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Preface 

Classical Extreme Value Theory-the asymptotic distributional theory for 
maxima of independent, identically distributed random variables-may be 
regarded as roughly half a century old, even though its roots reach further 
back into mathematical antiquity. During this period of time it has found 
significant application-exemplified best perhaps by the book Statistics 
of Extremes by E. J. Gumbel-as well as a rather complete theoretical 
development. 

More recently, beginning with the work of G. S. Watson, S. M. Berman, 
R. M. Loynes, and H. Cramer, there has been a developing interest in the 
extension of the theory to include, first, dependent sequences and then 
continuous parameter stationary processes. The early activity proceeded 
in two directions-the extension of general theory to certain dependent 
sequences (e.g., Watson and Loynes), and the beginning of a detailed theory 
for stationary sequences (Berman) and continuous parameter processes 
(Cramer) in the normal case. 

In recent years both lines of development have been actively pursued. 
It has proved possible to unify the two directions and to give a rather com­
plete and satisfying general theory along the classical lines, including the 
known results for stationary normal sequences and processes as special 
cases. A principal aim of this work is to present this theory in as complete 
and up-to-date a form as possible, alongside a reasonably comprehensive 
discussion of the classical case. The treatment is thus unified with regard 
to both the classical and dependent cases, and also in respect to consideration 
of normal and more general stationary sequences and processes. 

Closely related to the properties of extremes are those of exceedances 
and upcrossings of high levels, by sequences and continuous parameter pro­
cesses. By regarding such exceedances and upcrossings as point processes, 
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one may obtain some quite general results demonstrating convergence to 
Poisson and related point processes. A number of interesting results follow 
concerning the asymptotic behaviour of the magnitude and location of 
such quantities as the kth largest maxima (or local maxima, in the con­
tinous setting). These and a number of other related topics have been taken 
up, especially for continuous parameter cases. 

The volume is organized in four parts. Part I provides a reasonably 
comprehensive account of the central distributional results of classical 
extreme value theory-surrounding the Extremal Types Theorem. We have 
attempted to make this quite straightforward, using relatively elementary 
methods, and to highlight the main ideas on which the later extensions to 
dependent cases are based. 

Part II contains the basic extension of the classical theory applying to 
stationary sequences and to some important nonstationary cases. The main 
key to this work is the appropriate restriction of dependence between widely 
separated members of the sequence, so that the classical limits still hold. 
Normal sequences are particularly emphasized and provide illuminating 
examples of the roles played by the various assumptions. 

In Part III we turn to continuous parameter cases. The emphasis in 
this part is on stationary normal processes, which, for clarity, we treat 
in some detail before giving the general theory surrounding the Extremal 
Types Theorem. In addition to extremal theory, this part concerns properties 
of local maxima, point processes ofupcrossings, models for local behaviour, 
and related topics. 

Finally, Part IV contains specific applications of (and small extensions to) 
the theory for particular, real situations. Since the theory largely predicts the 
same extremal behaviour as in the classical case, there is limited usefulness 
in providing data which simply illustrate this well. Rather, we have tried 
to grapple with typical practical issues and problems which arise in putting 
theory to work. We have not attempted systematic case studies, but have 
primarily selected examples which involve interesting facets, and raise 
issues that demand thoughtful consideration. 

Many of the results given here have appeared in print in various forms, 
but a number are hitherto unpublished. Most of the contents of this work 
may be easily understood by a reader who has taken a (non-measure-theoretic) 
introductory graduate probability course. Possible exceptions include the 
material on point process convergence (the details being given in an appendix), 
but even for this we feel that a reader should be able to obtain a good in­
tuitive understanding from the text. 

It is indeed a pleasure to acknowledge the support of the U.S. Office of 
Naval Research, the Swedish Natural Science Research Council, the Danish 
Natural Science Research Council, and the Swedish Institute of Applied 
Mathematics, in much of the research leading to this work. We are also most 
grateful to Drs. Jacques de Mare and Jan Lanke for their help and sugges­
tions on various aspects of this project and to Dr. Olav Kallenberg for his 
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illuminating comments. We thank a number of readers including J. Castellana, 
B. Collings, R. Frimmel, N. Gerr, P. Hougaard, D. Kikuchi, I. McKeague, 
E. Murphree, and I. Skovgaard for their suggestions for improvement in 
clarity of the text; Ruth Bahr, Anitha Bergdahl, Betty Blake, Dagmar Jensen, 
Ingalill Karlsson, Anna Moren, Beatrice Tuma, and Ingrid Westerberg for 
their splendid typing of this volume and its earlier manuscript versions, and 
Sten Lindgren for preparing several of the figures. 
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PART I 

CLASSICAL THEORY OF 
EXTREMES 

Classical extreme value theory is concerned substantially with distributional 
properties of the maximum 

Mn = max(~l' ~2'···' ~n) 

of n independent and identically distributed random variables, as n becomes 
large. In Part I we have attempted to give a relatively comprehensive account 
of the central distributional results of the classical theory, using the simplest 
available proofs, and emphasizing their general features which lead to 
subsequent extensions to dependent situations. 

Two results of basic importance are proved in Chapter 1. The first is the 
fundamental result-here called the Extremal Types Theorem-which 
exhibits the possible limiting forms for the distribution of Mn under linear 
normalizations. More specifically, this basic classical result states that if for 
some sequences of normalizing constants an> 0, bn, an(Mn - bn) has a 
nondegenerate limiting distribution function G(x), then G must have one 
of just three possible "forms". The three "extreme value distributions" 
involved were discovered by Frechet, and Fisher and Tippett, and discussed 
more completely later by Gnedenko. Here we use more recent proofs, 
substantially simplified by the use of techniques of de Haan. 

The second basic result given in Chapter 1 is almost trivial in the inde­
pendent context, and gives a simple necessary and sufficient condition 
under which P{Mn ~ un} converges, for a given sequence of constants {un}. 
This result plays an important role here and also in dependent cases, where 
it is by no means as trivial but still holds under appropriate conditions. 
Its importance will be seen in Chapter 1 in the development of the classical 
theory given there for the domains of attraction to the three extreme value 
types. The theory is illustrated by several examples from each of the possible 
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limiting types and the chapter is concluded with a brief corresponding 
discussion of minima. 

The theme of Chapter 2 is the corresponding limiting distributions for 
the kth largest M~") of e1, ••• , en, where k may be fixed or tend to infinity 
with n. The case for fixed k (when M~) is an "extreme order statistic") is of 
primary concern and is discussed by means of asymptotic Poisson properties 
ofthe exceedances of high levels by the sequence el, e2," .. These properties, 
which here involve simply the convergence of binomial to Poisson distribu­
tions will recur in more interesting and sophisticated forms in the later 
parts of the volume. Rather efficient and transparent estimates for the rate 
of convergence in the limit theorems are also presented in this chapter. 

Finally, some description is given of the available theory for cases when 
k = kn tends to infinity with n (involving "central" and "intermediate" 
order statistics). This discussion is included for completeness only and will 
not be developed in the subsequent dependent context. 



CHAPTER 1 

Asymptotic Distributions of Extremes 

This chapter is primarily concerned with the central result of classical 
extreme value theory-the Extremal Types Theorem-which specifies the 
possible forms for the limiting distribution of maxima in sequences of 
i.i.d. random variables. In the derivation, the possible limiting distributions 
are identified with a class having a certain stability property-the so-called 
max-stable distributions. It is further shown that this class consists precisely 
of the three families known (loosely) as the three extreme value distributions. 

1.1. Introduction and Framework 

Let ~1' ~2' ••• be a sequence of independent and identically distributed 
(i.i.d.) random variables (r.v.'s) and write Mn for the maximum of the first 
n, i.e. 

(1.1.1) 

Then much of" classical" extreme value theory deals with the distribution of 
Mn , and especially with its properties as n --+ 00. All results obtained for 
maxima of course lead to analogous results for minima through the obvious 
relation mn = min(~l' ... ' ~n) = -max( -~1' ... ' -~n). We shall therefore 
only briefly discuss minima explicitly in this work, except where its joint 
distribution with Mn is considered. 

There is, of course, no difficulty in writing down the distribution function 
(dJ.) of Mn exactly in this situation; it is 

(1.1.2) 
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where F denotes the common dJ. of the ~i' Much of the Statistics of Extremes 
(as is the title of Gumbel's book (1958» deals with the distribution of Mn in 
a variety of useful cases and with a multitude of related questions (for 
example, concerning other order statistics, range of values, and so on). 

In view of such a satisfactory edifice of theory in finite terms, one may 
question the desirability of probing for asymptotic results. One reason for 
such a study appears to us to especially justify it. In simple central limit 
theory, one obtains an asymptotic normal distribution for the sum of many 
i.i.d. random variables whatever their common original dJ. Indeed, one does 
not have to know the dJ. too precisely to apply the asymptotic theory. 
A similar situation holds in extreme value theory, and in fact, a nondegenerate 
asymptotic distribution of M n (normalized) must belong to one of just three 
possible general families, regardless of the origihal dJ. F. Further, it is 
not necessary to know the detailed nature of F, to know which limiting 
form (if any) it gives rise to, i.e. to which" domain of attraction" it belongs. In 
fact, this is determined just by the behaviour of the tail of F(x) for large 
x, and so a good dea~ may be said about the asymptotic properties of the 
maximum based on rather limited knowledge of the properties of F. 

The central result-here referred to as The Extremal Types Theorem­
was discovered first by Fisher and Tippett (1928) and later proved in complete 
generality by Gnedenko (1943). We shall prove this result in the i.i.d. context 
(Theorem 1.4.2) using a more recent, simple approach due to de Haan 
(1976) and later extend it to dependent situations in Chapters 3 and 13. 

We shall be concerned with conditions under which, for suitable normali­
zing constants an > 0, bn , 

(1.1.3) 

(by which we mean that convergence occurs at continuity points of G­
though we shall see later that the G's of interest are all continuous). In 
particular, we shall be interested in determining which drs G may appear 
as such a limit. It will be shown' that the possible nondegenerate dJ.'s G 
which may occur as limits in (1.1.3) form precisely the class of max-stable 
distributions discussed in Section 1.3. We shall see further thai: every max­
stable distribution G has (up to location and scale changes) one of the 
following three parametric forms-commonly (and somewhat loosely) 
called the three Extreme Value Distributions. 

Type I: G(x) = exp( _e- X ), -oo<x<oo; 

Type II: G(x) = {O, x:::;; 0, 
exp( _x-CZ), for some 0( > 0, x> 0; 

Type III: G(x) = {exp( -( _x)CZ), for some 0( > 0, x:::;; 0, 

1, x> 0. 

A central result to be used in the development of the theory is a general 
theorem of Khintchine concerning convergence of distribution functions. 
Although it is obtainable from other sources, we shall, for completeness, 
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prove this important result in Section 1.2, along with some useful results 
concerning inverses of monotone functions. In Section 1.3 the dJ.'s G which 
may occur as limits in (1.1.3) are identified with the max-stable distributions 
(defined in that section), prior to the further identification with the extreme 
value distributions in Section 1.4, which will complete the proof of the 
Extremal Types Theorem. 

By (1.1.2), (1.1.3) may be written as 

(1.1.4) 

where again the notation ~ denotes convergence at continuity points of the 
limiting function. If (1.1.4) holds for some sequences {an> O}, {bn}, we shall 
say that F belongs to the (i.i.d.) domain of attraction (for maxima) of G and 
write FE D(G). Necessary and sufficient criteria are known, to determine 
which (if any) of the possible limiting distributions applies; that is, conditions 
under which FE D(G). These will be stated in Section 1.6, along with proofs 
of their sufficiency. (The proofs of the necessity of the conditions are some­
what lengthy and not germane to our purposes here and hence are omitted.) 
We also give some simple and useful sufficient conditions due to von Mises, 
which apply when the dJ. F has a density function-an obviously common 
case. 

The discussion in Section 1.6 will be substantially based on a very simple 
convergence result treated in Section 1.5. This result gives conditions for 
the convergence of P{Mn ~ un}, where {un} is any sequence of real constants. 
(In the case where (1.1.3) applies, we have such convergence for all members 
of the family of sequences {un = x/an + bn},asxrangesoverallrealnumbers.) 

As hinted above (and discussed more fully later), it may turn out that for 
a given dJ. F, there is no extreme value dJ. G such that F E D(G). This simply 
means that the maximum Mn does not have a nondegenerate limiting 
distribution under any linear normalization (a common example being the 
Poisson distribution, as will be seen later). On the other hand, limits of 
P{Mn ~ un} may well be possible for interesting sequences Un not necessarily 
of the form x/an + bn or even dependent on a parameter x. 

This simple convergence result does, as noted, play an important role in 
connection with domains of attraction. However, it is also very important in 
the further theoretical development, both for the i.i.d. case considered in 
this and the next chapter and for the dependent sequences of later chapters. 

Finally, Section 1.7 contains further examples and comments concerning 
particular cases, and Section 1.8 contains a brief discussion of minima. 

1.2. Inverse Functions and Khintchine's 
Convergence Theorem 

First, it will be convenient to obtain some useful results for inverses of 
monotone functions. Such inverses may be defined in a variety of ways, of 
which the following will best suit our purposes. 
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If t/I(x) is a nondecreasing right continuous function, we define an inverse 
function t/I-1 on the interval (inf{t/I(x)}, sup{t/I(x)}) by 

t/I-1(y) = inf{x;t/I(x) ~ y}. 

(Note that the domain of t/I -1 is written as an open interval, but may be 
closed at either end ifinf{t/l(x)} or sup{t/l(x)} is attained at finite x.) 

Lemma 1.2.1. (i) For t/I as above, if a> 0, band c are constants, and H(x) = 
t/I(ax + b) - c, then H- 1(y) = a- l (t/I-1(y + c) - b). 

(ii) For t/I as above, ift/l-l is continuous, then t/I-1(t/I(X» = x. 
(iii) If G is a nondegenerate d.j., there exist Y1 < Yz such that G- l (Y1) < 

G- 1(Y2) are well defined (and finite). 

PROOF. (i) We have 

H-l(y) = inf{x; t/I(ax + b) - c ~ y} 

as required. 

= a-l(inf{(ax + b); t/I(ax + b) ~ Y + c} - b) 

= a- l (t/I-1(y + c) - b), 

(ii) From the definition of t/I-l, it is clear that t/I-l(t/I(X»::;; x. If strict 
inequality holds for some x, the definition of t/I-l shows the existence of 
z < x with t/I(z) ~ t/I(x), and hence t/I(z) = t/I(x) since t/I is nondecreasing. For 
Y = t/I(z) = t/I(x) we have t/I-l(y)::;; z, whereas for y> t/I(z) = t/I(x) we 
have I/I-l(y) ~ x, contradicting the continuity of 1/1-1. Hence I/I-l(t/I(X» = x, 
as asserted. 

(iii) If G is nondegenerate, there exist x~ < X2 such that ° < G(x~) = 
Yl < G(X2) = Yz ::;; 1. Clearly Xl = G-l(Yl) and X2 = G-l(Yz) are both 
well defined. Also G- l (Y2) ~ x~ and equality would require G(z) ~ Y2 for all 
z> Xl so that G(x~) = lim.~o G(x~ + 8) = G(x~ +) ~ Yz' contradicting 
G(x~) = Yl' Thus G-l(Yz) > x~ ~ Xl = G- 1(Yl)' as required. 0 

Corollary 1.2.2. If G is a nondegenerate df. and a > 0, rx > 0, b, and pare 
constants such that G(ax + b) = G(rxx + p)for all x, then a = rx and b = p. 

PROOF. Choose Y1 < Y2 and - 00 < Xl < X2 < 00 by (iii) of the lemma so 
that Xl = G-l(Yl)' X2 = G- 1(Y2)' Taking inverses of G(ax + b) and G(rxx + 
P) by (i) of the lemma, we have 

a-l(G-l(y) - b) = rx- 1(G- 1(y) - p) 

for all y. Applying this to Y1 and Y2 in turn, we obtain 

a- 1(xl - b) = rx- 1(X1 - P) and a- l (x2 - b) = rx- 1(X2 - P), 

from which it follows simply that a = rx and b = p. o 
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We now obtain the promised general result of Khintchine. 

Theorem 1.2.3 (Khintchine). Let {Fn} be a sequence of d.f.'s and G a non­
degenerate d.f. Let an > 0 and bn be constants such that 

Thenfor some nondegenerate d.f. G* and constants OCn > 0, Pn' 

F"(oc"x + Pn) ~ G*(x) 

if and only if 
a;; lOCn -+ a and a;; l(Pn - b") -+ b 

for some a > 0 and b, and then 

G*(x) = G(ax + b). 

(1.2.1) 

(1.2.2) 

(1.2.3) 

(1.2.4) 

PROOF. By writing oc~ = a;; loc", P~ = a;; l(p" - bn), and F~(x) = F"(anx + btl), 
we may rewrite (1.2.1), (1.2.2), and (1.2.3) as 

F~(x) ~ G(x), 

F~(oc~x + P~) ~ G*(x), 

oc~ -+ a and P~ -+ b for some a > 0, b. 

(1.2.1)' 

(1.2.2)' 

(1.2.3)' 

If (1.2.1)' and (1.2.3)' hold, then obviously so does (1.2.2)', with G*(x) = 
G(ax + b). Thus (1.2.1) and (1.2.3) imply (1.2.2) and (1.2.4). 

The proof of the lemma will be complete if we show that (1.2.1)' and 
(1.2.2)' imply (1.2.3)" for then (1.2.4) will also hold, as above. 

Since G * is assumed nondegenerate, there are two distinct points x' 
and x" (which may be taken to be continuity points of G*) such that 0 < 
Gix') < 1,0< G*(x") < 1. 

The sequence {oc~x' + P~} must be bounded. For if not, a sequence {nA;} 
could be chosen so that OC~kX' + P~k -+ ± 00, which by (1.2.1), (since G is a 
d.f.) would clearly imply that the limit of F~k(OC~kX' + P~J is zero or one­
contradicting (1.2.2)' for x = x'. Hence {oc~x' + P~} is bounded, and similarly 
so is {OC~X" + P~}, which together show that the sequences {oc~} and {P~} are 
each bounded. 

Thus there are constants a and b and a sequence {nd of integers such 
that OC~k -+ a and P~k -+ b, and it follows as above that 

(1.2.5) 

whence since by (1.2.2)', G(ax + b) = G*(x), a d.f., we must have a> O. 
On the other hand, if another sequence {mk} of integers gave oc:"k -+ a' > 0 
and P:"k -+ b', we would have G(a'x + b') = Gix) = G(ax + b), and hence 
a' = a and b' = b by Corollary 1.2.2. Thus oc~ -+ a and P~ -+ b, as required to 
complete the proof. 0 
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1.3. Max-Stable Distributions 

We now identify the drs G which are possible limiting laws for maxima 
of i.i.d. sequences, i.e. which may appear in (1.1.3), with the class of so-called 
max-stable distributions. Specifically, we shall say that a nondegenerate dJ. 
G is max-stable if, for each n = 2, 3, ... , there are constants an > 0 and bn 
such that Gn(anx + bn) = G(x). 

Theorem 1.3.1. (i) A nondegenerate df. G is max-stable if and only if there 
is a sequence {Pn} of df.'s and constants an > 0 and bn such that 

(1.3.1) 

foreachk = 1,2, .... 
(ii) In particular, if G is nondegenerate, D(G) is nonempty if and only if G 

is max-stable. Then also G E D(G). Thus the class of nondegenerate 
df.'s G which appear as limit laws in (1.1.3) (for i.i.d. ~l' ~2"") coincides 
with the class of max-stable df.'s. 

PROOF. (i) If Gis nondegenerate, so is G1/k for each k, and if (1.3.1) holds for 
each k, Theorem 1.2.3 (with a;; 1 for an) implies that G1/k(x) = G(O(k X + Pk) 
for some O(k > 0 and Pk' so that G is max-stable. Conversely, if G is max-stable 
and Pn = Gn, we have Gn(a;; lX + bn) = G(x) for some an > 0 and bn, 
and 

so that (1.3.1) follows trivially. 
(ii) If G is max-stable, Gn(anx + bn) = G(x) for some an > 0 and bn, 

so (letting n -+ (0) we see that GED(G). Conversely, if D(G) is nonempty, 
PED(G), say, with pn(a;;lx + bn) ~ G(x). Hence pnk(a;;,/x + bnk) ~ G(x) 
or pn(a;;k lX + bnk) ~ G1/k(x). Thus (1.3.1) holds with Pn = pn, and hence by 
(i), G is max-stable. D 

Corollary 1.3.2. If G is max-stable, there exist real functions a(s) > 0 and 
b(s) defined for s > 0 such that 

GS(a(s)x + b(s» = G(x), all real x, s > O. (1.3.2) 

PROOF. Since G is max-stable, there exist an > 0, bn such that 

Gn(anx + bn) = G(x), 

and hence (letting [ ] denote integer part) 

Glns)(alnS)x + bIns) = G(x). 

But this is easily seen (e.g. by taking logarithms) to give 

Gn(alns)x + bIns) ~ G1/s(x). 

(1.3.3) 

(1.3.4) 



1.4. Extremal Types Theorem 9 

In view of the limit (1.3.4) and the (trivial) limit (1.3.3), and since Giis is 
non degenerate, Theorem 1.2.3 applies with an = alns] and f3n = bIns] to show 
that G(a(s)x + b(s» = GIIS(X) for some a(s) > ° and b(s), as required. 0 

It is sometimes convenient to use a more technical sense for the word 
"type" than the descriptive use employed thus far. Specifically, we may say 
that two drs GI , G2 are of the same type if 

for some constants a > 0, b. Then the above definition of max-stable distribu­
tions may be rephrased as: "A nondegenerate dJ. G is max-stable if, for 
each n = 2, 3, ... , the dJ. Gn is of the same type as G." 

Further, Theorem 1.2.3 shows that if {Fn} is a sequence of drs with 
Fn(anx + bn) ~ GI , Fn(anx + f3n) ~ G2 (an> 0, an > 0), then GI and G2 are 
of the same type, provided they are nondegenerate. Clearly the drs may be 
divided into equivalence classes (which we call types) by saying that G I and 
G2 are equivalent if Gz(x) = GI(ax + b) for some a > 0, b. 

If GI and G2 are drs of the same type (G2(x) = GI(ax + b» and FE 
D(G I), i.e. Fn(anx + bn) ~ G I for some an > 0, bn, then (1.2.3) is satisfied 
with an = ana, f3n = bn + anb, so that Fn(anx + f3n) ~ G2(x) by Theorem 
1.2.3, and hence FE D(G2). Thus if GI and G2 are of the same type, D(GI) = 

D(G2 ). Similarly, we may see from Theorem 1.2.3 that if F belongs to both 
D(GI) and D(G2), then GI and G2 are of the same type. Hence D(G I ) and 
D(G2 ) are identical if GI and G2 are of the same type, and disjoint otherwise. 
That is, the domain of attraction of adJ. G depends only on the type of G. 

1.4. Extremal Types Theorem 

Our final task in obtaining the possible limit laws for maxima (in the sense 
of (1.1.3» is to show that the max-stable distributions are simply the extreme 
value distributions listed in Section 1.1. More precisely, we show that a 
dJ. is max-stable if and only ifit is of the same type as one of the extreme value 
distributions listed. 

AdJ. of the same type as exp( -e-X)(i.e. exp{ _e-(ax+b)} for some a > 0, b) 
will be said to be of Type I. Similarly, we will say that a dJ. is of Type II 
(or Type III) ifit has the form G(ax + b), where G is the Type II (or Type III) 
extreme value distribution listed in Section 1.1. Since the parameter a may 
change, Types II and III distributions are really families of types within our 
technical meaning of" type ", but obviously no confusion will arise from the 
customary habit of referring to "three extreme value types". The following 
theorem contains the principal identifications desired. 
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Theorem 1.4.1. Every max-stable distribution is of extreme value type, i.e. 
equal to G(ax + b)for some a > ° and b, wherefor 

Type I: G(x) = exp( _e- X ), - 00 < x < 00; 

Type II: G(x) = {O, 
exp( - x - "'), for some IX > 0, 

G(x) __ {exp( - ( - x)"'), for some IX > 0, 
Type III: 

1, 

x:::; 0, 

x> 0; 

x:::; 0, 

x> 0. 

Conversely, each distribution of extreme value type is max-stable. 

PROOF. The converse is clear since, e.g. for Type I, 

(exp{ _e-(ax+b)})n = exp{ _e-(ax+b-logn)}, 

with similar expressions for Types II and III. 
To prove the direct assertion, we follow essentially the proof of de Haan 

(1976). If G is max-stable, then (1.3.2) holds for all s > ° and all x. If ° < 
G(x) < 1, (1.3.2) gives 

-s log G(a(s)x + b(s)) = -log G(x), 

so that 

-loge -log G(a(s)x + b(s))) - log s = -loge -log G(x)). 

Now it is easily seen from the max-stable property with n = 2, that G can 
have no jump at any finite (upper or lower) endpoint. Thus the nondecreasing 
function t/t(x) = -loge -log G(x)) is such that inf {t/t(x)} = - 00, sup{t/t(x)} = 
+ 00 and hence has an inverse function U(y) defined for all real y. Further, 

t/t(a(s)x + b(s)) - log s = t/t(x), 

so that by Lemma 1.2.1(i), 

U(y + logs) - b(s) = U( ) 
a(s) y . 

Subtracting this for y = ° we have 

U(y + log s) - U(log s) = () _ U(O) 
a(s) U y , 

and by writing z = log s, a(z) = a(eZ ), and U(y) = U(y) - U(O), 

U(y + z) - U(y) = U(y)a(z) 

for all real y, z. 
Interchanging y and z and subtracting, we obtain 

U(y)(l - a(z)) = U(z)(1 - a(y)). 

(1.4.1) 

(1.4.2) 
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Two cases are possible, (a) and (b) as follows. 

(a) a(z) = 1 for all z when (1.4.1) gives 

U(y + z) = U(y) + U(z). 

11 

The only monotone increasing solution to this is well known to be simply 
U{y) = py for some p > 0, so that U(y) - U(O) = pyor 

t/J-l(y) = U(y) = py + v, v = U(O). 

Since this is continuous, Lemma 1.2.1(ii) gives 

x = t/J-l(t/J(X» = pt/J{x) + v 

or t/J{x) = (x - v)lp, so that G(x) = exp{ _e-(X-vllp } when 0 < G{x) < 1. 
As noted above G can have no jump at any finite (upper or lower) endpoint 

and hence has the above form for all x, thus being of Type I. 

(b) a(z) ¥- 1 for some z when (1.4.2) gives 

- U(z) ~ ~ 
U(y) = 1 _ a(z) (1 - a(y» = e(l - a(y», say, (1.4.3) 

where e = U(z)/(1 - a(z» ¥- 0 (since U(z) = 0 would imply U(y) = 0 for 
all y, and hence U(y) = U(O), constant). 

From (1.4.1), we thus obtain 

e(l - a{y + z» - e(1 - a{z» = e(l - a(y»a(z), 

which gives a(y + z) = a(y)a(z). But a is monotone (from (1.4.3», and the 
only monotone nonconstant solutions of this functional equation have the 
form a(y) = ePY for p ¥- O. Hence (1.4.3) yields 

t/J-l(y) = U(y) = v + e(1 - ePY) 

(where v = U(O». Since -loge -log G(x» is increasing, so is U, so that we 
must have e < 0 if p > 0 and e > 0 if p < O. By Lemma 1.2.1(ii), 

x = t/J-l{t/J{X» = v + e(1 - ePojJ(Xl) = v + e(1 - (-log G(x»-P), 

giving, where 0 < G(x) < 1, 

G(x) = exp{ -(1 _ x ~ v) -l/} 
Again, from continuity of G at any finite endpoints, we see that Gis of Type II 
or Type III, with (X = + lip or -lip, according as p > 0 (e < 0) or p < 0 
~>~ D 

The main result now follows immediately. 

