L 8(XUo).L(n+l)-L(n)) 
n=1 

is PRM on (x" xo) x {I, 2, ... } with mean measure J.l* given by 

J.l*«a, b) x {j}) = r R(dx)F(x)i-1(1 - F(x» 
J(a.b) 

= r yi-1dy = (Fi(b) - Fi(a»/j. 0 
JF(a).F(b)] 

Corollary 4.2. Suppose F is continuous. Define for x, < t < Xo 

,,(t) = inf{n: Mil> t}. 

Then ,,(t) is a process with independent increments and for x, < a < b < Xo 

P[,,(b) = k] = pk-1(b)(1 - F(b)) k ~ 1 

P[,,(b) - ,,(a) = 0] = (1 - F{b»/(1 - F(a)) 
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andfor n ~ 1 

( 1 - F(b») P[,,(b) - Plea) = n] = 1 _ F(a) F(a, b]Fn-1(b). 

PROOF. Observe that 
00 

,,(b) - Plea) = #{n: MnE(a,b]} = L (L(k + 1) - L(k)Gxl.(O,(a,b] 
1t=1 

and if N* = Lk=1 G(Xl.(o,.L(H1)-L(")) then 
00 

,,(b) - Plea) = L jN*«a,b] x U})' 
j=1 

Since N* is PRM the independent increment property of" follows from that 
of N*; cf. property (b), Section 3.3.1. 

Next we have that for k ~ 1 

[,,(b) ~ k] = [M" > b] 

so that 

P[,,(b) ~ k)] = 1 - F"(b) 

and 

P[,,(b) = k) = (1 - F"(b» - (1 - F"-1(b» 

= F"-1(b) - F"(b) = F"-1(b)(1 - F(b». 

Therefore, taking generating functions gives for 0 ~ s ~ 1 
00 

Es'l<") = L s"F"-1(b)(1 - F(b» = s(1 - F(b»/(1 - sF(b». 
t=1 

From the independent increment property 

and thus 

Es"(") = E(s("(")-,,(II»S'l<II» = Es("(")-'I<II» ES,,(II) 

Es("(")-,,(II» = Es'll")/Es'llll) = (1 - F(b») 1 - sF(a) 
1 - F(a) 1 - sF (b) 

00 

= «I - F(b»/(1 - F(a)))(1 - sF (a» L stF"(b) 
"=0 

= (1 -F(b») {f s"F"(b) - f S1+1 F"(b)F(a)} 
1 - F(a) "=0 "=0 

= (1 -F(b») {I + f s"(F"(b) - F"-1(b)F(a»} 
1 - F(a) "=1 

= (1 -F(b») {I + f S"F"-1(b)F(a,b]} 
1 - F(a) "=1 

and the desired formulas are obtainable as coefficients of st. o 
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We now study the sequence {L(n), n ~ I} and the point process generated 
by this sequence. The next pearl is a basic structural result. See Dwass (1960, 
1964) and Renyi (1962). 

Proposition 4.3. Let {Xn , n ~ I} be iid with common continuous distribu­
tion F(x). Let Rn be the relative rank of Xn among Xl' ... , Xn; i.e., Rn = 

Li=l i[X,~Xnl' Thus 

Rn = 1 iffXn = Mn, 

= 2 iff Xn is the second largest among Xl' ... , X n, 

and so on. 
(i) {Rn, n ~ I} is a sequence of independent random variables with 

P[Rn = k] = n-l , 1 :5: k ~ n. 
(ii) The events 

Aj = [Xj is a record] = [Rj = 1], j ~ 1 

are independent and 
PAj =r1• 

PROOF. The second result follows directly from the first, which is checked as 
follows: Since ties among the observations occur with probability 0 (F is 
assumed continuous) each of n! orderings Xi, < ... < Xin is equally likely 
(il" .. , in is a permutation of 1, ... , n). There is a one to one correspondence 
between each such ordering and a realization of R 1 , ••• , RH• For example when 
n=3 

corresponds to the realization 

Rl = 1, 

So each realization of R 1 , ••• , Rn has equal probability lin!; i.e., 

P[R1 = r1 , ... ,Rn = rn] = lin! 

for riE{I, ... ,i}, i = 1, ... , n. To get the mass function of Rn we sum over 
r1 , ••• , rn- 1 remembering that ri has i possible values. Hence 

P[Rn = rn] = L P[R1 = r1, .. ·,Rn = rn] 

L lin! = (1' 2· ... · (n - l»/n! = lin. 

Hence P[Rt = r1 , ... , Rn = rn] = lli=1 P[R i = rtJ showing {Rn, n ~ I} is a 
sequence of independent random variables. 0 

Define now the point process p. on (0, <X) by 

00 00 

p.(') = L eL(n) = L l .. b(·) 
n=l j=1 
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so that 1l([1, n]), the number of records in the first n observations, is a sum of 
independent Bernoulli random variables. This fact can be used to obtain 
asymptotic behavior of 1l[1, n] or L(n) as done by Renyi (1962). We give one 
argument in this classical vein but prefer to await discussion of extremal 
processes for a fuller treatment. Also it is noteworthy that whereas {XLI")} are 
the points of PRM, Il is only asymptotically Poisson, a statement which will 
be made precise later. This is explored both as a corollary of Proposition 4.3 
and also later in connection with extremal processes. 

Corollary 4.4. If F is continuous then 

1l([I, n])j1og n -+ 1 a.s. 

PROOF. Observe that EIA) = I/j and 

Var 1AJ = EllJ - (EIA/ = I/j - III = (j - 1)/l. 
Since 1l[1, n] = Lj=l lAI, consider the series Lf «IAj - r 1 )j1ogj). We have 

00 00 00 

L Var«IA. - r 1 )j1ogj) = L (Var lA.)/(logj)2 = L (j - 1)/(jlogj)2. 
1 J 1 J 1 

Since (j - 1)/(jlogj)2 '" I/j(logj)2 is summable (approximate by 

100 x-1(logx)-2dx < (0) 

we have by the Kolmogorov convergence criterion (Feller, 1971, p. 243) that 

00 

L «IA - r 1 )/(log j) converges almost surely. 
1 :J 

Applying the classical Kronecker lemma we get 

" L(IA - rl) 
1 J = 1l[1, n] _ 1 + 0(1) -+ ° 

logn logn 
a.s. 

since Li r 1 '" log n as n -+ 00. o 

The next result says the point process of record times is asymptotically 
Poisson. 

Corollary 4.5. Let F be continuous. Define the point processes Il" on (0, (0) by 
00 00 co 

Il,,(-) = L 6L(j)(n' ) = L 6,,-IL(j)(·) = L lA,6,,-II(·)· 
j=l j=l 1=1 

Let Iloo be PRM on (0, (0) with mean measure of (a, b] = log (bla). Then 

in M,,«O, (0». 
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PROOF. We show 'PpJf) -+ 'Pp.,,(f), for all fe C:«O, 00». We have that 

'PpJf) = E exp {- r f(x) .f l..t,en-ll(dX)} 
Jo.<Xl) .=1 

= Eexp { -It f(n- 1i)1...t} 

<Xl 

= n Eexp{ -f(n-1i)1...tJ 
1=1 

<Xl 

= n (e-f (n- 1i)i-1 + (1 - i-I» 
1=1 

<Xl 

= n (1 - i- 1(l - e-f(n-'I»). 
j=1 
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As an alternative to taking logarithms and expanding as in Proposition 3.21 
we use the elementary inequalities 

III aj - II bll ~ it la j - bll (4.9) 

valid for lad ~ 1 and Ibll ~ 1, 1 ~ i ~ q, and 

Ie-x - 1 + xl ~ x 2/2 (4.10) 

valid for x > O. (For (4.9) suppose q = 2, write a1 a2 - bl b2 = (a 1 - bda2 + 
b1 (a2 - b2), take absolute values, and use induction. For 4.10 write 
11 - e-X - xl = IJo(e-U - l)dul ~ Jole-u - 11du ~ Joudu.) Set xI,n = 
i-1(1- exp{ -f(i/n)}) and we have 

l'PpJf) -l'l exp{ -XI,n} 1= Il'l (1 - XI,n) -l'l exp{ -XI,n} I 

Now 

(i-1(1 - e-f(n-'I)W ~ i- 2 

which is summable, and for fixed i, 

lim (i-1(1 - e-f (n- I I»)2 = 0 
n .... <Xl 

because feC:«O, 00» has support in some interval [a,b], a> O. Therefore 
by dominated convergence, the series in (4.11) goes to zero as n -+ 00. 

This means that if we set 
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00 
m" = L n-1e"_.;(·) 

i=1 

'P1''<f) = 0(1) + exp { -i~ i-1(l- exp{ -f(i/nm} 

(1) { f 1 - exp{ - f(i/n)} -I} 
= 0 + exp - L.. n 

;=1 i/n 

= 0(1) + exp {- r 1 - exp{ -f(x}} m"(dX)}. 
Jo,OO) x 

Observe that m" ~ m, Lebesgue measure (cf. Exercise 3.4.14) since for 
fEet «0, (0» 

00 
m"(f) = L f(i/n)n- 1 

i=1 

which we recognize as a Riemann approximating sum to an integral and thus 

m"(f) -+ r f(x)dx = m(f). 
Jo,oo) 

It therefore follows from vague convergence that 

r (1 - e-J(X» m,,(dx) -+ r (1 _ e-J(X» dx 
Jo,OO) X Jo,OO) x 

since (1 - e-f(x»)!x E ct «0,00» and m" ~ m. Our conclusion is 

lim 'PI'Jf) = exp {- r (1 - e-f (X»x- 1 dX} 
"-00 Jo,OO) 

as required for J.l" = J.loo· o 

EXERCISES 

4.1.1. (a) If {E.,n ~ 1} are iid with P[E t > x] = e-x, x> 0 show using the Borel­
Cantelli lemma that 

limsup E./Iog n = 1 a.s. 

(b) Show 

lim E L(.)/n = 1 a.s. 
'-00 

(c) Show 

lim XL(.)/R"'(n) = 1 a.s. 
'-00 

provided for all t E IR 
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lim R"'(s + t(s 10glogs)1/2)/R"'(s) = 1. 

The last condition is equivalent to 

lim (R(tx) - R(t»)/(2R(t)loglogR(t»1/2 = 00. 

Hint: Use the representation (4.7) and the law of iterated logarithm for partial 
sums. 

(d) What is the norming constant in (c) when the underlying distribution F is 
normal? 

4.1.2. For two random variables X and Y write X >P Y (X is stochastically larger than 
Y) if P[X > x] ~ pry > xl Show if X > Y then there exists X· and Y· defined 
on the uniform probability space with 

X~X·, Y~ Y· 

and X· ~ Y· a.s. (Use the probability integral transform.) 
Construct examples where 

(a) X L(n+1) - XL(n) >P XL(n) - XL(n-l) 

and 

(b) XL(n+l) - XL(n) P < XL(n) - XL(n-l) 

(Try the Weibull distribution.) 
(Duane Boes, unpublished comments) 

4.1.3. When is ,,(t) = inf{n: Mn > t} stochastically continuous? (Stochastic continuity 
means if t -+ to then ,,(t).!. ,,(to). If" is not stochastically continuous it has fixed 
discontinuities.) 

4.1.4. Define the point process 

0(·) = ~>M. 

where {Xn, n ~ 1} are iid from a continuous df F(x) and Mn = V7=1 XI. Compute 
the Laplace functional of o. Hint: Write 

o = ~::<L(k + 1) - L(k»ex .. ". 

Relate this to the {,,(t)} process (de Haan and Resnick, 1982). 

4.1.5. Kendall's tau: A natural distance between two orderings of the objects 
{al, ... ,an } is 

T = # (discordant pairs) 

where 

(ai' aJ) is a discordant pair if ai precedes aj in one order but not the other. 

For instance if the ranks of a I' ... , a4 are 

1st order 2, 1,4, 3 
2nd order 2, 4, 1, 3 

then T = 5. To get a permutation distribution for T suppose one order is 
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a l' ... , an ("natural order") and the other is a random reordering of the natural 
one. Let 

lj-l = # {objects among a l , ... , aj - l which aj precedes in second ordering}. 

Then lj-l takes values 0, 1, ... , j - 1 each with probability I/j and Pi} are 
independent. Check 

i 
Var Yj = 12 {i + 2}, EY; = i12, 

n 
ET = 4(n - 1), 

Var T = n(n - 1)(2n + 5)/72. 

The rank statistic is 7: = 1 - 4T/(n(n - 1» and 7: is approximately 

N 0, . ( 2(2n + 5») 
9n(n - 1) 

4.1.6. For any k > 0 show 

Hint: What is the mean measure of J1oo(k(·»? 

4.1.7. Prove Proposition 4.l(iii) directly from Proposition 4.1(i) by computing the 
Laplace functional of ~;:"=l ex . Hint: Let N(x) be the number of records in i...J UII' 

(-oo,x]. Using Proposition 4.l(i), what is 

P[XL(l)Edx l , ... , XL(n)Edxn; N(x) = n] 

for Xl < ... < xn • Use this to compute 

and then let X --> 00. 

4.1.8. Let {Xn,n ~ l} be iid with common distribution F(x). Prove that the total 
number of records is finite itT the right endpoint Xo of F is an atom: F(xo - ) < 1. 
(Recall Xo = sup{x: F(x) < I}) (Shorrock, 1970). 

4.2. Limit Laws for Records 

Here we consider the class of possible limit laws for XL(,,) and also domain of 
attraction criteria. It is striking that neither the limit laws nor the domains 
are the same as for maxima. 

Suppose F is continuous and return to relation (4.7). Since the records 
{EL(,,)} from an iid exponentially distributed sequence are equal in distribution 
to {rIll, the points ofa homogeneous Poisson process on [0, (0), we may write 

{XL(n),n ~ I} 4, {R<--(r,,),n ~ 1}. (4.12) 

Suppose next that there exist (x" > 0, /3" E IR, such that for some nondegener­
ate distribution G 

P[(XL(,,) - /3.)/(X" ~ x] -+ G(x). (4.13) 
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Therefore from (4.12) and (4.13) 

P[XL(n) :::;; IXnX + Pn] = P[R<-(rn) :::;; IXnX + Pn] 

= p[rn :::;; R(lXnX + Pn)] 

= P[(rn - n)/n I/2 :::;; (R(lXnX + Pn) - n)/n I/2 ] 
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-+ G(x). (4.14) 

However from the central limit theorem 

lim p[(rn - n)/n1/2 ;:5; x] = N(x) 
n .... oo 

uniformly for all x, where N is the standard normal distribution. Therefore 
(4.14) can hold iff there is a nondecreasing function g(x) with more than one 
point of increase such that 

(R(lXnX + Pn) - n)/n I/2 -+ g(x), 

weakly. In this case G is of the form 

G(x) = N(g(x». 

(4.15) 

Convert (4.15) into a convergence with a continuous parameter by setting 
tx(t) = tx[I)' pet) = Pr')' Then 

(R(tx(t)x + P(t» - t)/t I/2 

:::;; (R(IX[I)X + Pr,) - [t])/[t]1!2 -+ g(x) 

and 

(R(tx(t)x + P(t» - t)/t I/2 

~ (R(IXtI)x + Pr,) - ([t] + 1»/([t] + 1)1/2 

= (R(tx[l)x + Pr') - [t]) ( [t] )1/2 _ 1 
[t]I/2 [t] + 1 ([t] + 1)1/2 

-+ g(x) as t -+ 00 

and therefore 

(R(tx(t)x + P(t» - t)/t I/2 -+ g(x). 

If in (4.16) we divide by t instead of t1/2 we may conclude 

R(tx(t)x + P(t» '" t 

as t -+ 00, for all x such that g(x) is finite. Hence 

(R(tx(t)x + P(t» - t)/t1/2 

= RI/2(IX(t)X + P(t» - t l /2)(RI/2(tx(t)X + P(t» + tI/2)/tI/2 

'" 2(RI/2(tx(t)X + P(t» - t 1/2 ) 

as t -+ 00 and so (4.16) is equivalent to 

(4.16) 
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R 1/2 (OC(t)X + P(t» - t1/2 -+ !g(x). 

Define a distribution function H, called the associated distribution, by 

1 - H(x) = exp{ - R1/2(X)}. 

Exponentiating in (4.17) gives 

ell/l(1 - H(oc(t)x + pet»~) -+ e-g(x)/2 

and letting s = e,112 we get s -+ 00 

s(1 - H(IX((lOgS)2)X + P«logs)2» -+ e-g(x)/2 

or equivalently as s -+ 00 

W(IX((log S)2)X + P((log S)2» -+ exp{ - e-g(X)/2}. 

(4.17) 

From Theorem 0.3 we conclude that exp { - e -g(x)/2} must be an extreme value 
distribution and hence up to affine shifts we have either 

or 

or 

where IX > O. 

g(x)/2 = x 

= IX log x 

= -oclog( -x), 

xER 

x>o 

x<o 

Proposition 4.6. (a) The class of limit laws for record values is of the form 

N( -Iog( -log B(x» 

where B(x) is an extreme value distribution and N(x) is the standard normal 
distribution. More explicitly the limit laws are of the following types: 

(i) N(x) 

(ii) N1.,,(x) = {~(IXIOgX) x<o 
x~O 

( ... ) N () = {N( -lXlog( -x» 
111 2." X 1 

x<O 
x~O 

where IX> O. 

(b) A limit law G in (4.13) exists for {XL(II)} iff H = 1 - exp{ _R1/2} is in the 
domain of attraction of an extreme value distribution. Infact G = 

(i) N(x) iff H E D(A). In this case may take 

IXII = R .... (n + In) - R .... (n), PII = R .... (n). 

(ii) N1,,,(x) iff HE D(4),,/2)' In this case we may take 

IXII = R .... (n), p" = O. 
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(iii) N2./J(x) iff H E D('I'/J/2)' In this case we may take 

cx. = Xo - R+-(n), P. = Xo 

where Xo is the (necessarily) finite right end of F(x). 
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PROOF. We only comment briefly on (b), the rest being clear. For instance in 
case (ii) we have 

iff 

P[(XL(n) - Pn)/cxn :s: x] -+ N( -log( -logcl)/J(x))) 

= N(g(x» = N1,/J(x) 

HS(cx((logS)2)X + P((logS)2» -+ exp{ _e-/l(X)!2} = cI)/J/2(X), 

From Theorem 1.11 we may set P(s) = 0 and 

However 1 - H = exp{ _RI/2} so 

(. ~ H)+-(S) = R+-((logS)2) 

and hence 

cx(t) = R+-(t) 

as asserted. 

EXERCISES. Throughout, suppose F is continuous. 

4.2.1. (a) G = Nl~ itT 

Rl/2(X) = c(x) + J:' a(t)/tdt where c(x) ..... CE R 

and 

a(t) ..... a./2 as t ..... 00 

itT 

}. R(tx) - R(x) } 
1m l!2( ) = cx ogx . 

• -CD R t 

(b) Suppose Xo < 00. Then G = N2,IJ itT 

Rl/2(XO - X-l) = c(x) + r Cla(t)dt 

o 
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where c(x) -+ C E IR, aCt) -+ a./2, t -+ 00 

iff 

r R(xo - tx) - R(xo - t) I 
,~~ Rlf2(XO _ t) = -a. ogx for t > O. 

(c) G = N iff 

iff 

iff 

where f is absolutely continuous with density rex) -+ 0 as x -+ Xo and 
c(x) -+ ce IR as x -+ Xo' 

4.2.2. What happens to weak limits of records when 

1 - F(x) = exp{ -(x/(1 - x»}. 

4.2.3. If G = N1.« show 

O:c:;;; x:c:;;; 11 

(4.18) 

If R(x) = (ta.logx)2 show records have limit distribution N1.«. Show (4.18) is 
necessary for G = N1« but not sufficient by considering 

IXl 
Rl/2(X) = - a.(l - cos (log t»r1dt. 

1 2 

4.2.4. Call {XL(n)} relatively stable in probability ifthere exists B. > 0 such that 
p 

XL(.)/B. -+ 1 

as n -+ 00. Show that the following conditions are equivalent and anyone of 
them implies {Xu.)} is relatively stable (assume Xo = (0): 

(i) XL(n)/W·(n)!. 1 
.. I' R(tx) - R(x) 

(n) 1m 1/2() = 00 
x .... '" R x 

(iii) W-((IogX)2)eRVo 
(iv) lim R-(x + cx1f2 )JR-(x) = 1 

for celR. 
(v) Maxima of iid random variables from the associated distribution H(x) = 

1 - exp{ - R lf2(X)} are relatively stable in probability; i.e., 1 - H is rapidly 
varying. 

4.2.5. Suppose Xo = 00. 
p p 

(a) If XL(n)/R-(n) -+ 1 then M./R-(log n) -+ 1. 
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(b) If R(x) = (logx)2, then MnIR-(logn) ~ 1 but {XL(n)} is not relatively stable 
in probability. 

(c) If (4. 13) holds with G = N then {XLI.)} is stable in probability. 

4.2.6. If (4.13) holds write ReDR(G). 
(a) If ReDR(G) and for some extreme value distribution GI , we have FeD(Gd, 

then GI = A. 
(b) Let 

R«(x) = (iPlogx)« 

for x > e, ex > 0, P > 0 and call the corresponding distribution F«. Check 
(i) For ex> 2, R«eDR(N), F«eD(A). 

(ii) For ex = 2, R2 e DR(NI .«), F2 e D(A). 
(iii) For 1 < ex < 2, R«¢DR(NI .y) for any ')I and F«eD(A). Also R«eDR(N). 
(iv) For ex = 1, R«¢D(NI .y) for any ')I, FI eD(cJ>p/2), R«¢D(N). 
Conclude 

D(A) ("\ DR(N) =I- 0 

D(A) n DR(NI .p) =I- 0 

D(A) n DR(N2.p) =I- 0 

for any P > 0 

for any P > O. 

However {M.} can have a limit distribution but not {XL(n)}' 

4.2.7. Let RI/2(X) = XI/2 + tx- I/2sinx, x ~ 1. Then H = 1 - exp{ -RI/2}eD(A) and 
hence R e DR(N). But F = 1 - exp( - R} is not in D(A). 

4.2.8. Let H = 1 - exp{ _RI/2} and suppose F = 1 - exp{ -R} has a differentiable 
density. 
(a) If H satisfies (1.19) then ReDR(NI,2«) and FeD(A). 
(b) If H satisfies (1.20) then R e DR(N2.2«) and Fe D(A). 
(c) If H satisfies (1.24) then R e DR(N) and Fe D(A). 

4.3. Extremal Processes 

For the study of the stochastic behavior of maxima and records, extremal 
processes are a useful tool. 

Let F be a distribution function on IR and define a family of finite dimen-
sional distributions F,' ..... tk(X to ••. , Xl) for k ~ 1, ti > 0, XI E IR, i = 1, ... , k by 

F,' ..... tk(Xt'···,xl ) 

(4.19) 

If we compare (4.19) with (4.5) we see the formulas are the same except that 
in (4.5) the t;'s are restricted to be positive integers. The family (4.19) forms a 
consistent family of finite dimensional distributions so that by the Kolmogorov 
extension theorem there exists a continuous time stochastic process Y = 
{Y(t), t > O} with these finite dimensional distributions. Such a process is 
called an extremal process generated by F or an extremal-F process. 
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The following is a constructive approach to extremal processes: Suppose x, 
and Xo are the left and right endpoints of F. Let N = Lk 8(tk.ik) be PRM on 
(0, (0) x [X"XO] (if either x, or Xo is infinite, change a square bracket to a 
parenthesis) with mean measure (x, < a < b < xo) 

E{N(O,t] x (a,b]} = t(-logF(a)-(-logF(b»). 

Set 

Y(t) = suprA: tk :S;; t} (4.20) 

for t > O. Then this Y process has (4.19) as its finite dimensional distributions. 
This may be readily checked in a manner similar to the development of (4.5). 
In particular 

P[Y(t):S;; t] = P[N«O, t] x (x, (0» = 0] 

= exp{ -EN«O,t] x (x, oo»} = pt(x). 

The reason for the interest in extremal processes is that a sequence of 
maxima of iid random variables can be embedded in an extremal process. If 
{X",n ~ 1} are iid random variables with common distribution F and M" = 
V~=l Xi then as random elements of RaJ 

{M",n ~ I} ~ {Y(n),n ~ 1}. (4.21) 

This is readily checked by noting that if we restrict the t/s in (4.19) to be 
integers, we get (4.5). The sequence {M", n ~ I} may be considered embedded 
in Y in the sense of (4.21); we can always switch spaces to get a sequence 
distributionally equivalent to {M,,} which is embedded in Y. 

Here are some elementary properties of Y: 

Proposition 4.7. 
(i) Y is stochastically continuous. 
(ii) There is a version in D(O, (0), the space of right continuous functions on 
(0, (0), with finite limits existing from the left. 
(iii) Y has nondecreasing paths and almost surely 

lim i Y(t) = Xo, lim! Y(t) = X,, 
t-+aJ 1-+0 

(iv) Y is a Markov jump process with 

{
F1(X) 

P[Y(t + s):S;; xIY(s) = y] = 0 
x~y 

x<y 

for t > 0, s > O. Set Q(x) = -log F(x). The parameter of the exponential 
holding time in state x is Q(x), and given that ajump is due to occur the process 
jumps from x to ( - 00, y] with probability 

g -(Q(y)/Q(x» if y > x 
if y:S;; x. 
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PROOF. (ii) Consider Y defined by (4.20). It follows from the definition that Y 
has nondecreasing paths and hence each path has finite limits from the left. 
We now check that Y(t, w) is right continuous for almost all w. Suppose 
initially X, is not an atom of F; a small modification is necessary to the 
discussion if X, is a finite atom. We show there exist w-sets Ai, i = 2 such that 
PAi = 1 and 

weAl implies Y(t,w) > x, forall t>O (4.22) 

and 

weA2 implies N(w,(O,t] x (x, (0» < 00 for all x> x, 

and all t > 0. 

For the first assertion note that for any t > ° 
EN«O, t] x (x" (0» = tQ(XI) = 00 

so that 

P[N«O,t] x (XI'oo» = 00] = 1. 

If {t;} is countable and dense in (0, (0) 
P[N«O, t] x (x" (0» = 00 for all t > 0] 

= p( 0 [N«O,t;] x (x" (0» = 00]) 

= lim P[N«O,ti ] x (x" (0» = 00] = 1. 
'.-0 

(4.23) 

This is equivalent to (4.22). For (4.23) observe that for fixed t > 0, x> XI 

EN «0, t] x (x, (0» = tQ(x) < 00 

and so 

Therefore 

and 

P[N«O,t] x (x, (0» < 00] = 1. 

P[N«O, t] x (x, (0» < 00 for all X > x;] 

= lim P[N«O,t] x (x, (0» < 00] = 1 
xJ.x, 

P[N«O,t] x (x, (0» < 00 for all x> x"t > 0] 

= lim P[N«O, t] x (x, (0» < 00 for all x > x;] = 1. 

Now for weAl II A2 and any t 

N(w,(0,2t] x (Y(t,w), (0» < 00 
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and hence the points of realization w falling in (0,2t] x (Y(t, w), 00) cannot 
cluster. So there exists fJ = fJ(t, w) and 

N(w, (t, t + fJ] x (Y(t, w), 00) = O. 

Hence Y(s,w) = Y(t,w) for t ~ s ~ t + fJ showing right continuity at t when 
wEA1 /1 A2 • 

If X, is an atom, then Q(x,) < 00 so that 

P[N«O, t] x (x" 00» < 00 for all t > 0] = 1 

and hence points of (0,2t] x (x" 00) do not cluster. The proof can be com­
pleted as before. 
(i) Since we may take almost all paths in D(O, 00), Y must be stochastically 
continuous from the right; i.e., as s! t, Y(s)!. Y(t) since the convergence is in 
fact almost sure. If Y is not stochastically continuous from the left then there 
is to and as s ito, Yes) does not converge in probability to Y(to). Since 
Y(s) -+ Y(to - ) a.s. this means 

o < P[Y(to -) < Y(to)]. 

But 

P[Y(to-) < Y(to)] ~ P[N({to} x (x" 00» > 0] 

~ EN({to} X (x" 00» = 0 

since the Lebesgue measure of {to} is zero. 
(iii) Since P[Y(t) :::;; x o] = Ft(xo) = 1 and for M < Xo. 

P[Y(t) :::;; M] = F(M) -+ 0 

as t -+ 00 we have 
p 

Y(t) -+ Xo' 

However Y has nondecreasing paths so convergence in probability is the same 
as a.s. convergence by the subsequence characterization of convergence in 
probability. The convergence to x, as t -+ 0 is handled similarly. 
(iv) These results parallel those of Proposition 4.1 in discrete time. Y is 
Markov with the given transition probability because of the form of the 
finite-dimensional distributions. The form of the holding time parameter may 
be obtained from infinitesimal conditions or by observing 

P[Y(t + s) = Y(s)1 Y(s) = x] 

= P[N«s, t + s] x (x, (0» = 0] 

= exp{ -E(N(s,t + s] x (x, oo»} = e-tQ(X) 

so the holding time in x is at least t with exponential probability e-tQ(x). To 
compute the jump distribution n(x, (y, (0» for y > x note from (4.3) as t -+ 0 

C 1P[Y(t + s) > yl Y(s) = x] -+ A(X)n(X,(y, (0» 
= Q(x)n(x, (y, (0». 
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On the other hand 

e 1 P[Y(t + s) > yl YeS) = x] = e l (1 - F'(y» 

= e 1(1 - e-,Q(l') -. Q(y) 

and so 

II(x,(y, 00» = Q(y)/Q(x). o 

Now let {t", -00 < n < oo} be the jump times of Y so that {yet,,)}, the 
range of Y, is a discrete indexed Markov process and by (iv) earlier we have 

P[Y(t,,+d > yl yet,,) = x] = Q(y)/Q(x). 

Note that if Q(x) = e-x, i.e., if F(x) = A(x), then 

P[Y(t,,+t> > yl yet,,) = x] = e-(l'-x) 

= p[r"+l > ylr" = x] 

where {r,,} was defined in Proposition 4.1. Therefore {Y( tIl)} is homogeneous 
PRM on IR. Let Sex) = -log Q(x) = -Iog( -log F(x». The following parallels 
Proposition 4.1 and Corollary 4.2. 

Proposition 4.8. (i) If F = A, then {Y(t,,)} are the points of homogeneous PRM 
on IR. 
(ii) If F is continuous, then {Y(t,,)} are the points of PRM on (XI> xo) with mean 
measure S. 
(iii) If F is continuous 

00 

L Il(Y(tn ). tn+ I -Tn) 
n=-co 

is PRM on (XI> xo) x (0, 00) with mean measure 

J.L*«a, b] x (t, 00» = y-1e-'l'dy fQ(lI) 

Q(b) 

for x, < a < b < xo, t > O. 
(iv) If F is continuous {Y-(x),x, < x < xo} is a process with independent 
increments and exponential marginals: 

prY-ex) ~ t] = P[x ~ yet)] = 1 - e-Q(x)l. 

PROOF. (ii) If YA is extremal-A then S-(YA) is extremal-F since S- 0 Yhas finite 
dimensional distributions given by 4.19. For example, for k = 1 we have 

P[S-(YA(t» ~ x] = P[YA(t) ~ Sex)] 

= N(S(x» = F(x). 

If F is continuous then S- is strictly increasing and {S-(YA(t,,»} ,g, {yet,,)} 
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where the process Y on the right is extremal-F. The result follows by the 
transformation theory for Poisson processes as in Proposition 4.1. 
(iii) This follows as in Proposition 4.1 except that by Proposition 3.8 

Jl*«a, b] x (t, 00» = r S(dx)e-tQ(X) 
Ja,bl 

iQ(a) 

= e-t'y-1dy. 
Q(b) 

(iv) This follows as in Corollary 4.2 since 

Y+- (b) - Y+- (a) = L (rn+l - rn)sy(,")(a, b] 
n 

We next discuss the point process of jump times. 

Proposition 4.9. Suppose F is continuous. Then 

Jloo := L s," 
" 

is PRM on (0, 00) with mean measure of (a, b] equal to log(b/a), ° < a < b. 

It will be enough to show that Jloo(' n (0, K]) is PRM on (0, K] where K is 
arbitrary. Toward this goal we prove the next lemma (cf. Exercise 3.3.8). 

Lemma 4.10. If Q(x) = -log F(x), set for y > ° 
Q+-(y) = (I/Q)+-(y-l) 

= inf{s: Q(s) ~ y}. 

Suppose {Ei,i ~ I} is iid with P[Ei > x] = e-x , x> 0, and set r" = 
El + ... + E". Let {Ui, i ~ I} be iid uniformly distributed on (0, K] and suppose 
{UJ and {Ei} are independent. Then 

is P RM on (0, K] x (x" xo) with mean measure of (0, t] x (a, xo) equal to tQ(a), 
t > 0, X, < a < xo; i.e., 

N# ~ N restricted to (0, K] X (x, x xo) 

(where N is used in the construction (4.20». 

PROOF. As with (0.6) we have 

Q+-(y) > t iff Q(t) < y. (4.24) 
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Since L .. BK-1rn is PRM on (0, 00) with mean measure Km(') (m is Lebesgue 
measure) we have by Proposition 3.7 that 

LB(nrnIK) .. 
is PRM with mean measure Kmo(Q<--r1. However for XI < a < Xo 

Kmo(Q<--r1(a, 00) = Km{s > 0: Q<--(s) > a} 

= Km{s: 0 < s < Q(a)} 

= KQ(a). 

by (4.24) 

By Proposition 3.7, N# is PRM on (0, K] x (XI' xo) and the mean measure of 
(0, t] x (a, xo) is (0 < t < K, XI < a < xo) 

K-1 tKQ(a) = tQ(a) = E(N(O, t] x (a, 00». o 

PROOF. Now for the proof of Proposition 4.9: Define 

Y#(t) = sup{Q<--(r;/K): UI :s;; t} 

on (0, K] so that y# ~ Y and instead of analyzing the jump times of Y we 
analyze these of y#. Since Q<--(rt/K) > Q<--(r2/K) > "', if we define for 
O<t<K 

T(t) = inf{i ~ 1: Ui:S;; t} 

then 

Y#(t) = Q<--(rT(t)/K). 

Since F continuous makes Q<-- strictly decreasing, the jump times of {Y#(t)} 
and those of {T(t)} coincide. However observe that for 0 < t :s;; K 

T(t) = inf{n ~ 1: U .. :S;; t} 

= inf{n ~ 1: U .. - 1 ~'C1} 

= inf{n ~ 1: V UI- 1 ~ t-1} = ,,(C1) 
.=1 

where foHowing CoroHary 4.2 we set 

,,(s) = inf{n ~ 1: V UI- 1 ~ s}. 
1=1 

Now observe the 

jump times of T(t), 0 < t :s;; K 

= jump times of ,,(s), K-1 :s;; s < 00 

= records of {V ~-1} in [K-1 , 00). 
j=1 
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From Proposition 4.1 the records of {VI'=l ll.i-1 } form a Poisson process on 
(K-l, (0) and the mean measure of(a,b] (K-1 < a < b) is 

-logP[U1- 1 > b] - (-logP(U11 > a]) 

= -logP[U1 ~ b-1 ] - (-logP{U1 ~ a-1 ]) 

= -log(b-1/K) - (-log(a-1/K» = log(bla). o 
Consider now {XII,n ~ I} iid from a continuous distribution F(x) and as 

usual set Mil = V;"=l XI' If Y is extremal-F we have 

{MII,n ~ I} ~ {Y(n),n ~ I} 

so to study the record structure of {X,,} we may as well suppose {M,,} is 
embedded in Y; i.e., we study functionals of {Y(n)} instead of {M,.}. So, for 
instance, with this point of view 

Jl := L 8L(j) = L 111< .. (1-1.iJ>OI81(·) 
j I 

can be considered as a functional of Y. 
Since we may consider both Jl and Jloo defined on the same space, we may 

hope to compare them 0) by 0). What is the relation of Jl to Jloo? Observe that 

[Jl(n - 1, n] = 1] = [record at n] 

= [Jloo(n - 1, n] > 0] 

and thus Jloo counts jumps that Jl misses since Jl only checks to see whether or 
not Yen) > Yen - 1) but is not sensitive to all jumps of Yin (n - l,n]. If 
Jloo(n - 1, n] > 1 for infinitely many n, then Jl and Jloo will not be related in a 
useful way. Fortunately this is not the case. 