Theorem 1.4.2 (Extremal Types Theorem). Let Mn = max(~l' ~2'···' ~n)' 
where ~i are U.d. random variables. If for some eonstants an > 0, bn, we have 

(1.4.4) 
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for some nondegenerate G, then G is one of the three extreme value types 
listed above. Conversely, each df G of extreme value type may appear as a 
limit in (1.4.4) and, infact, appears when G itself is the df of each ~i' 

PROOF. If (1.4.4) holds, Theorem 1.3.1 shows that G is max-stable and, hence 
by Theorem 1.4.1, is of extreme value type. Conversely, if G is of extreme 
value type, it is max-stable by Theorem 1.4.1, and Theorem 1.3.1(ii) shows 
that G E D(G), yielding the conclusions stated. D 

Looking ahead, if ~1' ~2"" are not necessarily independent, but Mn = 

max(~l"'" ~n) has an asymptotic distribution G in the sense of (1.4.4), 
then (1.3.1) holds with k = 1, where Fn is the dJ. of Mn. If one can show 
that if (1.3.1) holds for k = 1 then it holds for all k, it will follow that G 
is max-stable by Theorem 1.3.1(i) and hence that G is an extreme value type. 
Thus our approach when we consider dependent cases will be simply to 
show that, under appropriate assumptions, the truth of (1.3.1) for k = 1 
implies its truth for all k, from which the Extremal Types Theorem will 
again follow. 

Returning now to the i.i.d. case, we note again that Theorem 1.4.2 assumes 
that aiMn - bn) has a nondegenerate limiting dJ. G and then proves that G 
must have one of the three stated forms. It is easy to construct i.i.d. sequences 
{~n} for which no such G exists. To see a simple example, it will be convenient 
here (and subsequently) to use the notation X F for the right endpoint of a 
dJ. F, i.e. 

XF = sup{x; F(x) < 1} (~ CYJ). 

That is, F(x) < 1 for all x < X F and F(x) = 1 for all x ~ xF • 

Suppose that each ~n has dJ. F which is such that X F < CYJ and that F has 
a jump at xF, i.e. F(XF-) < 1 = F(XF)' Then it follows readily (as will be 
seen in Corollary 1.5.2) that if {un} is any sequence and P{Mn ~ un} -+ p, 
then p = 0 or 1. Thus if P{an(Mn - bn) ~ x} -+ G(x), it follows, by taking 
Un = x/an + bn, that G(x) = 0 or 1 for each x, so that G is degenerate. 

Other even more common examples, such as the case where each ~n is 
Poisson, will be discussed in Section 1.7. 

1.5. Convergence of P{Mn < un} 

We have been considering convergence of probabilities of the form 
P{an(Mn - bn) ~ x}, which may be rewritten as P{Mn ~ un} where Un = 
un(x) = x/an + bn. The convergence was required for every x. On the other 
hand, it is also of interest to consider sequences {un} which may simply not 
depend on any parameter x or may be more complicated functions than the 
linear one considered above. The following theorem is almost trivial in the 
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i.i.d. context, but nevertheless is very useful (as we shall see in the next 
section), and will extend in important ways to apply to dependent (stationary) 
sequences and to continuous time processes. 

Theorem 1.5.1. Let {en} be an i.i.d. sequence. Let 0 :::;; t :::;; 00 and suppose 
that {un} is a sequence of real numbers such that 

(1.5.1) 

Then 

(1.5.2) 

Conversely, if(1.5.2) holds for some t, 0 :::;; t :::;; 00, then so does (1.5.1). 

PROOF. Suppose first that 0 :::;; t < 00. If (1.5.1) holds, then 

(1.5.3) 

may be written as (1 - tin + o(1ln)t, so that (1.5.2) follows at once. 
Conversely, if (1.5.2) holds (0 :::;; t < 00), we must have 1 - F(un) -+ O. 

(For, otherwise, 1 - F(unk) would be bounded away from zero for some 
subsequence {nk}, leading, from (1.5.3), to the conclusion P{Mn :::;; un} -+ 0.) 
By taking logarithms in (1.5.2) and (1.5.3), we have 

n log{1 - (1 - F(un»} -+ -t, 

so that n(1 - F(un»(1 + 0(1» -+ t, giving the result. 
Finally, ifr = 00 and (1.5.1) holds but (1.5.2) does not (i.e. P{Mn :::;; un} 1+ 

0), there must be a subsequence {nk} such that P{Mnk :::;; unk } -+ e- t ' as 
k -+ 00 for some t' < 00. But, as above, (1.5.2) implies (1.5.1), with nk re­
placing n so that nk(1 - F(unk» -+ t' < 00, contradicting the assumption 
that (1.5.1) holds with t = 00. Similarly, (1.5.2) implies (1.5.1) when t = 00. 

D 

The following simple results follow as corollaries. We use the notation 
XF = sup{x; F(x) < 1} introduced previously for the right endpoint of a 
dJ.F. 

Corollary 1.5.2. (i) M n -+ XF (:::;; 00) with probability one as n -+ 00. 

(ii) If XF < 00 and F(XF -) < 1 (i.e. if F has a jump at its right endpoint), 
and if for a sequence {un}, P{Mn :::;; un} -+ pas n -+ 00, then p = 0 or 1. 

PROOF. If A < XF (:::;; (0), 1 - F(A) > 0 so that (1.5.1) holds with Un == A, 
t = 00, and thus (1.5.2) gives lim P{Mn :::;; A} = O. Since clearly P{Mn > 
XF} = 0 for all n, it follows that Mn -+ XF in probability. Since {Mn} is 
monotone, it converges a.s., and hence Mn -+ XF a.s. Hence (i) follows. 

Suppose now that X F < 00 and F(xF -) < 1. Let {un} be a sequence 
such that P{Mn :::;; un} -+ p. Since 0 :::;; p :::;; 1, we may write p = e- t with 
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o ::;; "C ::;; 00, and by Theorem 1.5.1 obtain n{l - F(un» --+ "C. If Un < XF for 
infinitely many values of n, and since for those values 1 - F(un) ~ 1 -
F(XF -) > 0, we must have "C = 00. The only other possibility is that 
Un ~ XF for all sufficiently large values of n, giving n(1 - F(un» = 0 so 
that "C = O. Thus "C = 00 or 0, and hence p = 0 or 1, proving (ii). 0 

We take up the general question of domains of attraction of the extreme 
value distributions (using Theorem 1.5.1 in an essential way) in the next 
section. For the purposes of this volume, however, normal sequences occupy 
a most important position. We therefore show here how Theorem 1.5.1 
may be used directly to 0 btain the (Type I) limit law for i.i.d. normal sequences. 
As will be seen, the application is straightforward, even though some calcula­
tions are involved. Throughout this and all subsequent chapters, <1>, ¢ will 
denote the standard normal distribution function and density, respectively. 
We shall repeatedly have occasion to use the well-known relation for the 
tail of <1>, stated here for easy reference: 

1 _ <I>(u) '" ¢(u) 
U 

as U --+ 00. (1.5.4) 

Theorem 1.5.3. If {~n} is an U.d. (standard) normal sequence of r.v.'s, then 
the asymptotic distribution of M n = max( ~ l' ... , ~n) is of Type I. Specifically, 

(1.5.5) 

where 

an = (2 log n)1/2 

and 

bn = (2 log n)1/2 - t(2 log n)-1/2(log log n + log 411:). 

PROOF. Write "C = e- x in (1.5.1). Then we may take 1 - <I>(un) = {l/n)e- x • 

Since 1 - <I>(un) '" ¢(un)/un we have (l/n)e- X unl¢(un) --+ 1, and hence 
-log n - x + log Un - log ¢(un) --+ 0 or 

u2 

-log n - x + log Un + ! log 211: + ; --+ O. 

It follows at once that u;'/(210g n) --+ 1, and hence 

2 log Un - log 2 - log log n --+ 0 

or 

log Un = t(log 2 + log log n) + 0(1). 

(1.5.6) 
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Putting this in (1.5.6), we obtain 

U2 
; = X + log n - 1 log 4n - 1 log log n + 0(1) 

or 

2 _ {X -llog 4n -llog log n (_1_)} 
Un - 2 log n 1 + I + 0 I ' og n og n 

and hence 

_ (I )1/2{1 x -llog 4n -llog log n (_1_)} 
Un - 2 og n + 2 I + 0 I ogn og n 

so that 

Hence, since by (1.5.2) we have P{Mn :.:;; un} --+ exp( _e- X ) where -r = e- x, 

P{Mn :.:;; :n + bn + 0(a;1)} --+ exp( _e- X
) 

or 

P{an(Mn - bn) + 0(1) :.:;; x} --+ exp( _e- X ), 

from which (1.5.5) follows, as required. 

15 

o 

While there are some computational details in this derivation, there is no 
difficulty of any kind, and (1.5.5) thus follows in a very simple way from the 
(itself simple) result (1.5.2). The same arguments can, and will later, be 
adapted to a continuous time context. 

1.6. General Theory of Domains of Attraction 

It is, of course, important to know which (if any) of the three types of limit 
law applies when each r.v. ~n has a given dJ. F. Various necessary and 
sufficient conditions are known-involving the "tail behaviour" 1 - F(x) 
as x increases-for each type of limit. We shall state these and prove their 
sufficiency, omitting the proofs of necessity since, as already mentioned, 
these are somewhat lengthy and less germane to our purposes here. Proofs 
may be found, e.g., in Gnedenko (1943) or de Haan (1976). 

Before presenting the general theorems, we give some very simple and 
useful sufficient conditions which apply when the dJ. F has a density function 
f. These are due to von Mises, and simple proofs are given in de Haan 
(1976). Here we reproduce one of the proofs as a sample and refer the reader 
to de Haan (1976) for the details of the others. 



16 1. Asymptotic Distributions of Extremes 

Theorem 1.6.1. Suppose that the df. F of the r.v.'s of the U.d. sequence {en} 
is absolutely continuous with density f. Then sufficient conditions for F to 
belong to each of the three possible domains of attraction are: 

Type I: f has a negative derivative f' for all x in some interval (xo, XF), 
(XF ~ 00), f(x) = 0 for x ~ XF' and 

lim f'(t)(1 - F(t» - -I. 
tjXF P(t) - , 

Type II: f(x) > 0 for all x ~ Xo finite, and 

. tf(t) 
!~~ 1 _ F(t) = ex > 0; 

Type III: f(x) > 0 for all x in some finite interval (xo, XF), f(x) = 0 for 
x> xF,and 

I· (XF - t)f(t) 0 
1m =ex>. 

tjXF 1-F(t) 

PROOF FOR TYPE II CASE. As noted, complete proofs may be found in de Haan 
(1976), and we give the Type II case here as a sample. Assume, then, that 
limt .... oo tf(t)/(l - F(t» = ex > 0, where f(x) > 0 for x ~ Xo. Writing ex(t) = 

tf(t)/(l - F(t», it is immediate that, for X2 ~ Xl ~ xo, 

fX 2 ex(t) 
- dt = -log(1 - F(x2» + 10g(1 - F(x l » 

XI t 

so that 

( fX2 ex(t) ) 
1 - F(x2) = (1 - F(x l » exp - XI -t- dt . 

Clearly there exists Yn such that 1 - F(Yn) = n-l, and (by writing Xl = Yn' 
X2 = YnX or vice versa according as x ~ 1 or x < 1) we obtain 

( lYnX ex(t») (r ex(y s) ) 
n(1 - F(Ynx» = exp - Yn -t- dt = exp - J

l 
----;-ds , 

which since Yn --+ 00, converges to e-IXlogx = X-IX as n --+ 00. Hence for x > 0, 
by Theorem 1.5.1, 

P{Mn ~ Ynx} --+ exp( _X-IX) as n --+ 00. 

For x ~ 0 since P{Mn ~ Ynx} ~ P{Mn ~ YnY} for y > 0 and P{Mn ~ 
YnY} --+ exp( - y-IX), we see by letting y --+ 0 that limn"" 00 P{Mn ~ Ynx} = O. 
Hence the Type II limit holds with the normalizing constants an = Y;; 1, 

~=Q D 

The above proof for the Type II case relied on the existence of a sequence 
{Yn} such that 1 - F(Yn) '" lin, and the normalizing constants an, bn in the 
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relation P{anCMn - bn) :::;; x} ~ G(x) were then obtained in terms of rn' 
(In this case, we had an = Y; 1, bn = 0.) For an arbitrary dJ. F, such a Yn 
does not necessarily exist. However, if FE D( G) for one of the extreme value 
distributions, then a Yn with this property may be found. For if 

P{anCMn - bn) :::;; x} ~ G(x), 

since G is continuous x may be chosen so that G(x) = e - 1 so that 

P{Mn :::;; rn} ~ e- 1 

with Yn = x/an + bn· Hence 1 - F(Yn) '" l/n by Theorem 1.5.1. 
The general criteria whose sufficiency is to be proved will also rely on 

the existence of such a Yn' which follows in each case, as we shall see, from 
the assumptions made. Again, in the following results we write XF = 
sup{x;F(x) < 1} for any dJ. F. 

Theorem 1.6.2. Necessary and sufficient conditions for the df F of the r.v.'s 
of the i.i.d. sequence {~n} to belong to each of the three types are (in order 
of increasing complexity): 

Type II: xF = 00 and limt _ oo (1 - F(tx))/(l ~ F(t)) = x-~,a > O,foreach 
x> 0; 

Type III: xF < 00 and limh!o (1 - F(xF - xh))/(l - F(xF - h)) = x~, 
a > O,for each x > 0; 

Type I: There exists some strictly positive function get) such that 

1. 1 - F(t + xg(t)) -x 
1m = e 

t i XF 1 - F(t) 

for all real x. 

It may in fact be shown that SO' (1 - F(u)) du < 00 when a Type I limit 
holds, and one appropriate choice of g is given by get) = S~F (1 - F(u)) du/(l -
F(t)) for t < xF. 

PROOFS OF SUFFICIENCY. To highlight the simplicity of the proof, we assume 
first the existence of a sequence {Yn} (which may be taken nondecreasing in 
n) in each case such that n(l - F(Yn)) ~ 1. (This will be proved-also very 
simply-below.) The Yn constants will, of course, differ for the differing 
types. Clearly Yn --+ XF and Yn < XF for all sufficiently large n. 

If F satisfies the Type II criterion we have, writing Yn for t, for each x > 0, 

so that Theorem 1.5.1 yields, for x > 0, 

P{Mn :::;; Ynx} --+ exp{ -x-~}. 
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Since Yn > ° (when n is large, at least) and the right-hand side tends to zero 
as x ! 0, it also follows that P{Mn S o} -+ 0, and for x < 0, that P{Mn S 
Ynx} S P{Mn S o} -+ 0. Thus P{Mn S Ynx} -+ G(x), where G is the Type 
II representative dJ. listed in Theorem 1.4.1. But this may be restated as 

(1.6.1) 

where an = Y; 1 and bn = ° so that the Type II limit follows. 
The Type III limit follows in a closely similar way by writing hn = XF -

t'n (! 0) so that, for x > 0, 

lim n(l - F{XF - X(XF - Yn)}) = x", 
n-+ 00 

and hence (replacing x by -x) for x < 0, 

lim n(1 - F{XF + X(XF - Yn)}) = (-x)". 

Using Theorem 1.5.1 again, this shows at once that the Type III limit applies 
with constants in (1.6.1) given by 

The Type I limit also follows along the same lines since, when F satisfies 
that criterion, we have, for all x, writing t = Yn i XF (s (0), 

n-+ 00 

giving (again by Theorem 1.5.1) the Type Ilimit with an = (g(Yn))- 1, bn = Yn' 
Finally, we must show the existence of the (nondecreasing) sequence {Yn} 

satisfying limn-+oo n(l - F(Yn)) = 1. For Yn' we may take any nondecreasing 
sequence such that 

1 
F(Yn-) S 1 - - s F(Yn) 

n 

(such as the sequence Yn = F- 1(l - lin) = inf{x; F(x) ~ 1 - lin}). For 
such a sequence, n(l - F(Yn)) S 1 so that, trivially, lim sup n(l - F(Yn)) S 1. 
Thus it only remains to show that in each case lim inf n(l - F(yJ) ~ 1, 
which will follow since n(l - F(Yn - )) ~ 1 if we show that 

1· . f 1 - F(Yn) 1 Imm ~ . 
n-+oo 1 - F(Yn-) 

(1.6.2) 

For adJ. F satisfying the listed Type II criterion, the left-hand side of 
(1.6.2) is, for any x < 1, no smaller than 

1· . f 1 - F(Yn) " Imm = X, 
n-+oo 1 - F(Yn x ) 

from which (1.6.2) follows by letting x -+ 1. 
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A similar argument holds for adJ. F satisfying the Type III criterion, 
the left-hand side of (1.6.2) being no smaller (for x > 1, hn = XF - Yn) than 

1· . f 1 - F(XF - hn) -a 
1m In = x , 
n-oo 1 - F(XF - xhn) 

which tends to 1 as x -+ 1, giving (1.6.2). 
Finally for the Type I case, the left-hand side of (1.6.2) is no smaller 

(if x < 0) than 

1· . f 1 - F(Yn) x 1m In =e, 
n-oo 1 - F(Yn + xg(Yn» 

which tends to 1 as x -+ 0, so that again (1.6.2) holds. D 

Corollary 1.6.3. The constants an' bn in the convergence P{aiMn - bn) ~ x}-+ 
G(x) may be taken in each case above to be: 

Type II: an = y;1, bn = 0; 

Type III: an = (XF - Yn)-l, bn = xF; 

Type I: an = [g(Yn)r \ bn = Yn' 

with Yn = F- 1(1 - lin) = inf{x; F(x) ~ 1 - lin}. 

PROOF. These relationships appear in the course of the proof of the theorem 
~~ D 

It is perhaps worth noting that the criteria given above apply to any dJ. 
in each domain of attraction, regardless of whether the limit appears as the 
specific distribution G(x) listed in Theorem 1.4.1 representing a type, or any 
other dJ. G(ax + b) of that type. Indeed, if the limit appears as G(ax + b), 
G(x) is also a limit with a simple change of normalizing constants. For if 

P{an(Mn - bn) ~ x} -+ G(ax + b), 

then clearly 

P{aiMn - f3n) ~ x} -+ G(x), 

with an = aan, f3n = bn - bl(aan)· 

1.7. Examples 

We shall give examples of distributions belonging to each of the three 
domains of attraction and then cases where no nondegenerate limiting 
distribution exists. For reference, the constants an' bn will appear in the 
usual form (1.1.3), viz. 

(1.7.1) 
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The examples in the first group (1.7.1-1.7.5) all involve the Type I domain. 

Example 1.7.1 (Normal distribution). As shown in Theorem 1.5.3, the 
(standard) normal distribution belongs to the Type I domain of attraction 
with constants 

an = (2 log n)1/2 } 
bn = (2 log n)1/2 - t(210g n)-1/2(log log n + log 4n) 

(1.7.2) 

Note that it is very easy to determine that a Type I domain of attraction 
applies by means of Theorem 1.6.1, though this does not provide the constants. 
Corollary 1.6.3 does give the constants, but the work involved in trans­
forming these to the above values differs very little from the calculations of 
Theorem 1.5.3. 0 

Example 1.7.2 (Exponential distribution). In the case of an exponential 
distribution with unit parameter, we have 

F(x) = 1 - e- X • 

Theorem 1.6.1 is easily applied to demonstrate a Type I domain. However, 
it is very simple to show this (and obtain the constants) directly. For if 
t > 0, we may choose Un so that 1 - F(un) = tin simply by taking 

t 
Un = -log - = -log t + log n, 

n 
so that by Theorem 1.5.1, 

P{Mn::;; -log t + log n} --+ e- t • 

By writing t = e- x , we obtain (1.7.1) with 

bn = log n, G(x) = exp{ _e- X }. o 

Example 1.7.3 (Type I extreme value distribution itself). As previously 
noted, each extreme value distribution belongs to its own domain of attrac­
tion (Theorem 1.3.1). The constants are easily obtained using the max-stable 
property. If F(x) = exp( _e- X ), then 

P(x) = exp( _e-x+logn), 

so that 

P(x + log n) = F(x). 

By taking 

an = 1 and bn = log n, 

we have, for all n, 

P{an(Mn - bn) ::;; x} = P(x + log n) = F(x), 

so that the Type I limit holds with these constants. o 
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Example 1.7.4 (A monotone transformation (lognormal) of the normal 
distribution). If f is a monotone increasing function and ~; = f(~i)' then 
clearly 

If gi} is any i.i.d. sequence such that (1.7.1) holds, we have 

P{Mn :::;; :n + bn} -+ G(x) 

so that 

P{M~ :::;; f(:n + bn)} -+ G(x). 

In some cases, f may be expanded and linear terms only retained to give the 
same limiting dJ. G for M~ (with changed constants, e.g. a~ = aJ f'(bn), 

b~ = f(bn». For example, if the ~i are normal, then an, bn are given by (1.7.2) 
above. Taking f(x) = eX, we obtain lognormal ~; and 

P{M~:::;; exp(~ + bn)} -+ G(x) = exp( _e- X ), 

giving 

p{e-bnM~ :::;; 1 + :n + o(:)} -+ G(x), 

from which it follows (since an -+ (0) that 

P{ane-bn(M~ - ebn) :::;; x} -+ G(x), 

so that M~ has the Type I limit with the constants 

o 
The above Type I examples have all involved cases where the distributions 

have infinite upper endpoints, i.e. XF = 00. It is easy to construct cases 
where the Type I distribution occurs with XF < 00, as the following example 
shows. 

Example 1.7.5 (F(x) = 1 - el /x for x < 0, F(x) = 1 for x ~ 0). By Theorem 
1.5.1, if {un} is such that ne l /un -+ or > 0, it follows that 

P{Mn :::;; un} -+ e- t • 

By writing or = e- x (- 00 < x < (0) and taking Un = (log or - log n)-l, it 
follows that 
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from which it is readily checked that 

p{OOg n)2[ Mn + 10~ nJ :s; x + 0(1)} -+ exp( _e- X ), 

giving a Type I limit with 

an = (log n)2, o 
Turning now to Type II cases in the next examples, we see first that it is 

very simple to "manufacture" such cases by using the criterion of Theorem 
1.6.2. 

Example 1.7.6 (Pareto distribution). Let F(x) = 1 - Kx-~, Q( > 0, K > 0, 
x 2:: K1/~. Then (1 - F(tx»/(l - F(t» = x-~ for each x > 0, when t is 
sufficiently large so that Theorem 1.6.2 shows that a Type II limit applies. 
Indeed, for Un = (Knl.)1/~ we have 1 - F(un) = .In, so that Theorem 1.5.1 
gives 

Putting. = x-~ for x 2:: 0, we have, on rearranging, 

P{(Kn)-1/~Mn :s; x} -+ exp( -x-~), 

so that a Type II limit holds with 

D 

Example 1.7.7 (Type II extreme value distribution). As with the Type I case, 
we know from Theorem 1.3.1 that a Type II dJ. 

F(x) = {exp( -x-~), x 2:: 0, 
0, x < 0, 

Q( > 0, 

belongs to its own domain of attraction. Since clearly Fn(n1/~x) = F(x), 

it follows that 

P{n-1/~Mn :s; x} = F(x) 

for all n, and hence the Type II limit holds with 

o 

Example 1.7.8 (Cauchy distribution). For the standard Cauchy distribution, 

1 
F(x) = i + -tan- 1 x 

n 

so that 

1 - F(tx) nl2 - tan -1 tx 

1 - F(t) = nl2 - tan 1 t . 
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But it is readily checked (e.g. by wntmg tan -1 t = nl2 - 8) that 
limt~ 00 t(nl2 - tan -1 t) = lim6~o 8 cot 8 = 1 with the same limit when t is 
replaced by tx, so that (1 - F(tx))/{l - F(t)) ~ x- 1 as t ~ 00, demon­
strating that a Type II limit applies by Theorem 1.6.2. We may simply 
obtain the constants from Corollary 1.6.3 as an = Y;; 1, bn = 0, where 1 -
F(Yn) = lin, from which Yn = tan(nl2 - nln) = cot nln. Hence appropriate 
constants are 

1 n n 
an = Y;; = tan - ~ -, 

n n 
o 

For Type III cases, the distribution must, by Theorem 1.6.2, have a finite 
upper endpoint X F • The simplest such example is the uniform distribution, as 
we now see. 

Example 1.7.9 (Uniform distribution on (0, 1)). Here F(x) = x, ° ~ x ~ 1. 
For T > ° and Un = 1 - Tin, we have 1 - F(un) = Tin for n ~ T, so that by 
Theorem 1.5.1, 

P{Mn ~ 1-~}~e-t. 
Hence for x < ° and T = -x we have 

P{n(Mn - 1) ~ x} ~ eX, 

which shows a Type III limit with (J. = 1, 

o 
The uniform distribution is a particular case of the following obvious 

class of distributions with Type III limit. 

Example 1.7.10. (Polynomial growth at a finite endpoint). Let XF < 00, 

K > 0, and 

F(x) = 1 - K(XF - x)" 

It follows at once from Theorem 1.6.2 that a Type III limit exp( -( _x)a) 
holds and, directly as in Example 1.7.9 or by Corollary 1.6.3, that we may 
take 

o 
Since the asymptotic behaviour of the tail 1 - F(x) determines which 

(if any) domain of attraction adJ. F belongs to, one may get a different 
limiting type, or none at all, by truncating F on the right-regardless of its 
form left of the truncation point. This is illustrated by the following simple 
example. 

Example 1.7.11 (Truncated exponential distribution). We saw in Example 
1. 7.2 that an exponential distribution on (0, 00) belongs to the Type I domain 
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of attraction. If we truncate at a finite value XF' writing F(x) = K(l - e- X ) 

for 0 ::::;; x ::::;; XF (with K = (1 - e-XF)-l), it is readily seen from Theorem 
1.5.1, writing -r = -x, for x < 0, that 

giving a Type III limit with 

n 

Example 1.7.12. (Type III extreme value dJ.). Here 

F(x) = {exp{ -( -x)~}, x::::;; 0, 
1, x> O. 

r.x >0, 

As in the Type I and II cases, F belongs to its own domain of attraction. 
Also, for each n, Fn(n-l/~X) = F(x) so that 

P{nl/~Mn ::::;; x} = F(x) 

for all n, demonstrating the Type III limit with 

o 

These examples illustrate the complete range of possibilities for limiting 
distributions. The constants bn may-as expected-take positive, negative, 
or zero values according to the particular cases involved. One might feel 
that the (strictly positive) scaling constants an should either tend (universally) 
to infinity or (universally) to zero. However, it is interesting to note that both 
such limits may occur, as well as other cases, such as that in Example 1.7.2 
where an is constant. 

We turn now to consider cases in which nondegenerate limiting distribu­
tions for the maximum do not exist under any linear normalization. As noted 
in Section 1.4, this is certainly the case ifthe common dJ. F of the members of 
the i.i.d. sequence {en} has a finite right endpoint XF and a jump at that 
point. Indeed, Corollary 1.5.2 shows that then if for any sequence {un}, 
P{Mn ::::;; Un} - p, then p is either zero or one. 

A perhaps more common situation in which this same result applies 
occurs for certain discrete distributions (such as the Poisson and geometric), 
as we shall now see from the following theorem. 

Theorem 1.7.13. Let {en} be an i.i.d. sequence of r.v.'s with common df F. 
Then, if 0 < -r < 00, there exists a sequence {un} satisfying (1.5.1) (i.e. 1 -
F(un) ,..., -rln) if and only if 

1 - F(x) _ 1 (1 73) 
I-F(x-) asx-xF , •• 
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or equivalently, if and only if 

p(X) -+ 0, 
1 - F(x-) 

(1.7.4) 

where p(x) = F(x) - F(x-). 
Hence, by Theorem 1.5.1, if 0 < p < 1, there is a sequence {un} such that 

P{Mn ::;; un} -+ P if and only if(1.7.3) (or (1.7.4» holds. For p = 0 or 1, such a 
sequence may always be found. 

PROOF. We suppose that (1.5.1) holds for some t, 0 < t < 00 but that, say 
(1.7.4), does not. Then there exists e > 0 and a sequence {xn} such that 
Xn -+ X F and 

(1.7.5) 

Now choose a sequence of integers {nj} so that 1 - t/nj is "close" to the 
midpoint of the jump of Fat Xj' i.e. such that 

1 _ ~ < F(xj-) + F(x) < 1 __ t_ 

nj - 2 - nj + 1· 

Clearly we have either 

(i) unj < Xj for infinitely many values ofj, or 
(ii) unj ~ Xj for infinitely many j-values. 