Proposition 4.11. For F continuous, we have 

P[Jloo(n, n + 1] > 1 i.o.] = O. 

PROOF. From the Borel-Cantelli lemma it suffices to show 

00 

L P[Jloo(n, n + 1] > 1] < 00. 
,,=1 

Since Jloo(n,n + 1] is a Poisson random variable we have 

L P[Jloo(n,n + 1] > 1] = L (1 - exp{ -log(n-1(n + In} 
" " 

- log(n-1(n + l»exp{ -log(n-1(n + I»)}) 
00 

~ L log(n-1(n + 1»(1 - exp{ -log(n-1(n + I»)}) 
,,=1 

00 

~ L (log(n-1(n + 1»)2. 
,,=1 
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Since (log(n-1(n + 1)))2 '" n-2 as n --. 00, the desired convergence ofthe series 
follows by a comparison argument. 0 

A conclusion from Proposition 4.11 is that for almost all w, there exists 
no(w) such that if n ~ no(w) then 

I'(w,(n,n + 1]) = I'oo(w,(n,n + 1]). (4.25) 

We now use this to prove Corollary 4.5 again. 

Corollary 4.5. If F is continuous and I' and 1'00 are defined on the same space 
we have 

PROOF. LetfeC:«O, (0». Supposef(x) = o for xe [<5,<5-1]<. We need to show 
in IR 

(cf. Proposition 3.19). 
Now 

00 
I'n(f) = I f(n- 1 L(j» 

]=1 

00 
= I f(n- 1 i)1 IY(i»Y(i_1)) 

1=1 

For n ~ (no(w) + 1)<5-1, if i ~ n<5 then we have by (4.25) I'oo(w,(i - 1, i]) = 
11".,(i-1.i]>OJ(w) = 11".,(i-1.iJ=1J(W) and for such n 

I',.(f, w) = L r f(n- 1 i)l'oo(w, dx) 
i:,.-liel".,,-I] Ji-1.i] 

where 

00 
9,.(X) = L f(n-1i)I(i_1.i](X)' 

1=1 

The preceding shows that I',.(f) - 1'00(9,,) --. 0 a.s., and therefore it suffices to 
show I'oo(g,.) => 1'00 (f). 

Observe 
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00 

gn(nx) = L f(n- 1 i) l(n~'(i-l).n~'il(x) - f(x) 
i=1 

as n - 00 and for n large 

ginx) ~ sup f(y)lK(x) 
y>O 

where K is compact and K ::> [<5-1,<5]. 
Therefore since /loo(-} ~ /loo(n(')) (Exercise 4.1.6) we have 

~ r gn(nY)/loo(dy) _ r f(Y)/loo(dy) 
J(o.OO) J(o.OO) 

= /loo(f), 

the convergence following by the dominated convergence theorem. 0 

We now use these ideas to study the asymptotic behavior of /l(1, n] and 
L(n). Note first that the structure of /loo is quite simple since a time change 
renders it homogeneous; i.e., {/lao (1, el ], t > O} is a homogeneous PRM. (It is 
PRM by Proposition 3.7 and homogeneous since E/loo(l, e' ] = log(e'/l) = t.) 
For a homogeneous Poisson process, the following are standard: 

Strong law of large numbers: t- 00; 

Central limit theorem: 
/loo(1,e' ] - t 

1/2 ~N t 

where N is standard normal; 

. . /l00{1, e' ] - t 
Iterated loganthm theorem: hmsup I I 1/2 = 1 a.s. 

1-00 (2t og og t) 

.. /loo(1,e l ]-t 
hmmf 2 I I )1/2 = - 1 a.s. 

1-00 ( t og ogt 

Changing variables we get 

/l00(1, t] '" log t, t- 00; (4.26) 

/l00(1, t] - log t N 
(log t)I/2 ~, t - 00; (4.27) 

r /lao (1, t] - log t 1 
I~S:P (2 log t logloglog t)1/2 = a.s. (4.28) 

I· . f /l00(1, t] - log t 1 
lmm = - a.s. 
1-00 (2 log t logloglog t)1/2 
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From Proposition 4.11 and (4.25) we get that for large enough n, n ~ no(w) 
say, 

Jloo(W, [1, n]) = j(w) + Jl(w, [1, n]) (4.29) 

where j(w) is a finite integer valued variable representing the jumps that Jloo 
sees which are missed by Jl. Hence if IX" --. 00 

(Jloo(1, n] - Jl(1, n])/IX" --.0 a.s. 

and we get the following. 

Proposition 4.12. If we replace t by nand Jloo(1, t] by Jl(1, n] = number of 
records in the first n observations then (4.26), (4.27), and (4.28) all hold. 

Applying Proposition 3.7 yet again we see that the points of Jloo which are 
greater than 1, which we label Tl < T2 < ... , can be represented as 

{T",n ~ 1} = {exp{r,,},n ~ I} 

where as before r" is a sum E 1 + ... + E" of n iid exponentially distributed 
random variables. Hence for log ern = r" we get a strong law, central limit 
theorem and law of the iterated logarithm. Referring to (4.29) and Proposition 
4.11 we see that {L(n)} and {ern} are related for n ~ no(w) by 

L(n,w) = exp{r,,+}(CO)(w)} + o,,(w) = T,,+}(co)(w) + o,,(w) 

where 10,,1 :::;; 1. This implies 

I. 1 log L(n, w) - r,,(w) 1 .() Imsup I :::;;J w 
" .... 00 ogn 

a.s. This is checked as follows: From (4.30) 

log L(n, w) - r,,(w) = 10g(exp{r"+J(CO)(w)} + <5,,(w» - r,,(w) 

= r,,+}(CO)(w) - r" + 0(1) 

and hence 

I. 1 log L(n, w) - r,,(w) 1 Imsup --=----'--:--'----=-'--
" .... 00 logn . . IL~~~~1 E; I . = hmsup I :::;; J(w) a.s. 

" .... 00 ogn 

since for any i ~ 1 

I· E"H 1 Imsup -I - = , a.s. 
" .... 00 ogn 

(4.30) 

(4.31) 

(cf. Exercise 4.1.1(a». The relation (4.31) says asymptotic behavior of r" can 
be transferred to L(n): 
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Proposition 4.13. If F is continuous then we have 
(a) log L(n) '" n as n -+ 00; 
(b) (logL(n) - n)/.jn => N as n -+ 00; 
(c) limsuPn-+oo(logL(n) - n)/J2nloglogn = 1 a.s. 

liminf(logL(n) - n)/J2nloglogn = -1 a.s. 
n-+oo 

We now show that the same asymptotic behavior holds for the interrecord 
times {L(n) - L(n - 1),n ~ 2} as for {L(n)}. We first investigate {rn - rn-d 
and show 

limsup Ilog(rn - rn- I) - log rnl/log n = 1 

a.s. Recalling that rn = ern where rn = EI + ... + En, we get 

Ilog(rn - rn-I) -logrnl = -log(1 - r;lrn-d 

= -log(1 - e-En ). 

Now it is readily checked that 

{-log(1 - e- En )} ,g, {En} 

(4.32) 

in !Roo and since limsuPn-+oo En/log n = 1 a.s. (Exercise 4.1.12), (4.32) follows. 
We may now prove the next result on the asymptotic behavior of inter record 

times. 

Proposition 4.14. F is continuous. We have that the results of Proposition 4.13 
hold with L(n) - L(n - 1) everywhere replacing L(n). Also 

limsup Ilog(L(n) - L(n - 1)) - 10gL(n)l/logn = 1 a.s. (4.33) 

PROOF. It suffices to prove (4.33). From (4.30) 

Ilog(L(n) - L(n - 1)) - log L(n)l/log n 

= Ilog(rn+j - r n+j- 1 + <>n - <>n-d - log(rn+j + <>n)l/log n 

= Ilog(rn+j - rn+j-d - log rn+jl/log n + 0(1). 

The last step is verified by noting first of all that since I<>nl ~ 1 we have 

log(rn+j + c5n) = log r n+j + 0(1) 

as n -+ 00, and furthermore we can show 

log(rn+j - rn+j-l + <>n - c5n-d/log n = log(rn+j - rn+j-d/log n 

+ 0(1) 

as follows: From (4.32) it follows that 

(log(rn - rn-d -logrn}/n -+ 0, 
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whence because Tn = exp{rn} 

n-1(log(Tn - Tn- 1) - 1 -+ 0 

and 

10g(Tn - Tn-1) ,...., n. 

Thus for any fixed i we have Tn+; - Tn+;-1 -+ 00 so that 

10g(1 + (<<5n - «5n-d/(Tn+j - Tn+j-d)!1og n 

,...., (<<5n - «5n- 1)f«Tn+j - Tn+j- 1)log n) -+ 0 a.s. 

Therefore 

lim sup Ilog(L(n) - L(n - 1)) -logL(n)l!1ogn 
n-+oo 

= limsup Ilog(Tn+j - Tn+j-d - log Tn+j l!1og n = 1 
n-+oo 

from (4.32). o 
We end this section with a chart comparing the various descriptive quantities 

of interest in discrete time, with the analogous quantities in continuous time. 
A comparison of {Mn, n ;;::: I} and {Y(t), t > oo}: 

1. {Mn,n;;::: 1},underlyingdistribu- 1. {Y(t),t > O}, extremal-F,is a 
tion F, is a Markov process in Markov process in continuous 
discrete time. time. 

2. For k ;;::: 1, 1 ~ t1 < t2 < ... < tk 2. For k ;;::: 1,0< t1 < ... < tk 
and t; integers, P[Y(t;) ~ x;,i = 1, . .. ,k] 

P[Mt. =s; Xi' i = 1, ... , k] = p, (A1 Xi) Ft2-t, (A2 Xi) 
= Ft"(A1 Xi) Ft2-t, (A2 Xi) 

••• X F tk- tk-1(Xk) and 
•.. X Ftk-rk-' (Xk)' {Y(n),n;;::: I} 4 {Mn,n;;::: I} 

in IROO • 

3. P[Mn+r ~ zlMn = x] 
= {Ft(Z), z ~ X 

0, Z < x 
for t > 0, integer. 

4. {Mn} is a Markov jump process 
with (L(n), n ;;::: O} as jump times. 

5. If F is continuous 
<Xl 00 

L& -L& o MUll) - 0 XU,,) 

is PRM(R), R = -log(1 - F). 
6. "&x is homogeneous L." Un) 

PRM on (0, 00) if F(x) = 
1 - e-x , x> O. 

3. P[Y(s + t) ~ zl Y(s) = x] 
= {Ft(Z), z ;;::: X 

0, z < X 

for t > O. 
4. Y is a Markov jump process 

with {Tn} as jump times. 
5. If F is continuous 

<Xl 

L &Y(tn ) is PRM(S), 
-00 

S = -logQ = -log( -log F). 
6. L~oo &Y(tn ) is homogeneous 

PRM on IR if F = A. 
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7. P[XL(n+1) > yIXL(n) = x] 
= {(I -F(Y))/(l - F(x», y ~ x 

1, Y < x. 
8. P[L(n + 1) - L(n) = kIXL(n) = x] 

= Fk - 1(x)(1 - F(x)), k ~ 1. 
9. Let J1. = Lo eL(,,)' IfF is 

continuous, J1. has independent 
increments (recall {[Xk is a 
record], k ~ I} is a sequence of 
independent events). For F 
continuous 

<Xl 
J1." := L eLw(n' ) 

o 
<Xl 

= L eLW/"(') => J1.<Xl('), 
o 

in M,,«O, 00 ». 

EXERCISES 

7. P[Y(rn+d > yl Y(rn) = x] 
= {Q(Y)/Q(X), Y ~ x 

1, y < x. 
8. P[r,,+l - r" > tl Y(r,,) = x] 

= e-Q(X)t, t > O. 
9. Let J1.<Xl = L~<Xl etn' If F is 

continuous, J1.<Xl is PRM (C1 dt). 

4.3.1. When F is continuous show that /lw is PRM (Cl dt) by the following procedure. 
(a) When {Mo} comes from an underlying continuous distribution 

{I . > 2} IMJ>MJ_,),j -

is a sequence of independent random variables. 
(b) Let Y be extremal-F and set 

11(0)(.) = # jumps of {Y(i2-0), i ~ I} in ('). 

Show 11(0)(.) has independent increments and for a < b, l1(o)(a, b] -+ 11",(a, b], 
whence 11", has independent increments. 

4.3.2. In Corollary 4.5, does Jl." -+ 11", almost surely? 

4.3.3. If {E", n ~ 1) are iid, P[E j > x] = e-x ·, show 
(a) EL(o)/n -+ 1 a.s. 
(b) V;"=I Edlogn -+ 1 a.s. 

Hint: V;"=I E; = EL(I'I!."n-
(c) Under the condition of Exercise 4.1.1(c), show that if {X",n ~ I} are iid 

with common continuous distribution F then 

and this in turn implies 

M"IR~(logn) -+ 1 a.s. 

(The most general condition for a.s. stability of {M,,} is discussed in 
BarndorfT-Nielsen (1963) and Resnick and Tomkins (1973).) 

4.3.4. If {Y(t), t > O} is extremal-A then {S~(Y(t», t > 0) is extremal-F, where S(x) = 
-Iog( -log F(x». 
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4.3.5. (a) If {Y(t), t > O} is extremal-A, so is 

{-log Y+-( -logt),t > OJ. 
Note that the second process is not right continuous (Robbins and 
Siegmund, 1971; Resnick, 1974). 

(b) If Y is extremal-A, then 

lim Y(t}f1og t = 1 a.s. 
t-ao 

and 

lim Y(t}f1og t = 1 a.s. 
t-O 

From the result in (a), these two limiting results are the same result. 
(c) Use (a), Proposition 4.8, and Exercise 4.3.4 to prove Proposition 4.9. 

4.3.6. (a) Suppose {X(t),t > O} is a Levy process, i.e., a process with stationary, 
independent increments. If the Levy measure of the process is v then 

sup (X(s) - X(s-)} A 0 
o<.St 

is extremal-F where for x> 0, F(x) = exp{ -v(x, oo)} (Dwass, 1966; Resnick 
and Rubinovitch, 1973). 

(b) Suppose {X(t), t ~ O} is homogeneous Poisson, rate 1. What is Y? What is 
v? Why does Proposition 4.9 fail? 

4.3.7. Suppose Yis extremal-F and F is not necessarily continuous. 
(a) If F(xo) > 0 

P[Y hits xo] := p( U [Y(t) = xo]) 
t>O 

= (Q(xo - ) - Q(xo»/Q(xo -) 

where Q = -logF. 
(b) From (a), P[Y hits xo] > 0 itT xo is an atom of F. Furthermore 

{[Y hits X],XE(~(F)Y} 

is a family of mutually independent events (recall that 't'(F) is the continuity 
set of F). 

(c) More generally show that 

{Y+-(x),x, < x < xo} 

is a process with independent increments and one-dimensional exponential 
marginals. 

4.3.8. Suppose Y is extremal-F and F is continuous. Prove for 0 < a < b 

1 [11 .. (4. bJ > OJ and Y(b) 

are independent (Ballerini and Resnick, 1987). 

4.3.9. Suppose Y is extremal-A and (Xi' -00 < j < oo} is iid with common distribu­
tion A. Define for c > 0 
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• M: = V (Xj + cj). 
j::!:.-oo 

(a) Show in ROO 

{M:,n ~ I} ,g, {Y(p-1eC·),n ~ I} 

where p = J~oo n~1 A(x + cj)A(dx) = 1 - e-C• 

(b) The sequence 

is iid Bernoulli with 

P[I: = 1] = p = 1 - e-C• 

(c) M: and 1: are independent for each n (use Exercise 4.3.8) (Smith and Miller, 
1984; Ballerini and Resnick, 1987). 

4.3.10. If Yis extremal-F, prove for any k, 0 < tl < ... < tk 

{yeti), 1 ~ i ~ k} ,g, (VI' VI V V2 ,···, i~ V) 
where V., . .. , V. are independent and P[U; ~ x] = p,-I'-I(X), i = 2, ... , k. Use 
this to prove Y is Markov (Dwass, 1964). 

4.3.11. Let {X., n ~ I} be iid random variables with common, continuous distribution 
F. As usual, let {L(n), n ~ 1) be the record times. 
(a) Let {E.,n ~ I} be iid with P[E1 > x] = e-"+. Define a sequence 

{L*(n),n ~ I} by 

L*(I) = 1, L*(n) = [L*(n - l)eEn] + I, 
where square brackets denote greatest integer function. Prove in ROO 

{L(n),n ~ I} ,g, {L*(n),n ~ I} 

(Williams, 1973). 
(b) Define 

T(n) = inf{j:j ~ L(n)/L(n - 1),j an integer}. 

Using (a) show {T(n)} are iid and 

P[T(n) = j] = (j(j - l)fl, j ~ 2 

(Galambos and Seneta, 1975; Westcott, 1977). 
(c) Check 

eEn - 1 < (L(n) - L(n - 1»/L(n - 1) ~ eEn - 1 + (n - WI 

and so rederive Proposition 4.14 (Westcott, 1977). 

4.3.12. (a) Let {L(n), n ~ I} be the record times from a continuous distribution. Define 
H(x) by 

1 - H(x) = 1/[x], x ~ 1 

and let {~., n ~ OJ, ~o = 1 be the record value sequence from H. Prove in ROO 
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{L(n),n ~ I} ,g, {~n,n ~ OJ. 

(Recall that the record value sequence is a Markov chain.) 
(b) Prove in IROO 

{L(k)/L(k - 1),k ~ n} =- {~,k ~ I} where {~} are iid and 

x ~ 1. 

Proceed via Exercise 4.3.11 or ab initio (Shorrock, 1972). 
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(c) If {Y(t), t > O} is extremal with a continuous distribution and jump times 
ft.} show that {"t.} is equal in distribution to the range of the extremal 
process governed by (f)l(X) = exp{ _X-I}. 

(d) For the set-up as in (a) and (b) show that 

lim P[(L(n + 1) - L(n»)J(L(n» - L(n - 1» > a] 

= a-I 10g(1 + a), a > 0 

(Shorrock,1972). 

4.3.13. (a) If E is exponentially distributed and Z e(O, 1) is independent of E check 

P([EjlogZ-l] + 1 ~ rlz) = zr-l. 

(b) If {XL(." n ~ I} is the record value sequence from the uniform distribution 
on (0, 1), check 

{XL(."n ~ 1} ,g, {I - e-rn,n ~ I} 

where as usual (E., n ~ 1} are iid, 

PEEl > x] = e-"+ and r. = El + ... + E., n ~ 1. 

(c) From (4.8) show when F is U(O, 1): 

{(L(n + 1) - L(n), XL(.), n ~ I} 

,g, {[(E./(-log(l- e-r~))] + 1,1- e-r:),n ~ I} 

where (E.,n ~ 1}, {E:,n ~ 1} are each iid unit exponential sequences, 
independent of each other, and r: = Er + ... + E:. 

(d) Prove whenever F is continuous 

{L(n), n ~ I} ,g, {I + % ([Et /( -log(1 - e-r:))] + 1), n ~ 1 } 

in IROO (Deheuvels, 1981). 

4.3.14. Suppose {Y(t), t > O} is extremal-F. Assume F is continuous with left endpoint 
x, and right endpoint Xo. 
(a) Check for te(x"xo) 

Y-(t) = L ("tUI - "ttl· 
t'Y(tkIS I 

(b) Suppose ~ = Lk£Zk is homogeneous PRM on IR and {Eko -00 < k < oo} 
is iid, PEEl > x] = e-"+.If S = -Iog( -logF) show 
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00 d 00 

L E(S-(Z.).Il.exP{Z.}) = L E(Y«')'<.+l-<.) 
k=-oo k=-oo 

on Mp«x"xo) x (0, (0» by appealing to Proposition 4.8(iii), Proposition 
3.7, and Proposition 3.8. 

(c) Hence show 
Y-(t) ,g, L Ekez" x, < t < Xo 

k:Z.SS(t) 

in the sense of equality of finite dimensional distributions (Deheuvels, 1981). 

4.4. Weak Convergence to Extremal Processes 

4.4.1. Skorohod Spaces 

Extremal processes (as well as Levy processes and other Markov processes) 
live in the space D(O, (0), the set of real functions on (0, (0) which are right 
continuous with finite left limits existing everywhere. In order to discuss weak 
convergence of extremal processes intelligently, we need to study properties 
of D(O, (0) and, in particular, impose a metric which will make D(O, (0) a 
complete, separable metric space. 

The concept of weak convergences of probability measures on a space S 
(cf. Billingsley, 1968 and Section 3.5) is very much dependent on the choice of 
metric as this governs continuity concepts as well as which subsets of S belong 
to the Borel u-fields. The usefulness of the theory depends on wise choice of 
a metric. If a metric on S makes too many functions continuous, it will be 
difficult to prove weak convergence of a sequence of probability measures. If 
the chosen metric makes too few functions continuous, then applications of 
the continuous mapping theorem will be scarce and the resulting weak con­
vergence theory will not be particularly useful. 

The topology of local uniform convergence on (0, (0) presents problems 
(Billingsley, 1968, page 150), and a consensus of opinion is that the Skorohod 
topology is a good compromise. 

We begin by discussing D[a,b], the functions which are right continuous 
on [a, b) and have finite left limits on (a, b]. This treatment follows Billingsley 
(1968). 

Lemma 4.15. A criterionfor xeD[a,b] is thatfor any 8> 0, there exist r ~ 1 
and times to, ... , t" a = to < ... < t, = b, and 

sup{lx(s) - x(t)l: ti- 1 ;:5; s,t < til < 8 

for i = 1, ... , r. 
By avoiding bad points we make the variation of x small. 

PROOF. Given xeD[a,b] and e > 0. Let 

t = sup{t ~ a: [a, t) can be decomposed as described in (4.34)} 

= supG, 

(4.34) 
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where G is the set previously described in the braces. Then t" > a since 
x(a) = x(a + ) makes the variation of x in a right neighborhood of "a" con­
trollable. Similarly t" E G because x(t" -) exists and hence variation in a left 
neighborhood of t" is controllable. If t" < b we would get a contradiction since 
right continuity at t" means there is a right neighborhood of t" for which 
variation is smaller than e. 0 

From the lemma we have the following properties off unctions in D[a,b]: 

1. The set {tE[a,b]: Ix(t) - x(t-)I > e} is finite (in fact has cardinality 
at most r), and therefore the number of discontinuities of x is at most 
countable. 

2. The function xED[a,b] is bounded on [a,b] since 

sup{lx(t)l: tE[a,b]}:s; sup (lx(tl-dl + e) v Ix(b)l. 
1 ~1~'-1 

Therefore, functions in D(O, (0) are locally bounded. 
3. Let 

, 
x.(t) = L x(tl_d l[t i _ , .tj)(t) + x(b) l{b}(t). 

1=1 

The sUPa~t~b Ix.(t) - x(t)1 < eand so xED[a,b] can be uniformly approxi­
mated to any desired accuracy by a simple function. Hence x is Borel 
measurable. 

Now we define a metric. The uniform metric says that two functions x and 
yare close if their graphs are uniformly close. The Skorohod metric is not so 
strict; it allows uniformly small deformations of time before comparing the 
graphs. The time deformations are achieved by homeomorphisms A, E Aa•b 

where 

Aa.b = {A: [a,b] -+ [a,b]: A(a) = a, A,(b) = b, 

A is continuous and strictly increasing}. 

Then define for x, y E D [a, b] 

da.b(x, y) = inf {e > 0: there exists A, E Aa.b such that 

sup 1A,(t) - tl :s; e, sup Ix(t) - Y(A,(t» I :s; e} 
a~t~b a~t~b 

= inf (sup 1A,(t) - tl) v (sup Ix(t) - y(A,(t»I). 
AeAa.b a~t~b a~t~b 

Then da.b is a metric generating the Skorohod topology on D[a,b]. 
For notational simplicity let e(t) = t, 

IIA, - ella.b = sup 1A,(t) - tl, IIx - yo A,IIa.b = sup Ix(t) - y(A,(t))\. 
a~t~b a~t~b 
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What does convergence mean in this metric? Given xnED[a,b], n ~ 0 we 
have da.b(xn, xo) -+ 0 itT there exist An E Aa.b such that 

Note that if we take A = e in the definition of da•b we get 

da.b(x, y) ~ Ilx - ylla.b 

so that uniform convergence is more stringent than Skorohod convergence 
since uniform convergence implies da.b-convergence. The converse is false: 
Take xo(t) = l[a.(a+bl/2j(t), xn(t) = l[a.(a+bl/2+n-1j(t). Then for n ~ 1 

IIxn - xoll a.b = 1 

so there is no hope of uniform convergence. However 

da.b(xn,xO) ~ n-1 

since a homeomorphism mapping [a, (a + b)j2 + n-1] onto [a,(a + b)/2] 
would cause the graphs to match exactly. 

This example also shows that da.b-convergence does not imply pointwise 
convergence everywhere; note xn(t(a + b» = 1, xo(t(a + b)) = 0 so xn(t) 
does not converge to xo(t) when t = t(a + b). However it is true that da.b-
convergence implies convergence at points t which are continuity points of 
Xo. For suppose t is such a point. Then if An E Aa. b and II Xn ° An - Xo II -+ 0, 
IIAn - ella.b -+ 0 we get 

IXn(t) - xo(t)1 ~ IXn(t) - XO(An +-(t»1 + IXO(An +-(t» - xo(t)1 

~ IIxnoAn - xolla.b + IXO(An+-(t» - xo(t)1 

= 0(1) + IXO(An +-(t)) - xo(t)l. 

Since II An +- - ella.b = IIAn - ell a.b -+ 0 we have An +-(t) -+ t and since Xo is con­
tinuous at t, IXO(An +-(t» - xo(t)l-+ o. 

A slight variant of this argument shows that if da.b(xn , xo) -+ 0 and Xo is 
continuous on [a, b] then II Xn - Xo II a. b -+ O. This follows since, as in the 
preceding argument, 

IIxn - xoll a.b ~ IIxnoAn - xolla.b + IIxo ° An+- - Xolla.b· 

Since Xo is uniformly continuous on [a, b], the result follows. Hence Skorohod 
convergence coincides with unform convergence when the limit is continuous 
on [a,b]. 

With this metric, the space D [a, b] is separable. A countable dense set of 
simple functions can be constructed with the help of Lemma 4.15. However, 
the space is not complete. Let Xn = l[(a+bl/2,(a+bl/2+1/nj and let Xo == 0 on [a,b]. 
Then for all A E Aa•b we have 

IIXnoA - xolla.b = IIxnoAlla.b = 1 

so that da.b(xn• xo) does not converge to zero. On the other hand d(xlI' xm) = 
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In-1 - m-1 1--+ 0 as n, m --+ 00 so that {x,,} is Cauchy. Since Xo is the only 
potential limit (lim x,,(t» = 0 a.e.) we sadly conclude that dll.b is not complete. 

This is a minor irritation since there is an equivalent "slope" metric do 
cooked up by Billingsley (ce. Billingsley, 1968) which makes D[a, b] complete. 
The Cauchy sequence exhibited previously is no longer Cauchy with respect 
to do. Thus reassured, we will by and large continue to work with dll.b • Before 
proceeding however we make some comments about the phenomenon that a 
space may be complete with respect to one of a pair of equivalent metrics but 
not the other. 

Let S be a set with two metrics, PI and P2' The metrics PI and P2 are 
equivalent if (S, PI) and (S, P2) are homeomorphic, i.e., if there is a bicontinuous 
bijection between the two spaces. In this case, the two spaces have the same 
open sets and a sequence converges with respect to PI ifand only ifit converges 
with respect to P2' However if the homeomorphism is only bicontinuous but 
not uniformly bicontinuous, it is possible to have a sequence which is Cauchy 
in (S, PI) but not in (S, P2)' 

As an example define on R 

t(x) = x/(1 + Ix\) 

and define for x, Y E R 

P1 (x, y) = I t(x) - t(Y)1 

P2(X,Y) = Ix - YI· 

Note that P1 measures distance by homeomorphically sending x and y into 
the interval (-1,1). As is well known, (R,P2) is complete. However (R,pd is 
not. The sequence {n} is not Cauchy in (R, P2) but it is in (R, P1) since 

as n, m --+ 00. 

Pl(n,m) = I-n- - ~I--+ 1 - 1 = 0 
n+1 l+m 

Following Whitt (1980) (see also Stone, 1983, and Lindvall, 1973) we now 
construct a metric d on D(O, 00) such that for x" E D(O, 00), n ~ 0 we have 

d(x",xo) --+ 0 

iff for all ° < a < b, a, b E ~(xo) = {t > 0: Xo is continuous at t} 

Here rll.b: D(O, (0) --+ D[a,b] is defined by rll.bx(t) = x(t), a s: t s: b so rll,bx is 
just the restriction of x to [a, b]. Thus convergence in D(O, (0) will be reduced 
to convergence in the more familiar space D[a,b]. 

Define for x, Y E D(O, 00) 

d(x, y) = f 1 ds fa:> e-t(d., t(r., IX, r.,tY) A 1)dt. (4.35) Jo J,=1 
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We will show in the next lemma that this definiton gives the desired notion 
of convergence. 

Lemma 4.16. (a) The integrals in (4.35) exist and define a metric. 
(b) If XII' n ~ 0 are functions in D(O, (0) and 0 < a < b < c with b e ~(xo) then 

itT 

(c) If XII e D(O, (0), n ~ 0 then 

d(x",xo) -+ 0 

itT for all 0 < S < t, s and te~(xo), 

PROOF. (a) For x, yeD(O, (0) we have for fixed s > 0 that d •• t(r •• tx,r •. ty) is 
continuous at t e ~(x) n ~(y), t > s, and for fixed t we have d •• t(r •• tx, r •• ty) is 
continuous at s e ~(x) n ~(y), s < t. To get an idea of how this is proved we 
show right continuity in t. Given t e ~(x) n ~(y) there exists for any e, A. e A •. t 
such that 

IIA - ell •. t v IIx - yoAII •. t - e:::;; d.,,(r •. tx,r •. ty) 

:::;; III - ell •. t v IIx - yo AII •. t. (4.36) 

Furthermore by continuity there exists 0 < h < e such that for 0 < " < h we 
have 

Define 

Ix(t) - x(t ± ,,>1 v Iy(t) - yet ± ,,)1 < e. 

X(u) = {~(U) s:::;;u:::;;t 

t:::;;u:::;;t+h 

so that A' e A •. t+ll' Therefore 

d •. t+ll:= d •. t+ll(rs.t+llx,r •. t+llY):::;; IIA' - ell •. t+ll v IIx - yoA'II •• t+ll 

:::;; {IIA - ell •. t v IIx - yo AII •• t} v IIA - ellt.t+ll v IIx - yllt.H" 
and from (4.36) applied to the expression in the braces we have the preceding 
bounded by 

:::;;(ds.t + e) v ( sup Ix(u) - x(t)1 + Ix(t) - y(t)1 
f:S;u:S;H" 

+ sup Iy(t) - Y(U)I) :::;; (d •. f + e) v (e + (d'. f + e) + e); 
f:S;u:S;f+" 
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i.e., 

(4.37) 

A reverse inequality is obtained as follows: Given e there is some A E A •. t+ll 
(not the same A as previously) such that 

~ IIA - ell •• t+ll v IIx - yo AII •• t+ll - e. (4.38) 

There are two cases to consider: (1) ,1.(t) ~ t and (2) A(t) s; t. We only consider 
case (1) and for this case define for small b S; h 

A'(U) ={A(U) for s S; U S; A .... (t - b) 

= b(t - A .... (t - bWl(U - A .... (t - 15» + t - b 

so that the graph of A' is linear between the points (A .... (t - b), t - 15) and (t, t). 
This definition makes A' E As•t • Now 

IIA' - ell •• t = IIA - ell •• ,nt-61 vilA' - eIlA-(HI.t 

S; IIA - ell •. t+It v IA .... (t - b) - (t - b)1 

S; IIA - ell •. HIt 

and therefore 

IIA - ell •• t+ll ~ IIA' - ells•t ~ d •. t • 

Likewise 

IIx - yoA'II •. 1 = IIx - yoAII'.A-(HI 

V sup Ix(u) - y(A'(U))I 
A-(t-6IsuSt 

S; IIx - yo lll •• I+II V sup {lx(u) - y(t)1 
,t-(t-6IsuSt 

+ Iy(t) - y(A'(U»I}. 
Now 

sup Iy(t) - Y(A'(U» I = sup Iy(t) - y(v)1 S; e 
,t-(t-6IsuSt t-6svSt 

and since AEA •. t +It implies A(t + h) = t + h we have 

sup Ix(u) - y(t)1 S; sup Ix(u) - y(t)1 
)'-(t-6IsuSt )'-(t-6Isus)'-(t+ll1 

= sup IX(A .... (v» - y(t)1 
t-6svSHII 

(4.39) 

S; sup (IX(A .... (V» - y(v)1 + Iy(v) - y(t)l) 
t-6SvSt+1t 

S; sup Ix(,1. .... (v» - y(v)1 + e 

= IIx - yo,1.II •• t+1t + e; 
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i.e., 

Ilx - yoA'II'.1 ~ IIx - yoAII •. 1+h + 6. 

Thus 

IIx - yoAII •. 1+h ~ IIx - yoA'II •• 1 - 6 ~ d •. 1 - 6. (4.40) 

We conclude from (4.38), (4.39), and (4.40) that 

d •. t+h ~ d'. 1 V (d'. 1 - 6) - 6 

= d'. 1 - e, 

which coupled with (4.37) yields the sandwich 

d •. t - 6 ~ d •. t+h ~ d •. t + 3e 

giving the desired right continuity in t. 
It is now relatively straightforward to verify the existence of the integrals in 

(4.35). For fixed s, e-/(d • .r<r •. tx, r •. ty) 1\ 1) is a.e. continuous and bounded and 
hence Riemann integrable. Also by dominated convergence, J~l e-t(ds.t(r •. tx, 
r •. ty) 1\ l)dt is a.e. continuous in s; it is also bounded and hence Riemann 
integrable. 

The verification that (4.35) defines a metric is routine and is left as Exercise 
4.4.1.2. 
(b) If r ... "xn -+ r ... "xo and r" .• xn -+ r" .• xo then there exist A~ E A ... ", A; E A" .• , and 

IIxn - Xo 0 A.~II ... " v IIA.~ - ell ... " v IIxn - Xo 0 A.: II" .• vilA.: - ell" .• -+ O. 

Define 

{A.~(U), 
An(U) = A: (u), 

so that An E A ..... Then clearly 

IIxn - Xo 0 Anll .... v IIAn - ell .... -+ 0 

giving r .... xn -+ r .... xo' Note that this direction did not require continuity of Xo 
at b. 

Conversely suppose that r .... xn -+ r .... xo so that there exist An E A .... such that 

(4.41) 

Modify An to get A~ with the following properties: The A~ must fix b and still 
satisfy (4.41) and A~EA ..... How do we construct A~? Since IIAn - ell .... -+ 0 we 
can obtain A~ from An by modifying An only on a neighborhood (b - 6n, b + 6n) 

of b, where 0 < en -+ O. On (b - en, b + en) push the graph of An closer to the 
graph of e so that IIA~ - ell .... ~ IIAn - ell .... -+ O. For the second expression in 
(4.41) we will have 
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~ 0(1) + sup 

since bE <c(xo). 
The construction of A.~ gives ra,bA.~ E Aa,b' rb,cA.~ E Ab,c and 

proving the result. 

IIA.~ - ella,b v Ilxn - Xo oA.~lla,b -+ 0 

IIA.~ - ellb,c v IIxn - Xo 0 A.~llb,C -+ 0, 
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(c) If d.,r{r.,tXn, r.,txo) -+ 0 as n -+ 00 for all s < t, sand t E<C(Xo), then d.,r{r.,rxn, 
r.,txo) -+ 0 almost everywhere with respect to the measure 

ds 1(o,lJ(s)e-t dt 1(1,OO)(t) 

and by dominated convergence 

d(xn' xo) = f r (1 1\ d.,r(r.,tXn, r.,txo))e-r dt ds -+ 0 J.,t) E (0,1] x (1,00) 

as required. Conversely suppose that d(xn' xo) -+ O. For the purpose of getting 
a contradiction, suppose there exist 0 < S < t, s, t E <c(xo) and 

liminf d!~l := liminf d.,r{r.,tXn, r.,txo) > O. 
"-CO n-oo 

Then for 0 < u < s 
liminf d(n) > 0 u,r 

since otherwise along some subsequence {n'l say 

d~~;> -+ 0 

implying by (b) that d~~'} -+ 0, d!~;) -+ 0, a contradiction. Similarly for v > 
t>s>u 

liminf d~~~ > O. 
"-00 

Thus by Fatou 

f·l\l foo 
~ liminf (d~7t 1\ 1)due-V dv 

n-+oo .,=0 v=t V 1 

f·l\l fOO 
~ liminf (d~7t 1\ l)du e-V dv 

.,=0 v=tvl n-+oo 

>0 

which is a contradiction. o 
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If each d •. , used in (4.35) is complete in D[s, t] (for example, if d •. , is the slope 
metric) then (D(O, 00), d) is a complete separable metric space. 

In practice, to prove Skorohod convergence in D(O, 00), we pick a typical 
interval [a,b] and prove convergence in D[a,b]. The same is true for weak 
convergence as Proposition 4.17 later shows. 

We first consider projection maps. For t1, ... , tkE(O, 00) define 1t, ••...• 'k: 
D(O, 00) -. ~k by 

1t," •.. .• ",(x) = (x(t.), .. . ,x(tk». 
Observe that for t > 0, 1tt is continuous at x if x is continuous at t. This follows 
since if x is continuous at t and x" E D(O, 00) with d(x", x) -. ° then x,,(t) = 
1t,X" -. x(t) = 1tt X. Likewise if t 1, ... , tk are continuity points of x E D(O, 00) 
then 1ttl ••.•• fk is continuous at x. This has a nice interpretation for processes. 
As in Billingsley, 1968, page 124, for a probability measure P on D(O, 00) let 

Tp= {tE(O,oo): P{xED(O,oo):x(t) = x(t-)} = I}. 

The complement of Tp is at most countable (Billingsley, 1968, page 124). If 
{X(t), t > O} is a stochastic process on (n,d',p) with ail paths in D(O, 00) then 
P = poX-1 and 

Tx := Tp = {t > 0: P[X(t) = X(t-)] = I} 

= {t > 0: P[X is continuous at t] = I} 

so that T; is the set of fixed discontinuities of X. If in addition X is stochas­
tically continuous (as is always the case for extremal processes, but not always 
for inverses of extremal processes) then Tp = (0, 00). (Recall that for a process 
X in D(O, 00) stochastic continuity at t implies X(t - ) = X(t) a.s.) 

Lemma 4.17. Suppose X"' n ~ ° are random elements of D(O, 00). 
(a) If ° < a < b, a and bE Txo' then ra.b is a.s. continuous with respect to Xo. 
Thus if 

in D(O, 00), then 

in D[a,b]. 
(b) If tlo"" tkE Txo' then 1ttl ..... fk is a.s. continuous with respect to Xo. Thus if 

X,,=>Xo 

in D(O, 00), then 

in ~k. 
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PROOF. (a) The a.s. continuity of ra.b is just a rephrasing of Lemma 1.16(c). 
Finish with the continuous mapping theorem. The proof of (b) is similar 
upon recalling that 1t'I •...• '" is continuous at xeD(O, (0) if x is continuous at 
t 1 ,···, tic· 0 

The open sets of D(O, (0) generate the Borel u-algebra denoted q}. Another 
natural u-algebra to consider is the one generated by finite dimensional sets. 
Suppose T c (0, (0) is dense. A finite dimensional set is a set of the form 

{xeD(O, (0): (X(t1)'" .,x(tlc»eH} = 1t~~ .... ,,,(H) 

where H e£f(~"), 0 < t1 < ... < tIc. It is a fundamental fact that 

~ = u{1t~~ .... ,,,(H),He£f(~k),tie T,i = 1, ... ,k; k ~ 1} 

(Billingsley, 1968; Whitt, 1980, page 73; Lindvall, 1973, page 117). The impor­
tant consequence of this fact is that if two random elements X, Y, of D(O, (0) 
have the property that for any k ~ 1, t 1, ... , tic e T 

(X(t1), ... ,X(t,,» ~ (Y(t1)"'" Y(tk» in ~Ic 

then 

X~Y 

in D(O, (0). (The distributions of X and Yagree on the n-system of finite 
dimensional sets generating q} and hence agree everywhere.) Thus equality of 
finite dimensional distributions implies that X and Yare distributionally 
indistinguishable. 

We now state the natural criterion for weak convergence in D(O, (0), which 
reduces the problem to weak convergence in D[a,b]. 

Proposition 4.18. If {Xn , n ~ O} are random elements of D(O, (0) then 

Xn=>XO 

in D(O, (0) iff for each a and be Txo with 0 < a < b we have 

in D[a,b]. 

Remark. For notational simplicity, we will drop ra.b when indicating weak 
convergence in D[a,b]. 

PROOF (Whitt, 1980). Because of the previous lemma we need only show that 
weak convergence in D[a, b] for 0 < a < b, a, be Txo implies weak conver­
gence in D(O, (0). If F c D(O, (0) is closed, weak convergence in D(O, (0) is 
equivalent to (cf. (3.16), Billingsley, 1968, Theorem 2.1) 

(4.42) 
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We assume without loss of generality, that for any xeF, x is continuous at 
all te Txo' 

The way to relate weak convergence in D[a,b] to convergence in D(O, 00) 

is through the following mechanism: For 0 < a < b, a, be Txo' define 

Ha." = r.;:l«ra."Ff) 

where the bar indicates closure in D [a, b]. We prove a succession off acts about 
the relation of {Ha.,,; 0 < a < b; a and be Txo} to F. Once these are stated and 
checked, it will be easy to verify (4.42). We have first 

Fe Ha." (4.43) 

for each a, be Txo' For if x e F then obviously ra."x e (ra."Ff, which restated 
gives xer.;:Wra."Ff) = Ha.". 

Next if a, b, c, de Txo' a < b, c < d, [a,b] c [c,d] then 

(4.44) 

If x E HC•d then rc.dx E (rC.dF)- so there exist y" E F such that dc.d(rc.dx, rc.dY,,) -+ O. 
Two applications of Lemma 4. 16(b) (dc.d -+ 0 implies de." -+ 0 implies da." -+ 0) 
results in da."(ra.,,x, r ... "y,,) -+ O. Hence r ... "x E (ra."F)- whence x E r';:~«r ... "F)-) 
=H".". 

The last fact needed is that if s" and til: e Txo' 1 :::;; t" i 00, s" ~ 0 then 

(4.45) 

Since we know from (4.43) that F c: H".b we must prove nil: H.".t" c: F. If 
x En" H.".tk we will show x e F by showing d(x, F) = O. Given any 8, there is 
an integer p such that if k ~ p we have s" v e- t " < 8. Since x E H.p.tp we have 
rSp.tpx e(r'p.tpFf and so there exist y" E F such that d.p.tp(r'p.tpx, r.p.tpY,,) -+ 0 
as n -+ 00. Thus 

d(x,F):::;; limsup d(x,y,,) 

il ftP + limsup ds dte-t(d •. t A 1) 
n-+C() Sp 1 

and because of the choice of p this is bounded by 

il f/P 
:::;; 8 + limsup ds dt e-/(d •. 1 A 1) + 8. 

""'00 sp 1 

(4.46) 
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Since d.", r"(r.,,, r"x, r.",r"Y,,) -. 0 we get by Lemma 4.16(b) that d •. r in (3.46) 
converges to zero almost everywhere in (s, t) E [sp, 1] x [1, tp] and hence by 
dominated convergence 

d(x, F) ~ 2e. 

Since e > 0 is arbitrary we get d(x, F) = 0 as desired. 
With 4.43, (4.44), and (4.45) checked it is now easy to get to the desired 

conclusion (4.42). From (4.44) and (4.45) it is evident that there exist a, bE Txo 
such that 

Now 

limsup P[X"EF] 
" .... 00 

(by 4.43) 
" .... 00 

" .... 00 

Since we assume r .. ,bX" => r .. ,bXO in D[a,b], if we apply the criterion for weak 
convergence in terms of closed sets (cf. (3.16) or Billingsley, 1968, Theorem 2.1) 
we get the foregoing probability bounded above by 

P[r .. ,bXOE(r .. ,bFf] = P[XoEr;,Wr .. ,bFfn 

= P[XoEH .. ,b] ~ P[XoEF] + e. 

Since e > 0 is arbitrary, we conclude that (4.42) is correct. o 

EXERCISES 

4.4.1.1. Analyze the omitted case (2) after (4.38) in the first part of Lemma 4.16. Prove 
d." is left continuous at t E I#i'(x) '"' I#i'(y). 

4.4.1.2. Check da,b is a metric for 0 < a < b and then check (4.35) defines a metric on 
D(O,oo). 

4.4.1.3. Consider the following alternative topology for D(O, 00), which is constructed 
by imperfect analogy with the method of Lindvall (1973). For k ~ 2 define 

(Dk,dk) = (D[k-l,k],dk-',k) 

and set 

00 

Doo = n Dk 
t=2 

where Doo is the combinatorial product. A typical element of Doo is x = 
(X2,X3" .. ), XkEDk, k ~ 2 and on Doo x Doo define a metric doo by 

00 

doo(x, y) = L rk(l " dk(Xt, Yk))' 
k=2 
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(a) Show (Doo, doo) is a separable metric space. If each d" is complete, so is doo. 
(b) Define r" = r"_I,,, and ({J: D(O, (0) -+ D"" by 

;x = (r"x, k ~ 2). 

Check ({J is 1-1 and ({J(D(O, (0» is closed in D"". 
(c) Define a metric d* on D(O, (0) x D(O, (0) by 

d*(x, y) = d«>(;x, ;y). 

Compare (D(O, (0), d*) with (D(O, (0), d). 
(d) Find a criterion for weak convergence in (D(O, (0), d*). 

4.4.1.4. Prove X ~ Yin D(O, (0) iff for all 0 < a < b, a and be Tx f""I TI" 
d 

r".bX = r •. b Y 
in D[a,b]. 

4.4.1.5. Let {Xn' n ~ o} be random elements of D(O, (0) and suppose 1 ~ s,,! 0, 1 :s; 
t" t 00, s" and tke Txo' Show Xn => Xo in D(O, (0) iff 

(rSk"kXn,k ~ 1)=>(rsk"kXo,k ~ 1) 

in TIi=l D[s", t,,]. 

4.4.1.6. Prove addition and multiplication is continuous D(O, (0) x D(O, (0) -+ 

D(O, (0) at those (x,y) for which f€(x)Y f""I(~(YW = 0. In particular, if X and 
Yare stochastically continuous random elements of D(O, (0), then these 
operations are a.s. continuous (Whitt, 1980). 

4.4.1.7. The map T: D(O, (0) -+ D(O, (0) defined by 

Tx(t) = sup{(x(s»: 0 < s :S; t} 

is continuous and in fact 

d(Tx, Ty) :s; d(x,y) 

(Whitt, 1980). 

4.4.1.8. (a) What is the continuity set of the map from D(O, (0) -+ D(O, (0) defined by 

x -+ {sup «x(x) - x(s-» v 0), t > O}? 
O<S:S;I 

(b) Check continuity for the map from D[O, 1] -+ IR«> defined by 

x -+ {({Jix,i ~ I} 

where ({JiX is the ith largest positive jump of x in [0, 1]. 

4.4.1.9. Let {e.,n ~ O} be random elements of Mp([O, 1]) such that eo has no multiple 
points and no atoms at ° or 1. If 

e. =>eo 
in Mi[O, 1]) then setting re.(t) = e.[O, t], n ~ 0, ° :S; t :S; 1 gives 

ren=> reo 
in D[O, 1] (Jagers, 1974). 



4.4.1.10. Let 

4.4. Weak Convergence to Extremal Processes 

A = {l: 1 is a strictly increasing homeomorphism of 

(0,00) onto (0, 00),1(0+) = 0, 1(00) = oo}. 

Show for Xn, n ~ 0 in D(O, 00) that 

d(x", xo) -+ 0 

itT there exist 1", n ~ 1, In E A, and 

locally uniformly and 

IIln - ell(o.oo) -+ 0 

(Lindvall, 1973). 

4.4.1.11. The following maps are not continuous IROO -+ IROO 
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4.4.2. Weak Convergence of Maximal Processes to Extremal 
Processes via Weak Convergence of Induced Point Processes 

Rather than prove weak convergence of maxima to limiting extremal processes 
directly we first prove weak convergence of induced point processes to limiting 
Poisson processes and then apply an a.s. continuous functional. For a rough 
sketch ofthe following results, let {Xn' n ~ I} be iid with common distribution 
F and suppose there exist a" > 0, b", n ~ 1 such that 

P[Mn :s; anx + b,,] = F"(a"x + b,,) --+ G(x). (4.47) 

From the following. we will find (almost) that 

(4.48) 

in Mp([O, (0) x R) where the limit point process is PRM. We then apply the 
map which takes Mp([O, (0) x R) --+ D(O, (0) via Lk tr".}" --+ {VO<tkStjl;, t > O}. 

The point process convergence is a direct application of Proposition 3.21, 
which we now repeat for convenience. 

Proposition 3.11. Suppose E is locally compact with countable base and 8 is the 
Borel (I-algebra. For each n suppose {X".},j ~ I} are iid random elements of 
(E,8) and Jl. is a Radon measure on (E,8). Define en:= Li=l £U,,-I.Xft •J) and 
suppose e is PRM on[O, 00 J x E) with mean measure dt x dJl.. Then ell => e in 
Mp([O, (0) x E) itT 

nP[X".l E·J ~ Jl. on E. (3.19) 
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In using Proposition 3.21 to discuss the relation between (4.47) and (4.48) 
there are two small but potentially annoying problems that must be overcome. 
The first is to translate the condition FE D(G), or what is the same (4.47), into 
an equivalent statement (3.19) about vague convergence of measures. For 
example, if F E D(A) then (4.47) is equivalent to 

n(1 - F(anx + bn» = nP[a;1(X1 - bn) > x] -+ e-x , XE lit 

This will not be equivalent to (3.19), viz. 

nP[a;1(X1 - bn)E'] -+ /l 

where /leX, 00) = e-x , XE IR, unless neighborhoods of +00 are compact. Thus 
the first difficulty can be overcome by correct choice of topology: E = 
[ -00, oo]\{ -oo} = (-00,00], the homeomorphic image of (0,1]. Closed 
neighborhoods of + 00 are compact. 

The second difficulty occurs when F E D(~II)' The regular variation in the 
right tail does not offer us any control over points (jn- 1, XJian ) E [0,00] x 
( - 00, 0), and such points will be simply neglected by our point processes. 

Corollary 4.19. Let {Xn,n ~ I} be iid with distribution FED(G) where G is an 
extreme value distribution. Set Mn = V~=1 Xi so there exist an > 0, bn E R, n ~ 1 
such that 

P[a;1(M" - bn) ~ x] = Fn(anx + bn) -+ G(x). (4.47) 

Suppose, for convt:nience, that the norming constants are chosen in the canonical 
way as described in Propositions 1.9, 1.11, and 1.13. 
(i) If G = A, set E = ( - 00, 00], vex, 00] = e-x , x E R, and then (4.47) is equiv­
alent to 

00 

en := L B(l/n,a,:;I(Xk-b .. )) ~ e = PRM(dt x dv) 
k=1 

in Mp([O, 00) x (- 00, 00 ]). 
(ii) If G = ~IX' suppose F(O) = ° (so that Xi> ° a.s.) and set E = (0,00], 
vex, 00] = X-II, X > 0. Then (4.47) is equivalent to 

00 

en:= L B(kln,Xkla .. ) ~ e = PRM(dt x dv) 
1=1 

in MP([O, 00) x (0,00]). 
(iii) If G = 'I'll so that Xo = sup {x: F(x) < I} < 00, then set 

E = (-00,0], v(x, 0] = (-x)«, x < 0, 

and (4.47) is equivalent to 

in Mp([O, 00) x (-00,0]). 
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PROOF. This is a direct application of Proposition 3.21. Note that (4.47) is 
equivalent to 

nP[(X 1 - bn)/an > x] -+ -log G(x) 

for x such that G(x) > 0 and this last convergence statement is equivalent to 
(3.19) because of the way E is topologized. 0 

We may now prove the invariance principle first given by Lamperti (1964) 
with a traditional proof (finite dimensional distributions converge plus 
tightness). 

Proposition 4.20. Let {Xn, n ~ I} be iid rv's with common df F(x). Set M" = 

V?=l Xi and suppose there exist an > 0, bn E ~ such that for a nondegenerate 
limit dfG(x) 

weakly. Set 

and suppose (Y(t), t > 0) is an extremal process generated by G. Then 

Y,,=>Y 

in D(O, 00) is equivalent to (4.47). 

PROOF. Consider first the case G = A. From Corollary 4.19 we have 

(4.47) 

in Mp([O,oo) x (-00,00]) where the limit is PRM(dt x dv), v(x,oo) = e-x , 

x E~. Let Tl be the functionalfrom Mp([O, 00) x (- 00,00]) -+ D(O, 00) defined 
by 

provided m([O, t] x (- 00,00]) > 0 for all t. Otherwise set t* = sup{ s > 0: 
m«O,s] x (-00,00]) = O} and 

(Tl m)(t) = V Yk' 
tk=t* 

The functional Tl is defined (except at m == 0) and a.s. continuous with respect 
to ~ (see later discussion), and so by the continuous mapping theorem 

Tl~" => Tl ~ 

in D(O, 00) where 
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(Tl ~)(t) = V jk = Y(t) 
tk~t 

(cf. Section 4.3) and 

(Tl ~n)(t) = y"(t). 

The treatment for G = '1'" is similar so consider now the case G = <1>". Again 
we recall the problem of how to handle points (k/n, Xdan ) such that Xk :::;; 0, 
since the regular variation in the right tail offers no control over such points. 
One method is to neglect these points by using the following device dating 
back to P. Levy. 

The "Decoupage de Levy" 

Suppose {Xn' n ;?: I} are iid random elements of a metric space S with Borel 
sets ff. Fix a set BEff such that P[XI EB] > O. Let K+(i) be those indicesj 
for which XjEB; i.e., let K+(O) = 0 and K+(i) = inf{j > K+(i - I): XjEB}, 
i;?: 1. Similarly define {K-(i)} by K-(O) = 0 and K-(i) = inf{j > K-(i - I): 
XjEff}. Also define N(n) = sup{i: K+(i):::;; n}. Then it follows that {XK+(i)}, 
{XK~(i)}, {NU),j;?: I} are independent and {XK±(i)} is iid with 

P[XK+(i)EA] = P[X1EAIX1EB], A e B, AEff, 

A eff, AEff. 

Furthermore N(n), n;?: 1 is a renewal counting function and EN(n) = 
nP[Xl EB]. 

To use this in our problem let S = (- 00,00], B = (0,00] so that for x > 0 

P [XK+(1) > x] = P[XI > x]/P[X1 > 0] 

~ x-"L(x)/(I - F(O», x~ 00. 

From Corollary 4. 1 9(ii) 
ro 

L e(i/n,XK'(t)/an ) => L e(l,.j;) 
;=1 i 

(4.49) 

where the limit in (4.49) is PRM. To compute the mean measure we assume 
that an is canonically chosen so that 

and therefore 

nP[Xl > anx] ~ x-a, x> 0 

nP[XK+(l)/an > x] = nP[Xl/an > x]/(I - F(O» 

~ x-"/(l - F(O» 

so the mean measure, by Proposition 3.21, is dt x IXX-a- 1 dx/(1 - F(O». Apply­
ing the analogue of Tl used earlier for the case G = A we get in D(O, 00) 

[n·) 

V XK+(i)/an => V jk =: Y(') (4.50) 
i=1 lk$;' 



4.4. Weak Convergence to Extremal Processes 

where Y(·) has marginals determined by 

P[Y(t) ::;; x] = exp{ - tx-Cl/(1 - F(O»} 

= (<<I>CI(X»'/(1-F(O». 

If y" is the extremal process generated by «I>CI then we have 

yo 4: y,,«. )/(1 - F(O))) 

in D(O, (0). 
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(4.51) 

Because {N(n),n~l} is a renewal function, N(n)/n-+P[X1 >0]= 
(1 - F(O» a.s. in ~, and it is easy to extend this to (recall e(t) = t) 

N([n· ])/n:::;> (1 - F(O»e (4.52) 

in D(O, (0). (See the following if you are skeptical.) Since the decoupage gives 
{N(n),n ~ I} independent of {XK+(i),i ~ I} one readily combines (4.50) and 
(4.52) into a joint statement: 

(
[n.) ) 
~ XK+(i)/an, N([n· ])fn :::;> (y,,«. )/(1 - F(O))), (1 - F(O»e) (4.53) 

in D(O, (0) x D(O, (0). Composing the two components (an a.s. continuous 
operation; cf. Whitt, 1980, and Exercise 4.4.2.2) gives 

N([n·)) 

V XK+(i)/an :::;> Y,,(.). (4.54) 
i=1 

Note 

so we have managed to neglect the points in [0,00] x (-00,0]. However, 
(4.54) is not quite the desired y,,:::;> Y, but this will be achieved if 

and by Proposition 4.8 it suffices to show the foregoing with d.,I> replacing d 
for 0 < a < b. Since Skorohod distance is bounded by uniform distance we 
show 

(4.55) 

for any given B > O. However, observe that 

[
Ina) ] 
~ X;/an > 0 c [N([na]) ~ 1] 

[ I N([n/)) [n/) I ] 
c sup V XK+(i)/an - V X;/an = 0 , 

.:;;;/:;;;1> i=1 1=1 



214 4. Records and Extremal Processes 

and therefore the probability in (4.55) is bounded by 

[
Ina] ] 

P Yl X;/an :s;; ° = Flna](o) -+ ° 
as required. 

Now let us see why Tl is a.s. continuous. Consider as an illustration the 
case G = A. It suffices to show that T,. is continuous in D[a,b] (cf. Lemma 
4.16(iii» at me Mp([O, 00] x (-00,00]), where m satisfies the following: 

m( {a} x (-00,00]) = m({b} x (-00,00]) = m([O, (0) x {oo}) = 0, 

m([O, t] x (x, (0» < 00, m([s, t] x (-00, x]) = 00 

for any a < s < t < b, x e lit Note that PRM e lives in the set of m with these 
properties. 

Let mneMi[O, (0) x (-00,00]) and suppose mn.!.m. Suppose for con­
creteness that T1m(a) < Tlm(b). Choose ~ < Tlm(a) such that m([O,b] x 
{~}) = 0. For large enough n, 

mn([O,b] x (~, 00]) = m([O,b] x (~, 00]) = p, 

1 :s;; p < 00, and there is an enumeration of the points ofmn, call it «t/n),j/n), 
1 :s;; i :s;; p) with ° < tin) < ... < t~n) < a < t~".ll < ... < t~n) < b, q < p, such 
that (Proposition 3.13) 

lim «tln),jln), 1 :s;; i:s;; p) = «ti,ji)' 1 :s;; i:S;; p) 

where «ti' ji)' 1 :s;; i :s;; p) is the analogous enumeration of points of m in 
[0, b] x (~, 00]. Pick ~ < ! min(ti - ti-d small enough that ~-spheres about 
the distinct points of the set {(tjoji)} are disjoint and in [O,b] x [~, 00]; for 
q + 1 :s;; i :s;; p, the ~-spheres should be in [a, b] x [~, 00]. Pick n so large that 
each s-sphere contains the same number of points of mn as of m. Define An as 
a homeomorphism of [a, b] onto [a, b] by 

and for q + 1 < i < P 

An(ti) = inf{ tLn): (tLn), jLn) e sphere of radius ~ about (t i , ji)} and An is linearly 
interpolated elsewhere on [a, b]. Then 

sup I Tl mn(t) - Tl m(AnCt»I < ~ 

sup IAn(t) - tl < ~ 
aSrSb 

showing T1mn and Tim are at a Skorohod distance <~ in D[a,b]. 
We now comment on assertion (4.52). Since N(n) = L~=11IXi>O] we get for 

any t > 0 by the strong law of large numbers 

n-1 N([nt]) -+ (1 - F(O»t a.s. 

and hence for any {til dense in (0, (0) we get in lRoo 
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{n- 1 N([nt;]), i ~ I} .... {(I - F(O»e(t i ), i ~ I} 

so that for almost all OJ the monotone functions n-1 N([n·]) converge on 
a dense set, and hence weakly, to the continuous limit (1 - F(O»e. Local 
uniform convergence ensues from (0.1). This suffices for the Skorohod con­
vergence in (4.52). 

Finally we return to the decoupage and give an indication of how this is 
proved. Since N(n) = I~=l l[xiEBJ it is enough to show 

{XK+(i)}, {XK-(i)}' {1[xJ EBJ} 

are independent with the given distributions. For integers k, 1, and m we look 
at the joint probability 

p{a [XK+(i)EB;] b. [XK-WEAj] "Q [1(X.EBJ = 15,,]} 

where Bi c B, Bi E.9, Ai c E, Ai E.9, and {15", 1 ~ ex ~ m} E {O, 1 }"'. For con­
creteness we suppose the number of ones I:'=l15" ~ k and the number of zeros 
I:'=l (1 - 15,,) ~ m. Suppose ones occur in the sequence 151 , ••• , 15", at indices 
i(I), ... , i(I:'=I15,,) and zeros occur at indices j(I), ... , j(m - I:'=l15,,). The 
preceding joint probability is then 

which by independence is 

k I n P[XpEBp] n P[XqEAq]P[Xl EB]u.-kp[X I EE]",-u.-I 
p=l q=1 

k I '" 
= n P[XK+(p)EBp] n P[XK-(q)EAq] n P[I(x.EBJ = 15,,] 

p=1 q=1 ,,=1 

as required. o 
We now look at some weak convergence applications of Proposition 4.20 

which follow by the continuous mapping theorem. For each of these, we 
suppose that the assumptions of Proposition 4.20 hold, i.e., that (4.47) is valid. 

If Y is extremal-G where G is continuous with left and right endpoints 
X, and xo, respectively, we may consider along with Y its path inverse 
r'" = {Y-(x), X, < X < xo} defined by 

Y .... (x) = inf{t: Yet) > x}. 

y .... is a process with independent increments (Proposition 4.8). (Note here we 
take right continuous inverses to keep all paths in D(x" xo).) 
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Corollary 4.21. If (4.47) holds then 

in 

D(O, (0) 

D( -00, (0) 

D(-oo,O) 

ifG = ~I/. 

ifG=A 

ifG = 'PI/.. 

Remark. D( -00, (0) and D( -00,0) are defined analogously with D(O, (0). 

PROOF. In case G = A or 'PI/., we return to Corollary 4.19 and apply the 
functional T2 : M,«O, (0) x (-00,00]) -+ D( -00, (0) (in the case of A, say) 
defined on m = L 8(f",,/c) by 

(T2m)(t) = inf{r,,: Yt > t}. 

Then T2(L8(1/c,i/c» = Y+- and T2 is a.s. continuous by an argument similar to 
the one used to show Tl a.s. continuous. Hence 

T2 ,,, = Y,,+- ~ T2 , = Y+-o 

In case G = ~I/. we again use the decoupage: For t > 0 let 

M+-(t) = inf{i: XK+(i) > t} 

and note 

and because t > 0 this 

and so 

y"+-(t) = inf{i/n: Xda" > t} 

= inf{K+(i): XK+(i)/a" > t}/n 

= K+(inf{i: XK+(i)/a" > t} )/n 

= K+(M--(a"t»/n 

Y,,--(t) = K+(n(n-1M--(a"t»/n. 

Applying T2 to (4.49) we get in D(O, (0) 

M--(a"t)/n ~ Y--

where Y appears in (4.50). From (4.51) we have in D(O, (0) 

y(.) 4: y,,«' )/(1 - F(O))) 

and therefore we have 

y--(.) 4: (1 - F(O» Y" .... (.) 

in D(O, (0) as well. Since by renewal theory we have 

(4.56) 

(4.57) 
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K+(n)/n -+ (1 - F(0)f1 a.s. 

we get by the argument leading to (4.52) 

K+([n- ])/n -+ (1 - F(0)f1e a.s. (4.58) 

in D(O, 00). Combine (4.57) and (4.58) into a joint statement (cf. Billingsley, 
1968, page 27, and Exercise 4.4.2.1) 

(M-(an' )/n, K+([n· ])/n) => «1 - F(O» Y,.+-, (1 - F(0)f1e) 

in D(O, 00) x D(O, 00) and composing components (an a.s. continuous opera­
tion; cf. Exercise 4.4.2.2 and Whitt, 1980) we get from (4.56) 

y,.+- = n-1 K+([n· n-1 M+-(an' )]) => (1 - F(0»-1(1 - F(O» Y,.+- = Y,.+-

in D(O, 00). o 
Remark. One might be tempted to proceed from Proposition 4.20 via the map 
T3 defined on nondecreasing functions by T3X = x+-. However, this is not 
continuous on D(O, 00). Consider xn(t), t > 0 defined by 

xn(t) = {~t2 : :~:: ~ : : : t 
t ~ 1 

{
.l O<t<1 

x(t) = 2t 
t ~ 1. 

For any 0 < a < b, sUPre[a.b1Ixn(t) - x(t)1 ~ l/n -+ 0 and so in D(O, 00), 
d(xn' x) -+ O. However, 

0< t < t - n-1 

t - n-1 :s; t < t + n-1 

t + n-1 :s; t < 1 

t> 1 

t<t 
t~t<1 
t> 1 

and so matter how time is dilated, the distance between the graphs is at least 
1/2. 

Next consider Dt (0,00), the subset of D(O, 00) consisting of nondecreasing 
jump functions; these are nondecreasing functions which are constant between 
isolated jumps. In a compact subset of (0, 00), such functions have only finitely 
many jumps. Define 

at xeDt(O, 00) by 
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(T4X) = LB" 
where {ti } are the points of discontinuity of x. This is relevant because extremal 
processes live in Dt(O, 00) and if Y is extremal 

T4 Y=LBtn 
n 

where {Tn} are the jump times of Y. The map T4 is continuous when re­
stricted to Dt(O,oo). For suppose Xn , n ~ 0 are functions in Dt(O,oo) and 
d(xn' xo) -+ 0 in the Skorohod topology. If 1 e C: (0,00), the support of 1 is a 
compact set contained in [a, b] for some 0 < a < b with a and b e ~(xo). There 
exist A.n e Aa,b such that 

sup Ix(A.n(t» - xo(t)1 -+ 0 
le[a,b) 

sup lA.it) - tl-+ O. 
le[a,b) 

If '4xn = Li B'ln) then we must check 

L I(tl°) l[a,b)(tl°) = lim L I(tln) l[a,b)(tln) 
i n i 

(4.59) 

(4.60) 

(4.61) 

and since xlleDt(O, 00) for n ~ 0, the sums in each case involve only a finite 
number of nonzero terms. From (4.59) and (4.60) we see that the jump points 
of XII on [a, b] must be close to those of X o and (4.61) follows. 

This means that T4 is a.s. continuous with respect to the distribution of Y 
and from the continuous mapping theorem we get the following result. 

Corollary 4.22.1f (4.47) holds then 

i.e., 
00 

L Bn-IL(k) - Jl.oo = LBtn 
k=l 

The last statement follows from Proposition 4.9. Note 

'4 Y" = '4M[n') = LBn-IL(k) 
k 

since the function {M[III), t > O} jumps at {L(k)/n, k ~ I}. 

Compare this result with Corollary 4.5 where F was required to be con­
tinuous. Here we require FeD(G). 

Now apply '4 to the convergence in Corollary 4.21 and use again the 
continuous mapping theorem. 

Corollary 4.23.11 (4.47) holds then 

T4 Y" ... - T4 Y'" 
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<Xl 

L B(XUkl-bnl/an => L BY(tkl 
k=l k 

Mp(O, oo) 

Mp( -00,00) 

Mp( -00,0) 

if G = <1>« 

ifG=A 

if G = '1'«. 
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Recall that Lk 6Y( t kl is PRM with mean measure determined by S(x) = 
-log( -log G(x)). 

Again compare this result with Proposition 4.1 (iii). 
Remark on the magic of the invariance principle: Suppose {Xn , n ;:::: I} is 

any sequence (for example, stationary) which is not necessarily iid but for 
which the point process convergence conclusion of Corollary 4.19 is valid. 
Then for such a sequence Proposition 4.20 and Corollaries 4.21, 4.22, and 4.23 
all hold. This remark will be illustrated in the next section, where we study 
extreme values in the important example of moving average processes. 

The preceding results detail the basic convergences. We now give some 
further illustrations of the power of the invariance principle. 

For m = LBt,EMp(O, 00), such that m(l, 00) = 00, the map 

Tsm ..... (t l ,t2 , .. ·) 

where 1 < t1 < t2 • .. is a.s. continuous from Mp(O, 00) ..... (0, oor = Of (0,00) 
(cf. Proposition 3.13 and Exercise 4.4.2.11). Apply Ts to the convergence in 
Corollary 4.22 so that for the terms to the right of 1 we get in IROO 

{L(k)/n: L(k) > n} => {ri' i ;:::: I} 40 {ef ', i ;:::: I}. (4.62) 

Letting Jl(n) = Jl[l,n] = number of records among Xl' ... , X n, we rephrase 
(4.62) as 

n-1(L(Jl(n) + l),L(Jl(n) + 2), ... )=> {ef '; i;:::: I}. 

In particular we get for the index of the first record past n that for x > 0 as 
n ..... 00 

P[(L(Jl(n) + 1) - n)/n ::;; x] ..... P[ef • - 1 ::;; x] = p[r1 ::;; 10g(1 + x)] 

= 1 - e-1og(l+Xl = xj(l + x). 

Likewise for the index of the last record at or before n we get for 0 < x < 1 
as n ..... 00 

P[(n - L(Jl(n)))/n::;; x] ..... P[1 - '-1 ::;; x] = pL~oo 6tk(1 - x, 1);:::: 1] 

and using the fact that L6tk is PRM(C1dt) this probability is 



220 4. Records and Extremal Processes 

1 - exp{ -log(I/(1 - x))} = 1 - (1 - x) = x 

giving an asymptotic uniform distribution. 
In a similar way we find for x > 0 as n -+ 00 

P[n-1(L(Jl(n) + 1) - L(Jl(n))) ~ x] -+ P[1"l - 1"-1 ~ x] 

{
X -log(l + x), x ~ 1 

= 1 -log(x-I(1 + x)), x> 1. 

The last distribution may be computed by using the fact that (1"1 - 1) and 
1 - 1"-1 are independent random variables (since PRM's on (0, (0) have inde­
pendent increments) so thatthedistribution oft" 1 - 1"-1 = (1"1 - 1) + (1 - 1"-1) 

is a convolution of the two previous limit distributions. 
Some cheap variants of (4.62) are 

n-1(L(k + 1) - L(k): L(k) > n)~ {1"i+l - 1"j, i ~ I} ,g, {erHt - er" 1 ~ I} 

(L(k + 1)/L(k): L(k) > n)~ {eEl, i ~ I} 

(log(L(k)/n): L(k) > n) ~ {r;, i ~ I}. 

Now apply Ts in Corollary 4.23. For points to the right of 1 we get when 
G=A 

so that 

«XL(HI) - XL(k»)/an : XL(t) > an + b,,)=(E1 ,E2 , ••• ). (4.64) 

These results can be made marginally neater by employing a change of 
variable: Recall that possible choices of a" and bIt are 

bn = r-(l - n-I ), an = r-(l - (ne)-l) - bIt 

so that 

Setting T = an + bIt we invert and recalling that an is the retraction to the 
integers of a slowly varying function a( . ) we get, for example, in (4.64) that 

(XL(Hl) - XL(A:»)/aC _IF(t»): XL(") > T)~(El,E2'···) 
as T-+ 00. 