If alternative (i) holds, then for such j, 

nj{l - F(un) ~ nj{l - F(xj -». 

Now, clearly 

(1.7.6) 

n)1 - F(xj-» = t + n{ (1 - :) - F(xj ) +/(Xj -) + p~j)J 

by (1.7.5) so that 

> t + njp(x) _ n.(~ __ t_) 
- 2 J nj nj + 1 

t 
~ t + en·(1 - F(x.-» - --

J J n. + 1 
J 

t 
(l - e)nj(1 - F(xj-» ~ t - --1. 

nj + 
Since clearly nj -+ 00, it follows that (since 0 < t < 00 by assumption) 

lim sup n/1 - F(xj-» > t, 
j-+ 00 

and hence by (1.7.6), 

lim sup np - F(un) > t, 
j-+ 00 
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which contradicts (1.5.1). The calculations in case (ii) (unj ~ Xj for infinitely 
many j) are very similar, with only the obvious changes. 

Conversely, suppose that (1.7.3) holds and let {un} be any sequence 
such that F(un - ) :::;; 1 - r:/n :::;; F(un) (e.g. un = F- 1(1 - r:/n)), from which 
a simple rearrangement yields 

1 - F(un) 
1 _ F(un _ ) r: :::;; n(1 - F(un)) :::;; r: 

from which (1.5.1) follows since clearly Un --+ XF as n --+ 00. o 

It is of interest to note from the theorem that the existence of a sequence 
{un} such that (1.5.1) holds for some r:, 0 < r: < 00 (or such that P{Mn :::;; 
un} --+ p for some p, 0 < p < 1) implies the existence of such a sequence for 
every such r: (or p). 

If the r.v.'s {en} are integer valued, and XF = 00, (1.7.3) becomes 
(1 - F(n))/(l - F(n - 1)) --+ 1 as n --+ 00, whereas (1.7.4) is just 
Pn/(l - F(n - 1)) --+ 0 where Pn = p{el = n}. If either of these two (equi­
valent) conditions is violated, it follows at once (writing Un = x/an + bn) 
that there can be no nondegenerate limit for Mn. In particular, the Poisson 
and geometric distributions are examples of such cases, as we now see. 

Example 1.7.14 (Poisson distribution). In this case, Pr = e-).Ar/r! for A> 0, 
r = 0, 1, 2, ... , so that 

Pn An/n! 
00 Ar 
I-
r=n r! 

1 - F(n - 1) 

1 
00 , • 

1 + I ~Ar-n 
r=n+l r ! 

The sum in the denominator may be rewritten as 

00 AS 00 (A)S A/n 
S~l (n + 1)(n + 2) ... (n + s) :::;; S~l n = 1 - A/n 

(when n > A) and thus tends to zero as n --+ 00 so that Pn/( 1 - F(n - 1)) --+ 1. 
Hence Theorem 1.7.13 shows that no limiting distribution exists and, 
indeed, that no limit of the form P{Mn :::;; un} --+ p exists other than for 
p = 0 or 1, whatever the sequence of constants {un}. 0 

Example 1.7.15 (Geometric distribution). Here Pr = (1 - p),-lp, 0 < P < 1, 
for r = 1, 2, ... so that 

Pn 
1 - F(n - 1) 00 

I(1_p),-l 
r=n 

=p, 
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which again shows that no limit P{Mn :::;;; un} --+ p exists except for p = 0 or 1 
and that there is no nondegenerate limiting distribution for the maximum in 
the geometric case. D 

Finally, we re-emphasize that the existence of a limit other than zero or 
one for P{Mn :::;;; un} (and, in particular, of nondegenerate limiting distribu­
tions) depends precisely on whether or not 1 - F(un) '" r:ln for some r:, 
0< r: < 00. If F is continuous, a sequence Un may be chosen (by taking 
Un = F- 1(1 - r:ln» for any given r:, and then such a limit exists (though not 
necessarily leading to a limiting nondegenerate dJ. for M n under linear 
normalization). 

If F is not continuous, the existence of any {un}-sequence satisfying 
1 - F(un) '" r:ln is not guaranteed and fails if the jumps continue to be so 
"large" that there is no number Un such that F(un) is a "good approximation 
to 1 - r:ln". Specifically it is necessary and sufficient for the existence of 
such a {un} - sequence that the jumps p(x) = F(x) - F(x -) satisfy (1.7.4), 
viz. p(x)/(1 - F(x-» --+ 0 as x --+ XF' i.e. Pn/(1 - F(n - 1» --+ 0 in the 
case of integer-valued r.v.'s. For positive integer-valued r.v.'s, this has the 
interesting interpretation as the convergence to zero of the "conditional 
failure" or "hazard" rate. For Pn/(1 - F(n - 1» is clearly the conditional 
probability P{~i = nl~i :2:: n} that the "lifetime" ~i of an item surviving 
to time n, will then terminate at n. Note that the hazard rate is actually the 
constant p for the geometric distribution considered, and converges to 1 in 
the Poisson case. 

1.8. Minima 

As noted, the minimum 

is simply given as 

mn = -max{ -~1"'" -~n} 

so that limiting results for minima can clearly be obtained from those for 
maxima. This will be useful below in obtaining the possible limiting distribu­
tions for minima. However, some rather obvious facts follow at least as 
simply directly, as is the case for the following analogue of Theorem 1.5.1. 

Theorem 1.S.1. Let {~n} be an i.i.d. sequence. Let 0 :::;;; 11 :::;;; 00 and suppose 
that {vn} is a sequence of real numbers such that 

(1.8.1) 
Then 

P{mn > vn} --+ e-~ as n --+ 00. (1.8.2) 

Conversely, if(1.8.2) holds for some 11, 0 :::;;; 11 :::;;; 00, then so does (1.8.1). 
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PROOF. This result is proved in an exactly analogous fashion to Theorem 1.5.1, 
simply noting that P{mn > vn} = (1 - F(vn»n. 0 

It is also easy to see that the events {Mn ~ un} and {mn > vn} are asymp­
totically independent (and hence so are the events {Mn ~ un}, {mn ~ Vn}) if 
the sequences {un}, {vn} satisfy (1.5.1) and (1.8.1), respectively. 

Theorem 1.8.2. Suppose that the sequences {un}, {vn} satisfy (1.5.1) and (1.8.1), 
respectively. Then 

(1.8.3) 

so that by Theorem 1.5.1, 

P{Mn ~ Un' ~ ~ Vn} = P{Mn ~ un} - P{Mn ~ Un' mn > Vn} 
~ e- f (1 - e-~). (1.8.4) 

Also by Theorems 1.5.1 and 1.8.1 we have P{Mn ~ Un' mn > Vn } -

P {M n ~ Un} P {mn > Vn } ~ 0, with the same relationship holding with {mn > vn} 
replaced by {mn ~ vn}. 

PROOF. The probability in (1.8.3) is just 

P{Vn < ~i ~ Un for i = 1,2, ... , n} = (F(un) - F(vn»" 
= {1 - F(vn) - (1 - F(un»}" 

if 0 ~ or, '1 < 00 so that the result follows. The cases where or or '1 is infinite 
are dealt with simply since if, e.g. or = 00, P{Mn ~ Un' mn > Vn} ~ 
P{Mn ~ Un} ~O. 0 

As a corollary, we find at once that if Mn, mn have limiting distributions 
under linear normalizations, then their limiting joint distribution is just the 
product of these. 

Theorem 1.8.3. Suppose for some constants {an> O}, {bn} and {ocn > O}, 
{l3n} and d.f.'s G, H, 

Then 

P{an(Mn - bn) ~ x} ~ G(x), 

P{ocn(mn - Pn) ~ x} ~ H(x). 

(1.8.5) 

(1.8.6) 

(1.8.7) 

PROOF. This follows from Theorem 1.8.2 by identifying Un' Vn with x/an + bn 
and y/ocn + Pn, or, '1 with -log G(x) and -log(1 - H(y», respectively. 0 
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The final question of this section concerns the nondegenerate distributions 
H which are possible in (1.8.6). As suggested above, these may be obtained 
from the known results for maxima given by the Extremal Types Theorem. 
The possible limiting laws form the class of min-stable distributions, i.e. 
are the d.f.'s F such that, for each n = 2, 3, ... , there are constants an > 0, 
bn such that 

(1.8.8) 

Theorem 1.8.4 (i) (Extremal Types for Minima). Let mn = min(~l' ~2"'" ~n)' 
where ~i are i.i.d. random variables. If for some constants IXn > ° and 
(3n, we have 

(1.8.9) 

for some nondegenerate H, then H is one of the three following extremal 
types for minima: 

Type I: H(x) = 1 - exp( _eX), -oo<x<oo; 

H(x) __ {1 - exp{ -( _X)-II}, IX> 0, 
Type II: 

1, 

Type III: H(x) = {o, 
1 - exp( _XII), IX > 0, 

x < 0, 
x ~ 0; 

x < 0, 
x ~ 0. 

(As with maxima, transformations ax + b (a > 0) of the argument are 
permittedfor each type.) 

(ii) The min-stable distributions are those given in (i) above. 

PROOF. (i) Suppose that (1.8.9) holds so that, writing 

M~ = max(-~l' -~2"'" -'n) = -mn, 

P{lXn(M~ + (3n) < x} = 1 - P{lXn(M~ + (3n) ~ x} 

= 1 - P{lXimn - (3n) ~ -x} 

--+ 1 - H( -x) = G(x), say, 

where convergence occurs at all points x of continuity of G. But for such x 
and e > ° such that G is also continuous at x + e, since 

P{lXiM~ + (3n) < x} ~ P{lXn(M~ + (3n) ~ x} ~ P{lXn(M~ + (3n) < x + e}, 

we have, letting n --+ 00 and then e --+ 0, 

P{lXn(M~ + (3n) ~ x} --+ G(x), 

so that G is one of the three (maximal) extreme value drs. Since 

H(x) = 1 - G( -x), 

the three forms listed above follow from the three possible forms for G 
given by the Extremal Types Theorem. 
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(ii) If F is min-stable and (1.8.8) holds, then the dJ. 

G(x) = lim 1 - F( -x - e) = 1 - F( -x-) 
• ~ 0 

satisfies 1 - F( -x) :::;; G(x) :::;; 1 - F( -x - e) for all e > 0, and hence 

G"(a"x - b,,) :::;; (1 - F( -a,,(x + e) + b,,»" = 1 - F( -x - e) :::;; G(x + e), 

and 

G"(a"x - b,,) ~ (1 - F( -a"x + b,,»" = 1 - F( -x) ~ G(x - e) 

for any e > 0. Since G(x) and G"(a"x - b,,) are right continuous it follows 
that G"(a"x - b,,) = G(x), so that G is max-stable and, by Theorem 1.4.1, 
is one of the three extreme value distributions for maxima. This proves 
~OO D 

Note that the Type III limit for minima is simply the Weibull distribu­
tion-containing the exponential as a special case when 0( = 1. Note also 
that since the dJ. of - ~i is clearly 1 - F( - x - ), the criteria for domains of 
attraction for maxima may be readily adapted for minima (replacing the 
"tail" 1 - F(x) by F( - x -) or, indeed, by F( - x». The condition for a 
Type II limit, for example, then reads (for a distribution F which is not 
bounded on the left): 

1· F(tx) -IX 
1m --=X , 

1--00 F(t) 
0( > 0, for each x > 0, 

with corresponding modifications in the other cases. 



CHAPTER 2 

Exceedances of Levels and kth 
Largest Maxima 

In this chapter, we investigate properties of the exceedances of levels {un} 
by ~1' ~2"'" i.e. the points i for which ~i > Un' and as consequences, obtain 
limiting distributional results for the kth largest value among ~1"'" ~n' 
In particular, when the familiar assumption n(l - F(un)) -+ t (0 < t < 00) 
holds (Equation (1.5.1)), it will be shown that the exceedances take on a 
Poisson character as n becomes large. This leads to the limiting distributions 
for the kth largest values for any fixed rank k = 1, 2, ... (the kth "extreme 
order statistics") and to their limiting joint distributions. 

It is obviously of interest to gain some sense of how fast the convergence 
properties ofthis chapter and Chapter 1 take place, and questions of this kind 
will be discussed in Section 2.4. 

For our purposes, the Poisson results arising from (1.5.1) are of most 
interest -especially in dependent cases to be considered in subsequent 
chapters. However, we also briefly indicate other cases (when t = 00) 
leading to normal distributions for numbers of exceedances, and thence to 
limiting distributions for kth largest values when the rank k = kn may de­
pend on the sample size n. 

2.1. Poisson Properties of Exceedances 

We now look at the choice of Un which makes (1.5.1) hold in a slightly 
different light. Let us regard Un as a "level" (typically becoming higher with n) 
and say that an exceedance of the level Un by the sequence occurs at "time" i 
if ~i > Un' The probability of such an exceedance is clearly 1 - F(un), and 
hence the mean number of exceedances by ~1"'" ~n is n(l - F(un)) -+ t. 
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That is, the choice of Un is made so that the mean number of exceedances by 
~1"'" ~n is approximately constant. We shall pursue this theme further now 
in developing Poisson properties of the exceedances. In the following, Sn 
will denote the number of exceedances of a level Un by ~ l' ... , ~n' 

Theorem 2.1.1. If {~n} is an i.i.d. sequence, 0 ::; r ::; 00, and if {un} satisfies 
(1.5.1), i.e. n(1 - F(un» -+ r, thenfor k = 0, 1,2, ... , 

k rS 
P{Sn ::; k} -+ e- t L , (2.1.1) 

s=O s. 
(the right-hand side being taken as zero when r = 00). 

Conversely, if (2.1.1) holds for anyone fixed k, then (1.5.1) holds (and 
(2.1.1) thus holdsfor all k). 

PROOF. We shall show that if Sn is any binomial r.v. with parameters n, Pn' 
and 0 ::; r ::; 00, then (2.1.1) holds if and only if npn -+ r. The result will then 
follow in this particular case, with Pn = 1 - F(un). 

If Sn is binomial and npn -+ r, then (2.1.1) follows at once from the standard 
Poisson limit for the binomial distribution when 0 < r < 00, and simply 
when r = 0 since then P{Sn ::; k} ~ P{Sn = O} = (1 - Pn)" = (1 - 0(1/n»n 
so that P{Sn ::; k} -+ 1. When r = 00, we have, for any f) > 0, 

k ( ) (f))S( f))n-s 
P{Sn ::; k} ::; s~o: n' 1 - n 

when npn ~ f) (the right-hand side being decreasing in f), so that 
. k ~ 

lIm sup P{Sn ::; k} ::; e- 9 I ., -+ 0 as f) -+ 00, 
n-oo s=o s. 

giving limn~oo P{Sn ::; k} = O. 
Conversely, if (2.1.1) holds for some k but npn .;.. r, there exists r' "# r, 

o ::; r' ::; 00, and a subsequence {nd such that nlPn, -+ r'. The same argument 
as above shows that P{Sn, ::; k} -+ e- t ' L~=o r'S/s! as 1-+ 00, which contra­
dicts (2.1.1) since the function e -x L~= 0 x Sis! is strictly decreasing in 
o ::; x ::; 00. 0 

Note that if the "time scale" is changed by a factor of n so that when 
~i > Un' an exceedance is plotted at iln (rather than at i), Sn is then the number 
of such plotted exceedances in the unit interval (0, 1] and has a limiting 
Poisson distribution. Similarly, the number plotted in any (bounded) set B 
has a limiting Poisson distribution, and the numbers in two or more disjoint 
sets are clearly independent. This suggests that the exceedances of Un' if 
plotted at points iln rather than at i, behave like a Poisson process on the 
positive real line when n is large. This is pointed out now for its interest, but 
will be taken up much more explicitly in subsequent chapters, for dependent 
cases. 

Note also that it would be natural to say that an upcrossing of Un occurs at i 
if ~i ::; Un < ~i+1' Then the random variable Sn used above is asymptotically 
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the same as the number of upcrossings of the level Un between 1 and n. Thus 
we may obtain a Poisson limit for the number of such upcrossings. Such 
Poisson properties of upcrossings will play an important role when we 
consider continuous time processes. 

2.2. Asymptotic Distribution of kth Largest Values 

Write, now and subsequently, M~k) for the kth largest among ~1"'" ~n and, 
as above, Sn for the number of ~ 1, ••• , ~n which exceed Un' It is readily checked 
that the events {M~) ::; un}, {Sn < k} are identical since, if the former occurs, 
the kth largest of ~l' ..• , ~n does not exceed Un' and hence no more than 
k - 1 or ~l' ... , ~n exceeds Un' so that Sn < k and vice versa. Thus 

(2.2.1) 

By using this relationship, Theorem 2.1.1 may be immediately restated as 
follows. 

Theorem 2.2.1. Let {~n} be an i.i.d. sequence. If {un} satisfies (1.5.1) for some 
" 0 ::; , ::; 00, then 

k = 1,2, .... 

k-l ,S 
p{M(k) < U } --+ e- t " -

n - n L..,' s=o s. 
(2.2.2) 

Conversely, if (2.2.2) holds for some fixed k, then (1.5.1) holds and so does 
(2.2.2) for all k = 1, 2, .... 

We may further restate this result to give the asymptotic distribution of 
M~k) in terms of that for Mn (=M~l»). 

Theorem 2.2.2. Suppose that 

P{an(Mn - bn) ::; x} ~ G(x) (2.2.3) 

for some nondegenerate (and hence Type I, II, or III) d,[. G. Then, for each 
k = 1,2, ... , 

(2.2.4) 

where G(x) > 0 (and zero where G(x) = 0). 
Conversely, if for some fixed k, 

P{an(M~k) - bn) ::; x} ~ H(x) (2.2.5) 

for some nondegenerate H, then H(x) must be of the form on the right-hand 
side of (2.2.4), where (2.2.3) holds with the same G, an, bn . (Hence (2.2.4) holds 
for all k.) 



34 2. Exceedances of Levels and kth Largest Maxima 

PROOF. If (2.2.3) holds, then (2.2.2) holds with k = 1, 'l' = -log G(x) :s 00, so 
that by Theorem 2.2.1, (2.2.2) holds for all k, i.e. (2.2.4) follows. 

Conversely, if (2.2.5) holds for some fixed k and x is given, we may clearly 
find 'l', 0 :s 'l' :s 00, such that 

since this function decreases continuously from 1 to 0 as 'l' increases. Thus 
(2.2.2) holds for this k and hence, by Theorem 2.2.1, for all k including k = 1, 
which gives (2.2.3) with G(x) = e- f (nondegeneracy of G being clear). 0 

We see that for i.i.d. random variables any limiting distribution of the 
kth largest, M~k), has the form (2.2.4) based on the same dJ. G as applied to 
the maximum, and moreover, that the normalizing constants are the same 
for all k including k = 1 (the maximum itself). Thus we have a complete 
description of the possible nondegenerate limiting laws. 

2.3. Joint Asymptotic Distribution of the 
Largest Maxima 

The asymptotic distribution of the kth largest maximum was obtained above 
by considering the number of exceedances of a level u" by c; 1> ••• , c;". Similar 
arguments can, and will presently, be adapted to prove convergence of the 
joint distribution of several large maxima. 

Let the levels U~l) ~ ••• ~ u~) satisfy 

(2.3.1) 

n (1 - F(u~») -+ 'l'r' 

where O:s 'l'l :s 'l'2 :::.;;; ••• :::.;;; 'l'r :S 00, and define S~k) to be the number of 
exceedances of U~k) by c; 1> ••• , c;". 

Theorem 2.3.1. Suppose that {~"} is an i.i.d. sequence and that {U~k)}, 
k = 1, ... , r, satisfy (2.3.1). Then, for k1 ~ 0, ... , kr ~ 0, 

P{S(1) - k S(2) - k + k sIr) - k + ... + k } 
" - l' " - 1 2""," - 1 r 

(2.3.2) 
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as n --+ 00 (the right-hand side being interpreted as zero if rr = 00, regardless 
of whether any other ri = (0). 

PROOF. Writing Pn,k = 1 - F(U~k») for the probability that ~l exceeds U~k), 
it is easy to see that the left-hand side of (2.3.2) equals 

(2.3.3) 

for 2 ~ I ~ r, and that 

(1 )n-kl - ... -kr - tr 
- Pn,r --+ e , 

and thus (2.3.2) is an immediate consequence of (2.3.1) and (2.3.3) when rn 
and hence all r i , are finite. On the other hand, if rr = 00, (2.3.2) does not 
exceed P{S~) = kl + ... + kr}, which tends to zero by Theorem 2.1.1, so 
that again (2.3.2) holds. 0 

Clearly, reasoning as in (2.2.1), 

P{M~l) ~ u~l), . .. , M~) ~ u~)} 

= P{S(l) = 0 S(2) < 1 SIr) < r - 1} n 'n - , ••. , n - , (2.3.4) 

and thus the joint asymptotic distribution of the r largest maxima can be 
obtained directly from Theorem 2.3.1. In particular, if the distribution of 
an(M~l) - bn) converges, then it follows not only that an(M~k) - bn) converges 
in distribution for k = 2, 3, ... as was seen above, but also that the joint 
distribution of an(M~l) - bn), ... ,an(M~) - bn) converges. This is, of course, 
completely straightforward, but since the form of the limiting distribution 
becomes somewhat complicated if more than two maxima are considered, we 
state the result only for the two largest maxima. 
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Theorem 2.3.2. Suppose that 

P{an(M~l) - bn) :::;; x} ~ G(x) (2.3.5) 

for some nondegenerate (and hence Type I, I I, or I I I) df. G. Then, for Xl> X2' 

P{a,,(M~l) - b,,) :::;; Xl' a,,(M~2) - b,,) :::;; X2} 

~ G(x2){log G(x1) - log G(X2) + I}, 

when G(X2) > 0 (and to zero when G(X2) = 0). 

PROOF. We have to prove that 

p{M~l) :::;; U~l), M~2) :::;; U~2)} 

(2.3.6) 

converges if U~l) = xda" + b" and U~2) = x2/a" + b". If (2.3.5) holds, then 
by Theorem 1.5.1, n(l - F(U~l») -+ 1:1' n(1 - F(u~2») -+ 1:2' where 1:1 = 
-log G(Xl)' 1:2 = -log G(X2)(0 :::;; 1:1 :::;; 1:2 :::;; (0). Hence, by Theorem 2.3.1, 

P{S~l) = 0, S~2) :::;; I} 

= P{S~l) = 0, S~2) = O} + P{S~l) = 0, S~2) = I} 

-+ e- f2 + (1:2 - 1:t)e- f2 = e- t2(1:2 - 1:1 + 1), 

which by (2.3.4) proves (2.3.6). 

2.4. Rate of Convergence 

o 

Every convergence result is accompanied by the question of rate of con­
vergence. We shall in this section examine the basic limit theorems for 
maxima (Theorems 1.4.2, 1.5.1, 1.5.3), the Poisson limit theorem (Theorem 
2.1.1), and the convergence theorems for kth maxima (Theorems 2.2.1 and 
2.2.2) from this point of view. Let {u,,} be a sequence oflevels, where Un may 
or may not be one of a family u" = u,,(x) = x/an + b", and let as before F be 
the common dJ. of the i.i.d. sequence ~ 1, ~2" ... If {u,,} satisfies the hypothesis 
of Theorem 1.5.1, i.e. if n(l - F(u,,» -+ 1:, then, writing 1:" = n(l - F(u,,», 

P{M" :::;; un} = (1 - ~r -+ e- t • (2.4.1) 

If the dJ. F is continuous, one can always obtain equality in (2.4.1) for any 
1:, n (by taking Un = F- 1(e- t !,,», but often {u,,} will be determined by other 
considerations, e.g. it may be of the form u,,(x) = x/a" + bn, in which case 
it is not possible to have (1 - 1:nCx)/n)" == e-t(x), for 1:,,(x) = n(l - F(u,,(x»), 
unless F is max-stable. 
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It is instructive to consider separately the two approximations 

(2.4.2) 

and 

(2.4.3) 

which together make up (2.4.1). As will be seen shortly, there is a quite 
satisfying uniform bound of the order l/n on the approximation in (2.4.2). 
As for (2.4.3), a Taylor expansion gives a precise pointwise estimate of the 
approximation, but unfortunately it does not seem possible to find a useful 
uniform bound on (2.4.3) for 1:n = 1:ix), 1: = 1:(x), - 00 < x < 00. The 
essential part of proving these results is contained in the following lemma. 

Lemma 2.4.1. (i) If 0 ~ x ~ n then 

O<e-x - 1-- <--.--( X)R x2e- x 1 
- n - 2 n-1 

2 -2 1 < e .--
- n-1 

1 
~ 0.3 . n _ 1 for n = 1, 2, ... , 

and further 

e - x _ (1 _ ~ r = x
2 ~ - x ~ (1 + 0 (~) ) 

uniformly for x in bounded intervals. 
(ii) If x - y ~ log 2 then 

as n ~ 00, 

e-Y - e- X = e-X{(x - y) + O(x _ y)2}, 

with 0 < 0 < 1. 

(2.4.4) 

(2.4.5) 

(2.4.6) 

PROOF. (i) The first inequality in (2.4.4) is an immediate consequence of the 
inequality e - xln ~ 1 - x/n, and since the third and fourth inequalities are 
obvious only the second one remains to be established. We shall instead 
prove the equivalent inequality 

x2 (x)n o ~ 2(n _ 1) - 1 + eX 1 - n = f(x), say. (2.4.7) 

Now, 
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and the expression within brackets assumes its minimum in [0, nJ for x = 1. 
Since 1 - e(1 - l/n)" ~ 0 according to the first inequality in (2.4.4), this 
shows thatf'(x) ~ 0 for 0 :s; x :s; n, and sinceJ(O) = 0, (2.4.7) follows. 

Next, let J,,(x) = 1 - exp{x + n 10g(1 - x/n)}. It is then straightforward 
to check that J,,(O) = J~(O) = 0, J:(O) = l/n, and that J;'(x) = O(1/n2), 
uniformly for x in bounded intervals. Hence, Taylor expansion gives that 

e- X - (1 - ~r = J,,(x)e- X = X2~-X ~ (1 + O(~)), 
uniformly for x in bounded intervals, which proves (2.4.5). 

(ii) Again, by Taylor's formula, 
-y -x -X{ x-y 1} e -e =e e -

= e-X{x - y + -!{x _ y)2eO'(x-Yl}, 

with 0 < 0' < 1, which proves (2.4.6) since 0 < exp{O'(x - y)}/2 < 1 for 
x - y :s; log 2. D 

First-order bounds on the rate of convergence now follow simply. The 
reader is also referred to Dziubdziela (1978) and Galambos (1978) for 
related results. 

Theorem 2.4.2. Let {~,,} be an i.i.d. sequence, put T" = n(l - F(u,,», and write 

so that 

Then 

T2 e- tn 1 1 
0< -8 <-"--·--<03·--- ,,- 2 n-1-' n-1' 

where the first bound is asymptotically sharp, in the sense that if T" -. T then 
8" '" -('C2e- t/2)jn. Furthermore,for 'C - 'C" :s; log 2, 

8~ = e-t{('C - T,,) + O('C - 'C,,)2}, 

with 0 < (J < 1. 

PROOF. Since P{M" :s; u,,} = (1 - 'C,,/n)" this follows at once from Lemma 
2.4.1, after noting that 0 ~ T" = n(l - F(u,,» ~ n. D 

If 'C" -. 'C, so that (2.4.1) holds, for u" = u,,(x) = x/a" + b", 'C" = 'C,,(x), 
'C = 'C(x), then by Theorem 1.2.3, (2.4.1) holds also if a" and b" are replaced by 
different constants (x" and P" such that (X"/a,, -. 1, (P" - b,,)an -. O. However, 
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the speed of convergence to zero of A~ (and thus of P{Mn :s; Un} to e- t ) clearly 
can be quite different for different choices of the constants, and one may be 
interested in finding good choices of an and bn from this point of view. 
Further, even if the "best" an's and bn's are used the rates of convergence can 
be completely different for different distributions. 