When G = ~II similar results hold: 

(XL(k)/an: XL(k) > an)~(Y(1"j): Y(1"j) ~ 1):ll: (exp{a-1r j}, i ~ 1). 

Changing variables T = all gives a somewhat neater limit theorem as T -+ 00. 

A variant is 
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(XL(k+l)/XL(k): XL(k) > T)=>(e",~lEi, i::?: 1) 4, (U/,"', i::?: 1) 

where Uj , i ::?: 1, are iid uniform (0, 1) random variables. 
By now, the idea will have become clear. 

EXERCISES 
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4.4.2.1. Suppose X n , Y", and n ~ o are random elements of D(O, (0) and all are defined 
on the same probability space. If 

in D(O, (0) and 

in D(O, (0) where Yo is a.s. constant then show 

(X., Y,,)=>(Xo, Yo) 

in D(O, (0) x D(O, (0) (Billingsley, 1968, page 27). 

4.4.2.2. (a) Suppose x., n ~ 0 are functions in D(O, (0) and Tn E D(O, (0) is non­
decreasing for n ~ 0, T.: (0, (0) -+ (0, (0), d(xn, xo) -+ 0, d(Tn, To) -+ O. If To 
is continuous, show 

d(x. o Tn' Xo 0 TO) -+ O. 

(b) Assume in addition Xn is nondecreasing, x. E D(O, (0) and Xn: (0,00) -+ 

(0, (0). Show 

Hint: Try using Exercise 4.4.1.10. See Whitt (1980) for details and re­
finements. 

4.4.2.3. Combine Proposition 4.20 and Corollary 4.22 to show 

in D(O, (0) x D( - 00, (0) 

D(O, (0) x D(O, (0) 

D(O,oo) x D(-oo,O) 

ifG=A 

ifG = q,. 

if G = '1' •. 

4.4.2.4. Let {X •. k , 1 ~ k ~ n, n ~ I} be a triangular array of dependent random 
variables defined on the same space and suppose {§;..t, 0 ~ k ~ n, n ~ I} is 
an array of a-algebras such that X •. k is §;..k measurable and for each n, 
~.k-l c ~.k' If for a measure v 

• p 

(a) L P[X •. k > XI~.k-l] -+ vex, (0) 
k=1 

• p L P[X •. k ~ YI~.k-l] -+ v( -oo,y] 
k=1 

for y < 0 < x, x and y not atoms of v and 
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(b) max P[IX •. jl > xI-~.j-l] !. 0 for x> 0 
1 ';;j';;. 

then 

in Mp([ -00, oo]\{o}) where ~>Jk is PRM(v). 
Hint: Review Proposition 4.8. Define the random measure 

• 
Jl.(w, .) = L P[X •. k E ·1~.k-tJ 

1 

so that (a) is equivalent to 
p 

Jl.. -+ v 

in M+([ -00, oo]\{o}) (Durrett and Resnick, 1978). 

4.4.2.5. Let F., n ~ ° be probability distributions such that F. -+ Fo weakly. If y(.) is 
extremal-F. show 

in D(O, (0). 

4.4.2.6. Let rev) = inf{n: M. ~ v}. If F E D(Cf>«), find a limit law for Mt(v) as v -+ 00. 

4.4.2.7. If Y,. is extremal-Cf>« show for any c > ° 
Y,.(c·) ,g, c1/«y" in D(O, 00 ). 

If Y is extremal-A show for c > 0 

Y(c'),g, y(.) + logc in D(O, 00 ). 

4.4.2.8. Suppose {X., n ~ I} are iid random variables satisfying for 0 < p, q < 1, 
p + q = 1, IX > 0: 

x -+ 00 

lim P[XI > x]/P[lXtI > x] = p 

lim P[XI :s: -x]/P[IX11 > x] = q. 

Define for x > ° 
vex, 00] = px-« 

v[ -00, -x] = qx-« 

and set E = [-00, oo]\{O} so compact sets are those closed sets bounded 
away from zero. 
(a) Show 

e. := LIl(k/ •• Xk/Gnl ~ e = PRM(dt x dv) 

on Mp([O, (0) x E), where a. is chosen so that 

a. = (l/P[IX tI > . )+-(n). 
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(b) Let X~l) be the term of maximum modulus among Xl' ... , X n• Find a 
limit law for X!l) by applying a functional to the result in (a). 

(c) Let TJa.b): MI'([O, (0) x E) ..... D[O, (0) be defined by (0 < a < b) 

TJa.b) (I £(tk ' 7k») (t) = I Yt l[IYkl E [a.b))· 
k ,.SI 

Show that Ts is a.s. continuous with respect to e and compute 

(d) For 1 = ~o > ~l > ........ 0, show by using the Kolmogorov convergence 
criterion (summing the variances) that 

00 

L «TJ"+I""e)(t) - E(TJ"+I""e)(t)) 
i=O 

converges a.s. 
(e) Pick {~i} at your convenience to guarantee that convergence in (d) is 

uniform for t e [0,1] (Kolmogorov inequality). 
(f) Show that for any i 

Int) 

X!'(t) = a;l L Xjlllxil>a.I,) - na;ltEXl l la;;-'IX,IE(I,.I) 
I 

=> r ue(ds, du) - t r uv(du) = X , ,(·) 
Jllul>I, •• S/) J[I>lul>I,) 

in D[O, 1] and that almost surely and uniformly on [0, 1] 

X', ..... X 

as i ..... 00, where X is a stable process. 
(g) Show 

in D[O, (0) by showing, using Kolmogorov's inequality and Karamata's 
theorem, 

lim limsup P[d(X~,X!') > 8] = 0 
i-co JI-a) 

where d is the Skorohod metric on D[O, (0) (Resnick, 1986; Durrett and 
Resnick, 1978). 

4.4.2.9. If Fe D(A) show for x > 0 

P[a;I(Mn - Mn- l ) > xlne{L(j),j ~ In ..... e-x 

as n ..... 00 (McCormick, 1983). 

4.4.2.10. Suppose Xt , k ~ 1 are iid, Xl > 0, and 

P[XI > x] - x-~L(x), 

Let .(fJ) = sup{k ~ 1: Xk > fJk}. 
(a) Check .(m < 00. 

x ..... 00, at> 1. 
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(b) The convergence in Corollary 4.19 holds with n replaced by a continuous 
variable, u say. 

(c) Let T9: Mp[O, (0) x (0, (0) - Mp([O, (0) x [0, (0» be the map induced by 
the transformation of points 

(t, y) _ (ty-I, t). 

Why is this map a.s. continuous? 
(d) Apply T9 and then TI and conclude as u - 00 

t(u-1a(u)/(' »/u - SUp{tk: tki;l < (.)}. 

Change variables to get in !R as s - ex) 

t(l/s)/s(%(s) _ y# (1) 

where P[Y#(I) ~ x] = (~«(x»I«-o-l. What is (%(s)? (Husler, 1979; 
Resnick, 1986) 

4.4.2.11. Check Ts is continuous when restricted to {meM(O, (0): m(1, (0) = oo}. 

4.4.2.12. Suppose {Xn' n ~ I} is iid with common distribution P such that for an > 0, 
bne!R 

pft(anx + bn) - G(x) 

nondegenerate. Let e = Lk /lllo.Uo) be homogeneous PRM on [0, (0)2 and let 
the points in [0, (0) x [0, n) be {t1n), u1n)} where ° ~ tin) < tt) < .... 
(a) {u1ft)} is iid, uniform on [0, n). 
(b) For each n 

{a;I(Xt - bn), k ~ I} ~ {a;I(F-(((l - n-Iu~·»ft}l/ft) - b.), k ~ I} 

in !ROO. 
(c) We have (F-(yl/.) - b.)/an - G-(y). 
(d) In Mp([O, (0) x (-00,00]) 

almost surely if G = A with similar results in the other cases. 
(e) Hence 

and the corollary about weak convergence to extremal processes follows 
(Pickands, 1971; Resnick, 1975; de Haan, 1984a). 

4.5. Extreme Value Theory for Moving Averages 

In this section we analyze stationary moving average processes where the 
averaged variables have distributions with regularly varying tails. Such pro­
cesses are worthy of our attention for at least two reasons. First of all, from 
the didactic perspective, the analysis of such processes otTers additional excel-
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lent illustrations of the usefulness and power of the probabilistic and analytic 
tools thus far developed. Secondly, the autoregressive moving average pro­
cesses of orders p and q (ARMA (p,q» are among the most frequently used 
models in time series analysis and ARMA's driven by noise sequences with 
regularly varying tail probabilities will satisfy the hypotheses of the results to 
be given later. 

Suppose {Zk' - 00 < k < oo} is a sequence of iid random variables and 
assume 

and 

I. P[Zk > x] 
1m =p, 

x-+ex> P[IZkl > x] 
I. P[Zk ~ -x] 
1m =q, 

X-+ex> P[IZkl > x] 
o ~ p ~ 1, 

The sequence of real constants {cj , - 00 < j < oo} satisfies 

ex> 

L Icl< 00 for some 0 < ~ < IX A 1. 
j-ex> 

The strictly stationary sequence of moving averages is given by 
ex> 

X n := L CjZn_j, 
j-ex> 

-00 < n < 00. 

(4.65) 

p+q=1. 

(4.66) 

(4.67) 

(4.68) 

We study the weak limit behavior ofvarious quantities related to the extremes 
of {Xn }. 

An immediate issue is whether the series in (4.68) converges. Since 0 < ~ < 
1 A IX we have by the triangle inequality 

EIXnl" ~ L Icjl"EIZn-l' = EIZtl" L Icl < 00, 
j j 

using (4.67) and the fact that EIZtl" < 00 (Exercise 1.2.2). Thus the series in 
(4.68) must be almost surely convergent. 

Note that (4.65) and (4.66) are conditions defining global regular variation 
involving both tails and is thus stronger than the right tail regular variation 
conditions tupically encountered in extreme value theory. Since Xn is defined 
by an infinite series, it is convenient for analysis of extremes and other 
functionals to have firm control of left tail behavior. 

The one point uncompactification: The global regular variation conditions 
(4.65) and (4.66) lead to consideration of such state spaces as [O,oo]"\{O}, 
[ -00, oo]"\{O} for some d ~ 1 where {O} is understood as the origin ofR". In 
order that (4.65) and (4.66) be equivalent to appropriate statements about 
vague convergence of measures, it is essential that these spaces be understood 
to have topologies obtained by removing the origin from compact sets. Thus 
[-00, oo]"\{O} is the compact set [-00,00]" with 0 removed, and so on. In 
such punctured spaces, compact sets must be bounded away from O. The 
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spaces may be metrized by interchanging the roles of zero and infinity. For 
example, in (0, 00] a suitable metric is 

d(X I ,X2 ) = Ixil - xiII 

for Xl > 0, X2 > O. In [-00, 00]2\{O} each ofthe following sets is compact: 

{XE[ -00, 00]2\{O}: IXII + IX21 ~ I}, {XE[ -00, 00]2\{O}: IIxII > 1} 

where x = (X I ,X2) and IIxII = (x~ + XDI/2. 
For further results and other approaches see Rootzen (1978), Finster (1982), 

Hannan and Kanter (1977), Kanter and Steiger (1974), and Davis and Resnick 
(1985a and b, 1986). 

Here is an outline of our approach: First, notice that (4.65) and (4.66) 
are equivalent to a convergence of point processes result. To see this, let 
E = [ -00, 00]\{0} and 

an = (I/P[IZll > . ])<-(n) 

so that an is the inverse function of l/P[IZll > x] evaluated at n. Then (4.65) 
and (4.66) are equivalent to 

nP[a;1 Zl E' ] ..!. v 

in [-00, 00]\{0} where 

v(dx) = prxx-II.-1dx 1(o.ro)(x) + qrx( -xrll.-1dx l[-ro.o)(x), 

and therefore Proposition 3.21 applies and gives 
ro 
L 8(kn- l .a;;IZk ) => L 8(tk.ik) 

k=1 k 

(4.69) 

(4.70) 

as n -+ 00 in Mp([O, (0) x [-00, 00]\{0}) where the limit is PRM(dt x dv). 
We want a similar result involving the X's. Define for m > 1 

x!m) = L ciZn - i , 
lil~m 

-oo<n<oo 

and think of x!m) as a simple functional of the vector 

z~m) = (Zn-i' iii :::;; m) 

which suggests looking at the point processes 
ro 
L 8(kn-l.a;;lz~m) 

/0;=1 

and in fact as n -+ 00 we are able to show weak convergence of these processes. 
A simple continuity argument gets us to convergence of point processes based 
on (x!m), - 00 < n < (0) and then a Slutsky-style approximation argument 
allows us to remove m. 

To carry out this program in detail we need some preliminaries. The first 
result is a special case of a theorem of Cline (1983a and b). 
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Lemma 4.24. If {Zn} satisfies (4.65) and (4.66) and {cn} satisfies (4.67) then 

lim P[L,jlcjIIZjl > x] = L,lcjlll. (4.71) 
x--+oo P[lZll > x] j 

PROOF. We begin by showing a tamer result, namely 

I. P[lcdZll + IC211 Z21 > x] I III I III 
1m = Cl + c 2 . 

n--+oo P[\Zll > x] 
(4.72) 

This is a standard analytical exercise (Feller, 1971), but the following alterna­
tive approach (Resnick, 1986) is more fun and some of the mechanics will be 
needed later. The regular variation conditions (4.65) and (4.66) imply 

nP[a;1(IZll,IZ2\)e']~1l (4.73) 

on [0, 00]2\{O} where Ilconcentrates on the axes {(y,O),y > O} u {(O,y),y > O} 
and for x> ° 

1l{(Y, 0): Y > x} = 1l{(O,y): Y > x} = X-II. 

To check this note for Xl > 0, X2 > ° 
nP[a;1(IZll,IZ2\)e(x1,00] x (X2'00]] 

= nP[a;1IZ11 > xl]P[a;1I Z21 > X2] 

-+ xII10 = ° 
so Il has no mass in the interior of [0, 00]2. However, 

1l{(Y,O): Y > x}} = lim nP[a;lIZd > x,a;1IZ21 ~ 0] 

"-00 

Now let {Z~,Z:,n ~ t} be iid with (Z~,Z:) 4, (Zl,Z2)' n ~ 1, and applying 
Proposition (3.21) to (4.73) gives 

00 

L, 8(kn- t ,"n'(IZI.I,IZ;;I)) ~ L, (8(/1., Uk, 0)) + 8(1;;,(0,1;;))) (4.74) 
k=l k 

on Mp([O,oo) x ([0, 00]2\{O})) where the limit is PRM(Il). Now define 
T: [0, 00]2\{O} -+ (0, 00] by 

T(Xl,X2) = \cdXl + IC21 x2' 

Ufor any compact set K c (0,00], T-1(K) is compact in [0, 00]2\{O} then one 
readily checks that Proposition 3.18 may be applied to (4.74) to obtain 

n 

L, 8(kn-',"n'(ledIZI.I+le2I1Z;;I)) 
k=l 

~ L, 8(/1., Ie, 111.) + L, 8(/;;,1<2Ij;;) 
k " 

(4.75) 
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where the limit is the sum of two independent Poisson processes and is 
hence Poisson. The mean measure of LkG(I;,.lcllj;') is easily calculated to be 
dt x IcdCl/Xx-Cl- 1 dx, and hence the limit in (4.75) is PRM(dt x (lcdCl + 
Ic21C1)/Xx-Cl-1 dx). Applying Proposition 3.21 in reverse order gives that (4.75) 
implies 

nP[a;I(lcdIZ~1 + IC21IZ;1 e .] ~ (Icd'" + IC21C1)/Xx-"'-1 dx 

on (0, 00], and this is equivalent to 

lim P[ICIIIZ;1 + Ic211Zrl > anx] = (lcll'" + IC21"')x-'" 
x .... .., P[IZII > an] 

and this is readily seen to be the same as (4.72). 
Thus the last detail in the verification of (4.72) is to check the compactness 

condition of Proposition 3.18, viz 

r-I(K) is compact in [0, 00]2\{0} if K is compact in (0, 00]. (4.76) 

Note first r is continuous so if K is compact r-I(K) is closed. If 0< 15k ! 0, 
we have {(15k , oo],k;;::: I} is an open cover of (0, 00] and hence an open cover 
of K, and therefore for some b, (b,oo] :::) K. If r-l(b,oo] is compact in 
[0, OO]2\{0}, then r-I(K), being a closed subset of r- I (<<5, 00], must also be 
compact. Thus it remains to prove r-l(b, 00] is compact, but since 

r-I (<<5,oo] = {(xl ,x2)e[0, 00]2\{0}: Icdxl + IC21x2 ;;::: b} 

is obviously bounded away from 0, the result is clear. 
We now must leap from (4.72) to (4.71). For x> 0, write 

p[ ~ IcjllZjl > x] 

= p[ ~ IcjllZjl > x, Y IcAIZjl > x] + p[ ~ IcjllZjl > x, y IcjllZjl :s; x] 

:s; P{Y[ICAIZjl > x]} + p[~ IcjllZjlll1cjllzJISx] > x, y IcjllZjl:s; x] 

~ t P [IZjl > xlcjl-l J + P [t ICjllZjlll1cJllzJlsx] > x J 

and therefore applying Markov's inequality 

p[t IcjllZjl > x JI P[IZd > xJ 

~ L P[lZII > xlcjl-l ]/P[IZII > x] 
j 

= I + II. 
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For I we have by Proposition 0.8(ii) that for allj such that Icjl < 1 (i.e., all but 
a finite number of j) there exists Xo such that x > Xo implies 

P[IZll > xlcjl-l ]/P[IZll > x] 

~(1 +15)lcj lll. 

This bound is summable because of (4.67) and hence by dominated 
convergence 

In considering I I, suppose temporarily that 0 < IX < 1. From an integration 
by parts 

EIZlI1nz.!~xl = f~P[lZll > u]du _ 1 
xP[IZd > x] xP[lZd > x] 

and applying Karamata's theorem 0.6 this converges, as x -+ 00, to 

(I - IX)-l - 1 = IX(1 - IXrl. 

Thus EIZdl[lz.!~xlERV1-o1 and hence applying again Proposition 0.8(ii) we 
have, for all but a finite number of j, that for x sufficiently large and some 
constant k > 0 

Icjl E IZlI1nz.!~xlcjl-ll 

XP[IZll > x] 

= Ic.1 (EIZlI1nZIISxicJI-'1) EIZ l1 1!1zdsxl 
J EIZ ll l !1z.!Sxl xP[lZll > x] 

~ klcjl (lCjl-l )1-01+"'-6 = klcl 

which is summable. So we conclude 

limsup II ~ k L Icjllcjl",-l = k L IcJI'" 
x~oo j j 

and hence when 0 < IX < 1 for some k' > 0 

If IX ~ 1 we get a similar inequality by reduction to the case 0 < IX < 1 as 
follows: Pick },E(IX,IXI5-1) and by Jensen's inequality (e.g., Feller, 1971, page 
153) if we set C = Ljlcjl, Pj = IcNc we get 

(~!cjIIZjIY = cY (~PjIZJIY ~ cY ~ pjlZY 

= cy- 1 L IcjlIZjIY. 
j 
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Then 

P[LjlCjllZjl > x] P[LjlcjllZjlY > c 1 - Yx Y] -=--=---=--- < . 
P[IZll > x] - P[IZIIY > X Y] 

Now use the factthat P[lZIIY > x]ERV_lIy -l,c5 < lXy-1 < l,and the preced-
ing result to obtain 

I· P[Lj IcjllZjl > x] < k' ~ I Illy-I 1I(1-y-l ) 

nnsup P[IZ I ] - ~ cJ C < 00 
" .... 00 1 > X j 

(4.77') 

which is similar to (4.77). 
Now we are ready to prove (4.71): For any integer m > 0 

P[Lj IcJIIZjl > x] P[Llilsm I cjllZjl > x] ~ I III 
-----"'~'__'!..:.--=-=--=--=- > -+ ~ c· 

P[IZll > x] - P[IZll > x] IJlsm J 

by the obvious extension of (4.72) and since m is arbitrary 

I~~~f p[ ~ IcjllZjl > x JI P[IZd > x J ~ ~ Icjl. 

On the other hand for any e > 0 

P[Lj IcjllZjl > x] P[LlJIsm IcjllZjl > (1 - e)x] P[LIJI>m IcjllZjl > ex] 
--==-<--"'----=----~ +-----=='---"---"---

P[IZll > x] P[IZll > x] P[IZll > x] 

and so from (4.72) and (4.77) for some k' > 0 

Iimsup P[LJ IcjllZjl > x] ~ (l - e)-II L Icjlll + k' e-II L IcJl1I 
" .... 00 P[IZd > x] IJlsm Ijl>m 

for the case 0 < IX < 1, with a similar bound for the second piece provided by 
(4.77') when IX ~ 1. Let m -+ 00 and then send e -+ 0 to obtain 

li~!~p p[ ~ IcjllZjl > x JI P[IZll > x J ~ ~ Icjlll 

and this combined with the liminf statement proves (4.71). o 

The following exceedingly useful variant of Slutsky's lemma is Billingsley's 
(1968) Theorem 4.2. 

Lemma 4.25. Let XII"' XII' Y,., and X be random elements of a complete, separable 
metric space S with metric p, such that for each n, Y,., XII"' u ~ 1 are defined on 
a common domain. Suppose for each u, as n -+ 00, 

and as u -+ 00 
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Suppose further that for all e > ° 
lim lim sup P[p(Xun' y") > e] = 0. 

Then we have 

Y,,=X 

as n -+ 00. 

PROOF. See Billingsley, 1968, page 25 or consider the following: We must show 
limn-+oo Ef(y") = Ef(X) for bounded continuous f on S, and in fact it suffices 
to suppose f is uniformly continuous and bounded (Billingsley, 1968, page 12, 
or examine the statements equivalent to weak convergence at the beginning 
of Section 3.5). Now write 

so that 

IEf(y") - Ef(X) I ~ Elf(y") - f(Xun)1 + IEf(Xun) - Ef(Xu)1 

+ IEf(Xu) - Ef(X) I 

lim sup IEf(y") - Ef(X) I ~ lim limsup Elf(y") - f(Xun)1 

~ lim limsup E(lf(y") - f(Xun) I; p(Y", Xun) ~ e) 
u-+oo n-+oo 

+ lim limsup 2 sup If(x)IP[p(y",Xun) > e] 
u-+oo "-+00 xe S 

~ sup{lf(x) - f(y)l: p(x,y) ~ e} + ° -+ ° 
as e -+ ° since f is uniformly continuous. o 

With these preliminaries out of the way we now prove the basic 
convergence. 

Proposition 4.26. Suppose (4.65), (4.66), and (4.67) hold so that (4.70) follows; 
viz in Mp([O, 00) x [ - 00,00]\ {O}) 

00 

I e(kn- 1,a;lZkl = I e(tk,jk) (4.70) 
k=l k 

where the limit is PRM(dt x dv), v(dx) = rxpX-IJ.-l dx l(o,oo)(x) + rxqlxl-IJ.-l. 
dx 1[-oo,o)(x). Fix an integer m and define vectors ej , -m ~j ~ m of length 
2m + 1 by 

e-m = (1,0, ... ,0), ... , em = (0, ... ,1) 

and define random vectors 
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Then in Mp([O, (0) x [ - 00,00 ]2m+l \ {O}) 

<Xl 

L l:(kn'-I.o;;IZk) ~ L L l:(tk.ik· e,)· 
k=1 k lil:s;;m 

(4.78) 

Remark. The limit process in (4.78) is obtained by taking the one-dimensional 
it's in (4.70) and laying them down on axis eo, and then repeating determin­
istically this pattern on each axis e ± I' ... , e±m' In the proof of Lemma 4.24, 
points on different axes were independent but the situation is very different 
here since the pattern of points on each axis is the same. 

To see why (4.78) is plausible consider the following: Any limit point process 
in (4.78) can have no points off the axes. Let us check this. Define 

SLEEVE = SL = {XE[ -00, 00]2m+l\{O}: At most one component ofx 
has modulus greater than <5} 

and 

= {x: Ix,l ::;; <5, -m ::;; I ::;; m} 

U U {x: IXil > <5,lx,l::;; <5,1 # i, -m::;; I::;; m} 
-m:s;;l:S;;m 

(SLY = {XE[ - 00, 00]2m+l\{O}: At least two components ofx 
have moduli greater than <5} 

so that SLEEVE consists of narrow sleeves about the axes. The significant 
characteristic is that a limit process can have no points in [0, t] x (SL)C for 
any t > 0 since 

<Xl 

E L l:(kn-I.O;;IZk)([O,t] x (SL)<) = [nt]P[a;;-IZkE(SLYJ 
k=1 

One can guess the form of the limit in (4.78) by supposing (kn-t,a;;-lZk)e 
[0, t] x SLEEVE; for instance, suppose la;;-l ZHml > <5, a;;-llZk+l1 ::;; <5, and 
- m ::;; i < m. This supposition sets up a reproducing pattern on the other axes 
since points eventually leave [0, t] x (SLY and we are likely to have ZHI 

contributing a;;-llZHml > <5, a;;-11ZH1+11 ::;; <5, -m::;; i::;; m, i # m - 1, and 
ZH2 contributing a;;-llZHml > <5, a;;-lIZH2+il ::;; <5, -m::;; i::;; m, i # m - 2, 
and so on. This also suggests comparing In = Lk=l l:(kn-l.o,;-IZk) with 
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PROOF OF PROPOSITION 4.26. We first prove 

d( f G(kn- ' ,a;;'Zk ), f L G(kn- ' ,a;;'zk •e;»)!. 0 (4.79) 
k=l k=l lil~m 

where d is the vague metric on Mp([O, (0) x [ - 00,00 ]2m+1 \ {O}). Because of 
the definition of d (cf. Proposition 3.17), it suffices to show for any Ie 
Ci([O, (0) x [ -00, 00]2m+l \{O}) 

In(f) - I:(f)!. O. (4.80) 

The support of 1 must be contained in [O,t] x {xe[ _oo,oo]2m+l\{O}: 
Vi'= -m Ix;! > b} for some t > 0,15 > 0 and for notational simplicity take t = 1. 

From the remarks subsequent to the statement of the proposition 

E(In([O,I] x (SL)C» -+ 0 

and this readily implies 

In(f) = fldIn = r + r J [0,1] x SL J [0,1] x (SL)C 

= r 1 dIn + op(I). 
J[O,l]XSL 

In addition it is evident that 

I:(f) = r 1 dI:, 
J[O,l]XSL 

and therefore to show (4.80) one needs to show (recall I(s, z) = 0 if 
V:"=-mlz;! < b) 

m n 

L L l(kn-1, a;;l Zk) 1[a;;IIZk+ll>d.V~_~a;;llzk+;1~6] 
l;:  -m k=l ,.,., 

m n 

- L L I(kn-t, a;; I Zk' el )!. 0, 
I=-m k=l 

for which it suffices to check for fixed 1 
n 

I l(kn-1, a;; 1 Zk)l[a;;llzk+II>6,V1'~_~a;;IIZk+lIS6] 
k=l ~l 

(4.81) 

where the indicator on the last sum was added without harm because of the 
compact support off. Suppose for concreteness 1 > O. Change dummy indices 
k' = k + 1 and the difference in (4.81) can be bounded by 
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o 
L !«k + l)n-1,a;;lZk+/ oe/) 

/c=l-/ 
n 

+ L !(kn-1, a;;l Z/c)I(a;;-'lzk+,I>cI,Vi"a_ .. a;;-'lzk+ll s"l 
/c=n-/+l 1., 
n-/ 

+ L 1!(kn-1,a;;lZ/c) 
k=1 

- !«k + l)n-t, a;;1 Z/c+/o e/)ll(a;'IZk+,1>6, Vi"--.. a;'IZk+IIS61 
i1' 

n-/ 

+ L !«k + l)n-1, a;;l Z/C+lo e/) l(a;'IZk+,I>", Vi" __ .. a;;-'IZk+il>dl 
/c=l ~ 

= I + II + III + IV. 

Now E(IV):5:; nP[a;;l Z/cE(SL)'](sup!(X» -+ 0 and 

P[l > 0] :5:; pL2-, a;; 1 I Z/C+l I > fJ ] 

(where the last inequality follows by considering the support of f) 

= pL~ IZII > anfJJ -+ 0 

and a similar argument shows I I = op(l). This clears away the rubble resulting 
from the reindexing and we focus on III. The indicator function associated 
with II I is bounded by (0 < " < fJ) 

1(a;'lzk+,1>6, Vi" __ .. a;'IZk+iIS"l + l(a;;-'lzk+lI>", Vi'!.-.. a;; 'IZk+II>"l 
i." ''1' 

so that the expectation of III is bounded by 

sup {I!(S, x) - !(t,x,e,l: Ix,l > fJ, 

l'Stm Ix;! ~ ", It - sl ~ (2m + l)n-1} nP[a;;lIZll > fJ] 
I#<' 

Since! is uniformly continuous on its compact support, the sup can be made 
as small as we like, say less than efJ ll, by choosing" small and n large. So the 
bound for III converges as n -+ 00 to 

efJ ll lim nP[a;;lIZll > fJ] + 0 = efJllfJ-1l = e 

and hence (4.81), (4.80), and (4.79) follow. 
This means that (4.78) will be true if we show that I: converges weakly to 

the indicated limit. This follows straightaway from (4070) and the continuous 
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mapping theorem since T: Mp([O, (0) x [-00, oo]\{O}) -+ Mp([O, (0) x 
[-00, oo]2m+l \{O}) defined by 

is continuous. Thus 

TC~1 ll(kII- I,IJ"IZk») = I: => T( ~ Il(Ik.ik») 

= L L Il(lk.ike,) 
It lil:s:m 

in Mp([O, (0) x [-00, oo]2m+l\{O}) as required. o 
Proposition 4.26 is now used to get point processes based on {X,,} to 

converge weakly. Recall that X" is defined in (4.68) and now define 

x!m) = L cjZ,,_ j 
lil:s:m 

as an approximation to X". We seek to apply Proposition 3.18 by using 
the map (t, z)e [0, (0) x ([ -00, oo]2m+1 \{O}) -+ (t,Llil:s:mc/zi)e [0, (0) x 
([ -00, 00]\{0}), but there is a difficulty since this map is not well defined if, 
for example, ZI = +00, Z2 = -00. So define T: [0, (0) x ([ -00, 00]2m+1\ 
{O}) -+ [ -00, 00]\{0} by 

m m 

{(t' L CiZi) T(t,z) = lil:s:m 
if V IZil < 00 and L CiZi =F 0; 

i=-m i=-m 

(t, (0) otherwise. 

and define t: Mp([O, (0) x ([ -00, 00]2m+l\{O}) -+ Mp([O, (0) x ([ -00,00]\ 
{O} » by tm = moT-I. If we can show that t is almost surely continuous with 
respect to the distribution ofLkLlil:s:m8('k.Jk.e,), then applying the continuous 
mapping theorem and (4.78) gives the desired 

00 00 

t L ll(kn- I .IJ;;lZk) = L ll(k,,-l.IJ;;lxj.m,) 
k=1 k=1 

=> tL L 1l('k.Jk·e,) = L L Il(Ik.C,jk)· (4.82) 
k lilsm A: lil:s:m 

If (4.82) seems obvious and you are eager to get on with the story then skip 
this paragraph. For those with more patience for details, note that since 

P[L .L Il(Ik.ik.e,) ([0, (0) X {ze[ _00,00]2m+1\{O}:.V Iz/I = oo}) > 0] 
k l'l:s:m '=-m 

=0, 

it suffices to show that t is continuous at 
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when 

mo ([0,00) x {Z: ,'SL IZII = oo}) = 0. 

Suppose feCi([O, 00) x ([-00,00]\{0}» and m"..!.mo' We want 'fin"..!. 
tmo or what is equivalent tm,,(f) = mIl 0 T-1 (f) = m,,(f 0 T) - mo(f 0 T) = 
tmo(f). The support of f is contained in a compact set of the form 
[O,t] x {xe[-oo,oo]\{O}:lxl><>} and hence the support of foT= 
T-1 (support of f) c [0,00) X ({ze[ -00, 00]2m+l\{O}: ILI'lsmC,Z,1 > <>} u 
{ze [ -00, 00]2m+1\{O}: Vi'=-m IZII = oo}) so that having already flexed our 
muscles on a similar problem in (4.76) we conclude that fo T has compact 
support. Further, f 0 T is certainly continuous on [0, (0) x R2m+l\{O}. Pick 
compact K containing the support of f 0 T and such that m,,(K) = moCK) for 
n large and set P" = m,,(' )/m,,(K), n ~ 0. Then for large n 

tm,,(f) = moCK) f f 0 T dP" - moCK) f f 0 T dPo = 'fino(f) 

by the continuous mapping theorem since f 0 Tis a.s. continuous with respect 
to the probability measure Po. 

We can now convert (4.82) into the desired point process convergence. 

Proposition 4.27. If (4.65), (4.66), and (4.67) hold then 
00 00 

L 8(It"-',a;;'Xkl => L L 8(tk,cdkl (4.83) 
1:=1 " 1=-00 

in Mp([O, 00) x ([ -00, 00]\{0}». 

PROOF. Observe that as m - 00 

pointwise in the vague metric. This, (4.82), and Lemma 4.25 show that it is 
enough to prove for any e > ° 

lim limsup P [d (f 8(k"-'.a;;'Xl:"I' f 8(kn-',a;;'Xkl) > eJ = ° (4.84) 
m .... oo " .... 00 1t=1 1=1 

where d is the vague metric. As in the proof of (4.79), if we take account of the 
definition of d in Proposition 3.17, we see that it suffices to check for any 
feCi([O, 00) x ([ -oo,oo]\{O}» 

!~ li~....s:p P[IIt~1 f(kn- 1,a;;lx!ml ) - k~l f(kn-1,a;;lXIt)1 > eJ = 0. (4.85) 

Without loss of generality suppose the compact support of f is contained 
in [0, t] x {x e [ - 00,00]\ {O}: Ixl > <>} and for typographicalsimplicity sup-
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pose t = 1. Set w(O) = sup{lf(t, x) - f(t,y)l: x, YE(O, co) or x, YE( -co, 0) and 
Ix - yl ~ 0, 0 ~ t ~ I}, and since f has compact support it is uniformly 
continuous and therefore w(O) -+ 0 as 0 -+ O. Because of the compact support 
each of the infinite sums Il:'=l in (4.85) can be replaced by I~=l' Decompose 
the probability in (4.85) according to whether 

LESS:= [a;;-l V Ix~m) - Xkl ~ 0] 
k=l 

or its complement occurs. Note by stationarity 

P[(LESS)C] ~ nP[lx~m) - Xkl > anO] 

= np[I.I CiZk-il > ano] 
IJI>m 

~ np[I.I ICillZil1 > aiJ] 
IJI>m 

and applying Lemma 4.24 this is asymptotic to 

'" o-a I ICila. 
IJ1>m 

Therefore 

!~ li~s~p P[lktl !(kn-1,a;;-1 x~m)) - ktl !(kn-1, a;;-l Xn)1 > ~; (LESS)c] 

~ lim o-a I ICiia = o. 
m-oo lil>m 

On the other hand, on LESS, assuming 0 < J/2, if a;;-llx~m)1 ~ J/2, 
f(kn- 1,a;;-1IXLm)1) = f(kn- 1,a;;-1IXk l) = 0 and if a;;-llxLm)1 > J/2 we have 

1!(kn-l,a;;-llx~m)D - !(kn-l,a;;-lIXkDI ~ w(O) 

and so 

P[ikt1 f(kn-l,a;;-lx~m)) - ktl !(kn-l,a;lXk)1 > ~; LESS] 

~ P [ w(O) k~l G(kn-l.a~lx~m))([O, 1] x {y: Iyl > J/2}) > ~ J. 
and via (4.82) this converges as n -+ co to 

p[W(O) f L G('k.cdk)([O,I] x {y: Iyl > J/2}) > ~], 
k=l lils;m 

and as m -+ co this converges to 

P [ w(O) kt i=~OO G(lk.Cdk)([O, 1] x {y: Iyl > J/2}) > ~ 1 
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Since If"'l I~-oo 8(t".<;i,,)([0, 1] x {y: Iyl > c5/2}) < 00 a.s. the preceding prob­
ability goes to zero as (J -+ 0, proving the result. 0 

We now consider various applications of Proposition 4.27. Set 

C+ = max{cj v 0: -00 < j < oo}, c_ = max{ -Cj v 0: -00 < j < oo}. 

Proposition 4.28. Suppose (4.65), (4.66), and (4.67) hold and set 

{ 

[nl) 

a;;l V Xi 
y"(t) = 1"'1 

a;; 1 Xl 

If either C+ P > 0 or c- q > 0 and Y is an extremal process generated by the 
extreme value distribution exp{ -(c~ p + c~ q)x- Il } for x > 0, then 

Y,,=>Y 

in D(O, (0). 

PROOF. Define T1:Mp ([0,00) x ([-oo,oo]\{O})-+D(O,oo) in a manner 
identical to the Tl of Proposition 4.20 so that if m = :L" 8(u".v,,) satisfies 

m([O,t] x ([ -00, 00]\{0}» > 0 for all t > 0 

set 

TIm = V {Vir: Uk s; t}. 

As in Proposition 4.20, ~ is almost surely continuous so by the continuous 
mapping theorem (Section 3.5 or Billingsley, 1968) applied to (4.83) 

Tl (t 8(kn- 1./J;;lX,,») = y,,(.) => Tl (. t I8(lk'<.1"») 
k=l '=-00 k 

= Tl C=too ~ (l(O.oo)(A)8(lk.<dk) + l[-oo.O)(jAJ8(lk.<dk») 

and because of the definition of Tl this is the same as 

= Tl (~8(lk,<+jkk n [0, (0) x (0,00]) + ~ 8(lk.-<_Jk)(· n [0, (0) x (0,00]») 

=Y. 

Note that in the preceding line, Tl operates on the sum of two independent 
Poisson processes; the first comes from those points (tk , j,.) with j" > 0. The 
second process results from considering the influence on the maximum of neg­
ative j's multiplied by negative c's. It should be clear that the sum of the two 
processes is Poisson with mean measure of (x, 00] equal to (pc~ + qc~ )x-Il, 

X > 0. Thus Y is extremal as described. 0 
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Next let M!r) be the rth largest order statisticfrom the sample {X1 , ... ,X,,} 
so that in this notation M!1) = Vi=1 Xi' It is important to realize that the 
methods just discussed can be extended to get joint convergence of the k 
processes based on (Mf:J), i :S: k). One merely needs to note that 

00 

[a;; 1 M~l) :S: x] = L 8(k/",Xk /an)([0, t] X (x, 00]) :S: r - 1]. 
1=1 

The joint limiting distribution for any collection of upper extremes can thus 
be determined through the limiting point process. For example, letting 

we have for 0 < y < x, 

P(a;;1 M" :S: x, a;; 1 M!2) :S: y) -+ P(N«x, 00» = 0, N«y, x]) :S: 1). 

For convenience, suppose that c_ = 0, define C+2 = second largest of(ci v 0) 
and for y > 0 set G(y) = exp{ - pc~ y-"}. Then the preceding limit (neglect t's 
so that L18jk is PRM(px-"-1dx) on (0, 00]) becomes 

P (~ 8jk(Y/C+, x/c+ 1\ y/C+2) :S: 1, ~ 8jk«X/C+ 1\ y/c+2, 00]) = 0) 
= G(x 1\ (c+ y/C+2»G(y)/G(x 1\ (c+y/c+2»(I-log(G(y)/G(x 1\ (C+y/C+2)))) 

= G(y)(1 -log(G(y)/G(x 1\ (C+y/C+2))))' 

By choosing p(s) = 1 - s(l V (S-1(C+2/C+)"» the limit distribution of 
a;; 1 (M!1), M!2» may be rewritten as 

{
G(X) 

G(y)(l - p(log G(x)/log G(y»log G(y» 

(cf. Mori 1976, 1977; Welsch, 1972). 

ifx:s:y 

if x > y 

As a result of conditions (4.65) and (4.66) giving control over behavior 
governed by both tails of the distribution, it is possible to determine joint 
limiting behavior for any collection of upper and lower extremes by using 
Proposition (4.27). We shall concentrate on the specific case of the maximum 
Mil = Vj=l Xj and the minimum w" = !\j=1 Xj' 

Proposition 4.29. Suppose (4.65), (4.66), and (4.67) all hold. Then we have 

P(a;;1 M" ~ x, a;;l w" ~ y) -+ GP(x, 00 )G'( 00, x) - GP(x, - y)Gq( - y, x) 

where 

for x > O,y > 0 
otherwise. 
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PROOF. We have for x> 0, y < 0 

P(a;;l Mn ~ x, a;;l w,. > y) 

Thus, 

= P C~l B(kn-t.a;txk)([O, 1] x ([ - 00, y) U (x, 00])) = 0) 
-+ P [ ~ i~too B(lk.JkC,)([O, 1] x ([ - 00, y) U (x, 00]» = 0 ] 

= p[~ B(lk.Jk)([O, 1] x ([ -00, -x/c) U (x/c+, 00] U [-oo,y/c+) 

u( -y/c,oo]» = 0] 
= P [ ~ B(lk.Jk)([O, 1] x ([ - 00, (-x/c) V (y/c+» 

U «X/C+) A (- y/C_), 00]» = 0] 
= exp{ -[p(c~x-" v C~( - y)-") + q(c~x-" v c~( - yf")]} 

= GP(x, - y)Gq( - y, x). 

P(a;;l Mn ~ x, a;; 1 w,. ~ y) = P(a;;l Mn ~ x) - P(a;;l Mn ~ x, a;; 1 w,. > y) 

has the desired limit. o 

Now consider inverses, overshoots, and ranges. It is convenient to modify 
Proposition 4.27 trivially by substituting the continuous variable s for the 
discrete variable n. Combining the method of Proposition 4.20 and Corollary 
4.21 we obtain 

in D(O, 00) x D(O, 00) where 

a(s) = (I/P[IZll > . ])+-(s) 

y.+-(x) = inf{ u: y'(u) > x} = inf {k: ~ Xi > a(s)x} I s 

and a similar definition holds for Y+-o So setting t(x) = inf{k: V~~l Xi> x} 
we have t(a(s)')/s:;, Y+- and changing variables we get 

(1 - F(s»t(s·):;. Y+-(-) 

as s -+ 00 in D(O, 00). Recall for x > 0, t > 0 

P[Y(t) ~ x] = exp( - t(pc~ + qc~)x-" 

(4.86) 
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and therefore 

P[Y+-(x) ~ t] = 1 - exp( -(pc~ + qc~)x-at). 
Now define L(a(s), 1) = inf{k: Xk > a(s)},L(a(s),2) = inf{k > L(a(s),l): 

Xk > XL(a(s), I)}' and so on. Then XL(a(S),k)/a(s), k ~ I} are those record values 
of (Xk/a(s) } bigger than 1. As in Corollary 4.23 this sequence converges weakly 
in IROO to the range of Yabove 1, which is a Poisson process with mean measure 
of (a, b] equal to rxlog b/a (Proposition 4.8). In particular for x > ° 

lim P[(XL(a(s),l)/a(s» - 1 ~ x] = 1 - (1 + xra. (4.87) 

(Of course we may change variables t = a(s) to get the limit distribution for 
the overshoot past t.) 

Consider jointly ({ XL(a(s),k)/a(s), k ~ I}, y,+-(1» on 1R00 x R By the continu­
ous mapping theorem this converges as s -+ 00 weakly to 

({points hit by Yabove I}; Y+-(1» 

= ({times of jumps of Y+-(x),x > I}; Y+-(1». 

Since Y+- has independent increments (Proposition 4.8) 

{times of jumps of Y+-(x), x > I} 

= {times of jumps of Y+-(x) - Y+-(1), x > I} 

is independent of Y+-( 1). So, for instance, if we combine (4.86) and (4.87) jointly 
we get as s -+ 00 

P[(l - F(s»r(s) ~ x, (XL(s. 1) - s)/s > y] -+ P[Y+-(l) ~ x](l + yra 

for x > 0, y > 0. 
As a last example we discuss excedances as in Rootzen (1978) and Lead­

better, Lindgren, and Rootzen (1983). Consider the indices when observations 
Xk/an exceed a given level x > 0. Suppose as a convenience for this discussion 
that Icjl ~ 1 for allj. The sequence of point processes of points with ordinates 
bigger than x > ° converges as n -+ 00; that is, 

00 

L G(kln.xklank n ([0, (0) x (x, 00])) 
k=l 

00 

=> L L G(tk.C;ik)(· n ([0, (0) x (x, 00]» 
k i=-oo 

in Mp([O, (0) x (x, 00]) from Proposition 4.27 and the fact that the map m-+ 
m(' n([O, (0) x (x,oo])) from Mp([O, oo) x [-00,00]\{0}) to Mp([O, oo) x 
(x, 00]) is a.s. continuous. To evaluate the structure of the limit consider the 
following: Let {rn' n ~ I} be the points of a homogeneous PRM on [0, (0) 
with rate x-a. Suppose (Jk , k ~ I} are iid on (x, 00] u [ - 00, - x) independent 
of {rn} and with common density 

f(y) = (prxy-a-11(x,oo)(y) + qrx( - yra-11(_OO, _X)(y»xa. 
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Then from Proposition 3.8 

on Mp([O, (0) x «x, 00] U [-00, -x))). Therefore, the weak limit of the pre­
ceding point processes is 

00 

L L 8(lk.C/}"k f""I ([0, (0) x (x, 00]» 
i=-oo " 

Finally define e" = # {Ci: ciJ" > x} so that reb k ~ 1} is iid. In the limit the 
point process of times of excedances is the compound Poisson point process 
Lk"=l e,,8rk where {e,,} and {rIc} are independent. 

EXERCISES 

4.5.1. In Proposition 4.29 show that the maximum and minimum are asymptotically 
independent itT all of the c/s have the same sign (Davis and Resnick, 1985a). 

4.5.2. Suppose {Z., n ~ 1} is iid with common distribution Fe D( G), where G is an 
extreme value distribution. Set M!i) = ith largest order statistic from {Zl , ... , Zn}. 
Show {M!I), i ~ r} has a limit distribution for every fixed r and find it. Conversely, 
iffor some fixed r, M~) has a limit distribution, then Fe D(G) (Smirnov, 1952). 

4.5.3. As an extension of Proposition 4.27 show for any positive integer I 

00 

L 8(kn-'.a;;'(Xk .Xk _' ••••• Xk _.)) 
1<=1 

00 

=> L L 8(lk.)k(Ci.C._' ..... Ci_.)) 
I< 1=-00 

in Mp([O, 00) x ([ -00, oo]l+l\{O}». 

4.5.4. If (4.65), (4.66), and (4.67) hold and 0 < ce < 2 then in III 

as n -+ 00 where S has a stable distribution with index ce. Hint: First establish a 
corresponding result for L~=1 Xlm) (Davis and Resnick, 1985a). 

4.6. Independence of k-Record Processes 

In the discussion of record values presented thus far there are two potential 
sources of dissatisfaction. First, the most interesting and precise results are 
restricted to the case where the underlying distribution is continuous. Second, 
from the statistical point of view, studying only records is inefficient as much 
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information about the distribution tail is thereby wasted. In this section, we 
do not assume that F is necessarily continuous, and we study the point process 
of k-records, i.e., those observations which have relative rank k upon being 
observed. Surprisingly, for different values of k, these point processes turn out 
to be iid. 

This topic has been an area of recent fruitful research. See Deheuvels (1983), 
Goldie (1983), Goldie and Rogers (1984), Ignatov (1977, 1978), and Stam 
(1985). The present discussion is based on a nice simplification due to Wim 
Vervaat (1986) which uses discretization and the decoupage de Levy discussed 
in the proof of Proposition 4.20. 

We now present more precisely the processes under study. Suppose {X", 
n ~ I} are iid random variables with common distribution function F. We do 
not require that F is continuous but only suppose continuity at Xo = 
sup{x: F(x) < l}sinceotherwiseifF(xo-) < 1 there would be a finite number 
of records. As in Proposition 4.3 we have need of rank variables R", n ~ 1. 
Without continuity of F as an assumption, ties among the X's are possible 
and care must be taken in defining R". We set for n = 1,2, ... 

" 
R" = L l[xk~x"j 

k=1 

so R" is the (relative) rank of X" among X 1, •.• , X" and equals 1 iff X" > 
max{XI, ... ,X,,-d. Similarly R" = 2 iff there is exactly one value among 
X I' ... , X,,-l at least as large as X". For each fixed k ~ 1 define 

for n ~ 0 and the times L k(1), L k(2), ... are indices at which observations with 
relative rank k occur. The values of these observations, namely 

{XLk(II" n ~ I}, 

are the k-record values. Note that with k = 1. everything reduces to the 
definitions given prior to Proposition 4.1. 

Proposition 4.30. Suppose F has left endpoint XI' right endpoint xo, - 00 ~ XI < 
Xo ::; 00, and atoms!!} = {bl' b2 •••• }. The point processes of k-records 

00 

{Nt = L ex ,k ~ I} 
11=1 L,(ft) 

are iid random elements of Mp[xz, xo]. The structure of N1 (and hence of any 
Nt, k ~ 1) is asfollows: Define the monotone function 

A(t) -- i F(ds) , 
[x/.lj F[s, (0) 

XI:S;; t:s;; Xo 

which has the decomposition 

A(t) = A(C'(t) + A(d'(t) = r F(ds) + L F {b} 
J[X Ijn9}c F[s, (0) be9} F[b, (0) 

h bSI 
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so that A(c) is the function obtained from A by removing the jumps. Then Nl 
is an independent sum of two point processes 

Nl ~ MC) + Nfd) 

where NfC ) is PRM(A(C» and 

and {<5b , bE.@} are independent Bernoulli random variables with 

P[<5b = 1] = F {b}/F[b, (0) = 1 - P[<5b = 0]. 

PROOF. The proof starts with the case that F is purely discrete with atoms 
{bI , b2 , ••• } = .@ and thus A(C) == O. Define the event 

00 

[b is a k-record] = U [Xn = b, Rn = k] 
n=1 

for each bE.@, k 2 1. Then 

and we must show that 

{lIb is a k-record], bE.@} 

are independent Bernoulli random variables with P[b is a k-record] = 
F{b}/F[b, (0) and also that for k i=- I 

{lIb is a k-record], bE.@} and {lIb is an '-record], bE.@} 

are independent sequences. This is achieved by the decoupage: Fix b', bE.@, 
b' < b, and let 

K+(O) = 0, 

K-(O) = 0, 

K+(i) = inf{j > K+(i - 1): Xj 2 b} 

K-(i) = inf{j > K-(i - 1): Xj < b} 

so that {XK+(i)}, {XK-(i)}' {I[xn<!b]' n 2 I} are independent and 

P[XK+(i) = x] = P[XI = xlX t 2 b] = F{x}/F[b, (0) 

if x 2 b. (See the proof of the decoupage on page 215.) Observe that 

P[b is a k-record] = P[XK+(k) = b] = F {b}/F[b, (0). 

Furthermore for any I 2 1 

[b ' is a I-record] = nQ [ XK-(n) = b', it IW,b)(XK-(i» + ~t:) l[x,<!b] = IJ 
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since the right side expresses the requirement the b' must be exceeded I times, 
and these excedances are apportioned between X's in [b', b) and those in 
[b, (0). So for b' < b the event [b is a k-record] is in the u-field generated by 
{XK+(iJ, and the event [b' is an I-record] is in the u-field generated by {XK-(i)}' 
and {l[Xn~bJ' n 2 I}, and thus [b' is an I-record] and [b is a k-record] are 
independent. If b' = b and I "# k then 

[b is a k-record] = [XK+(k) = b] 

[b is an I-record] = [XK+(I) = b] 

and so independence again is verified. 
This proves Proposition 4.30 in the case that F is purely discrete. For the 

general case where F has a continuous part we set 

X1n) = L 2-nil[2- ni,2-n(i+l))(X,) 
-oo<i<oo 

for I 2 1 so that Iimn-+oo i Xln) = XI' Define also 

where {LLn)(i), i 2 I} are the indices of k-records for {x[n), i 2 I}. We seek to 
prove 

(4.88) 
n-+oo 

By the first part of the proof, {Mn), k 2 I} are iid point processes for each n 
so that if (4.88) holds then it follows that {Nk , k 2 1} are iid point processes 
as this property is preserved by taking limits. So it remains to check (4.88) and 
that limn-+oo Ntn) has the correct distribution. 

To check (4.88) observe that since X[") i X, we have as n --. 00 

and therefore 

i.e., 

{Rln>, i 2 1} --. {Ri' i 2 I} 

in IROO. This implies for each k 

{L~")(i), i ~ 1} --. {Lk(i), i 2 I} 

and consequently 

{Xi"r)(i)' i 2 I} --. {XLk(i)' i 2 I}, (4.89) 

whence by the definition of vague convergence (cf. also Proposition 3.13) we 
have (4.88). (If(4.89) appears puzzling, consider that {L~n)(i)} are integer valued 
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so that for any integer m and n sufficiently large we have 

{Ll.")(i), i ::;;; m} = {L,,(i), i ::;;; m} 

and therefore 
{Xil!)(i)' i ::;;; m} = {Xi"l(i)' i ::;;; m} -+ {XLk(i)' i ::;;; m} 

since {X/"), I ~ 1} -+ {X" I ~ 1}.) 
The last step is to show NI") => NIe) + NId) where NIe) and NId) are indepen­

dent. Since NIe) + Nfd) is a simple point process, it is convenient to use the 
powerful Proposition 3.22, which assures us that it is enough to prove for c, 
dE~e 

lim P[Nf")(c,d] = 0] = P[Nfe)(c,d] + Nfd)(c,d] = 0] (4.90) 

and 

,,--.., 
= A(C)(c,d] + L (F{b}/F[b, (0». (4.91) 

e<bs;d 
be~ 

Provided that ~ -::F 0 we may reformulate (4.90) as follows. Define a contin­
uous distribution F(C) and a discrete distribution F(d) to satisfy 

1 - F(x) = (1 - F(d)(X»(1 - F(C)(x» 

so that for bE~ 

and thus 

F{b}/F[b, (0) = F(d) {b}/F(d)[b, (0). 

Furthermore, one readily checks 

l~c(x)F(dx) = l~c(x)F(d)[x, oo)i1C)(dx) 

(cf. Exercise 4.6.1) so that 

A(C)(t)= r F(dx)/F[x, (0) 
J(XI,I)r"~' 

= r F(d) [x, (0) F(C' (dx)/F(d) [x, oo)F(e)[x, (0) 
J(x"'ln~. 

= r F(C)(dx)/i1c)[x, (0) = r i1C)(dx)fF(C)[x, (0) 
J(x"'ln~. J(XI") 

(since F(c) is continuous) whence 

A(C)(t) = -logF(C)(x, (0). 

Thus 

(4.92) 

(4.93) 

(4.94) 
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P[NfC)(c,d] + Nfd)(c,d] = 0] = P[NiC)(c,d] = O]P[Nid)(c,d] = 0] 

= exp{ -AC(c,d]} n (1 - F{b}/F[b, (0» 
c<bSd 

b,.!'i 

and applying first (4.94) and then (4.92) we get 

= (F(C)(d, oo)jF(C)(c, (0» n (1 - F(d){b}/F(d)[b, (0» 
c<bSd 
b,.~ 

= (F(c)(d, oo)/F(C)(c, (0» n F(d)(b, oo)/F(d)[b, (0) 
c<bSd 
b,.~ 

= (F(C)(d, oo)/F(C)(c, oo»(F(d)(d, oo)jF(d)(C, (0» 

= F(d, oo)/F(c, (0) 

and the desired reformulation of (4.90) becomes 
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lim P[Nl")(c,d] = 0] = F(d,oo)/F(c,oo). (4.90') 

To prove (4.90') we write 

P[Nf")(c,d] = 0] = p[ ~ 1[2-"iisarecordor{x\"'.i2:1})B2-"i(C,d] = 0] 
n P[2-"iis not a record of{X["), i ~ 1}J 

c< 2-"iSd 

n (1 - P[Xi") = 2-"i]/P[Xi") ~ r"i]) 
c<2-"iSd 

= n (1 - F[2-"i, 2-"(i + t»/F[r"i, (0» 
c< 2-"iSd 

= n (F[2-"(i + 1), (0)/F[2-"i, (0» 
2"c<iS2"d 

= F[([d2"] + 1)2-", (0)/F[([c2"] + 1)2-", (0) 

-+ F(d, oo)/F(c, (0) 

as n -+ 00, since c and de¥. This proves (4.90'). To verify (4.91) write 

EN1")(c,d] = L P[i2-" is a record of{X["), i ~ 1}J 
c<i2-"Sd 

= L P[Xi") = ir"]/PX1") ~ i2-"] 
c<12-"Sd 

L F[ir", (i + 1)2-")/F[i2-", (0) 
2"c<iS2"d 

L F[ir", (i + 1)2-") n ~)/F[ir", (0) 
2"c<iS 2"d 

+ L F([ir", (i + I)T") n ~C)/F[i2-", (0) 
2"c<iS2"d 

=I+II. 
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Now for I we have 

L L F{b}/F[i2-n, (0) 
2"c<i:O;2"d be!¥ i2-":O;b«i+1)2-" 

L F {b}/F[[b2n]2-n, (0). 
([2"c]+1)2 -n:o;b < ([2"d]+!)2-" 

be!¥ 

Since b ~ [b2n]2-n -+ b we have 

F[b,oo) ~ F[[b2n]2-n,(0)-+F[b,00) 

and so remembering that c and dE f!}c we have 

1-+ L F{h}/F[b, (0) 
c<b:o;d 

be!¥ 

as desired. To deal with II note 

L F([i2-n, (i + 1)2-n) II f!}C)/F[irn, (0) -+ r F(ds)/F[s, (0) 
c<i2- n :o;d J(C,dlf"l!¥C 

since 

o ~ C<iJ;n:O;d L2-"'(i+1)2-"]f"I!¥C F(ds)/F[s, (0) 

L F([irn, (i + 1)2-n) II 2)C)!F[i2-", (0) 
c<iZ-n:o;d 

~ L F([i2-", (i + 1)2-") II .@C)I(F[(i + l)rn, ooW l 

c<i2-"~d 

- (F[i2-n, 00 W11 
~ L F([i2-n, (i + 1)2-n) II .@C)F[i2-", (i + 1)2-n)/F2[(i + 1)2-", (0) 

c<i2-":O;d 

-+ (constant) 0 = 0 as n -+ 00. 

The verification of (4.92) is now straightforward and the proof is complete. 

EXERCISES 

4.6.1. Verify (4.93) and (4.94) (cf. Shorrock, 1972; Resnick, 1974; Goldie and Rogers, 
1984). 

4.6.2. Verify directly 

P[no record values in (c,d]] = F(d, oo)/F(c, 00). 

Do also for 2-records. 
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4.6.3. Verify directly that 

using Laplace functionals. (This will increase your appreciation of Proposition 
3.22.) 

4.6.4. (a) Let {Y(t), t > O} be extremal-F. Formulate and prove the analogue of Propo­
sition 4.30 for the range of Y. Prove Y- has independent increments. 

(b) Let 

be PRM(dt x dv) and for each point (t., it) define a relative rank 

r(tk,it) = e«0, t.l x [it, (0)). 

Define a point process on (0, (0) by 

for 1 = I, 2, .... Prove (N" 1 ~ I) are iid and give the distribution (Goldie 
and Rogers, 1984). 



CHAPTER 5 

Multivariate Extremes 

We now consider extremes of multivariate data. Let {Xn' n ~ I} be iid random 
vectors in Rd. When d = 1, concepts such as extreme values, order statistics 
and record values have natural definitions but when d > 1 this is no longer 
the case as several different concepts of ordering are possible. 

Consider the following: In hydrological settings, data may be collected at 
several sites and there is interest in the maximum flow at each site. Similarly 
in meteorology, wind speeds impacting different sides of a skyscraper may be 
recorded and interest lies in modeling the behavior of maximum windspeeds 
on each side of the building. Bearing these and similar circumstances in mind, 
it seems that for a random sample from a multivariate distribution, the follow­
ing definition has some usefulness: The maxima of the sample is the vector of 
componentwise maxima. Thus if Xn = (X!1), ... , X!d), then for n ~ 1 set 

_ (1) (1/) _ (1) (d) ( n n) Mn - (Mn , ... , Mn ) - V XJ , ... , V XJ • 
j=1 j=1 

In this chapter we consider various problems related to the asymptotic 
distribution theory of {Mn}. 

Some notation: Vectors in Rd will be denoted by x = (x(1), ... , X(d) and 
relations and operations are taken componentwise. Thus for x, ye Rd 

x<y 

x~y 

means xli) < y(i), 

means xli) ~ y(i), 

l~i~d, 

1 ~ i ~ d, 

x v y = (X(I) V y(1), ••• , X(d) v y(d), 

and so on. Rectangles will be denoted by 

(a,b] = {xeRd : a < x ~ b} 

= {(x(1), ... , X(d): ali) < x(l) ~ b(i), 1 ~ i ~ d} 

for a and be Rd and similarly 

(-oo,a] = {xeR": x ~ a}. 
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Later, we will see that there is need also to work in IRd = [ -00, oo]d and so 
we will require sets of the form 

[-oo,a] = {XE IRd: -00 ~ xli) ~ ali), 1 ~ i ~ d} 

(a,oo] = {XE IRd: a(1) < xli) ~ 00, 1 ~ i ~ d} 

[ -00, a]C = IRd\[ -00, a] 

= {x E IRd: xli) > ali) for some i = 1, ... , d} 

As in the case of weak limit theory for partial sums, the best understanding 
of the asymptotic distribution theory for {Mn} comes in the context of an 
infinite divisibility concept, and this is the topic of the initial sections of 
Chapter 5. The class oflimit distributions for multivariate extremes is charac­
terized in Section 5.4.1, and in 5.4.2 we characterize domains of attraction of 
these limit distributions. Domain of attraction criteria are based on change 
of variable techniques and a theory of multivariate regularly varying func­
tions, and the presentation partially parallels the developments in Section 1.2. 
Section 5.5 considers when limit distributions for maxima are product mea­
sures, and Section 5.6 shows that multivariate limit distributions for extremes 
possess a positive dependence property called association. 

5.1. Max-Infinite Divisibility 

The discussion of Chapter 4 has shown that an effective way to study extremes 
is through extremal processes. What if we attempt to carry out a program in 
d> 1 dimensions paralleling the successful program in one dimension? To 
construct a multivariate extremal process we could take a multivariate dis­
tribution function F(x) and use it to construct finite dimensional distributions 
as in (4.19). Such a construction requires that F'(x) be a distribution function 
for every t > O. Although this is obviously true in case d = 1, it is not neces­
sarily valid in 1R2 or higher dimensions. 

Notational warning: Usually we follow the convention that F stands for the 
distribution function as well as the measure, and thus we need to emphasize 
that 

F'(x) stands for (F(x))' 

and that for x < y 

F'«x,y]) # (F(x,y])'. 

For instance, in 1R2 we have 

F'«x,y]) = F'(y) - F'(X(2),y(1») - F'(X(1),y(2») + F'(x). (5.1) 

EXAMPLE. Suppose {Xn' n ~ I} is an iid sequence of IR valued random variables 
and we wish to study the range 
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n n 

R" = V Xi - 1\ Xi· 
i=1 i=1 

Instead of R" one could study the joint behavior of 

or what is theoretically the same one could study 

" = V (Xi> - X;). 
i=1 

The joint distribution F(x(1), X(2» oC (X I' - X I) concentrates on {(x(1), X(2»: 

X(I) + X(2) = O} and we show that it is not the case that F is a distribution for 
every t > O. If it were then the expression in (5.1) would be non-negative Cor 
all t. However, take x = 0, y = (1,1) and observe that 

F(O, 1) = F {(u(l), U(2»: u(1) + U(2) = 0,0 < U(2) ~ I} = PI 

say and 

F(I,O) = F {(U(I), U(2»: u(l) + U(2) = 0,0 < u(l) ~ I} = P2 

say, so that if 1 = (1,1) 

F(I) = PI + P2· 

Then F'«O, 1]) ~ 0 requires from (5.1) 

(PI + P2)' ~ p~ + p~ 
which need not be the case for t < 1. 

Thus not every distribution function F on IRd Cor d > 1 has the property 
that F' is a distribution. Those which do are called max-infinitely divisible. In 
accordance with tradition the definition is formulated as follows. 

Definition. The distribution Cunction F on IRd is max-infinitely divisible (max­
id) if for every n there exists a distribution Fn on IRd such that 

i.e., FI/" is a distribution. For the sake of brevity, a random vector with max-id 
distribution will be called max-id. 

Proposition 5.1. Suppose that for n ~ 0 F" are probability distribution functions 
on Rd. If 
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weakly (pointwise convergence at continuity points of Fo) then Fo is max-id. 
Consequently 
(a) F is max-id iff Ft is a distribution function for every t > 0; 
(b) The class of max-id distributions is closed in ~" with respect to weak 
convergence: If Gn are max-id distributions converging weakly to a distribution 
Go, then Go is max-id. 

PROOF. Suppose F: -+ Fo weakly and that x is a continuity point of Fo. We 
show for every t > 0 that F!nt1(x) -+ Fo(x). If Fo(x) = 0 then 

F!nt1(x) = (F:(x»!nt1/n -+ 0 = F~(x). 

If Fo(x) > 0 then Fn(x) -+ 1 and 

-log J1nt1(x) = [nt] ( -log Fn(x» '" nt( -log Fn(x» 

= t( -log F:(x» -+ t( -log Fo(x» = -log F~(x). 

Thus J1nt1(x) -+ FMx) whence F~ is a distribution function. Hence FJ/n is a 
distribution for any nand Fo is max-id. 

The proof of (a) is now clear from the foregoing paragraph. As for (b) merely 
observe that Go = lim Gn = lim(G;/n)n in order to conclude that Go is max­
~ 0 

So starting with a multivariate distribution F, we may generate an extremal 
process whose finite dimensional distributions are given as in (4.19), provided 
F is max-id. 

The following proposition collects some further simple properties. 

Proposition 5.2. (i) If Xl and X2 are independent max-id random vectors in ~"1 
and ~"2, respectively, then (X I ,X2 ) is max-id in ~"1+d2. In particular if Xl' 
... , X" are independent random variables, then (Xl" .. , X,,) is max-id in ~d. 
(ii) Products of max-id distributions on ~d are max-id on ~d. If X, Yare 
independent max-id random vectors in ~d, then X v Y is max-id. 
(iii) If X = {X(I), ... , X(") is max-id and J;: ~ -+ ~ is nondecreasing for 
1 :::;; i :::;; d, then (/t (XU), ... , J.,(Xd» is max-id in ~d. 

The proof of this proposition is Exercise 5.1.3. For (iii) one can save work 
by considering the extremal process (Y(t), t > 0) such that Y(I) ,g, X. 

The analogue of (iii) where we assume Ii: IR" -+ IR is much harder and it is 
not clear what would be sensible conditions which would guarantee (it (X), 
... , J.,(X» be max-id when we start with the vector X max-id. Such an 
analogue would be helpful in deciding, for example, when the multivariate 
normal (see Section 5.2) is max-id; we could take X to be ad-dimensional 
vector of iid normals. 

A general criterion for a distribution F to be max-id is presented in Section 
5.3. When F is absolutely continuous on 1R2, there is the following criterion. 
Although the given criterion is not simple to apply as it involves more than 
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the density, it is sufficient for resolving in Section 5.2 whether the bivariate 
normal is max-id. The generalization of Proposition 5.3 to dimensions d > 2 
is given in Exercise 5.1.4. 

In what follows we represent partial derivatives by subscripts; viz 

a 
Fy = oyF, 

02 

FIC,y = oy ox F, 

and so on. The notation [F > 0] means the set {x: F(x) > o}. 

Proposition 5.3. Let F be a distribution on ~2 with continuous density Fx,y' Then 
F is max id iff Q: = -log F satisfies 

on [F > 0] 

or equivalently iff 

a.s. on ~2. 

PROOF. Since F' = e-tQ we have on (the open) set [F > 0] 

a a t a -tQ ) -o( t ) --F = -(-te Qx = - tFQx 
oyox oy oy 

= - t(Qx,yFt - tF'QyQx) 

= tFt(tQxQy - Qx,y) 

and F is max id iff this latter expression is non-negative for all t, as occurs iff 

tQxQy - Qx,y ~ 0 (5.2) 

for all t. Since Qx = -Fx/F ~ 0 and Qy ~ 0 we have (5.2) holds for all t iff 
Qx,y ~ 0 as asserted. The rest follows by differentiation: 

a a -0 o ~ Qx = --(-logF) = -(F/F) ,y ox oy ox y 

= -(FFx,y - Fy Fx}/F2. D 

Note that the condition Qx,y ~ 0 suggests that Q is the tail of a measure, 
and this is discussed in connection with the representation theorem in Section 
5.3. 

EXERCISES 

5.1.1. Is the following distribution on 1R2 max-id: 

F«O,O» = F((O, 1» = F((I,O» = 1/3? 

What about the distribution F on 1R2 defined by 

F((O,O» = F«O, 1» = F((I, 0» = F((I, 1» = 1/4? 
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5.1.2. Check that the uniform distribution on [0, l]d is max-id on IRd. 

5.1.3. Prove the assertions of Proposition 5.2. 
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5.1.4. Suppose F is an absolutely continuous distribution on IRd with continuous 
density. Prove that F is max-id itT for each 1 :-:;; I :-:;; d 

a.e. on [F > 0] for alII :-:;; i1 < ... < i, :-:;; d. 

5.1.5. If F is max-id on IRd and IE IRd show 

F(x) 1[/. ClO](X) 

is still max-id. 

5.2. An Example: The Bivariate Normal 

In this section we exhibit an example worked out by Dr. A.A. Balkema which 
shows that the bivariate normal distribution is max-id iff the correlation is 
non-negative. 

The verification requires two lemmas. Let Nand n be the univariate stan­
dard normal distribution and density, respectively. 

Lemma 5.4. The function n/N is strictly decreasing on IR; i.e., log N is strictly 
concave. 

PROOF. Observe that 

so it suffices to check 

since n'(x) = -xn(x) we need 

-xN(x) < n(x). 

When x is positive this is clear. When x is negative we need 

N( -Ixl) = 1 - N(lxl) < n( -x)/Ixl = n(lxl)/lxl 

and so we want for y > 0 

1 - N(y) < n(y)/y. 

As in the proof of Mills' ratio (Feller, 1968) note that 

(x-1n(x», = -x-2 n(x) + x-1n'(x) = -x-2 n(x) - n(x) 

= -n(x)(x-2 + 1) < -n(x). 

Therefore for y > 0 

(5.3) 
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1 - N(y) = J,'" n(u)du < J,'" - (u-1 n(u»' du 

= y-1 n(y). o 
Lemma 5.5. Suppose that f and g are strictly positive functions on [0, (0) and 
that Jl. is a measure on [0, 00 ). 

(i) If fig is decreasing and J f dJl. < 00 then 

f f dJl./ f g dJl. ::; f(O)/g(O). 

(ii) If fig is increasing and J g dJl. < 00 then 

f f dJl./ f g dJl. ~ f(O)/g(O). 

The inequalities in (i) and (ii) are strict unless 

fig = f(O)/g(O) Jl.-a.e. 

PROOF. (i) Suppose J g dJl. = k < 00 (otherwise there is nothing to prove). 
Define 

dv:= k-1gdJl. 

so that v is a probability measure on [0, (0). Then 

ffdJl./fgdJl.= ffk- 1dJl.= f(flg)k- 1g dJl. 

= f (flg)dv ::; (f(O)/g(O»v[O, (0) = f(O)/g(O). 