As was noted already by Fisher and Tippett, extremes from the normal 
distribution converge remarkably slowly to their limiting form. In fact, for 
an and bn as in Theorem 1.5.3, and with Un = un(x) = x/an + bn, we have 

u2 
; = X + log n - log (2 log n)1/2 

1 12- (log log n )2 
- ogy,41t + 16 log n 

o«log log n)2) 
+ I ' ogn 

and hence, using 

4J(x) (1 - x- 2 ) :s; 1 - <I>(x) :s; 4J(x) for x ~ 0, 
x x 

n 1 1/2 
{210g n}1/2 . .j2n exp{ -x - log n + log(210g n) 

+ 10g.j2n - (log log n)2(16 log n)-l(l + o(l»} 

x (1 + 0eO~~O! n)) 
= e- x {1 - (log log n)2(1610g n)-I(l + o(l»}. 

Thus, for T(X) = e- x, 

( ) () e-x (log log n)2 
T x - Tn X ,..., 16 log n ' 

and hence, as the error An in Theorem 2.4.2 is of the order n - 1, for i.i.d. 
standard normal r.v.'s {en}, 

P{an(Mn - bn) :s; x} - exp( _e- X) 

exp( _e-X)e-X (log log n)2 

16 log n 
(2.4.8) 

so the convergence in Theorem 1.5.3 is extremely slow. Of course this might 
depend on the particular choice of an and bn used above. P. Hall (1979) 
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investigated this problem further, and by elementary, but rather complicated, 
calculations proved that if an and bn are chosen as solutions to 

(2.4.9) 

then 

_c_1_ < sup IP{aiMn - bn):::; x} - exp( _e-X)I :::; IC2 , (2.4.10) 
logn -oo<x< oo ogn 

for some strictly positive constants C1, C2 , with C2 :::; 3. He further proved 
that one cannot improve on this rate of convergence by choosing an and bn 

in some other way. Thus, even if the constants an and bn used in Theorem 
1.5.3 do not give the optimal rate of convergence, not very much can be gained 
by using different an and bn. 

Figures 2.4.1 and 2.4.2 illustrate the rate of convergence for normal r.v.'s. 
It can be seen that notwithstanding the slow rate of convergence, the dif­
ferences P{aiMn - bn) :::; x} - exp( _ e- X) are fairly small even for small n. 
The problem is just that the fit improves little with increasing n. This is 
explained by the form of the right-hand side of (2.4.8). The first factor, 
exp( -e- X )e - X jI6, is rather small, with a maximum of 0.023 for x = 0, 
while the second factor, (log log n)2jlog n, is virtually constant for moderate 
values of n. For example, for 102 :::; n :::; 1010 it varies between 0.43 and 0.54. 
Thus, the first-order approximation to P{an(Mn - bn) :::; x} - exp( _e- X) 
changes very little for n in this range, but on the other hand it is small (:::; O.ot 3). 
In fact, there is some improvement of the approximation for n increasing 
from, say, 103 to 106 , but this is due to higher-order effects. Further, for 
moderate values of n it does not make much difference in the maximal error 
whether one defines an, bn by (2.4.9) or as in Theorem 1.5.3. 

Next, we shall turn to the rate of convergence in Theorem 2.1.1, i.e. to the 
question of how well the distribution of Sn = Li'= 1 X{~,> u"} is approximated by 
a Poisson distribution with mean 't, where X is the indicator function, equal 
to 1 if the event within brackets occurs, and zero otherwise. 

(a) (b) 

-3 - 2 - I 0 2 3 4 5 -3 - 2 - 1 0 2 3 4 5 

Figure 2.4.1. Plot of exp( _ e- X ) (-) and of P{an(Mn - bn) S x} for n = 10 (---) 
and n = 103 (_ . -); (a) for an , bn given by (1.7.2), (b) for an, bn given by (2.4.9). 
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(a) (b) 
0.06 0.06 ., I . 

. \ 0.04 

\ I" .\ I \ 
. ...-." /0.02 .,. / 

I ------.:::-: I 
./ 

-3 3 4 5 -3 -2 -1 

Figure 2.4.2. Plot of (exp( -e- X )e- X jI6)(log log n)2jlog n (-) and of 

P{an(Mn - bn) ~ x} - exp( _e- X ) 
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.""., '-----
3 4 5 

for an, bn given by (1.7.2) (---) and as given by (2.4.9) (-.-); (a) n = 103, (b) n = 106 • 

Suppose X and Yare positive, integer-valued r.vo's. We then define the 
variation distance d between their d.fo's as 

1 <Xl 

d(X, Y) =:2 k~O IP{X = k} - P{Y = k}l· 

Clearly d(X, Y) ~ 0, with d(X, Y) = 0 if and only if X and Y have the same 
distribution, d(X, Y) = d(Y, X), and 

d(X, Z) ~ d(X, Y) + d(Y, Z), (2.4.11) 

so d is a metric on the space of distributions on the positive integers. Further, 
it is easily seen that d is a metric for convergence in distribution of positive, 
integer-valued r.vo's, i.e. d(Xn' X) -. 0 if and only if Xn tends to X in distribu­
tion. We shall use a simple and very elegant approach due to Serfting (1978) 
in deriving variation distance bounds for the convergence in Theorem 2.1.1. 
We first note some basic properties ofthe variation distance which are of use 
in the proofs below, and which also show the interest and usefulness of this 
distance. Clearly, for h denoting a real-valued function, 

d(X, Y) =! sup IE(h(X» - E(h(Y»I. (2.4.12) 
I hI:,;; 1 

Further, writing a+ = max(a, 0), a- = -min(a, 0), 
<Xl <Xl 

0= L (P{X = k} - P{Y = k}) = L (P{X = k} - pry = k})+ 
k=O k=O 

<Xl 

- L (P{X = k} - pry = k})-, 
k=O 

and hence 
<Xl 

d(X, Y) = L (P{X = k} - pry = k})+ 
k=O 

<Xl 

= L (P{X = k} - P{Y = k})-, 
k=O 
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from which it follows easily (e.g. taking A = {k; P{X = k} ~ P{Y = k}}), 
that 

d(X, Y) = supIP{XeA} - P{YeA}1 ~ sup IP{X < k} - P{Y < k}l, 
A k=1.2 .... 

(2.4.13) 
where the supremum is over all sets A of integers. We note in passing that 
since {M~k) ~ un} = {Sn < k} the latter inequality shows that variation 
bounds for Sn directly lead to corresponding bounds for M~k). 

It will be convenient to extend the notation by writing d(X, G) for the 
variation distance between the dJ. of X and the dJ. G and d(F, G) for the 
distance between the dJ.'s F and G. Further we shall denote the dJ. of a 
Poisson r.v. with mean < by P«) and that ofa binomialr.v. with parameters n 
and p by B(n, p). The following lemma is due to Serfling (1978). 

Lemma 2.4.3. (i) Suppose X and Yare defined on the same probability space. 
Then 

d(X, Y) ~ P(X #: Y). 

(ii) If X 1, ..• , Xn are mutually independent and Y1,.·., Y", similarly, are 
mutually independent, then 

d(t1 Xi' it1 Y;) ~ it1 d(X;, Y;). 

(iii) d(P«1)' P«2» ~ 1<1 - <21· 

(iv) d(B(n,~).p(T») ~ :2. 
PROOF. (i) follows easily from (2.4.13), since 

IP{XeA} - P{YeA}1 ~ P{XeA, Y¢A} 
+ P{X ¢ A, YeA} ~ P{X #: Y}. 

Next, suppose the hypothesis of (ii) is satisfied and let h be a function with 
I h(x) I ~ 1 for all x, so that by (2.4.12) IE(h(X1» - £(h(Y1»1/2 ~ d(Xl> Y1) 
and, similarly, IE(h(X 1 + k» - E(h(Y1 + k»1/2 ~ d(X 1, Y1) for k = 1,2, .... 
Thus, since X 1 is independent of X 2 and Y1 is independent of Y2 , 

IE(h(X 1 + X 2» - E(h(Yl + Y2))1 

2 

=!\ f {E(h(Xl + k»P{X2 = k} - E(h(Y1 + k»P{Y2 = k}} \ 
2 k=O 

1 <Xl 

~ - L IE(h(X1 + k» - E(h(Y1 + k»IP{X2 = k} 
2 k=O 

1 <Xl 

+ - L E(h(Y1 + k»IP{X2 = k} - P{Y2 = k}1 
2 k =0 

<Xl 1 <Xl 

~ L d(X1' Y1)P{X2 = k} +"2 L IP{X2 = k} - P{Y2 = k}1 
k=O k=O 

= d(X 1, Y1) + d(X 2, Y2)· 
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By (2.4.12) this proves that 

d(X1 + X 2, Y1 + Y2) ::;; d(X1' Y1) + d(X2' Y2), 

and the general case then follows by induction. 
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To prove (iii), suppose first 't 1 ~ 't 2, and let X and Y have independent 
Poisson distributions with means 't 1 - 't2 and 't2, respectively. Then by (i), 

d(P('t1), P('t2» = d(X + Y, Y) ::;; P{X > O} 
= 1 - exp{ -('t1 - 't2)} ::;; 't1 - 't2' 

The same argument for 't 1 < 't 2 concludes the proof of (iii). 
We shall first prove (iv) for n = 1. Let X be binomial with parameters 1 

and 't and let Y have a Poisson distribution with mean 'to Then 

IP{X = O} - pry = O} 1= e- t - 1 + 't, 

IP{X = 1} - pry = 1}1 = 't - re- t , 

ao 

L IP{X = k} - pry = k} 1= pry ~ 2} = 1 - e- t - re- t 

k=2 

and thus, using the definition of d. 

d(X, Y) = H2't - 2re- t ) = 't(1 - e- t ) ::;; 't2 • 

Next, let the r.v.'s X 1, •.• ,Xn , Y1, ••• , Y,. be mutually independent, with 
X 1, ..• , Xn binomial with parameters 1, 'tIn, and with Y1, .. ·, Y,. having 
Poisson distributions with means 'tIn. Then, by (ii), 

d(B(n, ~), P('t») = d(,± Xi' .± li) 
n 1=1 1=1 

i= 1 

o 

As in Theorem 2.4.2, the error in approximating the distribution of Sn, 
the number ofexceedances of Un by ~1"'" ~n' by a Poisson distribution with 
mean 't can be split up into two parts; the first error term is of the order lin 
and arises from approximating the binomial distribution of Sn by a Poisson 
distribution with mean 'tn' and the second part comes from replacing 'tn by 'to 

Theorem 2.4.4. Suppose {~n} is an i.i.d. sequence with df F, put 

'tn = n(l - F(un», 
and let Sn = Li'= 1 X{~;>un}' Then 

't2 

d(Sn, P('tn» ::;; -.!!. 
n 

and 
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PROOF. Since Sn is binomial with parameters nand 7:n/n, this follows from 
Lemma 2.4.3(iii) and (iv), and the fact that 

D 

Corollary 2.4.5. With hypothesis and notation as in Theorem 2.4.4, let M~k) be 
the kth largest among ~1" •• , ~n' Then 

and 

PROOF. These follow at once from the theorem and the relation {Sn < k} = 
{M~k) :s; un}, using (2.4.13). D 

By comparing the corollary with Theorem 2.4.2 it is seen that it gives the 
right order of convergence but that the constants in the bounds are too large. 

2.5. Increasing Ranks 

The results of Sections 2.2 and 2.3 apply to the kth largest M~k) of ~1' ~2'" ., ~n 
when k is fixed. We refer to this as the case offixed ranks (or extreme order 
statistics). It is also of interest to consider cases where k = kn -+ 00 as n -+ 00, 

and we shall call this the case of increasing ranks. Two particular rates of 
increase are of special interest: 

(i) kJn -+ () (0 < () < 1), which we shall call the case of central ranks; 
(ii) kn -+ 00 but kn/n -+ 0, which will be referred to as the intermediate rank 

case. 

For the consideration of fixed ranks, it was useful to define levels {un} 
satisfying (1.5.1), i.e. n(1 - F(un)) -+ 7:. In the case where kn -+ 00, we shall 
find that the appropriate restrictions are that nF(un)(1 - F(un)) -+ 00, and 
writing Pn = 1 - F(un), 

kn - nPn 
..,-------,:.:-~":-;-'" -+ 7: 
(nPn{l - Pn))1/2 

for a fixed constant 7:, or equivalently (as we shall see), 

kn - nPn 

(2.5.1) 

(2.5.2) 
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Theorem 1.5.1 now has the following counterpart (in which Sn is again 
the numbers of exceedances of a level Un by el' e2"'" en). 

Theorem 2.5.1. With the above notation, let kn ..... 00, write Pn = 1 - F(un), and 
suppose npil - Pn) ..... 00. If {un} satisfies (2.5.1), then 

(2.5.3) 

Conversely, if(2.5.3) holds so does (2.5.1). 
In the above statements, (2.5.1) can be replaced by the equivalent condition 

(2.5.2). 

PROOF. We may write Sn = L'1 Xi> where Xi = 1 or 0 according as ei > Un or 
ei ~ Un' The Xi are thus i.i.d. with P{Xi = I} = Pn = 1 - P{Xi = OJ. It 
follows from the Berry-Esseen bound that, for some constant C, 

which tends to zero since npn(1 - Pn) ..... 00. The main result follows since 

if and only if (kn - npn)/(npn(1 - Pn»1/2 ..... r (<I> and its inverse function both 
being continuous). 

Finally, that (2.5.1) implies (2.5.2) follows by writing 

kn = npn + r(npn{l - Pn»1/2(1 + 0(1» 

and noting that this implies kn ~ npn and (n - kn) '" n(1 - Pn). Similarly, 
(2.5.2) implies (2.5.1). D 

Corresponding to Theorems 2.2.1 and 2.2.2, we thus have the following 
results. 

Theorem 2.5.2. With the above notation, suppose that kn ..... 00, npil - Pn) ..... 00 

(Pn = 1 - F(un». If (2.5.1) or (2.5.2) holds, then 

p{M~kn) ::;; un} ..... <I>(r). (2.5.4) 

Conversely, if (2.5.4) holds so do (2.5.1) and (2.5.2). 

PROOF. If (2.5.1) holds, it also holds with kn replaced by kn - 1, so that by 
Theorem 2.5.1, 

P{Sn < kn} = P{Sn ~ kn - I} ..... <I>(r), 

and hence (2.5.4) follows from (2.2.1). The converse follows along the same 
lines. D 
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Theorem 2.5.3. Again, with the above notation, suppose that (2.5.1) or (2.5.2) 
holds with Un = un(x) = x/an + bn (r = rex»~ for some sequences {all> OJ, 
{bn}. Then 

(2.5.5) 

where H(x) = Cl>(r(x». Conversely, if (2.5.5) holds for some nondegenerate 
df. H, then we have H(x) = Cl>(r(x», where (2.5.1) and (2.5.2) hold with 
Un = x/an + bn, r = rex). 

2.6. Central Ranks 

The case of central ranks, where kn/n --. e (0 < e < 1), has been studied in 
Smirnov (1952). While we shall have little to say about this in later chapters, 
for the sake of completeness, a few basic facts for the i.i.d. sequence will be 
discussed here. First, we note that it is possible for two sequences {kn}, 

{k~} with lim kn/n = lim k~/n to lead to different nondegenerate limiting 
d.f.'s for M~kn), M~k~). Specifically, as shown in Smirnov (1952), we may have 
kn/n --. e, k~/n --. e and 

P{an(M~kn) - bn) :s; x} ~ H(x), 

P{a~(M~k~) - b~) :s; x} ~ H'(x), 

(2.6.1) 

(2.6.2) 

where an > 0, bn, a~ > 0, b~ are constants and H(x), H'(x) are nondegenerate 
d.f.'s of different type. However, this is not possible if 

(2.6.3) 

as the following result shows. 

Lemma 2.6.1. Suppose that (2.6.1) and (2.6.2) hold, where H, H' are non­
degenerate and kn, k~ both satisfy (2.6.3). Then Hand H' are of the same 
type, i.e. H'(x) = H(ax + b) for some a > 0, b. 

PROOF. If the terms of the i.i.d. sequence ~ 1, ~ 2, ... have d.f. F, then by Theorem 
2.5.3, 

kn - n(1 - F(x/an + bn» () 
(kn(l _ kn/n»1/2 --. r x , (2.6.4) 

where H(x) = Cl>(r(x». By (2.6.3), we then have 

r:. e - (1 - F(x/an + bn» () 
v n (13(1 _ 13»1/2 --. r x . 
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Again by (2.6.3), with kn replaced by k~, we must therefore have that (2.6.4) 
holds with k~ replacing kn' and hence by Theorem 2.5.3, that 

P{an(M~k~) - bn) S x} ~ <I>(r(x» = H(x). 

But if Hn is the dJ. of M~k~), this says that Hix/an + bn) ~ H(x), whereas also 
Hn(x/a~ + b~) ~ H'(x) by (2.6.2). Thus by Theorem 1.2.3, H and H' are of 
the same type, as required. D 

It turns out that, for sequences {kn} satisfying (2.6.3), just four forms of 
limiting distributions H satisfying (2.6.1) are possible for M~kn). For complete­
ness, we state this here as a theorem-and refer to Smirnov (1952) for proof. 

Theorem 2.6.2. If the central rank sequence {kn } satisfies (2.6.3), the only 
possible nondegenerate drs H for which (2.6.1) holds are 

1 H(x) _ {O, x < 0, 
. - <1>( cxa), x ~ 0, c > 0, (J. > 0; 

2. H(x) = {<I>( -clxn, x < 0, 
1, x ~ 0; 

c > 0, (J. > 0, 

3 H(x) = {<I>( -c1Ixn, x < 0, 
. <I>(c2 x"), X ~ 0, c1 > 0, c2 > 0, (J. > 0; 

{
O' x < -1, 

4. H(x) = t, -1 S x < 1, 

1, x ~ 1. 

It,may be noted that only the third of these distributional types is con­
tinuous-in contrast to the situation for the fixed rank cases. 

If the restriction (2.6.3) is removed, the situation becomes more compli­
cated, and the range of possible limit distributions is much larger. These 
questions, as well as domains of attraction, are discussed in two papers by 
Balkema and de Haan (1978a, b). 

2.7. Intermediate Ranks 

By an intermediate rank sequence, we mean a sequence {kn} such that kn ~ 00 

but kn = o(n). The general theory for increasing ranks applies, with some 
slight simplification. For example, we may rephrase (2.5.2) as 

Pn = ...!'. - r _n_ + 0 _n_ . k k I/2 (kI/2) 
n n n 
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The following result of Wu (1966) gives the possible normalized dJ.'s of 
M~kn) when kn is nondecreasing. 

Theorem 2.7.1. If ~1' ~2"" are U.d. and {kn} is a nondecreasing intermediate 
rank sequence, and if there are constants an > ° and bn such that 

P{an(M~kn) - bn) :::; x} ~ H(x) 

for a nondegenerate df. H, then H has one of the three forms 

1. H(x) = {<I>( -a log Ixl), x < 0, a> 0, 
1, x ~ 0; 

2. H(x) = {O, x:::; 0, 
<l>(a log x), x > 0; 

a> 0, 

3. H(x) = <l>(x), - 00 < x < 00. 

This theorem is rather satisfying, though it does not specify the domains of 
attraction of the three limiting forms. Some results in this direction have been 
obtained in Chibisov (1964), Smirnov (1967), and Wu (1966). However, 
these are highly dependent on the rank sequence {kn}. For example, a class of 
rank sequences {kn} such that kn ,.., 12nIJ (0 < f) < 1) are studied in Chibisov 
(1964). If F is any dJ., it is known that there is at most one pair of (1,0) such 
that F belongs to the domain of attraction of Type 1, and the same statement 
holds for Type 2. In addition, there are rank sequences such that only the 
normal law, Type 3, is a possible limit, and moreover, there are distributions 
attracted to it for every intermediate rank sequence {kn}. 

As for central ranks, we shall not be concerned with intermediate ranks for 
the dependent cases considered in the sequel. A reader interested in the be­
haviour of intermediate ranks for dependent sequences is referred to Watts 
(1977), (1980), Watts et al. (1982), and references in these works. 



PART II 

EXTREMAL PROPERTIES OF 
DEPENDENT SEQUENCES 

In Chapters 3-6, which comprise Part II, we focus on the effects of dependence 
among ~1' ••. , ~n' on the classical extremal results. For the most part it will 
be assumed that the ~'s, while dependent, are identically distributed, and in 
fact form a strictly stationary sequence. However, some important non­
stationary cases will also be briefly considered. 

The task of Chapter 3 is to generalize basic results concerning the maxi­
mum Mn, to apply to stationary sequences. As will be seen, the generalization 
follows in a rather complete way under certain natural restrictions limiting 
the dependence structure of the sequence. In particular, it is shown that 
under these restrictions the limit laws in such dependent cases are precisely 
the same as the classical ones, and indeed, in a given dependent case, that 
the same limiting law applies as would if the sequence were independent, with 
the same marginal distribution. Some results and examples of non-normal 
sequences where this is not true are also given. 

In Chapter 4 this theory is applied to the case of stationary normal se­
quences. It is found there that the dependence conditions required are 
satisfied under very weak restrictions on the covariances associated with 
the sequence. 

Chapter 5 is concerned with the topic of Chapter 2-namely, the proper­
ties of M~k), the kth largest of the ~i. The discussion is approached through 
a consideration of the "point process of exceedances of a level un" by the 
sequence ~ 1, ~ 2, .... This provides what we consider to be a helpful and 
illuminating viewpoint. In particular, a simple convergence theorem shows 
the Poisson nature of the exceedances of high levels, leading to the desired 
generalizations of the classical results for M~k). 

Two topics complementing the theory for normal sequences are dealt 
with in Chapter 6. In the first the previous extremal results are shown 



50 II. Extremal Properties of Dependent Sequences 

(appropriately modified) to apply to a class of nonstationary normal se­
quences. This, in particular, provides the asymptotic distribution of the 
maximum of a stationary normal sequence to which an appropriate trend, 
or seasonal component, has been added. The second topic concerns stationary 
normal sequences under very strong dependence. There is no complete 
theory for this case but a variety of different limiting results are exhibited. 



CHAPTER 3 

Maxima of Stationary Sequences 

In this chapter, we extend the classical extreme value theory of Chapter 1 to 
apply to a wide class of dependent (stationary) sequences. The stationary 
sequences involved will be those exhibiting a dependence structure which is 
not "too strong". Specifically, a distributional type of mixing condition­
weaker than the usual forms of dependence restriction such as strong 
mixing-will be used as a basic assumption in the development ofthe theory. 

3.1. Dependence Restrictions for 
Stationary Sequences 

There are various ways in which the notion of an i.i.d. sequence may be 
generalized by permitting dependence, or allowing the en to have different 
distributions, or both. For example, an obvious generalization is to consider 
a sequence which is Markov of some order. Though the consideration of 
Markov sequences can lead to fruitful results for extremes, it is not the direc­
tion we shall pursue here. 

We shall keep the assumption that the en have a common distribution; in 
fact, it will be natural to consider stationary sequences, i.e. sequences such 
that the distributions of (eil, ... , ejJ and (eh +m' ... , ejn+m) are identical for 
any choice of n,jl' ... ,jn, and m. Then we shall assume that the dependence 
between ei and ej falls off in some specified way as Ii - j I increases. This is 
different from the Markov property where, in essence, the past, {ei; i < n}, 
and the future, {ej;j > n}, are independent given the present, en. 
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The simplest example of the type of restriction we consider is that of 
m-dependence, which requires that ~i and ~j be actually independent if 
Ii - jl > m. 

A more commonly used dependence restriction of this type for stationary 
sequences is that of strong mixing (introduced first by Rosenblatt (1956». 
Specifically, the sequence {~n} is said to satisfy the strong mixing assumption 
ifthere is a function g(k), the "mixing function ", tending to zero as k -+ 00, 

and such that 

IP(A n B) - P(A)P(B) I < g(k) 

when AEg;(~l""'~p) and BEg;(~p+k+l,~p+k+2"") for any p and k; 
g;o denotes the IT-field generated by the indicated random variables. Thus 
when a sequence is mixing, any event A "based on the past up to time p" is 
"nearly independent" of any event B "based on the future from time 
p + k + 1 onwards" when k is large. Note that this mixing condition is 
uniform in the sense that g(k) does not depend on the particular A and B 
involved. 

The correlation between ~i and ~j is also a (partial) measure of their de­
pendence. Hence another dependence restriction of the same type is 
I Corr(~i' ~) I :$; g( Ii - j D, where g(k) --+ 0 as k -+ 00. Obviously such a 
restriction will be most useful if the ~n form a normal sequence. 

Various results from extreme value theory have been extended to apply 
under each of the more general restrictions mentioned above. For example, 
Watson (1954) generalized (1.5.2) to apply to m-dependent stationary se­
quences. Loynes (1965) considered quite a number of results (including 
(1.5.2) and the Extremal Types Theorem under the strong mixing assumption 
for stationary sequences. Berman (1964b) used some simple correlation 
restrictions to obtain (1.5.5) for stationary normal sequences. 

It is obvious that the results of Loynes (1965) and Berman (1964b) are re­
lated-similar methods being useful in each-but the precise connections 
are not immediately apparent, due to the different dependence restrictions 
used. Berman's correlation restrictions are very weak assumptions, leading 
to sharp results for normal sequences. The mixing condition used by Loynes, 
while being useful in many contexts, is obviously rather restrictive. In this 
chapter, we shall propose a much weaker condition of" mixing type ", which 
first appeared in Leadbetter (1974), and under which, for example, the results 
of Loynes (1965) will still be true. Further, this condition will be satisfied for 
stationary normal sequences under Berman's correlation conditions (as we 
shall see in the next chapter). Hence the relationships between the various 
results are clarified. 

3.2. Distributional Mixing 

In weakening the mixing condition, one notes that the events of interest in 
extreme value theory are typically those of the form {~i :$; u} or their inter-
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sections. For example, the event {Mn S u} is just {~1 S U, ~2 S u, ... , 
~n :5 u}. Hence one may be led to propose a condition like mixing but only 
required to hold for events of this type. For example, one such natural con­
dition would be the following, which we shall call Condition D. For brevity, 
we will write Fit ... du) for Fi1 ... in(u, ... ,u) if Fit ... in(X1, ... ,Xn) denotes the 
joint dJ. of ~il' •.• , ~in' 

The condition D will be said to hold if for any integers i1 < ... < ip and 
jl < ... < jp, for whichj1 - ip ~ I, and any real u, 

IFil ... ip.h ... jp'(u) - Fil ... ip(u)Fh ... jp,(u)1 :5 g(l), (3.2.1) 

where gel) ~ 0 as I ~ 00. 

We shall see that the Extremal Types Theorem-and a number of other 
results-hold under D. However, while D is a significant reduction of the 
requirements imposed by mixing, it is possible to do better yet. We shall 
consider a condition, to be called D(un), which will involve a requirement 
like (3.2.1) but applying only to a certain sequence of values {un} and not 
necessarily to all u-values. More precisely, if {un} is a given real sequence, we 
define the condition D(un) as follows. 

The condition D(un) will be said to hold if for any integers 

I :5 i1 < ... < ip < j1 < .,. < jp, :5 n 

for whichj1 - ip ~ I, we have 

IF . ... (u)-F. .(u)F . . (u)I<IX I 
It .•. 1p,}1 ... Jp' n It •.. lp n Jl ... Jp' n - n,' 

where IXn,ln --+ 0 as n --+ 00 for some sequence In = o(n). 

(3.2.2) 

The modifications of the condition D(un), indicated in the following 
lemma, are sometimes convenient. In the following [ ] denotes integer part. 

Lemma 3.2.1. (i) The IXn,1 appearing in D(un) may be taken to be nonincreasing 
in I for each n. 