(ii) Take reciprocals. o 
Now we wish to check that any bivariate normal distribution is max-id iff 

the correlation is non-negative. In view of Proposition S.2(iii) it suffices to let 
(U, V) be iid N(O, 1) random variables and then prove the pair 

(U + cy, V) 

is max-id iff c ~ o. We have the following formulas 

F(x,y) = P[U + cV::; x, V::; y] 

= f~", N(x - cv)n(v)dv 

F,,(x, y) = f~", n(x - cv)n(v)dv 

F,(x,y) = N(x - cy)n(y) 

F"., = n(x - cy)n(y). 
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From Proposition 5.3, F is max-id iff 

i.e., 

Fx/F::;; Fx,y/Fy, 

and in the present example this is 
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S~oo n(x - cv)n(v)dv n(x - cy)n(y) n(x - cy) 
S~oo N(x - cv)n(v)dv ::;; N(x - cy)n(y) = N(x - cy)· (5.4) 

In the integrals on the left set s = - v + y and (5.4) is equivalent to 

SO' n(x - cy + cS)Jl.(ds) < n(x - cy) (5.5) 
SO' N(x - cy + cS)Jl.(ds) - N(x - cy) 

where we consider x and y fixed and Jl.(ds) = n(y - s)ds. We now apply the 
Lemmas 5.4 and 5.5. If c > 0 then for fixed x, y 

n(x - cy + cs)/N(x - cy + cs) (5.6) 

is strictly decreasing and 5.5 is true by Lemma 5.5(i). If c < 0 the ratio in 5.6 
is strictly increasing and so (5.5) fails. If c = 0, max-infinite divisibility follows 
because F is a product measure. 

5.3. Characterizing Max-id Distributions 

We now present a discussion which culminates in a characterization ofmax-id 
distributions. The presentation incorporates improvements by Gerritse (1986) 
into the approach given in Balkema and Resnick (1977). We begin with two 
examples. 

EXAMPLE 5.6 (Compound Poisson Analogue). Let {Un' n ~ I} be iid IRd valued 
random vectors bounded below; i.e., suppose there exists 1 E IRd and U i ~ 1 a.s. 
Let {N(t), t ~ O} be homogeneous PRM on [0, (0) so that EN(t) = t and 
suppose {N(t), t ~ O} is independent of {Un' n ~ I}. Define 

N(t) 

Y(t) = V U i 
i=O 

where by definition Vo == I. Then Y(t) ~ I and for x ~ I we have 

00 t" [" ] P[Y(t) ::;; x] = e- t "~O n! P i'fo Ui ::;; x 

00 t" 
= e- t L ,pn[Vl ::;; x] = exp{ -t(1 - P[VI ::;; x])} 

"=0 n. 

= exp{ - tP([V 1 ::;; xr)}. 

Since Y(t) is a random vector for each t > 0, we get exp{ - tP([V 1 ::;; x]C)} is 
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a distribution for each t > 0 and hence 

F(x):= exp{ -P([U1 ::;; x]")} 

is max-id. Note that 

F(l) = exp{ -(1 - P[U I = I])} > O. 

EXAMPLE 5.7. Suppose IE [ - 00, OO)d and consider E = [I, 00]\{/}. As in Sec­
tion 4.5, this is the compact set [/,00] punctured by the removal of one point. 
Compact subsets of E are those closed sets bounded away from I. Suppose Jl 
is a Radon measure on E and let 

~ = L8(lk'j,,) 
k 

be PRM on [0, (0) x E with mean measure dt x dJl. Define for t > 0 

yet) = (V jk)V I. 
'kSI 

Then for YER", y ~ I, and [- oo,y]":= E\[ - oo,y] 

P[Y(t)::;; y] = P[N([O,t] x [_oo,y]C) = 0] 

= exp{ -tJl([ -oo,y]")}. 

Provided that yell is Rd valued we have shown that 

F(y) = {~xp{ -Jl([ -oo,y]")} 

is max-id. To check yell is Rd valued we need 

F(oo) = 1 

y~1 

otherwise 

F( - 00, x(l), ... , X(d-I» = F(x(l), - 00, ... , X(d-l» 

(5.7) 

(5.8) 

= ... = F(x(l), ... ,X(d-I), -(0) = 0 (5.9) 

for all (x(l), ... ,X("-I»ERd-I.lfy > I, Jl Radon entails Jl([ -oo,y]") < 00 and 
(5.8) is equivalent to limy-+aoJl([ -oo,y]") = 0, and this means that Jl places 
no mass on lines through 00; i.e., (5.8) is the same as 

Jl(E\[ - 00, (0)") = Jl C~ {y E E: y(i» = OO}) = O. (5.8') 

For (5.9) we observe that if I > - 00 then (5.9) is obvious by the definition 
of F in (5.7). Example 5.6 exemplifies this situation. In the contrary case, 
where I(i) = - 00 for some i = 1, ... , d, if x ~ I and xli) = - 00 we need 
Jl([ - 00, x]") = 00. So (5.9) is equivalent to 

Either I > - 00 or x ~ I and xli) = - 00 

for some i ::;; d implies Jl([ - 00, x]") = 00. 
(5.9') 
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For example, if d = 2 and 1 = - 00, (5.9') becomes 

Il([ - 00, 00] x (- 00, 00]) = Il« - 00, 00] x [- 00, 00]) = 00. (5.9") 

Observe that for distributions constructed according to (5.?), F(x) > 0 if 
x > I; this follows because Il is Radon and [ - 00, xJ is relatively compact in 
E. The measure Il in (5.7) satisfying (5.8') and (5.9') is called the exponent 
measure. The construction leading to (5.7) has been designed to allow Il to 
vanish on the interior of [I, 00]. Such a possibility must be allowed in order 
to be able to construct max-id distributions which are product measures. For 
instance, suppose that 

d 

F(x) = n A(X(i» 
i=1 

where as usual A(x) = exp{ _e-X }, xeR. Define Il by 

Il( U {ye[-oo,oo]d\{-oo}:y(i)> -oo,y(i) > -oo})=o 
1~i~j~d 

Il«x, 00] x {- oo} x ... x {- 00 }) = ... 

= Il({ - oo} x ... x {- oo} x (x, 00]) 

so that Il concentrates on the lines through - 00. Thus for x e IRd 

Therefore, 

(
4 ) _ (il. (il (il -Il U {(-oo, ... , -oo,y ,-00, ... , -(0). y > x } 

1=1 

d 
_ ~ { (i) "" ",,). (i) > (i)} - L... Il -00, ... , -oo,y ,-vv, ... , -vv . y X 

i=1 

4 
~ -x(1) 

= L... e . 
i=1 

F(x) = exp{ -Il([ - 00, xJ)} = exp {- fe-xiiI} 
1:1 

d 
= n A(X(il). 

i=1 

In this case the points of the PRM live on the lines through - 00. 

The situation in Example 5.7 is one-half the characterization of max-id 
distributions. 
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Proposition S.S. The following are equivalent: 
(i) F is max-id. 
(ii) For some Ie [ - 00, 00)", there exists an exponent measure Jl. on E:= 
[I, oo]\{/} (Jl. is Radon and satisfies (5.8') and (5.9'» such that (5.7) holds. 
(iii) For some le[-oo,oo)d, there exists an exponent measure Jl. on E:= 
[I, oo]\{/} and PRM(dt x dJl.) 

on [0, 00) x E such that 

F(y) = P [V j" v I ~ yJ. 
tk:51 

Remark. We will show that if F is max-id then [F > 0] c IRd is a rectangle of 
the form Al x ... X Ad where AI = [/(1),00) or (I(i), 00) and 1= (l(1), ... , I(d) = 
inf[F > 0]. Note that F is a probability distribution on IR" and Jl. is defined 
on [/,oo]\{/} = E c [ - 00, 00]". 

PROOF. It suffices to show (i) implies (ii). We start by showing that if F is max-id, 
then [F > 0] is a rectangle. To do this we need to verify two properties of 
[F > 0]: 

X e [F > 0] and x ~ y implies ye[F > 0] 

x, ye[F > 0] implies x 1\ ye[F > 0]. 

The first is obvious, and for the second it suffices to show that 

F(x 1\ y) ~ F(x)F(y) 

or equivalently 

Q(x 1\ y) ~ Q(x) + Q(y) 

(5.10) 

(5.11) 

(5.12) 

(recall Q = -log F). However, suppose that {Y(t), t > O} is extremal-F. Then 

F,,-I(X) = P[Y(n-l) ~ x] 

= P[Y(n-l) ~ x, Y(n-1) ~ y] + P([Y(n-l) ~ x] II [Y(n-l) ~ yn 

~ P[Y(n-1 ) ~ x 1\ y] + P([Y(n-1 ) ~ yn 

= F,,-I(X 1\ y) + 1 - F,,-I(y) 

and therefore 

n(l - F"-'(x 1\ y» ~ n(l - F,,-I(X» + n(1 - F,,-I(y». (5.13) 

For fixed x e [F > 0] we have as n -+ 00 

n(1 - F"-'(x» '" -nlogF"-'(x) = Q(x) 

and letting n -+ 00 in (5.13) gives the desired (5.12). 
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Based on (5.10) and (5.11) the verification that [F > 0] is a rectangle can 
proceed: Define projection maps as usual by 

i = 1, ... , d 

for XE ~d. We assert 

d 

[F > 0] = 1tl[F > 0] x ... x 1td[F > 0] =: X 1ti[F > 0] (5.14) 
i=l 

and from this the result directly follows since 1ti[F > 0] is an interval of the 
form (l1i),00) or [l(i),oo) by (5.10). Half the proof of (5.14) is easy, for if 
x E [F > 0] then of course x(i) E 1ti[F > 0] implying x E X1=1 1ti[F > 0]. Con­
versely suppose that x E X1=11ti[F > 0] so that for i = 1, ... , d, x(i) E 1ti[F > 0] 
and thus there exists YiE [F > 0] with 1tiYi = X(i). Since YiE [F > 0] we get from 
(5.11) that y:= !\t=l YiE [F > 0]. However, 1tiY ~ 1tiYi = xci), and thus Y ~ x 
and therefore by (5.10) we get x E [F > 0]. Thus (5.14) is verified. 

With / = inf[F > 0] consider E = [I, oo]\{/} and define on E measures 

Jln := nFn-l
• 

Since Fn- I is only defined on IRd one must extend the definition of Fn-I in the 
obvious way to [ - 00, oo]d in order to get Jln defined on E. Sets of the form 
[ - <Xl, xJ = E\[ - <Xl, x] for x > I are relatively compact subsets of E and as 
n -+ 00 

Jln([ - <Xl, xJ) = n(1 - Fn-I(x)) -+ Q(x) < 00, 

so that for such x > / 

sup Jln([ - <Xl, x])C < 00. 
n 

Since E = limx.u.x>'[ - 00, xJ it follows that for any relatively compact subset 
BorE 

sup Jln(B) < 00 
n 

and hence {JLn} is vaguely relatively compact by Proposition 3.16. Let JLI and 
JlII be two vague limit points of {JLn}. Then for any x > / 

JlI([ -<Xl,x],) = JlII([ -<Xl,x],) = Q(x) = -logF(x) 

and thus 

JlI = JlII' 

So all limits points of {Jln} are equal and hence there is a limit measure Jl on 
Ewith 

v 
Jln -+ Jl. 

Thus for x> I 

Jl([ - 00, x]') = -log F(x) 
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and so 

F(x) = exp{ - Jl([ - 00, x]")} 

as desired. That Jl is an exponent measure follows from the equivalence of(5.8) 
and (5.9) with (5.8') and (5.9'). 0 

EXERCISES 

5.3.1. (i) Suppose F is max-id on IR" with exponent measure /-I. Show 
F(x) = nt=t l';(xCi) where I'; is a distribution on IR, itT /-I vanishes 
on UtSi<}S" {ye [I, 00]: y(i) > 1(i),yU1 > IC})}. 

(ii) If X is max-id in 1R4 give conditions on the exponent measure /-I necessary 
and sufficient for (XCt ), X (2» to be independent of (X(3), X (4». 

(iii) Give an example of a max-id random vector in 1R3 such that the exponent 
measure vanishes on (/, 00] but no subset of X(1), X (2), X(3) is independent 
of the complementary subset of variables. 

5.3.2. Give examples to show that if F is max -id and x is on the boundary of [I, 00 ], 
both F(x) > 0 and F(x) = 0 are possible. 

5.3.3. Prove Proposition 5.1 (b) by appealing to Proposition 5.8(iii). 

5.3.4. Let F be a distribution on 1R2. Show F is max-id itT for a < bin 1R2 

F(a(1), a(2»F(b(1), b(2» ~ F(a(1), b(2»F(b(1), a(2» 

(Balkema and Resnick, 1977). 

5.3.5. Let X be a max-id random element of IR" with distribution F. Suppose F(I) > 0 
where I = inf[F > 0], Ie IR". Then F has the form given in Example 5.6 (Balkema 
and Resnick, 1977). 

5.3.6. Any max-id distribution is the weak limit of a sequence {Fn} where each Fn has 
the form given in Example 5.6. Hint: Review Exercise 5.1.5 (Balkema and 
Resnick, 1977). 

5.3.7. Suppose {Xn,k,1 :5: k :5: n} are independent random vectors in IR" for each 
n ~ 1. Suppose V==t Xn,k converges weakly to a random vector X in iii" and that 

n 

lim V P([Xn ,k:5: x]") = 0 
ft-OO k~l 

for each continuity point x of the distribution of X such that P[X :5: x] > O. 
Show X is max-id (Balkema and Resnick, 1977). 

5.3.8. (a) Let F be max-id on iii" with support S. If /-I is an exponent measure with 
support SI show 

S = [F > 0] neSt v··· v Stl 

(d times) (Balkema and Resnick, 1917). 
(b) Let Y be extremal-F and define 

R(Y) = {x: for all open sets 0 containing x: P[Y(t)eO for some t > 0] > OJ. 
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Show R(Y) = S (de Haan and Resnick, 1977). 
(c) Define a measure Il on [0,00 ]2\ {OJ as follows: If G is a probability measure 

on [0, n12] and if (r, 0) are the polar coordinates of x: 

Il{X: r > (,01 < 0 ~ 02} = (-«G(01,02] 

for ( > 0, 0 ~ 01 < O2 ~ n12. Check that Il is an exponent measure. Find SI 
and S. 

(d) A distribution on !R2 which concentrates on {x: x(1) + X(2) = O} cannot be 
max-id. 

(e) If F is max-id on !Rd, then all distributions F', t > 0 have the same support. 

5.3.9. Suppose F is max-id on !Rd with exponent measure Il and let Y be extremal-F. 
Show that Y is Markov with stationary transition probabilities and exhibit the 
transition probabilities. Check that the holding time in state x is exponential 
with parameter Il([ - 00, x]<). Given that a sojourn in state x is ending, the next 
state visited is in [ - 00, y]< with probability 

Il([ - 00, y]<)IIl([ - 00, x]<) for y ~ x. 

5.3.10. Let Il be an exponent measure on [I, 00]\ {I} =: E for IE [ - 00, OO)d and suppose 

e = L E('dk) 
k 

is PRM(dt x dll) on [0,(0) x E. Define 

X:= I v V Uk - tkl} 
k 

where 1 = (1, ... ,1) is the vector in !Rd all of whose components equal 1. Show 
that X is max-self-decomposable; i.e., for each ( there is a random vector X, 
independent of X such that 

X i (X - tl) v X, 

(Gerritse, 1986). 

5.4. Limit Distributions for Multivariate Extremes 

Suppose as before that {Xn = (X~ I), .•. , X~d», n ~ I} are iid random d­
dimensional vectors with common distribution F(x). Let the marginal distri­
butions of F(x) be F 1 , ••• , Fd so that Fl (x) = F(x, 00, .•. , (0), and so on. Assume 
that there exist normalizing constants a~) > 0, b~i) E~, 1 :$; i :$; d, n ~ 1 such 
that as n -+ 00 

P[(M~i) - b!i))/a~) ~ xli), 1 ~ i ~ dJ 

= F"(a~1)x(1) + W), ... ,a~d)x(d) + W» -+ G(x) (5.15) 

for the limit distribution G such that each marginal Gi , i = 1, ... , dis non­
degenerate. The class of limits G, called extreme value distributions, must be 
characterized, and we seek necessary and sufficient conditions on F for (5.15) 
to hold. Any F giving rise to (5.15) will be said to be in the domain oj attraction 
of G and as in 0.4 this will be written F E D( G). We emphasize that the marginal 
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distributions of a multivariate extreme value distribution are assumed to be 
nondegenerate. 

Looking at the ith marginal convergence in (S.1S) we get 

nondegenerate, 1 :$; i :$; d. (S.16) 

From Theorem 0.3 it follows that each Gi is a one-dimensional extreme value 
distribution. We assume here and throughout that the normalizing constants 
a~) and W) have been chosen so that Gi is either (J) .. , '1' .. , or A as given in 
Theorem 0.3. 

Bearing in mind the procedure used to derive the form of the one­
dimensional extreme value distributions in Theorem 0.3, we say that a distri­
bution G(x) is max-stable iffor i = 1, ... , d and every t > 0 there exist functions 
1X(i)(t) > 0, p<i)(t) such that 

Gt(x) = G(IX(l)(t)X(l) + p<1)(t), ... , lX(d)(t)X(d) + P<d)(t». (S.17) 

It is clear from (S.17) that for every t > 0, Gt is a distribution function and 
hence every max-stable distribution is max-id. The relevance of max-stable 
distributions is obvious from the next result. 

Proposition 5.9. The class of multivariate extreme value distributions is precisely 
the class of max-stable distribution functions with nondegenerate marginals. 

PROOF. It is clear that if G has nondegenerate marginals and is max-stable, 
then (S.lS) holds; take F = G. Conversely suppose (S.lS) holds. From marginal 
convergence (S.16) and (0.18) there exist functions 1X(i)(t) > 0, p</)(t)e R such 
that for t > 0, 1 :$; i :$; d 

lim (b(/) - Mi) )"a(i) = P(i)(t) 
II "[lit) lInt) • (S.18) 

Suppose yet) is a vector with distribution Gt(x). (It is clear from (S.20) later 
that Gt is a distribution.) Then for t > 0 we have on the one hand 

«M{!h - br~h)/a!~t), 1 :$; i :$; d) => Y(I) (5.19) 

and on the other 

«M~h - b!i»(a~), I :$; i :$; d) => yet) (S.20) 

since P[Mlllt) :$; x] = F[IIt](X) = (F"(x»[IIt]/lI. Using (5.18), (S.19), and (S.20) we 
have 

« u(i) Mi»/ (i) 1 < . < d) lYJ[lIt] - "[lit] a lllt] , -'-

((
At(i) _ Mi») a(i) b(i) _ Mi) ) 

= [lit] II _"_ + II "[lit] I < . < d 
(i) (i) (i)' -,-

ali alnt] alllt) 

=> (1X(i)(t) y(i)(t) + P<i)(t), 1 :$; i :$; d) ,g, Y(I) 

which is the same as (S.17). o 
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To characterize max-stable distributions with nondegenerate marginals, it 
is an enormous help to standardize the problem so that G has specified 
marginals. How one standardizes is somewhat arbitrary and depends on taste. 
Different specifications have led to (superficially) different representations in 
the literature. For the purposes of making connections later with the theory 
of multivariate regularly varying functions we standardize so that the mar­
ginals of G are ~1(X) = exp{ -X-I}, x> O. The standardization does not 
introduce difficulties, as shown next. 

Proposition 5.10. (a) Suppose G is a multivariate distribution function with 
continuous marginals. Define for i = 1, ... , d 

I{!i(X) = (1/( -log Gi»+-(x), x > 0 

and 

x ~O. 

Then G. has marginal distributions G.i(x) = ~1 (x) and G is a multivariate 
extreme value distribution iff G. is also. 
(b) Define Ui = 1/(1 - Pi), 1 ::;; i ::;; d and let F. be the distribution of (U1 (XPl), 
... , UAx1dl » so that 

F.(x) = F(Ut(x(l), ... , U';-(X(dl». 

If(5.15) holds, so that FE D(G), then F. E D(G.) and 

p L~ U;(Xpl)/n ::;; X(il, 1 ::;; i ::;; dJ = F;(nx) -+ G.(x). (5.21) 

Conversely if (5.21) holds as well as (5.16) and G. has nondegenerate marginals 
then FED(G) and (5.15) is true. 

PROOF. Suppose (5.15) holds so that (5.16) is true as well. From (5.16) we get 

n(l - Fi(a~lx + b!il» -+ -log Gi(x) 

so that 

(5.22) 

and an inversion yields 

(Ut(ny) - b!il)/a~l -+ I{!i(y), y>O. (5.23) 

Thus for x> 0 

F;(nx) = p[V XPl ::;; Ut(nx(il), 1 ::;; i::;; dJ 
)=1 
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and applying (5.23) and (5.15) we get 

F:(nx) ~ G.(x). 

To check that G. has the correct marginals merely observe 

Gi 0 I/I;{X) = exp{ -( -log Gi«I/ -log Gi) .... (x»} = exp{ _X-I} 

= cI>1 (x). 

Conversely given (5.21) and (5.16), (5.22) also holds so that 

lim Fn(a~1)x(1) + W), ... , a!:')x(d) + b!d» 

o 

For those wishing to learn about limit distributions for multivariate ex­
tremes while standing on one leg (i.e. quickly), Proposition 5.10 tells pretty 
much the whole story. The rest is commentary. 

5.4.1. Characterizing Max-Stable Distributions 

Suppose (5.15) and hence (5.21) hold. For G., (5.17) becomes 

G~(tx) = G.(x) (5.24) 

which follows from (5.18) upon taking a~) = n, b!1) = O. Since G. is max-id 
there is an exponent measure JI. •. Each marginal of G. is cI>1' which concen­
trates on [0, (0), and therefore it is appropriate to take I from Proposition 5.8 
equal to 0 so that JI.. concentrates on E:= [O,OO]d\{O} and JI.. has no mass 
on the lines through +00; i.e., JI..(Uf=l {yeE: y(i) = oo}) = O. We may trans­
late (5.24) into a homogeneity property for JI..: 

JI..([O, xJ) = tJl..([O, txJ) (5.25) 

where t > 0, x ~ 0, x=/: 0, and [O,xJ = E\[O,x]. Note that 

d 

[O,txJ = U tYEE: yll) > tX(i)} 
i=1 

d 

= U {tyeE: yli) > X(I)} = t[O,xJ 
i=1 

where for a Borel set BeE we write tB = {tb: beB}. Thus (5.25) can be 
rewritten as 

JI..([O, xJ) = tJl..(t[O, xJ). (5.25') 

For a fixed t > 0, the equation (5.25') can readily be extended to hold for all 
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rectangles contained in E, and so the equality 

(5.26) 

holds on a generating class closed under intersections and is hence true for 
all Borel subsets of E (cf. Exercise 3.1.3.). Thus (5.24) and (5.26) are equivalent. 

Now pick your favorite norm on IRd so that Ilxll is the distance induced by 
this norm of the point x from O. We will pretend 11'11 is defined on all of E; the 
definition of 11'11 on E\[O, oo)d = U1=1 {y E E: y(i) = oo} will be immaterial for 
our purposes since by (5.8') any exponent measure places zero mass on 
U1=1 {YEE: y(i) = oo}. Let ~ = {YEE: Ilyll = I} be the unit sphere in E. Be­
cause all norms on IRd are equivalent (this means for two norms 11'11 and 11'11· 
there exist 0< C1 < C2 such that c1 11xll :::;; Ilxll· :::;; c2 11xll for all x E IRd-see 
Simmons, 1963, p. 223) ~ is bounded away from 0 and is hence compact. For 
a Borel subset A c: ~ write 

which is a measure concentrating on K Since J.l. is finite on compact sets, S 
is a finite measure on K The transformation x--+(lIxll,llxll-1x), a kind of 
polar coordinate transformation, allows us to capitalize on the homogeneity 
property (5.26) since for r > ° and Borel A c: ~ we have 

J.l.{YEE: lIyll > r, Ilyll-l yE A} 

= r-1J.l.{r-1 y: Ilyll > r, lIylrl YEA} 

= r-1J.l.{r-1y: Ilr-1yll > 1, IIr-1yll-l(r-1Y)EA} 

= r-1J.l.{xEE: IIxll > 1, Ilxll-l xEA} = r-1S(A). 

Thus with respect to the new coordinates (Ilyll, IIYIl-ly) we have that J.l. 
is a product measure. Put another way, if T: E --+ ((0, 00] x ~) via Ty = 
(llyll, lIyll-l y) then 

Therefore for x E E 

and since 

T([O,xJ) = T{YEE: y(i) > xli) for some i = 1, ... , d} 

= {(r, a) E ((0, 00] x ~): (ra)(i) > x(i), for some i = 1, ... , d} 

{ 
Xli) } 

= (r, a): r > a(i)' for some i = 1, ... , d 

{ 
d xli)} 

= (r,a): r > /\ (;) 
i=1 a 
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P.([O, xJ) = If r-2 drS(da) 
T«(O.x)C) 

= r S(da) (J. r-2 dr) 
J~ [. x"'] r>A-

'-I ri" 

i ( d X(i))-1 i d (a(i)) 
= S(da) /\ (i) = V (i) S(da). 

~ 1=1 a ~ 1=1 X 

We now summarize this discussion. Recall that E = [O,oo]d\{O}. 

Proposition 5.11. The following statements are equivalent. 
(i) G.(x) is a multivariate extreme value distribution with"l marginals. 

(ii) There exists a finite measure S on 

~ = {yeE: lIyll = I} 
satisfying 

L a(l)S(da) = 1, 

such that for x e Rd 

G.(x) = exp{- r V (a::)S(da)}. JI"t 1=1 X 

(5.27) 

(5.28) 

(iii) There exist non-negative Lebesgue integrable functions h(s), 1 ~ i s; d, and 
o ~ s ~ 1 on [0,1] satisfying 

r h(s)ds = 1, 1 ~ i ~ d (5.29) 
J(O.l) 

such that for x ~ 0 

G.(x) = exp{-J. V (h~~»)dS}. 
(0.1) 1=1 x 

(iv) There exists L" t(tk.jk)' PRM(dt x dp.) on [0,00) x E with 

P.{y: lIyll > r, lIyll-l ye A} = r-1S(A) 

and S a finite measure satisfying (5.27) such that for x ~ 0 

G.(x) = p[ V j" ~ x]. 
tkS 1 

(5.30) 

(v) There exists L"t(tk .rk. llk)' PRM(dt x dp.) on [0,00) x (0,00] x [0,1] with 

p(dr,du) = S(~)r-2drdu 

and non-negative Lebesgue integrable functions h(s), 1 ~ i ~ d, and 0 ~ s =:;; 1 
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on [0,1] satisfying (5.29) such that for x ~ 0 

G.(x) = p[ V (.ft(ult)r", 1 ~ i ~ d) ~ x]. 
Ik~l 

Remark. Representations (iii) and (v) appear in de Haan (1984b), where they 
are used to obtain a spectral representation for max-stable processes. 

PROOFS. It is readily verified that each representation in (ii)-(v) is of a max­
stable distribution. The side conditions (5.27) and (5.29) appear because of the 
requirement that each marginal of G. be ClJ 1 • The representation in (5.28) was 
derived before the statement of Proposition 5.11, and (iv) is just a restatement 
of Proposition 5.8. We may readily obtain (iii) from (ii) by noting that since 
S(da)/S(~) is a probability measure on the complete, separable metric space 
~, there exists a random element f = (fl' ... , h) from the Lebesgue interval 
[0, 1] considered as a probability space into ~ such that f has distribution 
S(da)/S(~). This generalization of the probability integral transform in 0.2 is 
well known; see Billingsley, 1971, pages 6-7 or Skorohod, 1956, for example. 
This result allows the integration in the integral in (5.28) to be performed on 
[0,1]: 

S(~) L ~ (::::)S(da)/S(~) = S(~) io.l1 ~ (~~~»)dS 
which apart from the factor S(~) is (5.30). 

Similarly we may obtain (v) from (iv): If {Ai' i ~ I} are iid random elements 
of ~ with distribution S(da)/S(~), there exists f = (fl"" ,h): [0,1] -+ ~ such 
that if (Uk' k ~ 1) are iid uniformly distributed random variables then 

(Ai' i ~ 1) 4, (f(Ui ), i ~ 1) 

in ~oo. If L,,6(lk. rk) is PRM on [0, (0) x (0,00] with mean measure dt x 
S(~)r-2 dr and ifL" 6(lk. r k) is independent of {U,,} we have by Proposition 3.8 
that 

is PRM on [0,(0) x (0,00] x ~ with mean measure dt x r-2 dr x S(da). It 
follows from Proposition 3.7 that 

L 6(1/c.rkf(U/c)) 

" 
is PRM(dt x d/J.). Therefore 

L 6(lk. r"f(Uk)) ,g, L 6(lk.ik) 
It k 

in Mp([O, (0) x E), which entails 

V r"f(Uk),g, V ilt 
1/c~1 '/c~1 

as desired. o 
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We now consider some examples in R2. When d = 2 we have ~ one­
dimensional, and it is frequently most convenient to parameterize ~ by an 
interval. 

EXAMPLE 5.12. Suppose for (x,y) > ° we have in [0,00)2 

G*(x,y) = exp{ _(x-2 + y-2)1/2} 

so that 

Jl*([O,(x,y)]') = (x- 2 + y-2)1/2 

and the density of Jl* is 

Jl*(dx, dy) = (x2 + y2)-3/2. 

Defining II(x,y)1I 2 = x2 + y2, ~ = {(x,y);:?: 0: x2 + y2 = I} and H[O, 00] = 
Jl*{(x,y): x2 + y2;:?: 1, arctan(y/x) S; Oo}, we have upon switching to polar 
coordinates 

H[O, 00] = f 11(X.Y)II~1 Jl*(dx,dy) 
arctan (ylx) $80 

= r- 3rdrdO=00 r-2dr=00 i~ fOO fOO 
6=0 r=1 1 

and so H is Lebesque measure on [0, n/2]. Now define h: [0, n12] -+ ~ by 
h(O) = (cos 0, sin 0) and 

S(da) = Jl*{(x,y): x 2 + y2 ;:?: I,(x2 + y2)-1/2(x,y)eda} 

= Jl* {(x, y): r;:?: I,(cosO,sinO)eda} 

= H 0 h-1 (da). 

Therefore for (x, y) ;:?: ° 
G*(x, y) = exp { - L (a~) v a~2) S(da)} 

and by the transformation theorem for integrals, since S(da) = H 0 h-l(da) we 
have 

{ i (COS 0 sin 0) } G*(x,y) = exp - -- v - dO 
[0."/2) x Y 

{i (COS(2-1ns) Sin(TlnS») n d } = exp - v - S 
[0.1) X Y 2 

and thus f(O) in (5.30) may be written as 

f(s) = (n/2)(cos(Tlns), sin(2-l ns». 
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EXAMPLE 5.13. Now suppose in [0,00)2 we have 

G.(x,y) = exp{ -(x-P + y-P)l/P} 

for p > 1. Then 

J.l.([O, (x, y)J) = (x-P + y-P)l/p 

and taking partial derivatives with respect to x and then y, we find 

J.l.(dx,dy) = (p - l)(xP + yP)P- I -2/(xy)2-p. 

Define the norm to be 

II (x, y)1I = (xP + yP)l/P 

271 

so that ~ = {(x, y) ~ 0: xP + yP = I}. Make the change ofvariable in J.l.(dx, dy) 
by setting 

so that 

x = (Jr, y = r(1 _ (JP)l/P 

and the Jacobean of this inverse transformation is 

J = r(1 - (Jp)rl-l. 

So the density J.l. after transforming to new variables rand (J becomes 

(5.31) 

If we define H«(Jo) = J.l.{(x,y) ~ 0: r > I, (J :::;; (Jo} then the expression in (5.31) 
yields 

H«(Jo) = [ (p - 1)(JP-2(1 - (JP)-l/P d(J. 
J[O.80 ) 

If we define h: [0,1] -+ ~ by 

h«(J) = «(J, (I _ (JP)l/p) 

then S = H 0 h-1 and therefore 

J.l.[O, (x, y)]C = L (a:) v a~2)S(da) 

becomes by transforming the integral: 
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Thus we may take £(s) in (5.30) as 

£(s) = (p - l)(sP-l(1 - s pr 1/p,sp-2). 

For p = 2, the choice orris different than in Example 5.12. 

For convenience we now restate Proposition 5.11 for the case that the 
marginal distributions of a multivariate extreme value distribution G(x) are 
all equal to A(x) = exp{ _e-.x}, xe R. As before E = [O,ooJ"\{O}. 

Proposition S.ll'. The following are equivalent: 
(i) G(x) is a multivariate extreme value distribution with A(x) marginals. 
(ii) There exists a finite measure S on 

~ = {yeE: lIyll = I} 

satisfying 

L a(i)S(da) = 1, 

such that for x e IR" 

G(x) = exp {- r V (a(ile-.xUl)S(da)}. 
J~ 1=1 

(5.27) 

(iii) There exist non-negative Lebesgue integrable functions /;(s), 1 S; i S; d, and ° S; s S; 1 on [0, 1] satisfying 

r /;(s)ds = 1, 1 S; i S; d (5.29) 
J[O.I) 

such that for x e IR" 

G(x) = exp {- r V (/;(s)e-.xIII)ds} 
J[O.I) 1=1 

or equivalently if we set /; = exp{gj} 

G(x) = exp {- f exp{-A (X(i) - 9i(S»dS}. 
J[O.I) 1=1 

(iv) There exist LA: 8(1".1.)' PRM(dt X dJt.) on [0,(0) x E with 

Jt.{yeE: lIyll > r, lIyll-l ye A} = r- 1S(A) 

and S a finite measure satisfying (5.27) such that for x e IR" 

G(x) = P [V logj" S; x] 
I,,:s 1 

Oogj" = Oogj~i), 1 ~ i ~ d». 
(v) There exists LA: 8(1".11" ... ,,), PRM(dt X dJtA) on [0,(0) x (- 00,00] x [0,1] 
with 
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JlA(dv,du) = S(~)e-lJdvdu 

and non-negative Lebesgue integrable fuctions /;(s) = exp{gi(S)}, 1 ~ i ~ d, 
o ~ s ~ 1 on [0, 1] satisfying (5.29) such that for x e R" 

G(x) = P [ V (gi(Ut) + Vb 1 ~ i ~ d) ~ x]. 
'k~l 

PROOF. We merely need to observe that from Proposition 5.10 

G(x) = G.(eX) 

where x e R" and eX = (ex/i), 1 ~ i ~ d). To get (v), note that if L 8(lk.jk) is 
PRM(dt x dJl.) then 

where 1 = (1, ... ,1) and logf = Oog/;, 1 ~ i ~ d) and Lk8(lk"k,Uk) is PRM(dt x 
S(~)r-2dr x du). Therefore Lt8(lk.log'k,Uk) ~ L8(lk• lJk, Uk) by Proposition 3.7. 

o 

EXAMPLE 5.14. Consider the multivariate extreme value distribution on R2 

G(x, y) = exp{ _(e-X + e-' - (eX + e'rl)} 

which is the limit distribution arising from a bivariate exponential distribution 
(Mardia, 1970; Galambos, 1978; Marshall and Olkin, 1983). We observe first 
that for x > 0, y > 0 

G.(x,y) = G(logx,logy) 

= exp{ _(x- I + y-I _ (x + y)-I)} 

and thus, since Jl.([O,(x, (0)]') = X-I we have for x> 0, y > 0 

Jl.«x,oo] x (y, 00]) = (x + y)-l 

leading to 

Jl.(dx,dy) = 2(x + y)-3, 

Thus it is natural to take as norm 

(x,y)eE = [0,00]2\{O}. 

lI(x,y)1I = x + y 

so that 

~= {(s,(l-s»:O~s~ I} 

and ~ is the line through (0,1) and (1,0), considered parameterized by s, 
o ~ s ~ 1. Make the change of variable 

(x,y) -+ (x + y,_x_) = (r,s) 
x+y 
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and in terms of these new coordinates the density is 

2r- 3rdrds = r- 2 dr2ds 

so that S is a mUltiple of Lebesgue measure on ~. The representation for G is 

G(x,y) = exp{- r (se- X v (1 - s)e-Y )2ds}. 
J[O.I] 

EXERCISES 

5.4.1.1. Give an example of a distribution G which is max-id but not max-stable. 

5.4.1.2. Give an example of a max-stable distribution which does not have all mar­
ginals nondegenerate. 

5.4.1.3. Give an example of a max-stable distribution which is not absolutely 
continuous. 

5.4.1.4. Verify directly in Proposition 5.11 (v) that V,.SI f(Ut)rt has distribution G", 
by computing P[V'.SI f(Ut)rk :::;; x] for x ~ 0 (de Haan, 1984, page 1195). 

5.4.1.5. On the basis of (5.15) give the appropriate generalizations of Corollary 4.19 
and Proposition 4.20. 

5.4.1.6. Show that Y is a random element of [0, 00)" with extreme value distribution 
G. (with cl>l marginals) iff for every t > 0V~l t(i'y(i) is a multiple ofa random 
variable with distribution function $1 (de Haan, 1978). State the result when 
the marginals are A(x) or '1'1 (x). 

5.4.1.7. State and prove the analogue of Proposition 5.Il when all marginals are 
equal to '1'1 (x) = exp{ -Ixl«}, x < O. 

5.4.1.8. Comparing the representation in Example 1 with the one in Example 2 
specialized to the case p = 2 shows that the choice of f is not unique. Given 
f and f# both satisfying (5.30), what is the relation between f and f# (de 
Haan and Pickands, 1986)? 

5.4.1.9. Let {X(t), t > O} be a Levy process in IR", i.e., a process with stationary, 
independent increments. Suppose {X(t)} is stable with index 1 so that for all 
a>O 

X(a') ~ aX(·) + c(a) 

in D([O, 00), [ -00, oo]"\{O}), where c(a) is some nonrandom vector. Suppose 
the Levy measure of {X(i'(t), t > O} is V(i)(X, 00) = x-I, x > O. Show that 

G.(x):= P [sup (X(t) - X(t - » :::;; x] 
lSI 

is a multidimensional extreme value distribution with cl>1 marginals and all 
such distributi~ns can be obtained in this manner (de Haan and Resnick, 
1977). 

5.4.1.10. The following are multivariate extreme value distributions. Pick an appro­
priate norm, define~, and give the representation of Proposition 5.11 or 5.11'. 
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(i) G.(x,y) = exp{ _(X-I + y-I - (x2 + y2fl12}, (x,y) ~ O. 
(ii) G.(x, y, z) = exp{ - 2- I(x-1 v y-I + y-I V Z-I + X-I V Z-I)}, (x, y, z) ~ O. 

(iii) G.(x,y,z) = exp{ _2- I «x-2+y-2)1/2+(X-2+Z-2)112+(y-2+ Z-2)112)}, 
(x,y,z) ~ 0 (de Haan and Resnick, 1977). 

(iv) G(x,y) = exp{ _(e-X + e-Y - e-(XVY)}, (x,y) ~ 0 (Marshall and Olkin, 
1983; Galambos, 1978). 

(v) G(x,y) = exp{ _«e-X + (1 - O)e-Y) v el -,)}, O:s; O:s; 1, (x,y)e 1R2. 
Check that this G contains a singular part and that if X and Z are iid with 
distribution A then 

G(x,y) = P[X :s; x,(X + logO) v (Z + 10g(1 - O»:s; y] 

(Tiago de Oliveira, 1980). 

5.4.1.11. Find G. in the following cases when d = 2: 
(i) ~ = {(x,y) ~ 0: x P + yP = I}, p ~ 1 and S = H oh-1 where hex) = 

(x,(1 - XP)IIP): [0,1] --+ ~ and H(t) = t«, O:s; t :s; 1, IX> O. 
(ii) ~ = {(x, y) ~ 0: x v y = I} and for monotone functions UI (t), U2(t), 

O:s;t:s;l 

S([O,t] x {I}) = UI(t), S({l} x [O,t]) = U2 (t). 

What are the conditions on UI and U2 in order that (5.27) be satisfied? 
(iii) ~ = {(x,y) ~ 0: x2 + y2 = I} and S{(O, I)} = S{(l,On = 1 and S has no 

mass elsewhere. 
(iv) f(u), O:s; u :s; 1 satisfies (5.24) and II (U)/2(U) = 0 a.e. Give concrete 

examples of f satisfying these conditions. This provides another graphic 
illustration of the non uniqueness of f. 

(v) ~ = {(x,y) ~ 0: x 2 + y2 = l},S{(A,.jf)} = j2and S places no mass 
elsewhere. 

5.4.1.12. If G. is a multivariate extreme value distribution as in Proposition 5.11, give 
conditions in order that G. be the distribution of an exchangeable random 
vector in IRd. 

5.4.1.13. Analogue of the Cramer-Wold device (Billingsley, 1968): Suppose that Xft , 

n ~ 0 are random vectors in ~ = [0, oo~. Prove 

in IR~ itT for every t e IR~ 

d d V t(i) X!i) ~ V t(I)Xg) 
i=1 i=1 

in u;t+. Hint: Use distribution functions. 

5.4.1.14. If G(x,y) is a bivariate extreme value distribution with A-marginals, show 
that the correlation coefficient is non-negative. 

5.4.1.15. (a) Show G.(x, y) is a bivariate extreme value distribution with Cf),-marginals 
itT 

G.(x,y) = exp{ _(X-I + y-I + y-l X(yx- I »} 

x, y > 0 where X(t), t ~ 0 satisfies 
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(i) X(t) is continuous and convex 
(ii) max( -t, -1) ~ X(t) ~ 0, t;;::: O. 

(b) Show G(x, y) is a bivariate extreme value distribution with A-marginals itT 

G(x,y) = A(x)A(yW(Y-XI, 

What are the analogues of Conditions (i) and (ii) in Part (a) which k(t) 
must satisfy? Express the correlation coefficient of G in terms of k (cr. 
5.4.1.14). 

(c) For Examples 1,2, and 3 and for the distributions of Problem 5.4.1.10(i), 
(iv), and (v) give X or k as appropriate (Sibuya, 1960; GetTroy, 1958, 1959; 
Finke1shteyn, 1953; Tiago de Oliveira, 1975a, b, 1980; de Haan and 
Resnick, 1977). 

5.4.1.16. Suppose G.(x) is a multivariate extreme value distribution with Cl>1-marginals. 
Let {},;, i ;;::: I} be iid random variables with common distribution 11>1' A 
random vector Y E IRd has distribution G. itT Y is the limit in distribution of 
random vectors of the form 

where 

and 

P.k;;::: 0, 

• 
~ aUlp - 1 
~ nknk-' 

k=1 

• I P.t = S(~) 
k=1 

(a~~, 1 ~ i ~ d)eK 

n;;:::1 

Hint: Approximate S in (5.28) by a discrete measure concentrating on n points 
a.k E~, k = 1, ... , n (Pickands, 1981; de Haan, 1985). 

5.4.1.17. Show that the limit distribution in Proposition 4.29 for a;;I(M., J.v,.) is of the 
form 

H(x, (0) - H(x, - y) 

where H(x,y) is a bivariate extreme value distribution. Give a representation 
for H (Davis, 1982a; Davis and Resnick, 1985a). 

5.4.2. Domains of Attraction; Multivariate Regular Variation 

Suppose C c IRd is a cone, i.e., x E C itT tx E C for every t > 0. For concreteness 
suppose 1 E C. A function h: C -4 (0, (0) is monotone if it is either non­
decreasing in each component or nonincreasing in each component. So for 
instance, h is monotone nondecreasing on C if for x and y E C, X ::;; Y we have 
h(x) ::;; h(y). We say a measurable function h is regularly varying on C with 
limit function A. if A.(x) > 0, X E C, and for all x E C 

lim h(tx)/h(tl) = A.(x) (5.32) 
'-+00 
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so that A(I) = 1. For each fixed x E C we have for s > 0 

lim h(tsx) = lim h(tsX)/h(tX) = A(SX) 
1~<Xl h(tx) 1~<Xl h(tl) h(tl) A(X) 
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and applying Proposition 0.4 to h(tx) considered as a function of t we find 
there exists p E Iij such that h(tx) E R ~ and A(SX)j A(X) = sp. Provided p does 
not depend on x, we find that A is homogeneous: 

A(SX) = sP A(X), s >0. (5.33) 

We must now check that p does not depend on x. Temporarily supposing it 
does and writing p(x) to indicate this dependence we have for x and y E C 

p(y) = lim (logh(tsy) -logh(ty»jlogs 
1~<Xl 

. (h(tSY) h(ty) ) 
= !:~ (log S)-1 log h(tsx) - log h(tx) + {log h(tsx) - log h(tx)} 

( A(Y) A(Y») = (log sri log A(X) - log A(X) + p(x) = p(x). 

Thus we find that the definition (5.32) can be rephrased: h is regularly varying 
with limit function A itT there exist V: (0, (0) - (0, (0), V E R~, and for all x E C 

lim h(tx)jV(t) = A.(x). (5.34) 

It follows from (5.33) that if A. is monotone then A. is continuous on ell 
(nt=1 {x: xli) l' O}): Supposing A. nondecreasing and C c (0, (0)" for con­
creteness we have for any y E [(1 - e)x, (1 + e)xJ and (1 - e)x E C that 

(1 - e)P A.(x) = A«1 - e)x) ~ A.(y) ~ A«1 + e)x) = (1 + ey A.(x) 

and the continuity of A at x is thus clear. 
With these preliminaries digested we may discuss domain of attraction 

criteria. Before proceeding you may wish to review Proposition 5.10. 

Proposition S.IS. As in Proposition 5.10, for a multivariate extreme value 
distribution G, define 

where 

I/I;(X) = (1/( -log Gi»+-(x), x :2: 0, 1 ::;;, i ~ d. 

For a distribution F, define Vi = 1/(1 - F;), 1 ::;;, i ~ d so Vi has range [1,00] 
and ut has domain [1,00]. Set 

F.(x) = F(U;-(x(1»; ... , Ut(x("»), x :2: I. 

(a) F. E D(G.) itT 1 - F. is regularly varying on the cone (0,00)" with limit func­
tion -log G.(x)/( -log G.(l»; i.e.,for x > 0 
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lim (1 - F.(tx»/(1 - F.(tl» = (-log G.(x»/( -log G.(l». (5.35) 
t-oo 

(b) FE D(G) iff marginal convergences (5.16) hold and F. E D(G.). 

PROOF. (a) Given (5.35) we may define an to satisfy 

1 - F.(an l) '" n-1(-logG.(1) 

so that (5.35) gives (with t replaced by an): 

x> o. 
From this it readily follows, as for the d = 1 case, that 

F:(anx) --+ G.(x), x > 0 

and so F.ED(G.). 
Conversely, suppose F. ED(G.). Since the marginals of G. are Cl>1' we take 

b!i) = 0, 1 ~ i ~ d, and F. E D(G.) means 

F:(a~1)x(1), ... , a~d)x(d» --+ G.(x), x > O. 

We show we may take a~) = n and to check this, marginal considerations are 
enough; it suffices to show 1 - F.i(x) '" X-I, x --+ 00, 1 ~ i ~ d (cf. 1.12 in 
Proposition 1.11). Since F. E D(G.) implies F. i E D(Cl>I) which is equivalent to 
1/(1 - F. i ) = Ui ° Ut E R VI we need to check that 

(5.36) 

as x --+ 00. From (0.6(b» 

ViO ut(x);:::.: x. 

Also, for any () > 0, (0.6(c» implies 

(5.37) 

The second inequality on the right must be true for all large x since otherwise 
there would be a sequence Xn i 00 and U+-(xn) = U+-«1 - b)xn) leading to 
limn_oo U(U+-(xn»/U(U+-«1 - b)xn» = 1, which contradicts U 0 U+- ERV1 • 

Thus the first inequality on the left of (5.37) ultimately holds. We therefore 
have the string of inequalities 

1 1·· f U 0 U<-(x) I' V 0 U<-(x) 
~ Imtn ~ Imsup ----

x-co X x-oo X 

. U 0 U+-(x) -1 

~ h~!~p U(U+-«1 _ b) x» = (1 - b) 

and since 15 > 0 is arbitrary, we conclude that (5.36) is true. 
Thus F. E D(G.) implies 

x> O. 
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Taking logarithms and as usual using -logz '" (1 - z), z --+ 1, we get 

n(1 - F.(nx» --+ -log G.(x) (5.38) 

and thus 

(1 - F.(nx»/(1 - F.(nl» --+ -log G.(x)/( -log G.(I» 

and a simple monotonicity argument allows n to be replaced by t, giving the 
desired (5.35). 
(b) We checked in (a) that F. eD(G.)iffF:(nx) --+ G.(x),x > Oso the statement 
in (b) is equivalent to Proposition 5.10(b). 0 

To apply Proposition 5.12 one can follow this sequence of steps: 
(i) Compute marginals Fj, 1 ~ i ~ d and check marginal convergences (5.16). 
(ii) Compute F. and then check the regular variation condition (5.35). 
(iii) From (5.35) obtain -log G.(x) and hence G.(x). Compute G(x) = 
G.(I/I;-(x(1», ... , I/I;-(X(d») where 1/1, is obtained from marginal convergence in 
step (i). 

EXAMPLE 5.16 (Galambos, 1978, page 249; Marshall and Olkin, 1983, page 
176; Mardia, 1970). Let 

1 - F(x,y) = e-X + e-Y - (eX + eY - 1)-1 (x,y) ~ O. 

Then 

x> 0, i = 1,2 

and 

U,(x) = 1/(1 - F,(x» = eX, x>O, i = 1,2 

ut· (y) = log y, y> 1, i = 1,2 

so therefore 

1 - F.(x,y) = 1 - F(logx,logy) = X-I + y-l - (X + y - 1)-1, 

(x,y) ~ I. 

Thus for (x,y) > 0 and t large enough that t(x,y) > (1, 1) we have 

1 - F.(tx, ty) X-I + y-l - (X + y - C 1 r l X-I + y-I - (X + y)-I ---'---- = --+ --------
1 - F.(t, t) 2 - (2 - t I) I 3/2 

as t --+ co, verifying (5.35), and we can identify G. by 

-logG.(x,y) = X-I + y-I - (x + y)-I, (x,y) > O. 

This checks F. eD(G.). To identify G we have from marginal convergences 

n(1 - F;(x + log n» --+ e-x, X e IR, i = 1, 2. 

Thus 
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"',(x) = l/(-logGi (x» = eX, XE~ 

and 

G(X,y) = G.(",;-(x),,,,;(y» = G.(eX,e") 

= exp{ _(e-X + e-Y - (eX + eY)-l)}, (x,y)e~2 

which is the G in Example 5.14 of Section 5.4.1. 

The next result is a useful alternative criterion which is easy to apply in 
cases of spherical symmetry. As in the previous section, let II x II be your favorite 
norm for x e ~4. 

Proposition 5.17. Suppose F, F., G, and G. are as in Proposition 5.15, and Jl., 
S, and ~ are as described in Proposition 5.11. Let X. be a random element of 
[1,00)4 with distribution F., The following are equivalent: 
(i) F.eD(G.). 
(ii) lim 1 - F.(tx) = -logG.(x) = Jl.([O,x]<) 

t ... cx> 1 - F.(tl) -log G.(I) Jl.([O,I]<) 
for x > O. 
(iii) nF.(n·) = nP[n- l X. e .] ..!. Jl. on E. 
(iv) nP[(n- l IlX.II,IIX.II-1X.)e·]..!.r- 2 dr x Son(O,oo] x~. 

Remark. Since Jl. puts zero mass on INF := Ut=l {x e E: X(i) = oo} it will be 
immaterial how we define 

Px:= (lIxll, IIxll-lx) 

on INF. In the following discussion, we ignore INF. 

PROOF. The equivalence of (i) and (ii) is given in Proposition 5.12, where it is 
also shown that F. e D(G.) iff 

F.(nx) - G.(x), x > O. 

This last statement is equivalent to 

n(l - F.(nx» = nP[n-1X. e [0, x]"] - -logG.(x) 

= Jl.([O, x]"), x > O. (5.39) 

It is easy to extend (5.39) to convergence on rectangles and thus to vague 
convergence on E, which gives (iii). 

Given (iii) we check (iv) as follows: Suppose g: (0, 00] x ~ - [0, 00) is con­
tinuous with compact support; we must show 

nEg(n- l IlX.II,IIX.II-1X.) 

-f f g(r, a)r-2 dr S(da). Jo, cx»x tot 
(5.40) 
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Note that g(n-tIlX.II, IIX.II-tX.) = goP(n-tX.) and since we know, by 
assuming (iii) is true that 

for f: E -+ [0, (0) continuous with compact support, it suffices to show that 
goP is continuous with compact support on E. It is clear goP is continuous. 
Let the support of 9 be K'. Then for some ~ > ° we have K' c [~, 00] x N 
and the support of goP is 

{x: goP(x) > o} = P-t(K') c p-t([~,oo] x N) 

= {xeE: Ilxll ~ ~}, 

which is compact in E. Since P is continuous, p-t (K') is a closed subset of the 
compact set {x: IIxll ~ ~} and hence is compact. 

The proof that (iv) implies (iii) is similar. To get (iii) implies (ii) plug [0, xJ 
into the vague convergence statement and use monotonicity to switch to the 
continuous variable t. 0 

The information in Propositions 5.15, and 5.17 is now recast in a somewhat 
more easily applied form which sometimes eliminates the necessity of com­
puting F •. 

Corollary 5.18. F is a distribution on Rd. 
(a) If F satisfies the regular variation condition 

. 1 - F(tx) 
!~~ 1 _ F(tl) = W(x) > 0, x>O (5.41) 

and W(cx) = c-"W(x), c > 0, x > 0, a > 0, then Fe D(G) where G(x) = 
exp{ - W(x)}, x > O. 
(b) Suppose X has distribution F. If there exist an -+ 00 such that 

nP[(a;tIlXII,IIXII-tX)e(dr,da)] 

.!. ar-"-t dr S(da) (5.42) 

on (0,00] x {xe IRd: IIxll = I} for a finite measure S, then F is in the domain of 
attraction of the extreme value distribution exp{ -Il([ -00, xJ)}, x > 0, where 

ll{xelRd\{O}: IIxll > r, Ilxll-txeA} = r-"S(A). (5.43) 

(c) Suppose d = 2 and (5.42) holds on (0,00] x {x ~ 0: Ilxll = I} or equiva­
lently suppose there exists V(t)eRV_", a > 0, and 

P[t-t X e . ]/V(t) -4 Il 

on E = [0, 00]2\{0}. If in addition for the marginal distributions Fi , i = 1,2 we 
have 
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1 - F;(x) '" c; Vex), x -+ 00, c; >0 (5.44) 

then (5.41) holds and FeD(G) as in (a) where 

W(x,y) = c1x-rz + C2Y-rz - Jl«x,Y), (0) 

for (x, y) > o. 

Remark. Vague convergence on E does not control mass in Ee for a distribu­
tion F which does not concentrate on [0, (0)". For d = 2, marginal regular 
variation provides the necessary control. If d > 2 see Exercise 5.4.2.5. 

PROOF. For the proof of (a) examine the first part of the proof of Proposition 
5.15. For (b), note that (5.42) implies 

(5.45) 

on [ -00, oo]"\{O}, where Jl has the definition given in (5.43). From (5.45) we 
get for x> 0 

nP[a;1Xe(-00,xJ] = n(l- F(allx» 

-+ Jl« -oo,xJ) 

and this puts us essentially in the situation covered by (a). 
For (c) observe that for d = 2 we have for x > 0 

(1 - F(tx»/V(t) 

= (P[X(1) > tx(1)] + p[X(2) > tX(2)] - P[x(1) > tx(1), X(2) > tX(2)])/V(t) 

= (1 - F1(tx(l))/V(t) + (1 - F2(tX(2»)!V(t) - P[C1Xe(x, oo)]/V(t) 

-+ C1 (x(1»-rz + C2(X(2»-rz - Jl(x, (0) =: W(x) 

and we may now apply (a). o 

EXAMPLE 5.19. Suppose d = 2 and X has two-dimensional Cauchy distribution 
F with density 

F'(x,Y) = (21tt1(1 + x2 + y2t 3/2, (x,y)e~2 

(Feller, 1971, page 70). The polar coordinates of X are (IIXII,O(X» = 
(((X(l)2 + (X(2»2)1/2, arctan(X(2)/X(1») and have density 

P[ IIXII edr, O(X) e dO] = F'(r cos 0, r sin O)rdr dO 

= r(1 + ,2 t 3/2 dr(21tt1 dO 

so that IIXII, and O(X) are independent with O(X) uniformly distributed on 
[0,21t) and 

'" ,-1, ,-+ 00. 
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The condition (5.41) of Corollary 5.18 becomes 

nP[(n-1 I1XII,IIXII-1 X)e(r,00] x A] 

= nP[IIXIl > nr]P[IIXII-1XeA] 

-+ r-1 P[(cos O(X),sin O(X»e A] = r-1S(A). 

Thus for (x, y) > 0 and (r,O) the polar coordinates of (u, v): 

Jl( -00, (x, y)] = Jl{ (u, v): U > x or v > y} 

This gives 

= Jl{(u, v): rcosO > x or rsinO > y,O < 0 ~ n/2} 

+ Jl{(u,v): rsinO > y,n/2 < 0 ~ n} 

+ Jl{(u,v): rcosO > x,3n/2 < 0 ~ 2n} 

= f C[r>X(COSIII-.I\)I(Sinlll-'] r-2drdO/2n 
Jlo slIs"f2 

+ f C[r>)I/sin II] r-2 dr dO/2n 
JI "/2<IIS,, 

+ f C[r>xfcosII ] r-2drdO/2n 
JI3,,/2<lIs2" 

= Llr/2 (x-1 cos 0) V (y-1 sin 0)dO/2n 

+ C" y-1 sin 0 dO/2n 
J"'2 

+ (x-1 + y-1 )/2n 

= (2n)-1(x-1 + y-1 + (x-2 + y-2)1f2). 

F"(n(x,y» -+ exp{ -(2n)-1(x-1 + y-l + (x-2 + y-2)1/2)} 

= exp { - f:12 (x-1 cos 0 V y-l sin O)(eo(dO) + e,,/2(dO) + dO/2n)}. 
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Since most multivariate distributions are specified by densities, not by 
distribution functions, it is important to have good criteria in terms of densities 
which imply the regular variation of distribution tails. When d = 1, regular 
variation of the density implies regular variation of the distribution tail via 
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Karamata's theorem 0.6. This, however, fails to be true in higher dimensions 
without the imposition of some regularity conditions. Cf. Exercise S.4.2.11. 

What distinguishes multivariate regular variation from the univariate case 
is that as we move from ray to ray the definition of regular variation exerts 
no control over the function's variation; there is only radial control as we 
move out along a ray. Imposing a uniformity condition as we move across 
rays overcomes this difficulty. 

As before let x --+ IIxll be a norm on IRd and set ~ = {xe[O, oo)d: IIxll = 1]. 
The following is due to de Haan and Resnick (1987). See also de Haan and 
Resnick (1979b), de Haan and Omey (1983); and de Haan, Omey and Resnick 
(1984). 

Proposition 5.20. Suppose F concentrates on [0, oo)d and has density F' which 
is regularly varying with limit function A. on [0, oo)d\{O}; i.e.,for some regularly 
varying function V(t) of index p < 0 we have for x ~ 0, x '" 0 

. F'(tx) 
hm ~( = A(X) > O. 
' .... 00 t V t) 

(5.46) 

Necessarily A satisfies A.(tx) = t p - d A(X) for x > o. x '" O. Suppose further that A 
is bounded on ~ and that the following uniformity condition holds: 

. I F'(tx) I hm sup -dV() - A.(x) = O. 
' .... 00 Xe~ t t 

(S.47) 

Then for any e > 0 

. I F'(tx) I hm sup -d - - A(X) = O. 
' .... 00 IIxll>. t- V(t) 

(S.48) 

Also A is integrable on [0, x)" x> 0 and 1 - F is regularly varying on (0, (0)01, 
i.e., 

. 1 - F(tx) i 
hm ( ) = c A.(u)du, 
' .... 00 V t [O.x] 

x>O. (S.49) 

Remarks. 

(1) If(S.47) holds for IIxll, it also holds for any other norm IIxll*. This follows 
immediately from (S.48). 

(2) Since ~ is compact, continuity of A on ~ of course implies that A is 
bounded on ~. If A is monotone, then A is continuous on (0, oo)d and hence 
on (0, oo)d ("\ ~, but it is not necessarily true that A is continuous on all 
of~. 

(3) Note in (5.46) that convergence on the boundary Ut= 1 {x ~ 0: x '" 0, 
xli) = O} is required. 

(4) The form of (S.46) is suggested by taking partial derivatives in (S.3S). 

PROOF OF PROPOSITION S.20. We begin by showing that (S.48) follows from 
(S.47). We have with h(t) = CdV(t)eRVp _ d 
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sup I F'(tx) - -1.(X)1 
IIxll>. CdV(t) 

= sup /F'(t IIxll (IIxll-I x)) h(tlixlI) _ -1.(IIXIIIIXII-IX)1 
IIxll>. h(tllxll) h(t) 

~ sup Ilxll-d+plF'(tllxIIIIXIl-lX) - -1.(IIXII-IX)1 
IIxll>. h(tllxll) 
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+ sup IF'(tllXII(IIXII-IX»llh(tIiXII) - IIxll-d+pl = I + II. (5.50) 
IIxll>. h(tllxll) h(t) 

Given any fJ > 0, there exists to such that for t ~ to the sup in (5.47) is less 
than fJ. Since IIxll-lXE~ we have for t ~ 6- 1to that I ~ &-d+p and since fJ is 
arbitrary, we conclude that lim,-+oo I = o. 

For II note that since II x 11-1 X E ~ we have by (5.47) that for given '1 > 0 and 
large t 

F'(t IIx II IIxll-I x) 
sup h( II II) ::;; sup -1.(x) + '1 < 00 
IIxll>' t x XE~ 

(5.51) 

by assumption that -1. is bounded on ~. Since h is regularly varying with 
exponent p - d < 0, one-dimensional uniform convergence (Proposition 0.5) 
gives 

lim sup I h(ty) - y-d+p I = 0 
'-+00 y>. h(t) 

and thus lim,-+oo II = O. This verifies (5.48). 
For the rest of the proof we may without loss of generality suppose that 

d 

IIxll =VIX(i)1 
i=1 

so that for y > 0 

r ~=~ ~~ 
J{.EIR~:IIDII~Y} 

With this choice of norm (and hence with any norm) one can readily verify 
flllxll >.1 -1.(x)dx < 00 since by Fubini's theorem or a change of variables and 
(5.52) 

r -1.(x)dx = r IIxlI-d-P-1.(IIxll-1x)dx::;; sup -1.(a) r r-d+Pdrd 

JrllxlI>£1 Jrllxll>£l .E~ J(£,OO) 

= d(SUP -1.(a») J.oo r-d+p+d - 1 dr < 00 
.E~ . 

since p < O. 
It remains to prove (5.49). Let A be any Borel set such that for some E > 0 

we have A c [IIxil ~ 6]. For XEA we construct an integrable bound for 
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F'(tx) F'(tllxllllxll-1x). h(tlixlI) 
h(t) = h(tllxll) h(t) 

(5.53) 

as follows: The first factor on the right side of (5.53) is bounded by a constant 
as in (5.51) and the second factor has upper bound (cf. Proposition 0.8(ii» 
c IIxIl P-"-Y for sufficiently large t where y is chosen so small that 0 < y < - p. 
Thus on A we get for all large t 

F'(tx) < c IIxllp-d+y 
h(t) - 1 

and the right side is Lebesgue integrable on [lIxll ~ e] and hence on A. From 
dominated convergence and (5.46) we get 

lim f Fh' «tu) ) du = f A.(u) du 
''''00 A t A 

and setting A = [0, xJ for x > ° gives the desired result (5.49). o 

EXAMPLE 5.21. Consider the bivariate t-density (Johnson and Kotz, 1972) 
defined on [0,00)2 by (-1 < P < 1) 

F'(x, y) = c(1 + x2 + 2pxy + y2r2. 

Set lI(x,y)1I 2 = x2 + 2pxy + y2 = (x + py)2 + (1 - p2)y2 and check that this 
defines a norm. Thus the density can be expressed as 

F'(x) = c(l + IIxIl 2)-2 

and it is obvious that the uniformity condition (5.47) is satisfied. 

Whenever the density is of the form 

F'(x) = c(l + Ilxll'TII 

ex> 0, p > 0 for some clever choice of the norm x --+ IIxll, the condition (5.47) 
will be clearly satisfied. Many densities are of this form. The choice of the 
norm is suggested by the following scheme: If F' is regularly varying with limit 
function A. and A.(tx) = C'lA,{x), x > 0, we try setting 

IIxll := A.-1/CI(x) 

and hope this defines a norm. The limit function A. is a function only of IIxll, 
and possibly the same will be true for F'. For instance, in the case of Example 
5.21 earlier 

A.(t(x, y» = c 4 A.(x, y) 

and so 

EXAMPLE 5.22. Consider the multivariate F-density (Johnson and Kotz, 1972, 
page 240): Let vo, ... , v" be positive integers, v = rt=o Vi' x > 0, and for a 
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suitable c > 0 

F'( ) n1=1 (x(})(1/2)vr l 

x = c (vo + 2.1=1 v)x(j»V/2' 

Set I/xl/ = 2.1=1 vjx{J) and for x> 0 and t -+ 00 

ctD~l «1/2}vr I) nd _ (xUl)(1/2)Vrl 
F'( ) )-1 

tx = (Vo + tl/xl/tI2 

d 
,.., cC(1/2)Yo-d n (x(J»(1/2)vrl/llxl/V/2 

j=1 

so that p = -(1/2)vo, h(t) = ct-(1/2)Vo-d, and A(X) = n1=1 (x<.il)(1/2)vr1/I/xl/ v/2. 

So (5.46) holds and for (5.47) we have 

I F'(tx) I d I t v/2 I sup -- - A(X) = sup n (x<.il)(1/2 )vr1 v-I . 
Ilxll=1 h(t) IIxll=1 j=1 (vo + t) /2 

The region [I/xl/ = 1] is compact and since n1=1 (x(j»(1/2)vr1 is continuous it 
is also bounded, and hence the condition (5.47) holds. 

We have assumed for simplicity that F concentrates on [0, oot When this 
is not the case we have the following result. It is stated for d = 2. For d > 2 a 
similar but more complicated result can be formulated; see Exercise 5.4.2.6 
and Corollary 5.18. 

Corollary 5.23. Suppose X is a random vector in R2 with distribution function 
F and density F' satisfying (5.46) and (5.47). If in addition for x> 0 

lim P[X(i) > tx]/V(t) = CiXP, Ci>O (5.44) 
'-+00 

for i = 1,2, then 1 - F is regularly varying on (0, 00)2; for x> 0 

lim (1 - F(tx»/V(t) = c1 (x(1)r + C2(x(2)r - f. A(u)du. (5.54) 
'-+00 [.>xj 

PROOF. The proof follows simply from 

1 - F(tx) 
V(t) 

P([X =s; tx]') 

V(t) 

= (P[X(1) > tx(1)] + P[X(2) > tX(2)] - P[X > tx])/V(t). 

The method in Proposition 5.20 shows that the last term converges. 0 

EXAMPLE 5.19 (Continued). The bivariate Cauchy 

1 
F'(x,y) = 21t (1 + x 2 + y2r 3/2, (x,y)e R2 
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obviously satisfies (5.44), and if we set IIxll = «X(I»2 + (X(2»2)1/2 we get 

F'(x) = ~(l + IlxIl2)-3/2 
2n 

and clearly (5.47) is satisfied with A.(x) = Ilxll-3/2n. With Vet) = C 1 and Cl = 
C2 = n-l the limit is (5.54) at the point (x,y) > 0 is 

foo foo 1 
n-l(x-1 + y-l) - 2 (2 2)3/2 dudv. 

x y nu +v 

For the double integral make the change of variable v = utanO to get 

= (2n)-1 {X-l - Loo yu-2(U2 + y2fl/2 dU} 

and setting u = y tan () yields 

Loo J,oo = (2nfl {x-1 + y-l _ (x- 2 + y-2)1/2}, 

and so the limit in (5.44) is 

n-1(x-1 + y-l) _ (2n)-I{x-1 + y-l _ (x-2 + y-2)1/2} 

= (2n)-1{x-1 + y-l + (x-2 + y-2)1/2} 

which is in agreement with the calculation of the exponent of the limit 
distribution done previously by using polar coordinates. 

All of the criteria given so far are easiest to apply when tails are Pareto-like 
but may be clumsy for other cases. The multivariate normal is handled by 
asymptotic independence as discussed in the next section. 

It is possible to give partial converses of Proposition 5.20. See de Haan and 
Resnick (1979b); de Haan and Omey (1983); and de Haan, Omey, and Resnick 
(1984). 

EXERCISES 

5.4.2.1. Give an example of a function h defined on a cone C c IR" such that for each 
x E C, h(tx) is a regularly varying function of t with exponent of variation p 
not depending on x, but yet h does not satisfy Definition 5.32 (Starn, 1977). 

5.4.2.2. Discuss a proof of Proposition 5.15 based on Exercise 5.4.1.12. 

5.4.2.3. Suppose F concentrates on [0, (0)" and for any t E (0, (0)" 

II fJ L t(i)_. F(xt) 
i=1 fJxCl) 

lim x = 1. 
x~C() 1 - F(xt) 
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Then F e D( G) where G has ell 1 marginals. (Hint: Use Exercises 5.4.1.6, 5.4.1.12, 
and (1.l9)). Use the criterion to verify that 

F(x,y) = 1 - {x- 1 + y-l - (x + y - 1fl} 

is in a domain of attraction. 

5.4.2.4. If ° ~ h. ~ g. are real functions on some measure space and h. -+ h, g. -+ g, 
and f g. -+ f g then f h. -+ f h provided f h < 00 (Johns, 1957; Pratt, 1960). 

5.4.2.5. Suppose V(t)eRV_m, IX > 0, and X is a"random vector in !Rd. If for I = 1, ... , 
d and all choices 1 ~ n1 < ... < n, ~ d 

lim P[Xc.,) > txc.,), i = 1, ... , l]/V(t) 

exists positive and finite for xc.,) > 0, i = 1, ... , I then P([X ~ xJ) is regularly 
varying on (0, 00)". 

5.4.2.6. Formulate a version of Corollary 5.23 for d > 2 by using Exercise 5.4.2.5. 

5.4.2.7. Discuss which of the following are in a domain of attraction. Specify the 
domain and the limit distribution where appropriate. 

(i) Bivariate lognormal: Let (N(l) and N(2» have a bivariate normal density 
and set 

(XCl),X(2) = (exp{NCl)},exp{NC2)}). 

(ii) Multivariate t-density on !Rd : 

r( ) = r(Tl(V + d» (1 + V-I xR-1 Tcv+d)!2 
X (nv)"!2r(v/2)1RI1/2 x 

where R is a d x d covariance matrix, v a non-negative integer. A special 
case is the multivariate Cauchy density on !Rd 

r(2-1(1 + d))( d . )-(4+1)/2 
r(x) = (n)d/2r(1/2) t + i~ (XC.»2 

(Johnson and Kotz, 1972, page 134). 
(iii) A bivariate gamma density; Suppose x > 0, y > 0, and w = x /\ y, and 

let p be a positive integer. Then 

F'(x,y) = e-cx+y)( -1)P{1 - ew[t - w + w2 _ ... + (_l)P-l wp
-

1 
]} 

2! (p - I)! 

(Johnson and Kotz, 1972, page 218). 
(iv) Multivariate F: Let vo, ••• , Vd be positive integers, v = L,1=0 Vj' x > 0, and 

r(v/2)0~- V.vJI2 O'!'- (xu»rlVrl 
F'( ) = }-o J --"-,,,,-}--.::l=-:---,-~,...--:=-

x 01=0 r(vj /2) (Vo + L,1=1 VjXWt!2 • 

(Johnson and Kotz, 1972, page 240). 
(v) Marshall-Olkin bivariate exponential: Let ..1.1 > 0, ..1.2 > 0, ..1.12 > 0, and 

for x> O,y > 0 

P[XCl) > X,X(2) > y] = exp{ -A.IX - A.2 y - A.dx v y)} 

(Johnson and Kotz, 1972, page 266). 
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(vi) Multivariate logistic: For x E IR" 

F(x) = (1 + it exp{ _xli'} r1 

(Johnson and Kotz, 1972, page 291). 