(ii) For such IXn,l taken non increasing in I for each fixed n, the condition IXn,ln ~ 0 
as n ~ 00, In = o(n), may be rewritten as 

IXn,ln)'] ~ 0 for each A > O. (3.2.3) 

PROOF. For (i), we simply note that IXn,l may be replaced by the maximum of 
the left-hand side of (3.2.2) over all allowed choices of i's and j's to obtain a 
possibly smaller IXn,1 which is nonincreasing in I for each n and still satisfies 
IXn,ln --+ 0 as n ~ 00. 

For (ii), it is trivially seen that if IXn,ln --+ 0 for some In = o(n), then (3.2.3) 
holds. 
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The converse may be shown by noting that (3.2.3) implies the existence 
of an increasing sequence of constants mk such that O(II,[lIlk] < k - 1 for n ~ mk' 
If kll is defined by kll = r for m,. :::; n < m,+ 1, r ~ 1, then mk" :::; n so that 
O(II,[lIlk"] :::; k;;l --+ 0, and the sequence {III} may be taken to be {[n/kn]}. 0 

Strong mixing implies D, which in turn implies D(ull ) for any sequence 
{un}. Also, D(un) is satisfied, for appropriately chosen {un}, by stationary 
normal sequences under weak conditions, whereas strong mixing need not 
be. 

The following lemma demonstrates how the condition D(un) gives the 
"degree of independence" appropriate for the discussion of extremes in the 
subsequent sections. If E is any set of integers, M(E) will denote max {?;j ;j E E} 
(and, of course, M(E) = Mn if E = {I, ... , n}). It will be convenient to let 
an "interval" mean any finite set E of consecutive integers {jl'" . ,j2}' say; 
its length will be taken to be j2 - jl + 1. If F = {k1, ... , k2} is another in­
terval with kl > j2, we shall say that E and F are separated by kl - j2' 

Throughout, {?;n} will be a stationary sequence. 

Lemma 3.2.2. Suppose D(un) holds for some sequence {un}. Let n, r, and k be 
fixed integers and E 1, .•• , E, subintervals of {I, ... , n} such that Ei and E j are 
separated by at least k when i =F j. Then 

I P (01 {M(E j ) :::; Un}) - il P{M(Ej ) :::; Un} I :::; (r - I)O(II,k' 

PROOF. This is easily shown inductively. For brevity, write Aj = {M(EJ) :::; un}. 
Let Ej = {kj , ... , Ij}, where (by renumbering if necessary) kl :::; 11 < 
k2 :::; ... :::; I,. Then 

IP(A 1 nA2 ) - P(A1)P(A2) I = IFk, ... h,k2 ... 12(UII ) - Fk, ... ,,(uII)Fk2 ... 12(UII)1 
:::; O(lI,k 

since k2 - 11 ~ k. Similarly, 

IP(A 1 n A2 n A3) - P(A1)P(A2)P(A3)1 

:::; IP(A 1 n A2 n A3) - P(A1 n A2)P(A3)I + IP(A 1 n A2) 
- P(A 1)P(A2)IP(A3) 

:::; 20(II,k 

since El U E2 S; {kl' ... , 12} and k3 - 12 ~ k. Proceeding in this way, we 
obtain the result. 0 

This lemma thus shows a degree of independence for maxima on separated 
intervals, which will be basic to the proof of the Extremal Types Theorem 
for stationary sequences. 
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Our purpose in this section is to show that the Extremal Types Theorem 
applies also to stationary sequences under appropriate conditions. That is, 
if M n = max( ~ 1, ... , ~n) where {O is stationary, and if 

(3.3.1) 

for some constants {an> O}, {bn} and nondegenerate G, we wish to show 
(under conditions to be stated) that G is an extreme value distribution, or 
equivalently (by Theorem 1.4.1), that it is max-stable. By Theorem 1.3.1, 
this will follow if 

(3.3.2) 

for each k = 1, 2, .... Since the case k = 1 in (3.3.2) is just (3.3.1), it is suffi­
cient (as noted after Theorem 1.4.2) to show that if (3.3.2) holds for k = 1, 
then it also holds for k = 2, 3, .... This will clearly be the case if, for each 
k = 2,3, .... 

P {Mnk ::;; ~ + bnk } - pk {Mn ::;; ~ + bnk } ~ 0 (3.3.3) 
ank ank 

as n ~ 00. Hence it is sufficient to show that (3.3.3) holds to obtain the desired 
generalization of the Extremal Types Theorem. 

The method used is to divide the interval {I, ... , n} into k intervals of 
length [n/k] and use "approximate independence" of the maxima on each 
via Lemma 3.2.2 to give a result which implies (3.3.3). To apply Lemma 
3.2.2, we must shorten each of these intervals to separate them. This leads to 
the following construction-used, for example, in Loynes (1965) and given 
here in a slightly more general form for later use also. 

Let k be a fixed integer, and for any positive integer n, write n' = [n/k] 
(the integer part of n/k). Thus we have n'k ::;; n < (n' + l)k. Divide the first 
n' k integers into 2k consecutive intervals, as follows. For large n, let m be an 
integer, k < m < n', and write 

11 = {1,2, ... , n' - m}, It = {n' - m + 1, ... , n'}, 

12, I!, ... , I k> It being defined similarly, alternatively having length n' - m 
and m. Finally, write 

Ik+1 = {(k - 1)n' + m + 1, ... , kn'}, It+1= {kn' + 1, ... ,kn' + m}. 

(Note that Ik+ l' It+ 1 are defined differently from Ii' Ij for j ::;; k.) 
The main steps of the approximation are contained in the following 

lemma. These are, broadly, to show first that the" small" intervals Ij can 
be essentially disregarded and then to apply Lemma 3.2.2 to the (now separ­
ate) intervals 11 , ••• , Ik • In the following, {un} is any given sequence (not 
necessarily of the form x/an + bn). 
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Lemma 3.3.1. With the above notation, and assuming D(un) holds, 

(i) 0::; P (01 {M(I) ::; Un}) - P{Mn ::; Un} 

::; (k + 1)P{M(I1) ::; Un < M(IT)}, 

(ii) I P(01 {M(I) ::; Un}) - pk{M(I1) ::; Un} I ::; (k - l)lXn,m, 

(iii) Ipk{M(I1)::; Un} - pk{Mn' ::; un}1 ::; kP{M(I1)::; Un < M(IT)}. 

Hence, by combining (i), (ii), and (iii), 

IP{Mn ::; un} - pk{Mn' ::; Un} I::; (2k + 1)P{M(I1)::; Un < M(IT)} 
+ (k - l)lXn,m' (3.3.4) 

PROOF. The result (i) follows at once since n,= dM(I)::; uJ ::J {Mn::; un}, 
and their difference implies M(I) ::; Un < M(Ij) for somej ::; k, or otherwise 
~j ::; Un for 1 ::; j ::; kn' but ~j > Un for somej = kn' + 1, ... , k(n' + 1), which 
in turn implies M(Ik+ 1) ::; Un < M(It+ 1) (since m > k and hence k(n' + 1) 
< kn' + m). Since the probabilities of the events M(I) ::; Un < M(Ij) are 
independent of j by stationarity, (i) follows. 

The inequality (ii) follows from Lemma 3.2.2 with I j for E j , noting that 
P{M(I) ::; un} is independent ofj. 

To obtain (iii), we note that 

o ::; P{M(I1) ::; Un} - P{Mn' ::; Un} = P{M(I1) ::; Un < M(IT)}. 

The result then follows, writing y = P{M(I1) ::; Un} and x = P{Mn' ::; un}, 
from the obvious inequalities 

o ::; l - Xk ::; k(y - x) when 0 ::; x ::; y ::; 1. D 

We now dominate the right-hand side of (3.3.4) to obtain the desired 
approximation. 

Lemma 3.3.2. If D(un) holds, r ~ 1 is any fixed integer, and ifn ~ (2r + l)mk, 
then with the same notation as in Lemma 3.3.1, 

(3.3.5) 

It then follows from Lemma 3.3.1 that 

P{Mn ::; un} - pk{M[n/kJ ::; Un} --+ 0 as n --+ 00. (3.3.6) 

PROOF. Since n' ~ (2r + l)m, we may choose intervals E1 , •.. , En each of 
length m, from 11 = {1, 2, ... , n' - m}{n' = [n/k]), so that they are separated 
from each other and from IT by at least m (k < m < n' again). Then 

P{M(I1) ::; Un < M(IT)} ::; P (01 {M(Es) ::; Un}, {M(IT) > Un}) 

= P (01 {M(Es) ::; Un}) - P (01 {M(Es) ::; Un}, {M(IT) ::; Un}) . 
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By stationarity, P{M(Es) ::;; un} = P{M(I!) ::;; Un} = p, say, and by Lemma 
3.2.2, the two terms on the right differ from pr and pr+ 1 (in absolute magni­
tude) by no more than (r - l)cxn,m and rCXn,m' respectively. Hence 

P{M(Il) ::;; Un < M(If)} ::;; pr - pr+l + 2rcxn,m, 

from which (3.3.5) follows since pr - pr+ 1 ::;; 1/(r + 1), for 0 ::;; p ::;; 1. 
Finally by (3.3.4) and (3.3.5), taking m = In according to (3.2.2) (In = o(n», 

lim suPIP{Mn ::;; un} - pk{Mn· ::;; un}1 
n--+oo 

2k + 1 . 2k + 1 ::;; -- + (k - 1 + 2r(2k + 1» hm sup CXn,ln = --, 
r n--+ 00 r 

from which it follows (by letting r -+ 00 on the right) that the left-hand side 
is zero. Thus (3.3.6) is proved. D 

It may be noted that if 

lim sup n(l - F(un» < 00 
n--+ 00 

(which, e.g. is the case if (1.5.1) holds with T < 00), then (3.3.6) is an even 
more direct consequence of Lemma 3.3.1. In fact, taking m = In = o(n), we 
then have 

P{M(Il)::;; Un < M(If)} ::;; InP{~l > Un} 
I 

= .!.! n(1 - F(un» 
n 

-+ 0 as n -+ 00. 

Thus (3.3.6) follows at once from D(un) and (3.3.4). 
The Extremal Types Theorem now follows easily under general conditions. 

Theorem 3.3.3. Let {~n} be a stationary sequence and an > 0 and bn given 
constants such that P{an(Mn - bn) ::;; x} converges to a nondegenerate df 
G(x). Suppose that D(un) is satisfied for Un = x/an + bnfor each real x. Then 
G(x) has one of the three extreme value forms listed in Theorem 1.4.1. 

PROOF. Writing Un = x/an + bn and using (3.3.6) (with nk in place of n), we 
obtain (3.3.3). As remarked in connection with (3.3.3), (3.3.2) holds for all 
k since it holds by assumption for k = 1. Hence if Fn is the dJ. of M n , by 
Theorem 1.3.1 G is max-stable and thus an extreme value type by Theorem 
1.4.1. D 

Corollary 3.3.4. The result remains true if the condition that D(un) be satisfied 
for each Un = x/a" + bn is replaced by the requirement that Condition D holds. 
(For then D(un) is satisfied by any sequence, in particular by Un = x/an + bn 
for each x.) 

It is intuitively plausible that the same criteria for domains of attraction 
should apply to the marginal dJ. F, as in the classical i.i.d. case. We shall 
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show that this is, in fact, true (under a further assumption at least) as a simple 
consequence of the results of the next section. It may be noted that for ex­
tremes of continuous parameter processes (dealt with in Chapter 13), such 
an assertion does not hold exactly as for sequences, but that the application 
of the criteria must be modified in a simple (and rather interesting) way. 

3.4. Convergence of P{Mn < un} Under Dependence 

The results so far have been concerned with the possible forms of limiting 
extreme value distributions. We now turn to the existence of such a limit, in 
that we formulate conditions under which (1.5.l) and (1.5.2) are equivalent 
for stationary sequences, i.e. conditions under which 

(3.4.1) 

is equivalent to 

(3.4.2) 

As noted above, it will follow directly from these results (as shown expli­
citly in the next section) that the classical (i.i.d.) criteria for domains of attrac­
tion may be applied for such appropriate dependent sequences. 

It may be seen from the derivation below that if (3.4.2) holds, then Condi­
tion D(un) is sufficient to guarantee that lim inf P{Mn ~ un} ~ e- t • However, 
we need a further assumption to obtain the opposite inequality for the upper 
limit. Various forms of such an assumption may be used. Here we content 
ourselves with the following simple variant of conditions used in Watson 
(1954) and Loynes (1965); we refer to this as D'(u,,). 

The condition D'(un) will be said to holdfor the stationary sequence {~j} and 
sequence {un} of constants if 

[n/kl 

lim sup n L P{~l > U",~j > un} ~O ask~ 00 (3.4.3) 
n .... oo j=2 

(where [ ] denotes the integer part). 

Note that under (3.4.2), the level Un in (3.4.3) is such that there are on the 
average approximately r exceedances of Un among ~1' ... ' ~'" and thus 
r/k among ~1' ••. ' ~[n/kl. The condition D'(un) bounds the probability of more 
than one exceedance among ~1' .•. ' ~["/kl. This will eventually ensure that 
there are no multiple points in the point process of exceedances which, of 
course, is necessary in obtaining (as we shall later) a simple Poisson limit 
for this point process. 

Our main result generalizes Theorem 1.5.1 to apply to.stationary sequen­
ces under D(un), D'(un). A form of the "only if" part of this theorem was first 
proved by R. Davis (1979). 
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Theorem 3.4.1. Let {un} be constants such that D(un), D'(un) holdfor the station­
ary sequence {en}. Let 0 :::;; 1" < 00. Then (3.4.1) and (3.4.2) are equivalent, i.e. 
P{Mn :::;; un} --+ e- t if and only ifn(l - F(un)) --+ 1". 

PROOF. Fix k, and for each n, write n' (=n~,k) = [n/kJ. Since 
n' 

{Mn, > un} = U {~j > un}, 
j= 1 

we have 

n' 

I P{~j > Un} - I P{ei> Un' ~j > Un} :::;; P{Mn' > Un} 
j= 1 1 :s;i<j:s;n' 

n' 

:::;; I P{~j > Un}· 
j= 1 

Using stationarity, it follows simply that 

where Sn = Sn,k = n' Ij'=2 P{~l > Un' ~j > un}. Since n' = [n/kJ, condition 
D'(uJ gives lim supn .... oo Sn = k- 1o(l) = o(k- 1) as k --+ 00. 

Suppose now that (3.4.2) holds. Then n'(1 - F(un)) --+ 1"/k so that n --+ 00 

in (3.4.4) gives 

1 - i :::;; lim inf P{Mn' :::;; un} :::;; lim sup P{Mn' :::;; un} :::;; 1 - i + o(~) . 
n-+ 00 n-+ 00 

By taking the kth power of each term and using (3.3.6), we have 

( 1 - I)k :::;; lim inf P{Mn :::;; un} :::;; lim sup P{Mn :::;; un} :::;; (1 - I + O(~))k. 
n-+oo n-+ao I 

Letting k --+ 00, we see that limn .... 00 P{Mn :::;; un} exists and equals e-" as 
required to show (3.4.1). 

Conversely, if (3.4.1) holds, i.e. P{Mn :::;; un} --+ e- t as n --+ 00, we have 
from (3.4.4) (again with n' = [n/kJ), 

1 - P{Mn' :::;; un} :::;; n'(l - F(un)) :::;; 1 - P{Mn' :::;; un} + Sn' (3.4.5) 

But since P{Mn :::;; un} --+ e- t , (3.3.6) shows that P{Mn' :::;; un} --+ e- t /\ so 
that letting n --+ 00 in (3.4.5), we obtain, since n' '" n/k, 

1 - e- t /k :::;; ~ lim inf n(1 - F(un)) :::;; ~ lim sup n(1 - F(un)) 
n-+oo n-+oo 

:::;; 1 - e- t /k + o(~), 
from which (multiplying by k and letting k --+ 00) we see that n(1 - F(un)) --+ 1" 

so that (3.4.2) holds. 0 
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If n(1 - F(un» ---+ 00, the condition D'(un) is not satisfied even for i.i.d. 
sequences, as is easily seen. However, the result also applies when 1: = 00 if 
we modify the D(un), D'(un) conditions in a natural manner for such sequences. 
We show this in the following corollary. 

Corollary 3.4.2. The same conclusions hold with 1: = 00 (i.e. P{Mn ~ un} ---+ 0 
if and only if n(1 - F(un» ---+ (0) if the requirements that D(un), D'(un) hold 
are replaced by the condition thatJor arbitrarily large r « (0), there exists a 
sequence {vn} such that n(1 - F(vn» ---+ r and such that D(vn), D'(vn) hold. 

PROOF. Fix r < 00. If n(1 - F(un» ---+ 00, then clearly Un ~ Vn for sufficiently 
large n so that 

n-+ 00 n-+ 00 

by the theorem. Since this holds for arbitrarily large r, by letting r ---+ 00 we 
see that P{Mn ~ un} ---+ O. 

Conversely, if P{Mn ~ un} ---+ 0, fix 1: > ° and let Vn be chosen (satisfying 
D(vn), D'(vn» such that n(1 - F(vn» ---+ r. Then P{Mn ~ vn} ---+ e- r > ° so 
that clearly vn 2 un for sufficiently large n, giving n(1 - F(un» 2 n(1 - F(vn» 
---+ 1:. Since this holds for arbitrarily large r > 0, we must have n(1 - F(un» 
---+ 00, as desired. 0 

Note that if D(un), D'(un) hold and it is assumed that (3.4.2) holds just for 
some subsequence {nj} of integers, i.e. nj{l - F(un) ---+ r as j ---+ 00, then the 
same proof shows that (3.4.1) holds for that subsequence, i.e. P{Mnj ::;; un) 
---+ e- r • This observation may be used to give an alternative proof of the 
statement that (3.4.1) implies (3.4.2) in this theorem by assuming the existence 
of some subsequence nj for which nil - F(un) ---+ 1:' =f:. r, ° ~ r' ~ 00. 

3.5. Associated Independent Sequences and 
Domains of Attraction 

In order to discuss the domains of attraction for dependent sequences in the 
ExtremalTypes Theorem,it is useful to introduce an i.i.d. sequence {~n} having 
the same common d.f. F as each member of the stationary sequence {~n}' The 
sequence {~n} will be termed (following Loynes (1965» the "independent 
sequence associated with {~n} ", and we write Mn = max(~l' ~2' .•. , ~n)' The 
following result is then a direct corollary of Theorem 3.4.1. 

Theorem 3.5.1. Let D(un), D'(un) be satisfied for the stationary sequence gn}. 
Then P{Mn ~ un} ---+ e > ° if and only if P{Mn ~ un} ---+ e. The same holds 
with e = ° if the conditions D(un), D'(un) are replaced by the requirement that 
for arbitrarily large 1: < 00 there exists {vn} satisfying n(1 - F(vn» ---+ rand 
such that D(vn), D'(vn) hold. 
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PROOF. The condition P{Mn ::::; un} --+ e may be rewritten as P{Mn ::::; un} --+ e- r 

with T = - log e, and by Theorem 1.5.1, holds if and only if 1 - F(un) '" T/n. 
By Theorem 3.4.1, the same is true for P{Mn ::::; un}, so that the result follows 
when f) > O. When e = 0 the result follows similarly using Corollary 3.4.2. 

o 

We may also deduce at once that the limiting distribution of aiMn - bn) 
is the same as that which would apply if the ~n were i.i.d., i.e. it is the same as 
that of an(Mn - bn) under conditions D(un) and D'(un). Part of this result was 
proved in Loynes (1965) under conditions which include strong mixing. 

Theorem 3.5.2. Suppose that D(un), D'(un) are satisfied for the stationary se­
quence gn}, when Un = x/an + bn for each x ({an> O}, {bn} being given 
sequences of constants). Then P{anCMn - bn) ::::; x} --+ G(x) for some non­
degenerate G if and only if P{an(Mn - bn) ::::; x} --+ G(x). 

PROOF. If G(x) > 0, the equivalence follows from Theorem 3.5.1, with 
f) = G(x). 

In the case where e = 0, the continuity of G (necessarily an extreme value 
distribution) shows that, if 0 < T < 00, there exists Xo such that G(xo) = e- r • 

D(vn), D'(vn) hold for Vn = xo/an + bn and P{Mn ::::; vn} --+ e- r or P{Mn ::::; vn} 
--+ e- r depending on the assumption made, so that Theorem 3.4.1 or Theorem 
1.5.1 shows that n(l - F(vn» --+ T. Thus the case e = 0 follows from the 
second statement of Theorem 3.5.1, on writing Un = x/an + bn • 0 

Note that the case f) = 0 may alternatively be obtained from that for f) > 0 
by using the continuity of G at its left-hand endpoint, where this is finite, in 
an obvious way. However, the above proof using the previous results for 
T = 00, seems natural and instructive. 

In view of this result, the same criteria may be used to determine the 
domains of attraction (under D and D' conditions), as in the classical i.i.d. 
case. Further, the same constants may be used in the normalization, as if 
the sequence were i.i.d. This will be illustrated for normal sequences in the 
next chapter, where we verify the D and D' conditions. 

3.6. Maxima Over Arbitrary Intervals 

It will be necessary in the development of the Poisson theory of exceedances 
(in Chapter 5) to use asymptotic results for the maximum of ~i for i belonging 
to "intervals" (i.e. sets of consecutive integers) whose lengths are asymptoti­
cally proportional to n. First we give two lemmas which are useful here and 
elsewhere, showing how a sequence {un} may be replaced by an" appropriately 
close" sequence {vn} in considering P{Mn ::::; un}, and D(un). The first of these 
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results gives the replacement results, and the second provides a specific 
useful case of such replacement. 

Lemma 3.6.1. Let {en} be a stationary sequence and {un}, {vn} real sequences 
~uch that n(F(un) - F(vn» -+ 0 as n -+ 00 (which holds, in particular, if 
n(1 - F(un» -+ T, n(1 - F(vn» -+ Tfor some T, 0 ~ T < (0). Then 

(i) if In is an interval containing vn integers, where Vn = O(n), then 
P{M(In) ~ un} - P{M(In) ~ Vn} -+ 0 so that for 0 ~ p ~ 1, P{M(In) 
~ un} -+ P if and only if P{M(In) ~ Vn} -+ p, 

(ii) D(un) holds if and only if D(vn) holds. 

PROOF. Let K be a constant, m ~ Kn, kl' ... , km distinct integers in 
(1, 2, ... ,Kn). Then with the standard notation, 

IFk .... k..,(Un) - Fk .... k..,(Vn)1 = \p (O/ek. ~ Un}) - P (I} {ekl ~ Vn}) \. 

If Un ~ vn the right-hand side is 

P (0 {ek. ~ Un}) - P (0 {eki ~ Vn}) ~ P (Q {Vn < ekl ~ Un}) 

~ Kn(F(un) - F(vn»· 
This and the corresponding obvious modification when Un < Vn yield 

IFk .... km(un) - Fk .... km(vn)1 ::;; KnIF(un) - F(vn)l-+ 0 as n -+ 00. (3.6.1) 

In the above calculations, m and the k; may depend on n. In particular by 
taking m = Vn (~Kn) and k; = i, 1 ~ i ~ Vn' it follows that P{Mvn ~ un} -
P{Mvn ~ Vn} -+ 0, from which (i) also follows by stationarity. 

To prove (ii) suppose that D(un) holds and let 1 ~ il ~ ... ~ ip ~ 
jl ~ ... ~ jp, ~ n, with jl - ip ~ I. Then, with an obvious compression of 
notation (writing i = (il" .. , ip), j = VI" .. ,jp,», 

IFt.cuJ - Ft(uJFiun)1 ~ IXn,I> 

where IXn"n -+ 0 for some In = o(n). Now 

IFtj(vn) - Ft(vn)F.cvn)1 ~ IFt.cvn) - Ftj(un)I + lFij(Un) - F,(un)Fj(un)I 
+ F,(un)IFiun) - Fj(vn)1 

+ Fj(vn)IFt(un) - Fi(vn)l. 

By taking K = 1, and applying (3.6.1) three times, successively identifying 
(k1,···, km) with (il"'" ip), VI"'" jp,), and (il,···' ip,jl"" ,jp,), 

where IX:', = IXn" + A.n , and A.n -+ 0 as n -+ 00 Hence 1X:"n -+ 0 as n -+ 00, so 
that D(vn) follows. 0 
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The next result shows that if Un is defined to satisfy (3.4.2) for some ., then 
Vn may be naturally defined so that n(1 - F(vn» - .' for another given .', 
and moreover if D(un) (or D'(un» holds, then so does D(vn) (or D'(vn» when 

.' < •. 

Lemma 3.6.2. Suppose that {un} satisfies (3.4.2) for a fixed • > 0, i.e. 
n(l - F(un» - ., andfor a fixed f) > ° define 

Then 

(i) {vn} satisfies 

(ii) if f) < land D(un) holds, so does D(vn), 
(iii) if f) < land D'(un) holds, so does D'(vn), 

(3.6.2) 

(3.6.3) 

(iv) if {wn} is a sequence satisfying n(1 - F(wn» - .' < • and D(un) holds, 
so does D(wn). 

PROOF. (i) By (3.4.2) n(l - F(vn» = n(l - F(u[n/Oj» '" miEn/f)] - f). as 
required. 

(ii) If D(un) holds and 1 :s; i1 < ... < ip < jl < ... < jp, :s; n,jl - ip ~ I, 

IFlj(vn) - FI(vn)FiVn) I = IF\j(u[n/O]) - F\(u[n/8j)FiU[n/8]) I 
which does not exceed IX:' I = lX[n/8j,Z, ~ince jp, :s; n :s; En/f)]. If IXn,ln - 0 then 
IX:,I~ - 0 with I: = l[n/8] = o(n), so that (ii) follows. 

Part (iii) also follows simply, since for f) :s; 1, 

[n/kl [n/kj 
n I Pgl > Vn, ~j > Vn } = n I P{~l > U[n/8]' ~j > U[nj8J} 
j= 2 j= 2 

[[n/8j/kj 

:s; En/f)] I P{~l > U[n/8]' ~j > U[n/8j}' 
j= 2 

By D'(un) the upper limit of this expression over n, or En/f)], tends to zero 
as k - 00, so that (iii) follows. 

(iv) Write.' = f). so that f) < 1, and by (ii) D(vn) holds. Then n(l - F(vn» 
- f). and n(l - F(wn» - f). so that D(wn) holds by Lemma 3.6.1(ii). 0 

Our first main result is an easy corollary of Theorem 3.4.1 

Theorem 3.6.3. Let {~n} be a stationary sequence and {un}, {vn} real sequences 
such that n(l - F(un» - ., n(1 - F(vn» - f). as n - 00, where. > 0, f) > 0 
are fixed constants. Suppose that D(vn), D'(vn) hold. Then if {In} is a sequence 
of intervals with Vn members, and Vn '" f)n, we have 

(3.6.4) 



64 3. Maxima of Stationary Sequences 

PROOF. By stationarity it is sufficient to show that P{Mvn ::;;; un} ~ e- Ot. Now 
it follows from Theorem 3.4.1 that P{Mn ::;;; Vn} ~ e- 8t and hence it is only 
necessary to show that 

(3.6.5) 

This follows simply by the same argument as in Lemma 3.6.1(i), or altern­
atively from that result by writing Wn = urn/OJ' and noting that n(l - F(wn» ~ 
lh: so that Lemma 3.6.1(i) gives 

P{Mn ::;;; wn } - P{Mn ::;;; Vn} ~ ° as n ~ 00. 

Replacing n by Vn and using the fact that wVn = u[vn/8] and Lemma 3.6.1(i) 
again gives (3.6.5) and hence the desired result. 0 

Of course, if {un} is given, and n(l - F(un» ~ 1", {vn} may be chosen as 
Vn = urn/OJ and will satisfy n(l - F(vn» ~ lh: by Lemma 3.6.2(i). This leads 
to the following simpler sufficient conditions for (3.6.4) when e < 1. 

Corollary 3.6.4. Let gn} be a stationary sequence and {un} a real sequence 
such that n(l - F(un» ~ 1", a fixed constant, and such that D(un), D'(un) hold. 
Then if 0< e < 1, (3.6.4) holds for a sequence {In} of intervals with Vn N en 
members. 

PROOF. As noted above, define Vn = u[n/8]' By Lemma 3.6.2, Vn satisfies the 
conditions required in Theorem 3.6.3 so that the result follows. 0 

The case 1" = 00 which was not included in the above theorem, is also 
simply dealt with as follows. 

Theorem 3.6.5. Suppose that n(l - F(un» ~ 00, and for arbitrarily large 1", ° < 1" < 00, there exists a sequence {vn} such that n(l - F(vn» ~ 1" and such 
that D(vn), D'(vn) hold. Then for e > 0, Vn '" en and In as above, having Vn 
members, 

P{M(In) ::;;; un} ~ ° as n ~ 00. 

PROOF. Again by stationarity, it is sufficient to show that P{Mvn ::;;; un} ~ 0. 
But for arbitrarily large 1" > 0, there is a sequence {vn} such that n(l - F(vn» 
~ 1", and hence since Vn '" en, n(l - F(vv» ~ 1"le, which implies that Un < vVn 
for sufficiently large n. Hence 

P{Mvn ::;;; un} ::;;; P{Mvn ::;;; vvJ ~ e- t 

by Theorem 3.4.1, and letting 1" ~ 00 shows that P{Mvn ::;;; un} ~ 0, as desired. 
o 

The conditions of Theorem 3.6.5 are in fact more natural than might 
appear at first sight. If 1" = 00, i.e. if n(1 - F(un» ~ 00, then D'(un) may not 
hold even for i.i.d. random variables. Hence some modification of at least 
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the D'(un) condition is desirable in that case. But for finite or, Lemma 3.6.2 
shows that if n(l - F(un» --. or and D(un), D'(un) hold, then for any or' < or 
there is a sequence {vn} such that n(l - F(vn» --. or' and D(vn), D'(vn) hold. It 
is the translation of this property into the case where or = 00, that constitutes 
the conditions of Theorem 3.6.5. 

From these results, we may see simply that, under D and D' conditions, 
the asymptotic distribution of M(In) is of the same type as that of Mn, when 
I" has Vn '" On members. 

Theorem 3.6.6. Let {en} be a stationary sequence, let an > 0 and bn be constants, 
and suppose that 

P{an(Mn - bn) ~ x} ~ G(x) as n --. 00 

for a nondegenerate d.f. G. Suppose D(un), D'(un) hold for all Un of the form 
x/an + bn, and let In be an interval containing vn '" On integers for some 0 > O. 
Then 

P{an(M(In) - bn) ~ x} --. GII(x) as n --. 00. 

PROOF. Consider a point x with G(x) > 0 and write or = -log G(x), u" = 
x/an + bn. Then n(1 - F(un» --. or, by Theorem 3.4.1. Now since G is con­
tinuous (being an extreme value dJ.), there exists y such that G(y) = e- llt• 

Write Vn = y/a" + b". By assumption D(v,,), D'(vn) hold, and since 
P{M" ~ v,,} --. G(y) = e- II" Theorem 3.4.1 shows that n(l - F(v,,» --. Oor. 
Thus the conditions of Theorem 3.6.3 are satisfied, so that P{M(I,,) ~ un} --. 
e- llt = GII(x), which at once yields the desired conclusion, when G(x) > O. 

The case G(x) = 0 follows from the continuity of G and the fact that 
P{a,,(M(In) - b,,) ~ x} ~ P{a,,(M(I,,) - b,,) ~ y} for any y > x with G(y) > O. 

o 
Finally, note that since G is an extreme value dJ., it is max-stable, and 

Corollary 1.3.2 shows that Gil is of the same type as G, i.e. GII(x) = G(ax + b) 
for some a > 0, b. This of course gives the not unexpected result that the limit 
for M(In) is ofthe same type as that for Mn. 

3.7. On the Roles of the Conditions D(un), D'(un) 

It will be evident from the preceding sections that the conditions D(un), 

D'(u,,) together imply the central distributional results of extreme value 
theory, for stationary sequences. As mentioned already it will be shown in 
Chapter 5 that these conditions ensure that the exceedances of the 
"level" Un by e 1 , ••• , ell take on the character of a Poisson process when n 
is large-leading to even further asymptotic distributional results, for kth 
largest values as well as for the maximum. In this, the condition D(un) provides 
the independence associated with the occurrence of events in a Poisson 
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process and, as already noted, D'(un) limits the possibility of clustering of 
exceedances so that multiple events are excluded in the limit. 

Apart from these intuitive comments, it is, of course, of interest to see 
specifically what kinds of behaviour can occur when the conditions are re­
laxed in some way. Trivial examples (e.g. taking all en to be the same) show 
that the total omission of dependence restriction leads to quite arbitrary 
asymptotic distributions for the maximum. More interesting examples 
(cf. Chapter 6) exhibit nontrivial cases in which an asymptotic distribution 
for the maximum exists but is not of extreme value type, when the 
"dependence decay" is so slow that D(ulI) does not hold. 

Of course, if D(un) holds for the appropriate sequences {un}, the Extremal 
Types Theorem shows that any nondegenerate limiting distribution for the 
maximum of the stationary sequence {en}, must be one of the extreme value 
types. Still more interesting questions concern the role of D'(un), and the 
extent to which the previous results can be modified to apply when only 
D(un) is assumed. We shall in fact find the intriguing result that in many 
(perhaps most) cases of interest, the existence of a limiting distribution for 
the maximum Mn in the associated independent sequence, implies a limiting 
distribution of the same type for Mn itself-indeed with the same norming 
constants {an}, {bn}' (Or the limits may be taken to be identical by an obvious, 
simple change of one set of the norming constants.) 

Examples will be quoted from the literature (and an interesting class of 
such examples discussed in more detail in the next section) to illustrate the 
possible range of behaviour when D'(un) is not assumed. However, we first 
give some general results, modifying those of the previous sections. 

It has been noted already in Section 3.4 that (3.4.2) and D(un) alone are 
sufficient to guarantee that lim inf P{Mn :::;;; un} ~ e- f even though the full 
limit (3.4.1) will not hold in general without D'(un). This fact will be useful 
to us in proving a modified form of Theorem 3.4.1. In this result it will be 
shown that if, for each r > 0, {un(r)} is a sequence satisfying (3.4.2), and such 
that D(un) holds when Un = un(r) and if P{Mn :::;;; un(r)} converges for at least 
one r > 0, then P{Mn :::;;; un(r)} -.. e- 6f for all r > 0, for some fixed () with 
o :::;;; () :::;;; 1. This result was proved under the further assumption that 
lim P{MII :::;;; ull(r)} exists for all r > 0, by Loynes (1965) for strongly mixing 
sequences, and by Chernick (1981a) under D(un). The proof here is along 
similar lines to those of Loynes, and of Chernick. 

Theorem 3.7.1. Suppose u,.(r) is defined for r > 0 and is such that 
n(l - F(un(r») -.. r, and that D(un(r» holds for each such r. Then there exist 
constants (), ()', 0 :::;;; () :::;;; ()' :::;;; 1 such that lim supn .... oo P{Mn :::;;; un(r)} = e- 8f, 

lim infn .... oo P{Mn :::;;; un(r)} = e- 8'f. Hence if P{Mn:::;;; u,.(r)} converges 
for some r > 0, then () = ()' and P{Mn :::;;; un(r)} -.. e- 6f for all r > O. 

PROOF. It follows from Lemma 3.3.2 that for a fixed integer k, 

P{Mn :::;;; un(r)} - pk{Mn' :::;;; un(r)} -.. 0 as n -.. 00, 
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where n' = [nlk]. Hence if lim supn .... oo P{Mn :::;; uit)} = "'(t), it follows that 

lim sup P{Mn' :::;; uit)} = ",l/k(t). (3.7.1) 
n .... oo 

Now it may be simply seen by considering cases where un(t) ~ un,(tlk), 
un(t) < un,(tlk) (cf. proof of Lemma 3.6.1(i» that 

I P{Mn· :::;; un(t)} - P{Mn. :::;; Un{~)} I:::;; n' I F(uit» - F(Un.(~)) I 

= n'l (1 - F( Un{~) )) - (1 - F(uit))) 1 

= n'lt~~ (1 + 0(1» - ~(1 + 0(1»1 

= 0(1), 

since n' """' nlk. Since clearly limsupn .... oo P{Mn. :::;; un.(tlk)} = "'(tlk) it follows 
that lim SUPn-+oo P{Mn. :::;; un(t)} = "'(tlk) which with (3.7.1) shows that 
"'(tlk) = "'l/k(t) for all t > 0, k = 1,2 .... Now, if t' < t it is clear that 
un(t') > un(t) when n is sufficiently large, so that "'(t) is nonincreasing, 
and is strictly positive since as observed before the theorem, 
lim inf,,-+oo P{Mn :::;; un(t)} ~ e- f • But it is well known that the only such 
solution to the functional equation is "'(t) = e- 6f where (J ~ O. Since as 
above "'(t) ~ e- f it follows that 0 :::;; (J :::;; 1. 

It follows similarly that lim infn-+oo P{Mn:::;; un(t)} -. e-6'f where 0:::;; (J' :::;; 1, 
and clearly (J' ~ (J, completing the proof of the theorem, since the final state­
ment is obvious. 0 

Later we shall cite examples which show that every value of (J, 0 :::;; (J :::;; 1, 
may occur in this theorem. The case (} = 0 is "degenerate" in that it leads to 
P{Mn :::;; un(t)} -. 1 for each t, but its existence does have some, at least 
marginal, bearing on the range of limiting types, as will be seen. 

In order to simplify statements, it will be convenient to have a name for 
the property shown in the above theorem. Specifically we shall say that the 
process {en} has extremal index (J (0 :::;; (J :::;; 1) if (with the usual notation) for 
each t > 0 

(i) there exists un(t) such that n(1 - F(un(t») -. t, 
(ii) P{Mn :::;; un(t)} -. e- 6f• 

By Lemma 3.6.2 if (i) holds for one fixed t > 0 it holds for alit> 0, and by 
Theorem 1.7.13 this is equivalent to (1.7.3). By Theorem 3.7.1, if (i) holds 
and D(un(t» is satisfied for each t, and if P{Mn :::;; un(t)} converges for some 
t > 0, then (ii) holds with some (J, 0 :::;; (J :::;; 1 for alit> 0 and thus {en} has 
an extremal index. 

The next result modifies Theorem 3.5.1 when D'(u,,) does not hold and 
generalizes a theorem of O'Brien (1974c) proved there under strong mixing 
assumptions. Here and subsequently in the section we continue to use the 



68 3. Maxima of Stationary Sequences 

previous notation-for example, with Mn denoting the maximum of the first 
n terms of the independent sequence {¢n} associated with gn}. 

Theorem 3.7.2. Let the stationary sequence {~n} have extremal index (). Let 
{vn} be a sequence of numbers, and 0 ~ p ~ 1. Then 

(i) for () > 0, 

if P{Mn ~ Vn} ~ P then P{Mn ~ Vn} ~ pO, and conversely; 
(ii) for () = 0, 

(a) if lim infn-+oo P{Mn ~ Vn} > 0 then P{Mn ~ Vn} ~ 1, 
(b) iflim sUPn-+oo P{Mn ~ Vn} < 1 then P{Mn ~ Vn} ~ O. 

PROOF. (i) Suppose () > 0 and P{Mn ~ Vn} ~ P where 0 < p ~ 1. Choose 
r > 0 such that e- t < p. Then 

P{Mn ~ unCr)} ~ e-., P{Mn ~ Vn} ~ P > e-., 

so that we must have Vn ::-- un(r) for all sufficiently large n, and hence 

lim inf P{Mn ~ Vn} ~ lim P{Mn ~ unCr)} = e-Ot • 

n-+ 00 n-+ 00 

Since this is true for any r such that e-< < p it follows that 

lim inf P{Mn ~ Vn} ~ pO. 
n-+oo 

(In particular, it follows that if p = 1, then P{Mn ~ Vn} - 1 = II as desired.) 
Similarly by taking e- t > p it is readily shown that lim sup P{Mn ~ Vn} ~ 

pO when 0 ~ p < 1. Hence P{Mn ~ Vn} _ 0 when p = 0, as desired and for 
o < p < 1, P{Mn ~ Vn} - po by combining the inequalities for the upper 
and lower limits. 

The proof that P{Mn ~ Vn} - pO implies P{Mn ~ Vn} - P is entirely 
similar, so that (i) follows. 

For (ii) we assume that () = 0 so that P{Mn ~ un(r)} - 1 as n - 00, for 
each r > O. If lim inf P{Mn ~ Vn} = P > 0, and r is chosen with e- t < p, 
then since P{Mn ~ unCr)} - e- t it follows that Vn > un(r) for all sufficiently 
large n, and hence 

lim inf P{Mn ~ Vn} ~ lim P{Mn ~ unCr)} = 1, 
n-+ 00 n-+ 00 

from which (a) follows. 
On the other hand, if lim sup P{Mn ~ Vn} < 1, it is readily seen from the 

fact that P{Mn ~ un(r)} - 1 that, for any r > 0, Vn < un(r) when r is suffi­
ciently large, so that 

lim sup P{Mn ~ Vn} ~ lim P{Mn ~ un(r)} = e- t • 

n-+ 00 n-+ 00 

Since this holds for all r, (b) follows by letting r - 00. o 
As a corollary we may give general conditions under which the existence 

of an asymptotic distribution for M n implies that M n has an asymptotic dis­
tribution and conversely. 
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Corollary 3.7.3. Let the stationary sequence {en} have extremal index () > O. 
Then Mn has a nondegenerate limiting distribution if and only if Mn does and 
these are then of the same type. Further the same normalization may be used, 
or one set ofnorming constants may be altered to give precisely the same limiting 
df. 

PROOF. If P{an(Mn - bn) ::::;; x} - G(x), nondegenerate, then part (i) of the 
theorem shows (with Vn = x/an + bn) that P{an(Mn - bn) ~ x} _ GB(x). 
Since G is max-stable, GB is of the same type as G (cf. Corollary 1.3.2). The 
converse follows similarly, noting that if P{an(Mn - bn) ~ x} - H(x) non­
degenerate, then P{an(Mn - bn) ~ x} - Hl/B(X), and Hl/B must, as a limit 
for the maxima of an i.i.d. sequence, be max-stable. 

Finally if P{an(Mn - bn) ~ x} - G(x) then, by the above, 

P{an(Mn - bn) ~ x} - G(ax + b) 

where GB(x) = G(ax + b) for some a> 0, b. Hence also 

P{a.nCMn - Pn) ~ x} - G(x), 

where a.n = aan, Pn = bn - b/(aan)· o 

It follows, in particular, from this corollary (and Theorem 1.2.3) that when 
() > 0, if Mn and Mn both have nondegenerate limiting distributions, then 
these must be of the same type. If () = 0, however, it may be shown by an 
argument of Davis (1981) as in the following corollary, that Mn and Mn 
cannot both have nondegenerate limiting distributions based on the same 
norming constants. Of course if D(UnCT» does not hold, the trivial examples 
already referred to, provide cases where Mn can have a rather arbitrary 
distribution while Mn has a limiting distribution of extreme value type. We 
cite an example below where D(UnCT» does hold, but () = O. Further, a 
recent example by de Haan (cf. Leadbetter (1982» shows that when () = 0 
it is possible for Mn and Mn to have limiting distributions (of different type) 
based on different norming constants. 

Corollary 3.7.4. Let the stationary sequence {en} satisfy D(Un(T» when Un(T) 
satisfies n(1 - F(un(T» - T, 0 < T < 00, and let {en} have extremal index 
() = O. Then Mn and Mn cannot both have nondegenerate limiting distributions 
based on the same norming constants, i.e. it is not possible to have both 

for nondegenerate G, H. 

PROOF. Suppose that the above convergence for both M nand M n does in 
fact occur. Then writing Vn = x/an + bn, it follows from Theorem 3.7.2(ii) 
that H(x) = 1 whenever G(x) > O. Hence it is readily seen that 
Xo = inf{x; G(x) > O} is finite and H(x) = 1 for x ~ Xo' 
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Since G is of extreme value type with finite left endpoint it must be of 
Type II, i.e. G(x) = !/I{a(x - xo)} where !/I(x) = 0 for x :s; 0 and !/I(x) = 
exp( _x-a) for x> 0, some IX> O. Further by Corollary 1.6.3, if Yn = unCI), 

P{Mn :s; Ynx} -+ !/I(x). 

But also P{Mn :s; x/an + bn} -+ !/I{a(x - xo)} so that Theorem 1.2.3 gives 

Since P{Mn :::; x/an + bn} ~ H(x), a further application of Theorem 1.2.3 
yields 

P{Mn :s; Ynx} ~ H (~ + x o). 

Now since D(un) must hold when Un = x/an + bn , H is of extreme value 
type and hence continuous so that P{Mn :s; O} -+ H(xo) = 1. But 

P{Mn :s; O} :s; P{~l :s; O} = F(O) 

and F(O) < 1 since pn(O) = P{Mn :s; O} -+ !/I(O) = O. This contradicts the 
limit P{Mn :s; O} -+ 1 and completes the proof of the corollary. 0 

We conclude this section with some examples from the literature showing 
something of the range of possible asymptotic behaviour for Mn. These 
examples are substantially concerned with cases where the index e is less 
than 1. The more usual case in practice (where D'(un) holds and e = 1) is 
illustrated in much more detail in Chapter 4 where normal sequences are 
considered. 

Example 3.7.5. This example due to Chernick (1981a) concerns a strictly 
stationary first-order autoregressive sequence 

1 
~n = -~n-l + en, r 

where r ~ 2 is an integer, {en} are i.i.d. and uniformly distributed on 
{O, l/r, ... , (r - l)jr}, en being independent of ~n- 1, and ~n having a uniform 
distribution on the interval [0, 1]. 

By the uniformity of ~n' unCr) may be defined as 1 - r/n. Chernick shows 
that with Un = un(r), r > 0, D(un) holds, but D'(un) fails. He then shows by 
direct argument that, for x > 0, 

P{Mn:::;I-~}-+exp(_r~lx). (3.7.2) 

Replacement of x by -x shows the Type III limit for Mn with the same 
norming constants as in the i.i.d. case (Example 1.7.9). This, of course, 
illustrates Corollary 3.7.3. Further, setting un(r) = I - r/n, (3.7.2) may be 
written as 
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showing that the extremal index e = (r - 1)/r. Since r ~ 2,0 < e < 1, and 
as r takes on the values 2, 3, ... , the index e takes a sequence of values in 
the range (0, 1). (However it seems that this example cannot be easily ex­
tended to other values of e.) It is interesting to note that if Bn+ 1 = (r - 1)/r 
(which happens with probability l/r) then en+ 1 > en and hence however 
large (i.e. close to 1) en is, there is a fixed probability l/r that en+ 1 is larger and 
then a probability l/r2 that en+2 is even larger and so on. Thus large 
values tend to occur in clusters, causing successive exceedances of Un to be 
"too related" to allow D'(un), e = 1, or the Poisson properties of exceedances 
discussed in Chapter 5. 0 

Example 3.7.6. Denzel and O'Brien (1975) consider a "chain dependent" 
process {en} defined by means of an ergodic Markov chain {J n ; n ~ O} with 
the positive integers as states and connected by the requirement 

P {J n = j, en ~ x lei, ... , en - 1, J1 ,···, J n - 2' J n - 1 = i} 
= P{Jn = j, en ~ xlJn- 1 = i} = PjjHj(x), 

where Pij are the transition probabilities for the chain and Hlx) is, for each 
i, a nondegenerate dJ. By appropriate choices of parameters they thus exhibit 
processes {en} which are strongly mixing, have marginal dJ. H(x) = 
Ii Xj Hj(x) (in which Xj are the stationary chain probabilities) and for which 
any value ofthe extremal index e in (0, 1] may be realized. Further a modifi­
cation is given, choosing Pj. j+ 1 = (i + 1)(i + 3)-1 producing an example with 
e = O. In this latter case H(x) = 1 - ([x] + 2)-1, so that Mn has a non­
degenerate, Type II limiting distribution. The level u,.{-r) is given explicitly 
as the smallest integer greater than or equal to (n/7: - 2) and 

P{Mn ~ ub)} -+ 1, 

but it is not obvious whether Mn has any sort of limiting distribution (com­
patible with Corollary 3.7.4). 0 

It is also possible to give examples where D(un) hold (and even strong 
mixing) but where there is no extremal index. 

Example3.7.7. O'Brien (1974c) considers a sequence {en} where each r.v. 
en is uniformly distributed over the interval [0,1], el' e3' e5 , ••• being inde­
pendent, and e2n being defined as a function of e2n-l for each n. In this way 
he obtains an obviously strongly mixing sequence, and further exhibits a 
sequence {vn} for which P{Mn ~ vn} converges to e- 1/2, but P{Mn ~ vn} 
does not converge at all. It thus follows (Theorem 3.7.2) that {en} has no extre­
mal index and hence (Theorem 3.7.1) that P{Mn ~ un(7:)} does not converge 
for any 7: > O. 

By modifying the example a strongly mixing sequence {en} is exhibited 
for which P{an(Mn - bn) ~ x} converges to a nondegenerate distribution 
(hence of extreme value type) but P{an(Mn - bn) ~ x} does not converge. 
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That is P{Mn ~ vn} converges for each member of the family Vn = x/an + bn. 
This, of course, again reflects the fact that no extremal index exists in this case. 

D 
The almost pathological nature ofthe available examples for which D(un) 

holds but an extremal index is zero or does not exist, suggests that the cases 
of most practical interest are those for which an extremal index e does exist 
and is nonzero. We turn now to another interesting class of such examples, 
for which 0 < e ~ 1. Examples of a different type with 0 < e < 1 have also 
been given recently by de Haan (cf. Leadbetter (1982)). 

3.8. Maxima of Moving Averages of Stable Variables 

In this section we shall consider extreme values of i.i.d. stable (or "sum­
stable" as opposed to max-stable) random variables with characteristic 
function given by (3.8.1) below, and of dependent sequences which are simply 
obtained from them, viz. as moving averages. This will give a conceptually 
easy illustration to one way in which dependence influences the behaviour 
of extremes, and also provide examples of processes with extremal index e, 
for any e E (0, 1]. 

Because of the heavy tails of non-normal stable distributions, extreme 
values are caused by individual large summands, each creating a small cluster 
of extremes in the moving average process, and this explains why D'(un) does 
not hold and extremal indices less than one are possible. In contrast, it can 
be seen that extreme values of moving averages of normal sequences are 
caused by rare combinations of moderately large summands, and that this 
is enough for D'(un) to hold and for the extremal index to be equal to one. 

Stationary normal sequences, of course, provide the most important ex­
ample of sequences which are not independent, and as already mentioned 
they are treated in some generality in Chapter 4, and, later in Chapter 6. 
However, the stable sequences also seem to be interesting in their own 
right. In particular, they have the same linear structure as normal processes; 
arbitrary linear combinations of stable variables are stable. For the reader 
familiar with these concepts, it may also be mentioned that ARMA-processes 
with stable innovations are a special case of stable moving averages, as is 
easily seen by inverting the autoregressive part of the ARMA-process. 

By definition, a random variable is (strictly) stable (y, IX, P) if it has the 
characteristic function 

",(u) = exp{ -Y"'lu1"'(1 - iph(u, IX) I~I)}­ (3.8.1) 

with 0 ~ y, 0 < IX ~ 2, 1 P 1 ~ 1 and with h(u, IX) = tan(nlX/2) for IX =F 1, 
h(u, 1) = 2n- 1 logl u I. Here y is a scale parameter, IX is called the index of 
the distribution, and P is the symmetry parameter. If P = 0 the distribution is 



3.8. Moving Averages of Stable Variables 73 

symmetric, while if I 131 = 1 and IX < 2 the distribution is said to be completely 
asymmetric. For IX < 1, the completely asymmetric stable distributions are 
concentrated on the positive real line if 13 = 1, and on the negative real line 
if 13 = - 1. 

If IX = 2 the distribution is clearly normal, and thus we shall in this section 
consider the case ° < IX < 2. If y = IX = 1 and 13 = 0, then'" is the character­
istic function of a Cauchy distribution with density 

1 1 
f(x) = ;r 1 + x 2 ' - 00 < x < 00, 

which was studied in Example 1.7.8. For y = 1, IX = t,f3 = 1, the distribution 
has a density 

f(x) = 1 e- 1/(2x) x> 0, 
foX 3/2 ' 

(andf(x) = 0, x :::;; 0), but apart from these cases, no simple expressions for 
the densities of stable distributions are known. 

We shall derive here the limiting distribution of the maximum Mn of a 
moving average process gt}, defined by 

i = - 00 

where the (r's are independent and stable (1, IX, 13) and where the constants 
{Ci} are assumed to satisfy 

00 

L I Ci IIX < 00 and in addition, for IX = 1, 13 '" 0, 
i=-oo 

00 

L Ci log I Ci I is convergent. (3.8.2) 
i= - 00 

It follows from (3.8.1) that L~ _ 00 Ci(t-i converges in distribution if and 
only if (3.8.2) holds. Moreover, since the summands are independent, con­
vergence in distribution of the sum implies convergence almost surely, and 
hence (3.8.2) is necessary and sufficient for et to be well defined as an a.s. 
convergent sum. 

The only facts about the stable distributions we shall need in addition to 
(3.8.1) are the following estimates of the tails of F 1X{l' the stable (1, IX, 13) 
distribution. Let klX = n- 1 r(1X) sin(lXn/2). Then (cf. Bergstrom (1953» 

1 - Fd(Z) '" 2klXz- 1X as Z -+ 00, 

F IX1 (z) = o(lzl-lX) aJd -+ - 00, 

and for some suitable constants K IX , 

Z > 0. 

(3.8.3) 

(3.8.4) 

For completeness we shall, without proof, state an elementary result 
about convergence of distributions, which will be used below. 
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Lemma 3.8.1. Let {tIn}:': 1> and {tI~k)}:= 1, k = 1, 2, ... be r.v.'s and let F be a 
distribution function. Suppose that,for any e > 0, 

lim sup P{llJn - lJ~k) I > e} --+ ° as k --+ 00, 
n-->co 

and that for all large k, 

p{tI~k) ::; x} ~ F(x) as n --+ 00. 

Then .. 

P{lJn ::; x} ~ F(x) as n --+ 00. 

Let 

-oo<i<oo -oo<i<oo 

+ - -where Ci = max(O, ci), Ci = max(O,- Ci), and let Mn = max{(I" .. , (n}. 
The essential idea of the derivation of the limiting distribution of Mn is that 

a large value of a ~t is caused by just one of the summands (t-i being large. 
In the particular case when the Cs are completely asymmetric, with 13 = 1, 
this means that M nand C + M n are asymptotically of the same size. This is 
proved in the next lemma for finite moving averages, together with some 
further useful estimates. 

Lemma 3.8.2. Let the Cs be stable (1, IX, 13) and write 

.l'(k) _" y 
'ot - L... Ci "'t-i' M (k) = max(.l'(k) .l'(k» 

n ~1 , ... , \:'n • 
Ii I<k 

(i) Then,for e > 0, 

lim sup P{n- 1/" max(1 ~ 1 - ~~) I, ... , I~" - ~~k)1) > e} --+ ° as k --+ 00. 
"-->00 

Ifin addition 13 = 1, C+ > 0, and k > Iko I, where ko is such that C+ = Cko' 
(ii) then,for e > 0, 

P{n-l/"IM~k) - c+Mnl > e} --+ ° as n --+ 00, 

and 

(iii) P{n-l/"M~k)::; x} --+ exp{ -k"c"t. 2x-"} as n --+ 00. 