5.4.2.8. Consider the density 

ifx ~ 1, y ~ 1 
otherwise 

so that for x> 0, y > 0, and t large enough for t(x, y) ~ (1, 1) 

F'(tx, ty)/F'(t, t) = (xyf2, 

whence 

A(X,y) = (xyf2 x >0, y>o. 

Proposition 5.20 fails. Why (de Haan and Omey, 1983)1 

5.4.2.9. Let U: (0,00 t -+ (0, 00) be monotone and suppose ai(t) E R v.." (XI > 0, i = 1, 
... , d. If there exists a function V(t) > ° such that for x > 0 

lim U(a 1 (t)x(1), ... , ad(t)xld')!V(t) = A(X) > ° 
then 

and so the function U(al (x(l), ... , Q,,(X(d)) is regularly varying (de Haan, 
Omey, and Resnick, 1984). 

5.4.2.10. Give an example of A on [0,00)" such that A is monotone, A(SX) = sP A(X). 
x ~ 0, P E IR, S > 0, and A is continuous on (0, oo)d but not continuous at points 
of [0, 00 t\(O, 00 t. 

5.4.2.11. Give an example of a regularly varying density on [0, 00)2 such that the 
distribution tail fails to be regularly varying (de Haan and Resnick, 1987). 

5.4.2.12. Show in Proposition 5.20 that if F' is continuous on [lixil > 1] then A is 
coptinuous on [O,oo)d\{O}. Give an example to show that without (5.47), 
continuity of F' does not imply A continuous (de Haan and Resnick, 1987). 

5.5. Independence and Dependence 

Suppose X is a random d-dimensional vector with distribution F.1f F is max-id 
or a multivariate extreme value distribution, when is X a vector ofindependent 
components so that F(x) = nt=l Jij(X(i)? If we know FeD(G), what condi­
tions on F guarantee G is a product measure? Similar questions can be 
posed for full dependence. For example if F is max-id, when is it the case that 
P[X(i) = X(j)] = 1, for all 1 ~ i < j ~ d? 

Initially we discuss independence. (Cf. Exercise 5.3.1.) 
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Proposition 5.24. Suppose X has a max-id distribution with exponent measure 
/l concentrating on E := [I, 00]\ {I}, Ie [ - 00, 00). The following are equivalent. 
(i) The components of X, namely X(1), ... , X(d), are independent random variables. 
(ii) The components of X are pairwise independent: For every 1 :s;; i < j :s;; d. 

Xli) and X(i) 

are independent random variables. 
(iii) The exponent measure /l concentrates on 

II U {1(1)} x ... X (I(i), (0) X ••• x {ltd)} (5.55) 
/=1 

so that for y > I 

/l( U {xeE: Xli) > y(i),x(i) > y(j)}) = O. (5.56) 
lS;i<jS;d 

Remark. When d = 2 and I = 0, (iii) says that /l concentrates on the positive 
coordinate axes and has no mass in the interior of the first quadrant. 

PROOF. Obviously (i) implies (ii) and it is easy to check that (iii) implies (i) as 
follows: Suppose /l concentrates on the set in (5.55). Then for x > I 

-log F(x) = /l(E\[/, x]) 

= /lC~ {ueE: u(l) > x(l)}) 

01 
= L /l{ueE: u(l) > x(l)} 

i=1 

L Jl{ueE: uti) > x(i),uUl > xUl } 
ISi<js;d 

+ ... + (-1)d+1Jl{ueE: uti) > x(i),i = l, ... ,d} 

so that because of (5.56) we have 
01 

-logF(x) = L Jl{ueE: U(I) > x(I)}. 
i=1 

Set 

QI(X(i) = /l{ueE: U(I) > x(l)} 

= /l({/(1)} x ... x (X(i), (0) x ... x {ltd)}) 

and we have 

01 

-log F(x) = L Qi(X(l) 
/=1 

so that 



292 5. Multivariate Extremes 

d 

F(x) = n exp{ -Qi(X(i)} 
i=1 

and thus F is a product measure as desired. 
It remains to show that (ii) implies (iii). Set Qi(y) = -logP[X(i) ::;; y]. We 

have for y > I that pairwise independence implies 

(i) Ul _ I (i) Ul Q;(y ) + Qj(y ) - - ogF(oo, ... ,oo,y ,oo, ... ,oo,y ,00, ... ,(0). 

Since F(x) = exp{ -.u(E\[/,x])} for x> Iwe have 

Q;(Y<;» + QiyU» = .u({x: x(;) > y(i)} u {x: x(j) > yU)}) 

= .u{x: x(i) > y<i)} + .u{x: x<il > y(j)} 

- .u{x: x(i) > y(i),xU) > y(j)} 

= Qi(y(i» + Qj(y(i) - .u{ x: x(i) > y(i), x(j) > y(j)} 

and thus 
.u{xEE: X(i) > y(i),x(j) > y(j)} = ° 

so that (5.56) holds; this is equivalent to .u concentrating on the set in (5.55). 0 

The equivalence of (i) and (ii) in Proposition 5.24 has been observed by 
various authors from various perspectives. See, for example, Berman (1961) 
and Marshall and Olkin (1983). An analogous result is also well known in the 
context of infinite divisibility for sums of independent random variables. 

We now restate Proposition 5.24 for the case that F is not only max-id but 
also a multivariate extreme value distribution. We consider the case where 
1= 0. Set 

(e1 , ... ,ed) = «1,0, ... ,0),(0, 1,0, ... ,0), ... ,(0,0, ... , 1» 

as the basis vectors in [Rd. Suppose the norm IIxll on [Rd has been defined in 
such a way that lIe;11 = 1, i = 1, ... , d. 

Corollary 5.25. Suppose X is a random vector in [Rd with the multivariate extreme 
value distribution G with <1>1 marginals as described in Proposition 5.11. The 
following are equivalent: 
(i) The components of X, namely X(1), •.. , X(d), are independent random 
variables. 
(ii) The components of X are pairwise independent. 
(iii) The measure S defined on ~ = {YEE: Ilyll = I}, described in Proposition 
5.11(ii), concentrates on rei' 1 ::;; i::;; d}. 
(iv) The functions h, 1 ::;; i ::;; don [0, 1], defined in Proposition 5.11(iii), satisfy 

/;(s)Jj(s) = ° a.e. i =f. j. 

PROOF. The equivalence of (i) and (ii) is covered in Proposition 5.24. If S 
concentrates on {e;,l ::;; i ::;; d} then from the representation in Proposition 
5.11(ii), for x> 0, 
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-log G(x) = L ~ (::~) S(da) 

= f r V (a:::) S(da) = f (l/x(i)S(ej)' 
j=1 J {ej} j=1 X j=1 

and thus G is a product of its marginals. Conversely, if G is a product then 
the exponent measure p. of G satisfies (5.55); i.e., p. concentrates on Ut=1 {tei: 
t > OJ. Recalling that for a Borel set A c ~ 

S(A) = p.{xEE: IIxll > 1, IIxlI-1xEA} 

we have 

d 

S(A) = L p.({xEE: IIxll > 1, IIxlI-1xEA} n {tei : t > 0» 
i=l 

d 

= L p.{te j : t > l,e j EA}. 
i=l 

For the special case A = {ej} this gives 

S({ej }) = p.{te j : t > I} 

and thus for general A 

S(A)= L S({ei }), 
eleA 

showing that S concentrates on {ej , 1 ::; i ::; d}. 
To understand (iv) suppose that (iii) holds and recall from the proof of 

Proposition 5.11 (iii) that U;, 1 ::; i ::; d) can be chosen so that if U is a uniform 
random variable then 

(.t;(U),l ::::;; i ::::;; d) 

has distribution S(· )/S(~) and thus 

1 = P[(.t;(U), 1 ::; i::; d)E {ej, 1 ::; i::; d}J 

whence 

P[.t;(U)./j(U) = 0] = 1 

for 1 ::; i < d. Conversely if we are given that 

V:= {SE[O, 1J:jj(s).fj(s) = 0,1::; i <j::; d} 

has Lebesgue measure 1 then for x > 0 

i d (jj(S») i d (jj(S») -log G(x) = V (if" ds = V (if" ds 
(0,1) i=l X V i=l X 

= f r jj(s)dS/X(i) 
i=l JVn(JI>O) 

and again G is a product. o 
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This covers the case where the components of X are independent. At the 
other extreme the components of X are fully dependent; that is, 

P[X(1) = X(2) = ... = X(d)] = 1. (5.57) 

This can be rephrased that there exists a random variable Y such that in ~d 

X ,g, Yl (5.58) 

where recall the notation 1 = (1, ... , 1). This situation can also be recognized 
in terms of distribution functions. If X has distribution F and Y has distribu­
tion H then 

(5.59) 

Proposition 5.26 (Conditions for Full Dependence). 
(i) Suppose that X > 0 has max-id distribution F with exponent p.. Then any of 
(5.57)-(5.59) holds itT p. concentrates on the line 

{tl: t > o}. 

(ii) Suppose that X ~ 0 has a multivariate extreme value distribution G as 
described in Proposition 5.11(ii). Then any of(5.57)-(5.59) holds itT the measure 
S concentrates on {1I11I-11]. In terms of the representation (5.30) of Proposition 
5.11 (iv), full dependence holds itT 

11 =/2 = ... =h 
a.e. on [0,1]. 

PROOF. (i) If p. concentrates on the line, we have for x > 0, (E = [0,00 ]d\ {O}) 

-logF(x) = p.C~ {yeE: y(i) > Xli)}) 

= p.(U {yeE: /1) > x(i)} II {tl: t > o}) 
1=1 

= p.(.U {tl: t > xli)}) = P.{tl: t > 6. x(i)}. 
1=1 1-1 

Set 

H(u) = exp{ -p.{tl: t > u} 

and we get 

so that (5.59) holds. 
Conversely, if(5.59) holds, let {Y(t), t > o} be the (one-dimensional) extremal-
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H process. We know, for instance, from the construction in Proposition 5.8, 
that 

nFn-'(.) ~ Il(') 

on E and this can be rephrased 

nP[Y(n- 1 )I E .] ~ Il('). 

The measures on the left side of the preceding relation put zero mass off the 
line {t 1: t > O} and hence the same is true of Il. 
(ii) If full dependence holds, then by (i) we know that Il concentrates on the 
line {tI: t > O} and hence for a Borel set A c ~ 

S(A) = Il{YEE: lIylI > 1, lIyll-l yE A} 

= 1l({YEE: lIyll > 1, lIyll-l yE A} n {tI: t > O}) 

= ll{tI: tllIIi > 1, lilli-IlEA} 

= ll{tI: tllIIi > l}elllll-.. (A) 

so that S concentrates mass ll{tI: tllIli > I} on 11111-11. Conversely if S 
concentrates on { III II -II} then for x > 0 

-log F(x) = r V (a:::) S(da) 
J~ i=1 x 

d 

= S{ lilli-II} 11111-1 V (llx(i». 
i=1 

If (5.27) is assumed to hold then S {lilli-II} 11111-1 = 1 and we get 

F(x) = exp { - (~ x(ilr
1

} = q)1 (~ Xli») 

and so (5.59) holds. 
If 11 = ... = .f.J in (5.30) then for x > 0 

-log G(x) = r V (.t;~~») ds = ( f 11 (S)dS) V (llx(i» J [0. IJ ,=1 X J [O.IJ ,=1 

and because of (5.29) this is (I\t=1 X(i»-1 and (5.59) again holds. Conversely 
suppose full dependence holds. If U is a uniform random variable then recall 

(11 (U), ... , i:J( U» 

has distribution S( . )/S (~) and since S concentrates on { Ill" -II} we easily get 

PUI (U) = ... = i:J(U)] = 1. o 

We now make some remarks about asymptotic independence by which we 
mean that (5.15) holds with the limit G a product of its marginals. Proposition 
5.24(ii) makes us hopeful that asymptotic independence in d > 2 dimensions 
can be reduced to the two-dimensional case, and Proposition 5.24(iii) makes 
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us hopeful that bivariate asymptotic independence can be recognized by the 
behavior of P[X(i) > t, XU) > t]. This is discussed next. 

Proposition S.27. Suppose {XII' n ~ I} are iid random vectors in Rd, d ~ 2, with 
common distribution F. Suppose for simplicity all marginal distributions of F 
are the same and equal F1 (x), which we suppose is in the domain of attraction 
of some univariate extreme value distribution G1 (x); i.e., there exist a" > 0, bll 
such that 

Ff(allx + bn) -+ G1 (x). (5.60) 

The following are equivalent. 
(i) F is in the domain of attraction of a product measure: 

F"(anx + hnl) = pL~ Xj ~ anx + bill] -+ 11 G1(X(i». (5.61) 

(ii) For all 1 ~ i < j ~ d 

P [~ XIP) ~ anx(P) + b", p = i,jJ -+ G1 (x(i»G1 (x<.il). (5.62) 

(iii) For x(P) such that G1 (x(P» > 0, 1 ~ p ~ d 

(5.63) 

for 1 ~ i < j ~ d. 
(iv) With Xo = sup{u: F1(u) < I} and any 1 ~ i <j ~ d 

lim p[X(I) > t, X(j) > t]/F1 (t) = O. (5.64) 
t~xo 

PROOF. Suppose initially that d = 2. Then (i) and (ii) are the same. If (5.62) 
holds, then in the usual way, by taking logarithms, we get 

nP([Xp) ~ all x(1) + b", X12) ~ a"x(2) + b"J) 

-+ -log G(x(l) - log G(X(2». 

The left side of (5.65) is 

nP[Xp) > all x(1) + bn] + nP[X\2) > allx(2) + bIt] 

- nP[X\1) > a"x(l) + b", X\2) > anx(2) + bll ] 

(5.65) 

so that if we assume (5.60) then it is clear that (5.62) and (5.63) are equivalent. 
The equivalence of (5.63) and (5.64) results from the inequalities 

nP1 (an(x(l) v X(2» + bn)P[X11) > all(x(l) v X(2» + bn, X\2) > all(x(1) v X(2» + b,,] 
F1 (an(x(l) v X(2» + b,,) 

~ nP[X\l) > allx(l) + bll , X\2) > a"x(2) + bll ] 

< nP1 (all(x(1) A X(2» + b,,)P[XP) > all(x(1) A X(2» + b", X\2) > a,,(x(1) A X(2» + b,,] 
- F1 (a,,(x(1) A X(2»+ b,,) 



5.5. Independence and Dependence 297 

since 

ifO < G1(X) < 1. 
This proves the proposition in case d = 2 and also checks the equivalence 

of (ii), (iii), and (iv) in case d > 2. So if d > 2, the general result will be proved 
if we verify that (iii) implies (i). However, (5.61) is equivalent to 

d 

nP([XiP) :s anx(P) + hn' 1 :s p :s d]') -+ L (-log G(x(i») (5.66) 
i=1 

and the left side of this relation is 

d 

n L P[X\P) > anx(P) + bn] - n L P[X\P) > anx(P) + bn,X\q) > anx(4) + bn] 

p=1 l!!>p<qSd 

+ ... ( -1)d+lnP[X?) > anx(P) + bn,p = 1, . .. ,d], 

which, assuming (5.60) and (5.63) hold, is 

d 

L (-log G(x(P») + 0(1) 
p=l 

so that (5.66) is true. o 
Versions of this proposition have been discussed by GetTroy (1958, 1959), 

Sibuya (1960), de Haan and Resnick (1977), Galambos (1978), and Marshall 
and Olkin (1983). 

A very interesting corollary, given in Sibuya (1960), applies to the d­
dimensional multivariate normal distribution. 

Corollary 5.28. Let F be the d-dimensional multivariate normal with all uni­
variate marginals supposed equal to N(O, 1) for simplicity. If all correlations are 
less than 1 (i.e., EX\i)X~") = Pi,j < 1) then asymptotic independence (5.61) holds 
with G1(x) = A(x) = exp{ _e-X }. 

PROOF. According to Proposition 5.27 it suffices to prove that if X = (X(1),X(2» 
is bivariate normal, EX(i) = 0, E(X(I»2 = 1, i = 1,2, EX(1)X(2) = P < 1 then 

lim P[X(1) > t, X(2) > t]/N(t) = ° (5.67) 
''''00 

where, of course, N(t) = 1 - N(t) and N(t) = N(O, 1, t). If P = -1 then we may 
take X(2) = - X(l) and (5.67) obviously holds, so suppose Ipl < 1. If U and V 
are iid, N(O, 1), then in R2 

(U,pU + (1 - p2)1/2V),g, X 

and the probability in the numerator of the left side of (5.67) is 

P[U > t,pU + (1 - p2)1/2V > t] :S P[U + pU + (1 - p2)1!2y > 2t] 

= P[(1 + p)U + (1 - p2)1/2y > 2t] 
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and because (1 + p)U + (1 - p2)1/2V is N(O,2(1 + p» this probability is 
N(2(2(1 + p»-1/2t). Since N eD(A) we have for all A> 1 that N(At)/N(t) -+ 0 
(Exercise 1.1.9) and the desired result follows if 

2(2(1 + p)fl/2 > 1. 

This is the same as 2 > (2(1 + p»l/2 or 21/2 > (1 + p)I/2 which is obviously 
true for Ipl < 1. 0 

EXERCISES 

5.5.1. Suppose 110 "" It is a disjoint partition of {I, ... , d}. IrX is a random vector in 
R" with max-id distribution F with exponent measure p, give necessary and 
sufficient conditions for ({XCi), ie I)},j = 1, ... , k) to be independent vectors. 

5.5.2. Suppose {Xn' n ~ I} are iid one-dimensional random variables with com­
mon distribution Fe D(G) where G is an extreme value distribution. Assume 
P[XI > x] - P[ -XI> x] as x -+ Xo' Then Vi=1 Xi and /\i=1 Xi are asymp­
totically independent; i.e., suitably normalized (Vi=1 Xi' /\i=1 Xi) has a limit dis­
tribution which is a product of its marginals. Consequently the range Vi=1 Xi -
/\i=1 Xi has a limit distribution. Hint: Use (5.64) (de Haan and Resnick, 1977; 
de Haan, 1974b). 

5.5.3. Suppose the hypotheses of Proposition 5.27 are satisfied and d = 2. Show that 
the bivariate maxima have a limit distribution concentrating on the line y = x iff 

lim P[Xil) > t, X(2) > t]IFI (t) = 1. 
t-xo 

Generalize to d > 2 (Sibuya, 1960). 

5.5.4. Consider 
(i) F(x, y) = FI (X)FI (y) [1 + aFI (x)FI (y)], -1 ~ a ~ 1. 

(ii) F(x, y) = FI (x)F1 (y)(1 - aFI (x)FI (yW1, -1 ~ a ~ 1. 
(iii) P[X(1) > X,X(2) > y] = FI(x)FI(y)F1(x v y). 
(iv) F(x,y) = (1 + e-x + e-yrl, (x,y)e R2. 
Discuss when asymptotic independence or dependence holds (Marshall and 
Olkin, 1983). 

5.6. Association 

We now discuss a result which unifies several results in the literature and 
explains why various dependence measures between the components of an 
extreme value vector are always positive. See, for example, Tiago de Oliveira 
(1962/63) and de Haan (1985). Marshall and Olkin (1983) have proved that if 
Ye Ad has a multivariate extreme value distribution, then Y is associated. 

A random vector Y E Ad is associated (Esary, Proschan, and Walkup, 1967) 
if 

(5.68) 
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for all nondecreasing functions gj: IRd -+ IR for which Elgj(Y)1 < 00, 

Elgl (Y)g2(Y)1 < 00 (i = 1,2). Here g nondecreasing means that x ~ y implies 
g(x) ~ g(y), which amounts to g's being monotone in each coordinate. In what 
follows, when discussing covariances, we shall always assume, without explicit 
mention, that all relevant expectations are finite. 

The motivation behind this dependence measure as explained by Esary, 
Proschan, and Walkup (1967) is as follows: It is natural to say that random 
variables Sand T exhibit a positive dependence ifCov(S, T) ~ O. Successively 
stronger notions of positive dependence are 

(i) Cov(gt (S), g2(T)) ~ 0 for all pairs gj: IR -+ IR, gj nondecreasing, i = 1,2. 
(ii) Cov(gt (S, T), g2(S, T»~Ofor all pairs gj: 1R2-+1R, gj nondecreasing, i= 1,2. 

Note that (ii) implies (i) and (i) implies Cov(S, T) ~ O. It is (ii) which generalizes 
nicely to higher dimensions (and even to function spaces). Part of the power 
and beauty of the definition results from the fact that association is preserved 
under nondecreasing transformations. 

The Marshall and Olkin (1983) proof of the association of an extreme value 
vector is based on the result in Exercise 5.4.1.16. They use the facts that 
independent random variables are associated, nondecreasing functions of 
associated variables are associated, and association is preserved under weak 
convergence. 

We follow a different route and start with the fact that PRM is associated 
(defined later). Since any vector Y with max-id distribution is a nondecreasing 
function of PRM we are able to extend the Marshall and Olkin result. 

Proposition 5.29. If Y is an IRd valued random vector with max-id distribution, 
then Y is associated. Thus extreme value random vectors are associated. 

We now discuss the proof, skipping the proofs of certain needed facts until 
the end. For a space E which is locally compact with a countable base define 
an order on Mp(E) (or M+(E)) by 

11 ~ v itT I1(A) ~ veAl, for all A E C 

for 11, v E M p(E). We say a point process N is associated iffor any measurable 
F;: MiE) -+ IR, i = 1,2, Fj nondecreasing (meaning 11 ~ v implies Fj(ll) ~ Fj(v», 
we have 

(5.69) 

This definition is the most convenient for applications but makes verification 
that a specific point process is associated difficult. Thus we need the following 
equivalences (cf. Burton and Waymire, 1985). 

Proposition 5.30. For the point process N, the following are equivalent: 
(i) N is associated. 
(ii) For any k ~ 1, and any sets At, ... , Ak in C, we have 
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is an associated random vector in ~k. 
(iii) For any k ~ 1 and any functions fl"'" tt in C:(E) we have 

(N(fd,···, N(tt)) 

is an associated vector in ~k. 

The proof of Proposition 5.30 comes later. These equivalences make it easy 
to prove (Burton and Waymire, 1985, page 1271) the following. 

Proposition 5.31. If N is a Poisson process (or any completely random measure) 
then N is associated. 

Now suppose Y E ~d has a max-id distribution with exponent measure Il on 
E:= [I, oo]\{/}. According to Proposition 5.8 there exists PRM(Il) on E, 

N=LSjk 
k 

such that 

To prove Proposition 5.29 we need to show for any nondecreasing gj: ~d -+ ~ 
that (5.68) holds. For m = Lt SYk E Mp(E) define T: Mp(E) -+ ~d by 

Tm = V Vk = inf{x: m([/,xJ) = O} 
k 

so that Y = TN. Observe that if ml :$; m2 then m2([/,xJ) = 0 implies 
ml([/,xJ) = 0 and therefore 

{x: m2([I,xJ) = O} c {x: ml([I,xJ) = O}. 

Thus Tml :$; Tm2, and Tis nondecreasing. Furthermore, the composition 
gjO T: Mp(E) -+ IR is nondecreasing, and thus if N is associated we have by 
definition (see 5.69) that 

COV(glo T(N),g2 ° T(N)) = COV(gl(Y),g2(Y)) ~ 0 

which proves Proposition 5.29. 
The proofs of Propositions 5.30 and 5.31 require several facts about associa­

tion collected together as a lemma. (See Esary, Proschan, and Walkup, 1967; 
Lehmann, 1966.) 

Lemma 5.32. (i) For any random variables Xl and X 2 such that EIXjl < 00, 

EIXI X 2 1 < 00 we have 

Cov(Xl>X2 ) = t: s: Cov(l(x.<Xl)(Xd, I(Y.<Xl)(X2 ))dxdy. (5.70) 
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(ii) It suffices for association to check (5.68) or (5.69) for nondecreasing indicator 
functions. 
(iii) It suffices for association to check (5.68) or (5.69) for nondecreasing, 
bounded continuous functions. Thus association is preserved under weak con­
vergence. 
(iv) A single random variable X is associated. 
(v) If YiERdj is associated i = 1, 2, and Y t and Y 2 are independent, then 
(Y I' Y 2) is associated in Rd I +d,. 
(vi) If Xl' ... , Xd are independent random variables, then X = (XI>""Xd) is 
associated in ~d. 

PROOFS. (i) This charming proof of (5.70) is from Lehmann (1966), where it is 
attributed to Hoeffding. Let (X I> X 2) and (X ( ,X t) be independent with 
(XI,X2) 4: (X(,xf). Then 

2Cov(Xt ,X2 ) 

= E(Xt - X()(X2 - xt) 

= E f: f: (l(u,oo)(Xt ) - l(u,oo)(Xf»(1(v,oo)(X2 ) - l(v,oo)(Xt»dudv 

and passing expectation through the integrals yields 

f: f: 2Cov(l(u,oo)(Xd, l(v,oo)(X2 »dudv. 

(ii) Suppose (5.69) holds for all nondecreasing indicator functions. For any 
nondecreasing Fi we get from (5.70) 

Cov(Ft (N), F2(N» = f: f: Cov(l(x,oo)(FI (N», 1 (l', oo)(F2(N)))dx dy. (5.71) 

For mE MiE) the function l(x,oo)(Ft (m»: Mp(E) -+ ~ is a nondecreasing indi­
cator function so that by assumption the integrand on the right side of (5.71) 
is non-negative. Thus Cov(Ft (N», F2 (N» ~ O. A similar proof works for the 
assertion about (5.68). 
(iv) Because of (ii) it suffices to prove that if ')Ii: ~ -+ R ')Ii nondecreasing and 
the range of ')Ii is {O, I} then 

Cov(')It (X), ')12 (X» ~ O. 

However, the assumptions on ')II imply Yt ~ Y2 or Y2 ~ YI- Suppose for con­
creteness that YI ~ Y2' Then YI Y2 = YI and 

COV(YI (X), Y2(X» = EYI (X)Y2(X) - E')It (X)EY2(X) 

= EYI (X) - EYI (X)EY2(X) 

= EYt(X) {I - EY2(X)} ~ O. 

(iii) Suppose (5.69) holds for all bounded, continuous, nondecreasing test 
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functions. We show that it holds for all nondecreasing indicator functions and 
hence by (ii) N is associated. 

Suppose then that ")Ii: M peE) .... IR are nondecreasing indicator functions. Set 

Since Mp(E) is a complete separable metric space, probabilities on Mp(E) are 
tight: i.e., for A E .Ap(E) 

PEN EA] = sup{P[N EC]: C c A, C is compact} 

(Billingsley, 1968, page 9). Thus there exists for any e > 0 a compact set 
CiE.Ap(E) such that Ci c Ai and 

P[NEC;] + e;;::: P[NEA;]. (5.72) 

Let 

cl = {mEMp(E): there exists m1 ECi and m;;::: md. 

Then 

Ci c cl C Ai (5.73) 

as a consequence of)'1 being nondecreasing. Furthermore cl is closed in 
Mp(E), as is readily checked as follows: Suppose mil E cl and mil ~ mo in 
Mp(E). For each n there exists m~l) E Ci such that mil ;;::: m~l) and since Cj is 
compact {m~1)} has a limit point in Ci, m~) say; i.e., for some subsequence {n'l 
we have m~+) ~ m!:) E Ci' Thus mil ~ mo, mil' ;;::: m~P ~ m~) imply mo ;;::: m!:), 
and thus mo E cl, thus showing that cl is closed. 

Since cl is closed, there are bounded, continuous hIli) such that hIli) ! let, 
f 

n .... 00. (Cf. Billingsley, 1968, page 8.) In order to make hIli) non-decreasing we 
may take 

hl")(m) = 1 - «np(m, cl» A 1) 

where p is the vague metric. To check hIli) is non-decreasing it suffices to verify 
that ifC is compact in Mp(E) and mj¢Ct, i = 1,2, then 

m1 ~ m2 implies p(m1, ct) ;;::: p(m2' Ct ). 

Observe that since ct is closed, for each m there exists m* E ct such that 

p(m, Ct ) = p(m, m*). 

Since ml ~ m2 we have m2 - m1 EMp(E) and thus mt + m2 - m1 ;;::: mt so 
that m! + m2 - m1 ECt . Consequently 

p(m2,Ct ) ~ p(m2,m! + m2 - ml ) = p(ml + m2 - ml,mt + m2 - mIl 

= p(m1,mt) = p(ml,Ct ) 

thus showing the desired monotonicity. 
Because we assume (5.69) holds for bounded, continuous functions we have 



5.6. Association 303 

Cov(h\ft)(N), h~)(N» ;?: 0 

and letting n ~ 00 gives 

Cov(lct(N), lct(N» ;?: O. 
, 2 

(5.74) 

From (5.73) 

Thus 

EYl (N)Y2(N) ;?: E1ct(N) lct(N) 
, 2 

and from (5.72) 

EYi(N) = P[N E A;] ::; e + P[N E C;] 

::; e + P[N E clJ = e + Elcl(N). 

Therefore, 

COV(Yl (N), Y2(N» = EYl (N)Y2(N) - EYl (N)EYz(N) 

;?: E1ct(N)1ct(N) - Elct(N)Elct(N) 
1 2 1 2 

- eZ - e(E {lct(N) + lct(N)}) 
, 2 

;?: Cov(lct(N), lct(N» - eZ - 2e. 
, 2 

From (5.74) and the arbitrariness of e we conclude that COV(Yl (N), Y2(N» ;?: 0 
as desired. 

The proof of the result for (5.68) is the same. 
(v) Suppose gi: IRd , +42 ~ IR, gi nondecreasing. Then 

COV(gl(Yl ' Y2),g2(Y1 ' Y2» 
= EglgZ(Yl ' Y2) - Egl(Y1 , Y2)Egz(Y1, Y z) 

and letting J.li be the distribution of Y i this is 

r Jll(dYd { r Jl2(dY2)glg2 - r gldJl2 r g2 dJlZ} jy, jY2 jY2 jY2 

+ r Jll(dYd { r gldJlz r g2 dJlZ} jy, jY2 jY2 

- r Jll(dyd r gldJl2 r Jll(dyd r g2 dJlZ 
jy, jh j" jh 

= r Jll(dydCov(gl(Yl' YZ),g2(Yl' Yz) jy, 
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For fixed Y1 we have 91(Y1") is nondecreasing and also we have 
J g;(- 'Y2)Jl2(dY2) is nondecreasing. Since Y1 and Y2 are each associated we get 

COV(g1,g2) ~ o. 
(vi) Combine (iv) and (v). o 

Now consider the proof of Proposition 5.30. If N is associated it is easy to 
check that (N(AI)' 1 :S i :S k) is associated in Rk: Suppose gl: Rk -+ Rare 
monotone and we need to check 

Cov(g1(N(A1), ... , N(Ak)),g2(N(Ad, ... , N(Ak))) ~ O. 

Define Fi : Mp(E) -+ IR by 

Fi(m) = gl(m(A1),· .. , m(Ak)) 

so that Fi is monotone and therefore since N is assumed associated 

O:s Cov(F1(N),F2(N» 

= COV(g1 (N(A1),· .. , N(Ak)), g2(N(Ad, ... , N(Ak))) 

as required for showing that (i) implies (ii). 
Now given (ii) we prove (iii). For f, e ct (E) we show (N(f,), 1:S k) is asso­

ciated in IRk. Write for 1 :S I :S k 

2" 

f, = lim i j,l") := lim i L j2-"1 ff'U2-".U+1)2-") 
n-+oo 11-+00 j=l 

2" 
=: lim i L j2-"IA(~) 

11-"00 j=l lj 

where A~) e 8. Since f,(") if, we have (N(j,I"», I :S k) -+ (N(f,), I :S k) and by 
Lemma 5.32 (iii) it suffices to verify that (N(f,(II», I :S k) is associated in IRk. For 
gl: IRk -+ R nondecreasing 

gi(N(f,(II», I :S k) = ()1(N(A!j», 1 :S I :S k, 1 :S j :S 2") 

for some nondecreasing ()j: IRk2" -+ IR, and so from the assumption of (ii) 

Cov(g1(N(f,("»,I:s k),g2(N(j,l"»,I:s k» 

= COV«)1 (N(Alj», 1 :S I :S k, 1 ~ j ~ 2"), ()2(N(A~», 1 ~ I ~ k, 1 ~ j :s; 2"» 

~O 

as desired. 
We now show that (iii) implies (i). Recall from the definition of the vague 

metric in Proposition 3.17 that there exists a countable family hi e ct (E), I ~ 1 
such that me MP(E) is determined by its values (m(h,), I ~ 1). In fact m-+ 
(m(h,), I ~ 1) is an isometry between Mp(E) and the following subset of IRQ(): 
{(m(h,),l ~ 1): meMp(E)}. If Fi : Mp(E) -+ IR is bounded, continuous, and non­
decreasing, there is ifJi: IRQ() -+ R with the same properties and 



5.6. Association 

In ROO 

(m(h,), I ~ 1) = lim (m(h,),1 :s; I :s; n, m(h,,), m(h .. ), ... ) 

and thus there is a bounded, continuous, nondecreasing ",I"): R" -+ Rand 

F;(m) = lim ",1")(m(h,), 1 :s; I =:;; n). 

Because we assume (iii) we have 
Cov(Ft (N), F2(N» 
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= lim Cov("'~")(N(h,), 1 =:;; I :s; n), "'~")(N(h,), 1 :s; I :s; n» ~ 0 
...... 00 

and this gives (i). 
Finally we need to verify Proposition 5.31, that a Poisson process N is 

associated. We use the criterion of Proposition 5.23(ii) and show for any k, 
At, ... , A"elf 

(N(A,), 1 :s; I :s; k) 

is associated in R". If A" 1 :s; I :s; k are disjoint the result follows from Lemma 
5.32(vi) since then N(A,), 1 :s; l:s; k are independent. If A" 1 :s; I :s; k are not 
disjoint, there exist disjoint sets B" 1 :s; I :s; p in If and for 1 :s; q :s; k 

Aq = U B,. 
jelq 

where Iq c {I, ... , pl. Thus 

(N(A,),l :s; I :s; k) = (.L N(Bj ),l =:;; I =:;; k). 
Jel, 

The variables (N(Bj ), l:s; j :s; p) being independent are associated and 
(N(A,), 1 :s; I :s; k) being sums and hence a nondecreasing function of an asso­
ciated vector is itself associated. 0 

EXERCISES 

5.6.1. If!/l: IR"I --+ 1R"2 is nondecreasing and Y E IR"I is associated, then !/I(Y) is associated. 

5.6.2. (a) If Nj , 1 ::=;; i ::=;; k are independent, associated point processes, then D N, is 
associated (Burton and Waymire, 1985). 

(b) Suppose N;, i ~ 1 are independent point processes and each N, is associated. 
If the positive integer valued random variable N is independent of { N;, i ~ I} 
prove Lf Nj is associated. 

(c) Use the construction of PRM in Section 3.3 and Part (b) earlier to give an 
alternate proof that PRM is associated. 

5.6.3. (i) If X and Y are associated random variables, then 

H(x,y):= P[X > x, Y > y] - P[X > x]P[Y > y] ~ o. 
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If X and Yalso have finite variance 

ICov(eirX,eISY)I:s; If~<X) f: (ir)(is)exp{irx + iSY}H(X,y)dXdyl 

:s; Irsl f~<X) f~CXl H(x,y)dxdy = IrllsICov(X, Y). 

(ii) If Xl'" ., X ... are associated finite variance random variables with joint and 
marginal characteristic functions Cb(r1 , ••• , r ... ) and Cb;(r) then 

... 
ICb(r1,···, r ... ) - n Cbj(rj)l:s; Z-l L IrjllrtICov(Xj,Xt )· 

j=l lSj .. kS ... 

(iii) Associated random variables which are uncorrelated are jointly indepen­
dent (Newman and Wright, 1981). 
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