PROOF. (i) Suppose first that IX =f 1. Then it follows from (3.8.1) that 

~1 - ~lk) = L Ci (l-i 
liI~k 

is stable with some (in general different) symmetry parameter and with scale 
parameter (L I i I ~k I Ci 1")1/" and index a. Hence, by (3.8.4) 

P{n-l/"I~l - ~~)I > e} = p{( L ICil")-l/"I~1 - ~lk)1 
Iii ~k 

> ( L ICi I") - l/"n 1/"e} 
Ii I "k 

L leil" 
< K lil~k 
- " ne" 
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and thus, by stationarity, 

P{n-1/"max(I~1 - ~~)I, ... ,I~n - ~~k)1) > e}:::;; K"e-" L I cd", 
liI~k 

75 

which tends to zero as k~oo, and thus (i) holds if a# 1. If oc= 1 then instead 

~1 - ~\k) - 2P L Ci loglcd 
1t liI~k 

is stable with scale parameter LliI~klcil and index 1. Hence 

P{n-11~1 - ~~)I > e}:::;; p{( L ICil)-11~1 - ~\k) - 2P L CilOg'Cdl 
liI~k 1t lil~k 

> (L Icd)-1(ne_12P L CiIOg'Cdl)} 
lil~k 1t lil~k 

L ICil 
< K lil>k 

- "n(e -12P L Ci log I Ci II ) 
n1t lil~k 

for large n, by (3.8.4), and in the same way as above it then follows that (i) 
holds also for oc = 1. 

(ii) Let en = n1/"e/(4k(c+ + c» and define events 

An = {'i > en' 'i > en for some i,j wih 1 - k < i <j < n + k, Ii - il < 2k}, 

Bn = gi < - en for some i with 1 - k < i < n + k}, 

and 

Cn = {I'd > en for some i with 1 - k < i < 1 + k or n - k < i < n + k}. 

We shall show that 

{n-1/"IM~k) - C+ Mnl > e} cAn U Bn U Cn 

and that P(An u Bn u Cn) ~ 0 as n ~ 00. 

(3.8.5) 

Now if neither An nor Cn occurs, for 1 :::;; t :::;; n the largest of 'I-k+ l' •.. , 

'1+k-1 does not exceed 1\1n + en and the others are not greater than en' and then 
+ _ _ n1/"e 

L Ci 'I-i:::;; C+ Mn + (2k - l)c+en :::;; C+ Mn + -2-' t = 1, ... , n. 
lil<k 

Similarly, if neither Bn nor Cn occurs, 'i ~ -en for 1 - k < i < n + k, and 
hence 

t = 1, ... , n. 

Thus, on (An U Bn U CnY, 
}!(k) _ " + r ,,- r < M- + 1/" 
"'I - L.." Ci 'ol-i - L.." Ci 'ol-i _ C+ nne, t = 1, ... , n, 

lil<k liI<k 
I.e. 

(3.8.6) 
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Next, suppose to, ko are such that 'to = Mn, Cko = C+ and 1 ~ to ~ n, 
1 ko 1 < k. If Bn does not occur, then 

n1/lZe 
I ct'to+ko-i ~ - (2k - 2)c+en ~ - -2-· 

i#oko 
lil<k 

Further, on A~ n C~, 

n1/lZe - I Ci-'to+ko-i ~ - (2k - 2)cen ~ - -2-' 
i#oko 
lil<k 

since if 'to > en then A~ implies that 'to+ko-k+ 1, ••• , 'to+ko+k-1 are smaller 
than en, and if instead 'to = M n ~ en, this holds trivially on C~. Thus 

~l:)+ko = Cko'to + I Ci'to+ko-i 
i#oko 
lil<k 

= c+Mn + I ct'to+ko-i - I Ci'to+ko-i 
i#oko i#oko 
liI<k lil<k 

~ c+ Mn - n1/lZe, 

on (An U Bn U CnY, and, if in addition 1 ~ to + ko ~ n, then 

Mn ~ c+Mn - n1/lZ e. (3.8.7) 

However, if instead to + ko < 1 or to + ko > n and neither Bn nor Cn occurs 
then I'il ::;; en for 1 - k < i < n + k, and then IM~k)1 ::;; (c+ + c)(2k - 1)6n 

and 1 M n 1 ~ en, and it follows that 

M~L c+ Mn ~ - (2k - l)(c+ + c)en - c+ en ~ - n1/lZ e, 

so (3.8.7) holds on (An U Bn U CnY also in this case. Together (3.8.6) and 
(3.8.7) prove (3.8.5). 

Now, by the independence of 'i' C, i :I: j, 
n+k-2i+2k-1 

P(An) ~ I I P{'i> en, 'j > en} 
i=2-k j=i+1 

~ (n + 2k - 3)(2k - 1)P{'1 > en}2 --+ 0 as n --+ 00, 

since P{'1 > en} = O(l/n) by the first part of (3.8.3) and the definition of 
en. Further, this time by the second part of (3.8.3), 

P(Bn) ~ (n + 2k - 2)P{'1 < -en} --+ 0 as n --+ 00, 

and finally 

P(Cn) ~ (4k - 2)P{I'11 > en} --+ 0 as n --+ 00, 

since en --+ 00. Thus, by (3.8.5), it follows that 

P{n-1/IZIM~k) - c+ Mnl > e} ~ P(An) + P(Bn) + P(Cn) --+ 0 as n --+ 00. 
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(iii) By (3.8.3) 

and thus Theorem 1. 5. 1 shows that 

P{n-l/"'c+Mn :::;; x} ~ exp( -2k",c~ x-"'), 

and (iii) now follows from (ii) and Lemma 3.8.1. 
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o 
In the last part of the lemma we have obtained the limiting distribution 

of Mn for the case when p = 1 and the moving average is finite. The general 
result then follows easily, as we shall now see. 

Theorem 3.8.3. Suppose {et = t:i Ci (t-J;; 1 is a moving average of stable 
(1,~, P) variables {(t}, with the constants {CJ~CXl satisfying (3.8.2). Then 

P{n- 1/'" Mn :::;; x} ~ {exp{ -k",(c~ (1 + P) + c~(l - P))x-"'}, !x > 0, 
0, i/x :::;; 0. 

(3.8.8) 

PROOF. By Lemmas 3.8.1 and 3.8.2 it is sufficient to show that 

P{n- 1/'" M~k) :::;; x} ~ exp{ -kic~(l + P) + c~(1 - P))x-"'} as n ~ 00, 

(3.8.9) 

for k large (and x > 0). Suppose ~ 1= 1, and let{(;, (;'}~CXl be independent and 
stable (1, ~, 1). It is then immediate from (3.8.1) that «1 + P)/2)1/'" (; -
«1 - P)/2)1/'" G is stable (1, ~, P), and thus, defining 

(1 + P) l/'" [ (1 - P) 1/"'1 
e; = L Ci -2- (;-i, e;' = L -Ci -2- J (;'-i, 

lil<k liI<k 

the sequences Wk)};" and {e; + e;'};" have the same distribution. Hence, 
(3.8.9) is equivalent to 

P{n- 1/", max(e'1 + e'~, ... , e~ + e;) :::;; x} 

~ exp{ -k",(c~(l + P) + c~(1 - P))x-"'}. (3.8.10) 

Let M~ = max(e~, ... , e~) and M; = max(e~, ... , e;). If k ~ Ikol for ko 
satisfying max(c~ko+1"'" C~-l) = c+, max(c=ko+l,"" cko-l) = c_, then, 
since M~ and M; are independent, 

P{n- 1/", max(M~, M;):::;; x} = P{n1/"'M~ :::;; x}P{n1/'" M; < x} 

~ exp{ -k",c~(l + P)x-'" - k",c~(l - P)x-"'}, 

(3.8.11) 

by Lemma 3.8.2(iii). Further, it can be seen that, for e > 0, 

P{lmax(e'1 + e~, ... , e~ + e;) - max(M~, M;)I > n1/"'e} 

:::;; P{I e; I > n1/"'e, I e; I > n1/"'efor some t with 1 :::;; t :::;; n} 

+ P{max(M~, M;) :::;; n1/"'e}. (3.8.12) 
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Clearly 

P{I~;I > n1/lIs, I~~I > n1/lls for some t with 1 ~ t ~ n} 

~ nP{I~~1 > n1/lIs}P{I~~1 > n1/lIs} -+0 asn-+ 00, 

since P{I~~I > n1/lIs} = O(l/n) and P{I~'11 > n1/"s} = O(ljn) by (3.8.4), and 
further 

lim sup P{max(M~, M; ~ n1/"s} -+ 0 as s -+ 0, 
n-+oo 

by (3.8.11). Thus it follows from (3.8.12) that 

lim sup P{n-1/"lmax(~~ + ~~, ... , ~~ + ~;) - max(M~, M;)I > s} -+ 0 
n-+oo 

as k -+ 00. 

By Lemma 3.8.1 and (3.8.11) this proves (3.8.10) and hence (3.8.9) holds for 
all large k, which proves the theorem for IX ::j:. 1. 

If IX = 1 then, with {(;, (n as above, for 1131 < 1, 

C ; 13) (; - C ; 13) (~ + ~ «1 + 13) log C ; 13) - (1 - 13) log C ; 13) 

is stable (1, 1,13). However, to deal with the additional constant term requires 
only trivial changes in the proof above, of a similar kind as in the proof of 
Lemma 3.8.2(i) and we omit the details. 0 

The reader is referred to Rootzen (1978) for further results on the extremal 
behaviour of gt}, including counterparts to the point process convergence 
to be proved in Chapter 5 for processes with extremal index one, and quite 
detailed information on the behaviour of sample paths near extremes, as 
well as the corresponding results for continuous parameter processes. Fur­
ther, it may be noted that essentially it is the tail behaviour of the ('s which 
determines the behaviour of extremes of {~t}, and that similar results hold 
for other distributions of ('s, which are in the domain of attraction of the 
Type II max-stable distribution. 

Finally, by (3.8.1), if IX ::j:. 1, ~t is stable «L I Cj 1")1/", IX, 13 L cj I Ci 1,,-1 /L I Cj I"), 
and hence, if Mn is the maximum of the associated independent process, 

P{n- 1/"Mn ~ x} -+ exp{ -k" i=~OO (led + f3Cj)I Cd"-1x -"} 

by Theorem 3.8.3 (with Co = (L I Cj 1")1/" and Cj = 0, i ::j:. 0). By comparing 
with the limit for n- 1/" M n , it follows that {~t} has an extremal index 

c~(1 + 13) + c~(l - 13) 
00 

L (Icd + f3cj)lcd,,-1 
j= -00 

which clearly can take any value in (0, 1]. 



CHAPTER 4 

Normal Sequences 

Normality occupies a central place in probability and statistical theory, and a 
most important class of stationary sequences consists of those which are 
normal. Their importance is enhanced by the fact that their joint normal 
distributions are determined by the mean and the covariance structure of the 
sequence. In this chapter we investigate the extremal properties of stationary 
normal sequences. In particular covariance conditions will be obtained for 
the convergence of maxima to a Type I limit, both directly and by application 
of the general theory of Chapter 3. 

4.1. Stationary Normal Sequences and 
Covariance Conditions 

A sequence {~n} ofr.v.'s is said to be norma/if for any choice of n, it, ... , in, 
the joint distribution of ~;" ~;" ... , ~i" is an n-dimensional normal distribu­
tion. These finite-dimensional distributions are clearly determined by the 
means of the individual ~n and the covariances between the pairs ~n' ~m for 
all n, m. 

For stationary normal sequences the mean and variance of ~n do not 
depend on n and may-without loss of generality-be conveniently taken 
as zero and one, respectively, yielding a "standard normal sequence." We 
shall assume-usually without comment-that the sequences considered 
have been so standardized. 

Further by stationarity, the covariances between pairs such as ~n' ~m 
depend only on the difference between m and n (and indeed only on its 
absolute value) so that we write 

Cov(~n' ~m) = rn-m = rin-mi' 
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where {r n} is termed the covariance sequence of the process. By the standard­
ization it follows that ro = Var(~n) = 1 and rn = Cov(~j' ~j+n) = E(~j~j+n). 

Clearly all of the finite-dimensional distributions Fi! ... in(Xl' • .. ,xn) = 
P(~i! ~ Xl' ... , ~in ~ xn} of a standard normal sequence, are determined 
by the covariance sequence {rn }. Of course a covariance sequence cannot be 
arbitrarily specified, since the covariance matrix of any group ~il'···' ~in 
must be non-negative definite. 

As noted in Chapter 3, Berman (1964b) has given simple conditions on {rn} 
to ensure that (1.5.5) holds, i.e. that Mn = max(~l' ... ' ~n) has a limiting 
distribution of the double exponential type, 

P{an(Mn - bn) ~ x} ~ exp( _e- X ) as n ..... 00, 

with the same constants as in Theorem 1.5.3, viz. 

an = (2 log n)l/2, 

bn = an - (2an)-l{log log n + log 4n}. 

One of Berman's results is that it suffices that 

rn log n ~ 0 as n ~ 00, (4.1.1) 

and we will devote the first part of this chapter to a proof of this. However, 
(4.1.1) can be replaced by an appropriate Cesaro convergence, 

for some y > 2, and this and some other conditions will be discussed at the 
end of the chapter. 

It has been shown by Mittal and Ylvisaker (1975) that (4.1.1), and therefore 
also the Cesaro convergence, is rather close to being necessary, in that if 
rn log n ..... y > 0 a different limit applies. In fact, this strong dependence 
destroys the asymptotic independence of extremes in disjoint intervals 
(cf. Lemmas 3.2.2, 3.3.1, and 3.3.2). We return to these matters in more detail 
in Chapter 6. 

In this chapter we obtain the relevant convergence results for normal 
sequences, including the Type I limit, under various covariance assump­
tions, starting with the transparent condition (4.1.1). This will first be done (in 
Section 4.3) by a direct comparison with an i.i.d. normal sequence without 
reference to the D(un), D'(un) conditions. It will then be shown, with very 
little further effort, that these conditions hold, so that the results also follow 
from the general theory of Chapter 3. For subsequent results, e.g., in Chapter 
5, it will be more convenient to rely solely on the general theory via D(un), 

D'(un) for applications to normal sequences but here both approaches are 
simple and instructive. Finally, the rates at which convergence occurs will be 
discussed in Section 4.6. 



4.2. Normal Comparison Lemma 81 

4.2. Normal Comparison Lemma 

Our main task is to show that if (4.1.1) holds, then D(un) and D'(uJ are 
satisfied for appropriate sequences {un}. The main tool for this purpose is a 
widely useful result-here called the Normal Comparison Lemma-which 
bounds the difference between two (standardized) n-dimensional dJ.'s, by a 
convenient function of their covariances. This result has been developed in 
various ways by Slepian (1962), Berman (l964b, 1971a), and Cramer (see 
Cramer and Leadbetter (1967». The lemma is given here in some generality 
for use in later chapters, even though only a simple special form is needed at 
this point. 

Theorem 4.2.1 (Normal Comparison Lemma). Suppose ~ 1, ••. '~n are 
standard normal variables with covariance matrix A l = (At), and rt1' ... , rtn 
similarly with covariance matrix AO = (A~), and let Pij = max(IAtl, IA~I). 
Further, let U10 ••• , Un be real numbers. Then 

P{~j $ ujforj = 1, ... , n} - P{rtj $ ujfor j = 1, ... , n} 

$ ~ L (Alj - A~)+(I - p~)-1/2 exp(- t(uf + U;»), (4.2.1) 
2n 1 Si<jSn 1 + Pij 

where (x)+ = max(O, x). 
In particular, ifmaxi*J Ipijl = D < 1, then 

P{~j $ Uj for j = 1, ... , n} - P{rtj $ Uj for j = 1, ... , n} 

$ K L (Alj - J\~)+ exp(- t(uf + U;») (4.2.2) 
1Si<jSn 1 + Pij 

for some constant K, depending only on D. Further 

IP{~j $ Uj for j = 1, ... , n} - P{rtj $ Uj for j = 1, ... , n} I 

$ 21 L IAtj - J\~I(1 - p~)-1/2 exp(- t(uf + UJ»), (4.2.3) 
n 1 Si<jSn 1 + Pi} 

where the factor (1/2n)(1 - p5)-1/2 can be replaced by K if maxi*j Pi) = 
D<l. 

PROOF. We shall suppose that A 1 and A 0 are positive definite (as opposed to 
semi-definite) and hence that (~1o"" en) and (rt1"'" rtn) have joint densities 
f1 and fo, respectively. (The semi-definite case is easily dealt with by con­
sidering ~i + Bi and rti + Bi' where the Bi are independent normal variables 
with mean zero and then letting Var(Bi) -+ 0, using continuity.) Clearly, 
with U = (U1o ••. , un), 

p{ej $ Uj for j = 1, ... , n} = f ~~~f f1(Y1,"" Yn) dy, 

P{rtj $ Uj for j = 1, ... , n} = f ~~~f fo(Yl,'''' Yn) dy, 
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where fl' fo are the normal density functions based on the covariance matrices 
N, AO, the integration ranges being {y; Yj ~ Uj,j = 1, ... , n}. 

If we write Ah = hAl + (1 - h)AO, (0 ~ h ~ 1), the matrix Ah is positive 
definite with units down the main diagonal and elements hAb + (1 - h)A;~ 
for i =1= j. Let fh be the n-dimensional normal density based on Ah , and 

F(h) = f ~~~rjj.(yl' ... , Yn) dy. 

The left-hand side of (4.2.1) is then easily recognized as F(1) - F(O). Now 

F(1) - F(O) = f F'(h) dh, 

where 

F'(h) = f· ~. f Ofh(Yl, ... , Yn) dy. 
-<Xl oh 

The density fh depends on h only through the elements Mj of Ah (regarding 
fh as a function of Mj for i ~ j, say). We have A~i = 1 independent of h, while 
for i < j, Mj = hAt + (1 - h)A~ so that oMioh = At - A~. Thus 

F'(h) = L f· ~. f Ojj.h . oA~j dy = L (Alj - A?j) f· ~. f of~ dy. 
is.j - <Xl oAij oh i<j -<Xl oAij 

Now a useful property of the multidimensional normal density is that 
its derivative with respect to a covariance Aij is the same as the second mixed 
derivative with respect to the corresponding variables Yi' Yj (cf. Cramer 
and Leadbetter (1967, p. 26», i.e. 

Ofh 02jj. 

oAi,j = OYiOY/ 

Thus 

F'(h) = L (A}j - A~)f'~' f o2fh dy. 
i<j -<Xl OYiOYj 

The Yi and Yj integrations may be done at once to give 

F'(h) = .L. (Afj - A~) f'~'· ffh(Yi = Ui' Yj = u) dy' 
I<J -<Xl 

(4.2.4) 

where fh(Yi = U;, Yj = Uj) denotes the function of n - 2 varIables formed by 
putting Yi = Ui' Yj = Uj' the integration being over the remaining variables. 

Further, we can dominate the last integral by letting the variables run 
from - 00 to + 00. But 
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is just the bivariate density, evaluated at (uj, Uj), of two standard normal 
random variables with correlation Mj , and may therefore be written 

1 { 1 2 h 2} 
21t(1 _ (M)2)1/2 exp - 2(1 _ (At)2) (Ui - 2AijUi Uj + uj ) . 

Now, since IMjl = IhAb + (1 - h)A~1 ~ max(Atj , A~) = Pij' it may be 
easily shown that the above expression does not exceed 

1 ( !(u; + UJ» 
21t(1 - i&)1/2 exp - 1 + Pij . 

(Note that (u 2 - 2puv + v2)/(1 - Ipl) ~ (u2 - 21pllullvl + v2)/(1 - Ipl) 
which is a minimum when P = 0.) Eliminating any negative terms in (4.2.4) 
we thus obtain 

F'(h) ~ 2~ i~j (Atj - A~)+(1 - p~)-1/2 exp( - t(~;++p:J») 
and since F(1) - F(O) = SA F'(h) dh, this proves (4.2.1). 

The conclusion (4.22) follows at once from (4.2.1) since (1 _ p~)-1/2 ~ 
(1 - <52)-1/2, and (4.2.3) follows by using (4.2.1) as stated and with the roles 
of ~j' 1'/j interchanged, noting that (At) - A~)+ and (A~ - Af)+ are each 
no greater than lAb - A~ I. 0 

Some obvious but useful corollaries are stated here for later reference. The 
first of these gives a slight simplification of the bounds which is sometimes 
convenient. 

Corollary 4.2.2. Withthenotationofthetheoremwriteu = min(u1' U2"'" u .. ). 
Then the factor exp( -!Cur + uJ)/(l + Pij» may be replaced by 
exp( -u2/(1 + Pi}» in each of (4.2. 1), (4.2.2), and (4.2.3). In particular, (4.2.2) 
and (4.2.3) become, respectively, 

Pgj ~ ujfor j = 1, ... , n} - P{1'/j ~ ujfor j = 1, ... , n} 

~ K L (Ab - A~)+exp(1-u2 ), 
lSi<jSn + Pi} 

IP{~j~ujforj= 1, ... ,n} -P{1'/j~ujforj= 1, ... ,n}1 

~ K L lAb - A~I exp(~). 
lSi<jsn 1 + Pi} 

(4.2.5) 

(4.2.6) 

PROOF. These results follow immediately since clearly t(u; + uJ> ~ u2• 0 

The next corollary shows that if the covariances of the ~'s are dominated 
by those of the 1'/'s, then the ~'s are stochastically larger than the 1'/'S and the 
maximum of the ~'s is stochastically larger than that of the 1'/'s. 
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Corollary 4.2.3. Let ~1'.'.' ~n' '11"'" '1n be standard normal r.v.'s with 
COV(~i' ~) ~ COV('1i, '1) Jor each i,j. Then,for any Ub ... , Un' 

P{~j ~ Uj Jor j = 1, ... , n} ~ P{'1j ~ uJor j = 1, ... , n}. (4.2.7) 

In particular 

P{max(~I"'" ~n) ~ u} ~ P{max('11,···, '1n) ~ u} (4.2.8) 

Jor all u. 

PROOF. This follows at once from (4.2.2) since (At - AZ)+ = 0 when 
At ~ AZ as assumed. D 

The final corollary explores the consequences of taking the '1/s to be 
independent. 

Corollary 4.2.4. Let ~1"'" ~n be jointly normal (standardized) r.v.'s with 
COV(~i' ~j) = Aij , such that ~ = max;'.j IAijl < 1. Then Jor any real u and 
integers 1 ~ 11 < ... < Is ~ n, 

IPg'j ~ u Jor j = 1, ... , s} - ~u)SI ~ K ~. Irijl exp(- 1 u~ .. 1)' 
1:5 '<}:5s + r'J 

(4.2.9) 

where rij = A'i'j is the correlation between ~'i and ~'J' and K is a constant 
(depending on !5). 

If,Jurthermore, {~n} is stationary with ri = COV(~b ~1+i)' 1 ~ II < ... < 
Is ~ n, I ri I ~ !5 < 1 for each i = Ij - lk then 

n (U2) IPg'j ~ uJor j = 1, ... , s} - cI>(u)' I ~ Kn.l. Ird exp - 1 I .1 . 
,=1 + r, 

(4.2.10) 

In particular, taking s = n, it Jollows that,for any u, 

(4.2.11) 

PROOF. Let '1b ... , '1n be independent standard normal r.v.'s, and A[j = Aij , 
AZ = 1 or 0 according as i = j or i "# j. Then (4.2.9) follows from (4.2.6), 
and (4.2.10) is an immediate consequence of (4.2.9). D 

Note that if the right-hand side of (4.2.10) is small, then (taking s = n), 
the events {~j ~ u} are almost independent for 1 ~ j ~ n. Further by (4.2.11) 
the d.f. of the maximum is then close to the value cI>(u)n which it would take 
if the ~j were independent, and in fact (4.2.11) provides an explicit bound for 
the difference. Clearly in both of these observations the approximation 
improves as u increases. By allowing u to depend on n, u = Un --+ CX) as 
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n --+ 00, the limiting behavior of P{Mn ::;; un} may thus be discussed by use 
of the known i.i.d. results and the Type I limit obtained. This will be described 
in the next section. Similarly the explicit bound in (4.2.11) may be used in 
conjunction with whatever knowledge one has about rates of convergence 
in the i.i,d. case, to provide such knowledge for stationary sequences. This will 
be taken up in Section 4.6-based on a somewhat sharper version of (4.2.11). 

4.3. Extremal Theory for Normal 
Sequences-Direct Approach 

In this section it will be shown how the standard extremal results for station­
ary normal sequences may be obtained directly from the corresponding i.i.d. 
theory by use of (4.2.11). As noted earlier, these results may also be obtained 
simply from the general theory of Chapter 3 by verifying D(un), D'(un)-an 
approach which will be taken in the next section. The central parts of the 
basic result are contained in the following lemma. 

Lemma 4.3.1. Let the covariances {rn} satisfy SUPn2:1 Irnl = () < 1. 

(i) Let {un} be a sequence of constants such that 

nt Irjl exp(- 1 u;1 '1) --+ 0 as n --+ 00. 
J=l + rJ 

Then, if 0 ::;; -r ::;; 00, 

if and only if 

(4.3.1) 

(4.3.2) 

(4.3.3) 

(ii) Suppose that for each 0 < -r < 00, the constants Vn = vn(-r) defined by 
1 - W(vJ = -rln satisfy (4.3.1) with Vn replacing Un' Then if {un} is a 
sequence of constants, n(1 - W(un» --+ 00 if and only if P{Mn ::;; un} --+ O. 

PROOF. Suppose (4.3.1) holds. The conditions of Corollary 4.2.4 hold so that 
by (4.3.1) and (4.2.11), P{Mn ~ un} --+ e-< if and only if ~n(Un) --+ e-<. But 
~(Un) is simply the probability that the maximum of n i.i.d. normal r.v.'s 
does not exceed Un which, by Theorem 1.5.1, converges to e-< if and only if 
n(1 - W(un» --+ -r, hence proving (i). 

To prove (ii), note that it follows from (i) that P{Mn::;; vn} --+ e-< 
(vn = vn(-r». Now if n(1 - W(un» --+ 00 we must have Un < Vn for sufficiently 
large n so that lim supn .... oo P{Mn ::;; un} ::;; limn .... oo P{Mn ~ Vn} = e-<. Since 
this holds for arbitrary -r it follows that P{Mn ::;; un} --+ O. Conversely if 
PfMn ::;; un} --+ 0, since P{Mn ::;; vn} --+ e-< we must again have Un < Vn for 
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sufficiently large n, so that then n(l - <I>(u,,» ~ n(1 - <l>(v,,» = t, from which 
it follows that n(1 - <I>(u,,» ~ 00 since t is arbitrary. D 

Note that (ii) of the theorem is another version of (i) in the case t = 00. 

It may be simply checked that the version (ii) is a stronger result than that in 
(i) when t = 00. 

The next result is a technical lemma given by Berman (1964b), showing 
that the covariance condition (4.1.1) (r" log n ~ 0) implies (4.3.1) when u" is 
such that n(l - <I>(u,,» is bounded-so that u" ~ 00 in a manner which is 
not too slow. This lemma will be used here, and also in the next section in 
verifying D(u,,), D'(u,,) to obtain the same results. 

Before stating the lemma, we note the easily proved fact that if the co­
variance r" ~ 0 as n ~ 00 then Ir,,1 cannot equal 1 for any n i= O. (For 
if I r" I = 1 for some n i= 0, it follows that eland e" + 1 are linearly related, as 
are also e"+l and e2,,+1' and hence so are el' e2,,+1' so that Ir2,,1 = 1. In 
this way it follows that I rk" I = 1 for all k, contradicting the requirement that 
r" ~ 0.) Hence it is easy to see that Ir,,1 is actually bounded away from 1 for 
all n ~ 1, i.e. SUP"~l Ir,,1 = (j < 1. 

Lemma 4.3.2. Suppose that (4.1.1) holds (i.e. r" log n ~ 0), and that {u,,} is a 
sequence of constants such that n(l - <l>(u,,» is bounded. Then (4.3.1) holds, viz. 

PROOF. It appears to be technically somewhat simpler to prove this result if 
n(l - <l>(u,,» actually converges to a finite limit, and we shall do so. The 
result will then follow as stated, since if n(1 - <l>(u,,» ~ K, and v" is defined 
by n(1 - <l>(v,,» = K, then (4.3.1) will hold with v" replacing U", But since 
clearly u" ~ v" it follows at once that (4.3.1) holds with U", as asserted. 

Suppose, then, that n(l - <l>(u,,» converges to a finite limit, n(l - <l>(u,,» 
~ t, say. By using (1.5.4), we see that 

(.) (u;) Ku" 
1 exp -"2 -n' (4.3.4) 

(ii) u" - (2 log n)1/2, 

using K as a constant whose value may change from line to line. As above, let 
(j = sup,,~ 1 I r" I < 1, and let (X be a constant such that 0 < (X < (1 - (5)/(1 + (j). 

Split the sum in (4.3.1) into two parts, the first for 1 ~ j ~ [nil] and the 
second for [n'1 < j ~ n. The first sum is dominated by 

( u2) (( U2))2/<1 +6) nn ll exp - 1 ~ (j = n1+1l exp - ; ~ Kn1+1l(u,./n)2/(1 +6) 
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(where (4.3.4), (i) and (ii), have been used). This tends to zero since 1 + IX 

- 2/(1 + b) < 0 from the choice of IX. 

To deal with the second part we define 

bn = sup Irml 

and note that 

bn log n :$; sup Irmllog m - 0 as n - 00. 
m:<!:n 

Now, writing p = [n"'], we have for the second part of (4.3.1), for large n, 

n (u2 
) n ( u2

1 r I ) n. L Irjlexp -1 nl .1 :$;nbpexp(-u;). L exp 1 n (I 
J=p+l + rJ J=p+l + rJ 

:$; n2bp exp( -u;) exp(u;bp) 

:$; Kbpu; exp(bpu;) 

by (4.3.4), (i). But by (4.3.4), (ii), 

bpu; '" 2b[n'llog n = ~ b[n') log n"', 
IX 

which tends to zero. Thus the exponential term above t~ to one and the 
remaining product tends to zero, so that the desired result follows. D 

The main distributional results for stationary normal sequences are now 
summarized in the following theorem. 

Theorem 4.3.3. Let {~n} be a (standardized) stationary normal sequence with 
covariances {rn} satisfying the condition rn log n - o. Then 

(i) for 0 :$; • :$; 00, P{Mn :$; un} - e- t if and only ifn(1 - <D(un)) - ., 
(ii) P{an(Mn - bn) :$; x} - exp( _e- X ), so that the Type I limit holds, where 

an and bn have precisely the same values as in the U.d. case, being given 
by 0.7.2). 

PROOF. If n(1 - <D(un)) - • < 00, Lemma 4.3.2 shows that (4.3.1) holds and 
hence P{Mn :$; un} - e- t by Lemma 4.3.1. 

Conversely suppose that 0 ~ • < 00 and P{Mn :$; un} - e- t • For any 
given .' < 00, define Vn by 1 - <D(vn) = .'/n. Then by what has just been 
proved, P{Mn :$; vn} - e- t '. First choose .' > •. Then clearly Vn < Un for 
sufficiently large n so that 

lim sup n(1 - cD(un)) :$; lim n(1 - cD(vn)) = .'. 
n .... co n .... co 

Since this holds for all .' > • it follows that lim supn .... co n(1 - cD(un)) :$; •. 
This gives (i) for • = O. For • > 0 the reverse inequality for 
lim infn .... co n(1 - cD(un)) follows similarly by taking .' <., so that 
n(1 - cD(un)) - •• 
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Hence (i) is proved except for the case. = 00. But this follows immediately 
from Lemma 4.3. 1 (ii), since if 1 - <I>(vn) = ./n, (4.3.1) holds with Vn replacing 
Un' by Lemma 4.3.2. 

The Type I limit in (ii) also follows simply. For if Un = x/an + bn with 
an, bn as given by (1.7.2), it follows from Theorem 1.5.3 that P{Mn ~ un} --+ e- t 

where. = e- x, and Mn is the maximum of n standard normal i.d.d. random 
variables. Hence Theorem 1.5.1 shows that n(1 - <I>(un» --+., so that 
P{Mn ~ un} --+ e- t by (i), and an obvious rephrasing gives (ii). D 

4.4. The Conditions D(un), D'(un) for Normal 
Sequences 

In this section we use the covariance condition (4.1.1) to obtain D(un), D'(un) 
for stationary normal sequences. The extremal results obtained in Section 4.3 
will then also follow at once from the general theory of Chapter 3. Further, 
while it was natural to give the simple special derivation of the extremal 
results for normal sequences, it will be much more convenient to obtain 
subsequent results in the normal case by specializing the general theory. 
This will continue to be based on the dependence restrictions D(un), D'(un). In 
the following discussion the notation established above for the (standardized) 
stationary normal process will again be used without comment. 

Lemma 4.4.1. Let {un} be a sequence of constants. 

(i) IfsuPn:2:1lrnl < 1 and (4.3.1) holds then so does D(un). 
(ii) If, in addition n(l - <I>(un» is bounded then D'(un) holds. 

(iii) If rn log n --+ 0 and n(l - <I>(un» is bounded, both D(un) and D'(un) hold. 

PROOF. It follows from Corollary 4.2.4 (Eqn. (4.2.10» that if 1 ~ 11 < ... < 
Is ~ n, then the joint dJ. FI! ... 1. of ~h' ... , ~I. satisfies 

n (u2) IFI! ... I.(Un) - <I>'(Un) I ~ Knj~1 Irjl exp - 1 +n1rjl . (4.4.1) 

Suppose now that 1 ~ il < ... < ip < jl < ... < jp, ~ n. Identifying 
{l1,.oo,ls} in turn with {i1,oo.,ip,jl,oo.,jp'}' {i1,oo.,ip} and Ul,oo.,jp'} 
we thus have 

IFh ... ip,h ... jp'(un) - Fh ... i/un)Fh ... jp,(un)1 ~ 3KnJl 1rjl exp ( - 1 :;Irjl)' 

which tends to zero by (4.3.1). Thus D(un) is satisfied. (In fact limn-+oo an,l=O 
for each I.) Hence (i) is proved. 

To prove (ii) take s = 2,11 = 1,12 = j in (4.2.9) to obtain 

IP{~1 ~ Un' ~j ~ un} - <l>2(Un) I ~ Klrj_ 1 1 exp ( - 1 + ~~j-ll)' 
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whence, by simple manipulation (e1 and ej being each standard normal), 

IP{e1 > U", ej > u,,} - (1 - Cl>(u,,»2I:$ Klrj_11 exp( - 1 + ~;j-11)' 
Thus if n(1 - Cl>(u,,» :$ M, then 

["Ikl M2" (u2 ) 
n~ p{e1 > U", ej > u,,}:$ -k + Kn.L Irjl exp - 1 "I .1 ' 

J=2 J=l + rJ 

from which D'(u,,) follows by (4.3.1), so that (ii) holds. 

89 

Finally if r" log n -+ 0 and n(1 - <l>(u,,» is bounded, then Lemma 4.3.2 
shows that (4.3.1) holds so that the conditions of both (i) and (ii) above are 
satisfied and hence D(u,,), D'(u,,) hold. 0 

The main extremal results for normal sequences given in Theorem 4.3.3 
may now be seen to follow simply from the general theory of Chapter 3. 
For (i) of Theorem 4.3.3 is immediate when 0 :$ 't < 00 from Theorem 3.4.1 
and Lemma 4.4.1(iii). The case 't = 00 follows at once from Corollary 3.4.2 
since if v" is defined by 1 - <l>(v,,) = 'tin, 0 < 't < 00, D(v,,), D'(v,,) hold by 
Lemma 4.4.1(iii) again. Finally, Theorem 4.3.3(ii) follows at once from 
Theorem 3.5.2 and Lemma 4.4.1(iii). (The requirement of Lemma 4.4.1(iii) 
that n(1 - <l>(u,,» be bounded, with u" = x/a" + b", is obvious from the 
calculations in, e.g. Theorem 1.5.3, or may be easily checked directly by 
considering the terms of log(mp(u,,)/u,,).) 

4.5. Weaker Dependence Assumptions 

For practical purposes the condition (4.1.1) that r" log n -+ 0 is as useful and 
as general as is likely to be needed. In fact this condition is rather close to 
what is 'necessary for the maximum of a stationary normal sequence to 
behave like that of the associated independent sequence. 

As we have seen, it is the convergence (4.3.1) which makes it possible to 
prove D(u,,) and D'(u,,), and one could therefore be tempted to use (4.3.1) as 
an indeed very weak condition. Since it is not very transparent, depending 
as it does on the level U", other conditions, which also restrict the size of r" 
for large n, have been proposed occasionally. In Berman (1964b) it is shown 
that (4.1.1) can be replaced by 

ao 

L r~ < 00 (4.5.1) 
,,=0 

which is a special case of 

ao 

L r~ < 00 for some p > O. (4.5.2) 
,,=0 
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There is no implication between (4.1.1) and condition (4.5.2), but they both 
imply the following weak condition, 

1 II 
- L Irkllog k exp(ylrkllog k) ~ 0 as n ~ 00 
n k=1 

(4.5.3) 

for some y > 2, as is proved in Leadbetter et al. (1978) and below after 
Theorem 4.5.2. We now show that (4.5.3) may be used instead of (4.1.1) to 
obtain the relevant D(u,,), D'(u,,) conditions and the limit theorems for Mil. 

Lemma 4.5.1. Ifr" ~ 0 as n ~ 00, {r,,} satisfies (4.5.3), and ifn(l - F(u,,» is 
bounded, then (4.3.1) holds. 

PROOF. As in Lemma 4.3.2 we may (and do) assume that n(l - F(u,,» actually 
converges to a finite limit 1:. Using the notation in the proof of Lemma 4.3.2, 
let b = sup,,~ 1 I r "I < 1, take p = 2/y and let IX be a constant such that 
o < IX < min(p, (1 - b)/(1 + b». 

Split the sum in (4.3.1) intQ three parts, the first for 1 :::;; j :::;; [nIX], the second 
for [n<X) < j :::;; [nil] and the third for [nil] < j :::;; n. The first sum tends to zero 
as in Lemma 4.3.2. 

Writing b" = sUPm~" Irml, p = [n<X), and q = [nil] and using (4.3.4), i.e. 

( u;) Ku" K(2log n)1/2 
exp - - '" - '" ----'--=----:'----

2 n n' 

we have for the second part of (4.3.1), 

:::;; Knll - 1u;n2"p 
which obviously tends to zero, since P < 1, and bp log p ~ o. 

Finally, for the last part of (4.3.1) we have, again using (4.3.4), 

" (u2 ) II (u )2/(1+ "kl) 
n L I rk I exp - 1 /II I :::;; Kn L I rk I --.!! 

k=q+ 1 + rk k=q+ 1 n 
/I 

:::;; Kn- 1 log n L Irkl exp(2lrkllog n). 
k=q+1 

For k > q we have log k ~ P log n, and hence this expression is not larger 
than 

/I 
Kn- 1 L Irkllog k exp(2p-1Irkllog k) 

k=q+1 
/I 

:::;; Kn- 1 L Irkllog k exp(ylrkllog k). 
k=1 
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By (4.5.3) this tends to zero as n -. 00, which concludes the proof of (4.3.1). 
D 

The main results proved under (4.1.1) may now be extended as follows. 

Theorem 4.5.2. Let {~n} be a (standardized) stationary normal sequence, with 
covariances rn -. 0 as n -. 00, and satisfying (4.5.3)for some y > 2. Then 

(i) if {un} is a sequence of constants such that n(l - <ll(un» is bounded, 
then D(un), D'(un) both hold, 

(ii) for 0 ~ t ~ 00, P{Mn ~ un} -. e- t if and only ifn(l - <ll(un» -. t, 
(iii) Mn = max(~l' ... , ~n) has the Type I limiting distribution 

P{aiMn - bn) ~ x} -. exp( _e- X ) 

where an and bn have the same values as in the i.i.d. case, being given by 
(1.7.2). 

PROOF. The same arguments used in Lemma 4.4.1 and Theorem 4.3.3 may 
be applied with the obvious modifications. D 

A few remarks may be helpful here to provide insight into condition (4.5.3). 
Define, for each positive x, the set On(x) = {k; 1 ~ k ~ n, Irkllog k > x} 

and let vlx) be the number of elements in On(x). Consider the following 
condition (which we shall see is slightly stronger than (4.5.3», 

n 

n- 1 L Irkllog k -. 0 
k=l 

as n -. 00, and 

viK) = O(n~) for some K > 0, '1 < 1, 

and the equivalent condition 

vn(e) = o(n) for aIle> 0, and 

vn(K) = O(n~) for some K > 0, '1 < 1. 

Obviously (4.1.1) implies (4.5.4)'. Further, if 

for some p > 0 then, since 

(4.5.4)' 

(4.5.4)" 

it follows that vn(x) = O«log n)p). In particular, we see that also (4.5.1) 
and (4.5.2) imply (4.5.4)", so that both (4.1.1) and (4.5.2) are stronger than 
(4.5.4), and (4.5.4)". The following lemma states that (4.5.4)' or (4.5.4)" 
imply (4.5.3) and consequently that both (4.1.1) and (4.5.2) imply (4.5.3). 
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Lemma 4.5.3. If r" -+ ° as n -+ 00, then (4.5.4)' and (4.5.4)" are equivalent 
and both imply (4.5.3). 

PROOF. It is easily seen that (4.5.4)' and (4.5.4)" are equivalent so we need 
only show that (4.5.4)' implies (4.5.3). We have 

" " 
n- 1 L Ir"llog k exp(ylr"llog k) = n- 1 L Ir"llog k exp(ylrkllog k) 

k=1 k=1 
kj9n (K} 

+n- 1 L Irkllogkexp(ylrkllogk), 
"e9n (K} 

(4.5.5) 

and proceed to estimate the sums on the right separately, assuming that 
(4.5.4)' holds. Now 

" n 

n- 1 L Irkllog k exp(ylrkllog k) ~ exp(yK)n- 1 L Irkllog k -+ 0, 
k=1 k=1 

kj9n(K} 

n -+ 00, 

by the first part of (4.5.4)'. Since we assume that r" -+ 0, there is an integer N 
such that y I r" I < (1 - ,,)/2 for k ~ N. Hence 

n- 1 L Ir"llog k exp(ylr"llog k) ~ n- 1v,,(K) log n n(1-~}/2, 
ke9n (K} 

k?eN 

which tends to zero as n -+ 00, by the second part of (4.5.4)'. Since N is 
fixed, n- 1 If= 11 r" 1 log k exp(y 1 r" Ilog k) -+ 0, and it follows that also the 
second term of the right-hand side of (4.5.5) tends to zero, and thus that 
(4.5.3) is satisfied. 0 

4.6. Rate of Convergence 

As was seen in Section 2.4 for independent standard normal r.v.'s, the 
convergence of P{Mn ~ u,,} = W(u,,)" is quite slow if, e.g. u" = u,,(x) = 
x/a" + b". In particular, it is of the order (log log n)2/log n if a" and b" are 
chosen as in Theorem 1.5.3, and of the order 1/log n if the "best" an's and 
b,,'s are used. One should, of course, not expect more rapid convergence in 
the dependent case. In fact, the proof of Theorem 4.3.3 essentially depends 
on first comparing P{M" ~ u,,} with W(u,,)" and then using the limit theorem 
for independent normal variables to conclude that W(un)" -+ e- t , for or = e- x• 

We shall presently show that, if L~=1 Irtl does not increase too rapidly, the 
error in the approximation of P{M" ~ u} by <J>(u)" tends to zero as a certain 
power ofn. It is then immediate that the speed of convergence of P{Mn ~ u,,} 
to e- t is determined by the approximation ofW(un)" by e- t , and hence is the 
same as in the independent case. 
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However, since ~(u,,)" can be easily calculated with high accuracy, the 
bound on the size of P{M" ~ u} - ~(u)" which we shall derive, also has 
substantial interest in itself; it shows how P{Mn ~ u}, for Mn the maximum 
of dependent normal variables, can be approximated with reasonable 
accuracy. 

As a starting point for the estimation we shall use the equation (4.2.4), 
specialized to the case Ai) = rj-io AZ = 0, i i= j (and hence with SA F'(h) dh 
= P{M" ~ u} - ~u)"), which gives the equation 

P{M" ~ u} - ~u)" = I1 L rj-i f· ~'. fJi,(Yi = Yj = u) dy' dh. 
o 1:s;i<j:s;n -00 

(4.6.1) 

Here f,'(Yi = Yj = u) is the function obtained by putting Yi = Yj = u in the 
density function of n normal r.v.'s with means zero, variances one, and 
covariances hrk, and the remaining variables are integrated over (- 00, u]. 
It is useful to write this expression in a slightly different form. Let 

1 { 1 2 2 2} 4>p(u) = 2n(1 _ p2)1/2 exp - 2(1 _ p2) (u - 2pu + u ) 

= 2n(1 ~ p2)1/2 exp ( - 1 :2 p) 

be the standard bivariate normal density taken at the point (u, u), and let 

f,,(y'IYi = Yj = u) = f,,(Yi = Yj = U)/4>hrj_t(U) 

be the conditional density, given that the ith andjth variables are equal to u, 
in the n-dimensional normal distribution introduced above. The equation 
(4.6.1) can then be written as 

P{M" ~ u} - ~u)n 

L rj_ i I1 4>hrj_ t(u) f . ~: ffh(y'IYi = Yj = u) dy' dh, (4.6.2) 
1:S;i<j:s;n 0 -00 

and we clearly have that 

o ~ f ~:ffh(Y'IYi = Yj = u) dy' ~ 1, (4.6.3) 

where the second inequality was one of the main steps in the proof of 
Theorem 4.2.1. 

Before proceeding to the estimations, we shall introduce some notation 
and constants for later use. The constants are fairly involved, and could 
easily be simplified by making less accurate approximations, but that would 
make them less suited for numerical use. Let p = sup{O, r1, r2,"'} and, 
in case p > 0, let v be the number of t's such that rt = p. We will throughout 
this section, without further comment, assume that the supremum is attained, 
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so that v ;;:: 1. In particular, this is the case if r t -+ 0 as t -+ 00, and then also 
v < 00. If P = 0 let v :::; 00 be the number of nonzero r/s. For the second­
order terms, define P' to be the supremum for t ;;:: 1 of the r/s which satisfy 
r t # p, if this quantity is positive, and zero otherwise, and let 

2 (1 1) 2(p - p') 
e = 1 + p' - 1 + p = (1 + p)(1 + P'Y (4.6.4) 

Next define 

, (1 + p)3/2 
c(p) = (l _ p)1/2' 

"( ) _ (2 - p)(1 + p) 
C P - 1 ' -p 

C(p) = c'(p)(4n)-P/(1+ pl, 

(4.6.5) 

and put (j = sup{lrtl; t;;:: 1, r t # p}. 
The main factor, Rn, in the bounds has a slightly different appearance in 

the two cases (i) p > 0 or p = 0, v < 00, and (ii) p = 0, v = 00, and in 
addition depends on a constant K, which will be introduced below. Define 

Rn = c(p, K, v)n-(l- Pl/(1+Pl(log R) -P/(l+ pl(1 + Pn) 

if p > 0 or p = 0, v < 00, (4.6.6)' 

Rn = c(K, (j)(~) 10g(~) ± Irtl if p = 0, v = 00. (4.6.6)" 
n K t=O 

Here 

c(p, K, v) = c(p)K2/(1+ Plv, 

and Pn is defined by Pn = 0 for P = 0, and 

(4.6.8) 

if p > 0, with 

C = K'2(2- p'l/(1+ P')(4n),/2(1 _ p)1/2(1 + p)-3/2-1/(1+P'l(1 _ (j2)-1/2V-l, 

and with I;' signifying that the summation is over all tin {1, 2, ... , n} for 
which r t # p. 

Lemma 4.6.1. Let U > 0, suppose r # 0, I r I < 1, write p = max(O, r), and 
let c, c', c" be given by (4.6.5). Then 

1 { (u2 
) }/{ C"(P)} (i) 2nu2r c'(r) exp - 1 + r - e- u2 1 + 7 

:::; fcPhr(U)dh:::; 2n~2r {c'(r)exp ( -1 :2r) - e- U2
}. 
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Suppose that furthermore u ~ 1. Then 

(ii) 0::;; fcf>hr(U) dh::;; 2(2+ P)/(1+ P)c(p)lrl- 1{(1 - ~u»/UP}2/(1+p), 

and, ifr ::;; p' for some constant 0 ::;; p' < 1, then 

(iii) 0::;; f cf>hr(U) dh 

::;; 2(2+ p')/(1+ p')(4n)-P'/(1+ P')(1 _ r2)-1/2{(1 _ ~U»U}2/(1+p'). 

PROOF. By partial integration 

2n f cf>hr(u) dh = f (1 - h2r2)- 1/2 exp ( - 1 :2 hr) dh 

= u!r {c'(r) exp ( - 1 :2 r) - exp( _U2)} 

1 i1 (2 - hr)(1 + hr)1/2 ( u2 ) 
- u2 0 (1 _ hr)3/2 exp - 1 + hr dh, (4.6.9) 

and the second inequality in (i) follows at once, since the last integral in 
(4.6.9) is positive. Moreover, 

(2 - hr)(1 + hr)1 /2(1 - hr)-3/2 ::;; c"(p)(1 - h2r2)-1/2, 

as is easily checked, and hence 

,1 (2 - hr)(1 + hr)1/2 ( u2 ) "i 1 
Jo (1 - hr)3/2 exp - 1 + hr dh::;; 2nc (p) 0 cf>hr(U) dh. (4.6.10) 

Inserting (4.6.10) into (4.6.9) we obtain 

{ e"(p)} i 1 1 { (u2 
) } 1 + 7 0 cf>hr(U) dh ~ 2nu2r e'er) exp - 1 + r - e- u2 

, 

which proves the first inequality in (i). 
To prove (ii) we will use the inequalities 

j2n(1 _ ~u» > exp( -u2/2) ~ ~ exp( -u2/2) 
u 1 + u2 2u 

for u ~ 1. Thus, if r = p > 0, by part (i), 

i1 e'er) ( u2 ) 
cf>hr(U) dh ::;; -2 2 exp - -1 -

o nur +r 

(4.6.11) 

::;; 2(2+P)/(1+ P)(4n)-p/(1+P)lrl- 1c'(p){(1 - <I>(u»/UP}2/(1+p), 

and similarly, for r < 0, p = 0, 

i1 1 2 4c'(0) 2 
o cf>h.(U) dh ::;; 2nu21 r 1 exp( - u ) ::;; -I-r 1- (1 - <I>(u» , 
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and hence (ii) holds in either case. Finally, it is immediate that, for u ~ 1, 

f ¢h,(U) dh ::;; 2n(1 ~ r2)l/2 exp ( - 1 : p) 
::;; 2(2+ P'l/(1+ P'l(4n)-p'/(1+p'l(1 _ r2)-l/2{(1 _ <Il(U»U}2/(1+P'l, 

by (4.6.11), which proves (iii). o 

The main lemma now follows easily. We will only consider a restricted 
range of u-values (which may even be empty for small n). The remaining 
range of u's of interest to us is easier to treat, as shown in the proof of Theorem 
4.6.3 below. 

Lemma 4.6.2. Suppose that for some constant K > 0, 

n(1 - W(u» ::;; K, 

and .that 1 ::;; u ::;; 2(1 + p)-l/2(log n/K)l/2. Then 

nttllrtl f ¢h,,(U) dh ::;; 4Rn , 

for Rn given by (4.6.6)' and (4.6.6)", in the separate cases. 

PROOF. First, by (4.6.11) and (4.6.12), 

n exp( - u2/2) 
;;C 2 ~ K, 

y2n u 
i.e. 

for u ~ 1. 

(4.6.12) 

(4.6.13) 

(4.6.14) 

Now, suppose that p > O. Using Lemma 4.6.1(ii) to bound summands with 
r t = p and Lemma 4.6.1(iii) for the remaining summands, we have that 

nttl Irtl f ¢h,,(U) dh ::;; n2(2+Pl/(1+Plc(p){(l - <I>(u»/UP}2/(l+Plv 

+ n2(2+ p'l/(1+ p'l(4n)-P'/(l+p'l "" Irtl 
L" (1 _ r~)l/2 

x {(I - <Il(U»u}2/(1+p'l, (4.6.15) 

where L'denotes summation over all t in {I, ... , n} such that rt i= p. Since 
n(1 - <Il(u» ::;; K and <! log n/K)l/2 ::;; u ::;; 2(1 + p)-l/2(log n/K)l/2 by as­
sumption and (4.6.14), we have that 

< 2P/(1+pl - log-{ I - <Il(U)}2/(l+Pl (K)2/(l+Pl( n)-p/(l+Pl 
uP - n K 
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and that 

(
K)2/(1 +p') ( )1/(1 +p') 

{(1 - cl>(U»U}2/(1+p') ~ 22/(1+ p'}(1 + p)-l/(1+ P'} -; log ~ 

Inserting this into (4.6.15) we obtain, with {} = sup{lrtl; t;;::: 1, r t =1= p}, 
e = 2(P - p')(1 + p)-1(1 + pTl, and C as in (4.6.8), 

ntt Irtl L\Ph,,(U) dh ~ 4c(p)K2/(1+ P} n-(l-p}/(1 +P)(IOg ~) -p/(l +P}v 

X {1 + CL' Irtln-'(IOg ~r+'/2}. 
and comparing with (4.6.6)', this proves (4.6.13) for the case p > 0. 

Next, suppose p = 0, v < 00, so that by Lemma 4.6.1(ii), 

n I1 n I r I 4K2v 
n L Irtl 4>h,,(U) dh ~ 4n L -I tl (1 - (J}{U»2 ~-, 
t=l 0 t=l rt n 

which shows that (4.6.13) holds also in this case. 
Finally, suppose p = 0, and v ~ 00. Then, using Lemma 4.6. 1 (iii), 

similar calculations show that 

n I1 n Irtl 2 
n t~llrtl 0 4>h,,(U) dh ~ 4n t~l (1 _ r'f)1/2 {(1 - cl>(u»u} 

~ 16K2(1- {}2)-1 /2f Irtl!log~, 
t=l n K 

proving (4.6.13) for the case p = 0, v = 00. o 

The rate of convergence to zero of P {M n ~ u} - (J}{u)n now follows easily 
from (4.6.2), (4.6.3), and Lemma 4.6.2. To obtain efficient bounds we will, 
as in Lemma 4.6.2, restrict the domain of variation of U by requiring that 
n(l - cl>(u» ~ K, for some fixed K > 0, or equivalently that U ;;::: Un' where 
Un is the solution to the equation n(1 - cJ)(un» = K. According to Theorem 
1.5.1, this implies that if Mn is the maximum of the first n variables in an 
independent standard normal sequence, then 

P{MII ~ u,,} -+ e- K as n -+ 00, (4.6.16) 

and conversely that if {u,,} satisfies (4.6.16) then n(1 - (J}{ull» -+ K. Moreover, 
if P{Mn ~ un} - P{Mn ~ Un} = P{Mn ~ Un} - cJ)(Un)" -+ 0, then, of course, 
the same equivalence holds for Mn replaced by Mn. 

Thus, since the bounds for the rate of convergence will be proved for 
U ;;::: Un' they will apply to the upper part of the range of variation of 
P{M" ~ u}, and by taking K large, an arbitrarily large part of this range is 
covered, at the cost of a poorer bound. 
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Theorem 4.6.3. Let {~t} be a (standardized) stationary normal sequence, 
suppose that u ~ 1, and that (4.6.12) holds, i.e. that 

n(1 - <l>(u» ~ K, 

for some constant K with n/K ~ e. Then 

IP{Mn ~ u} - <l>(utl ~ 4Rn, (4.6.17) 

with Rn given by (4.6.6). More explicitly, writing.1n = IP{Mn ~ u} - <l>(u)nl, 
ifp = max{0,r1,r2,···} > O,orp = Oandv = #{t ~ l;rt '" O} < oo,then 

( 
n)-p/(l+P) 

.1n ~ cn-(1-p)/(l+p) log K (1 + Pn), 

with c = 4c(p, K, v) and Pn given by (4.6.7), (4.6.8), and if p = 0, v = 00, then 

1 n n 

.1n ~ c - log K I I rt I, 
n t=O 

with c = 4c(K, <5) given by (4.6.7). 

PROOF. By (4.6.2) and (4.6.3) 

IP{Mn ~ u} - <l>(utl ~ I Irs_tII1rPhr._,(U)dh 
1 :s;s<r:S;n 0 

n 11 
~ nt~l Irrl 0 rPhr,(U) dh, 

and it follows from Lemma 4.6.2 that (4.6.17) holds for u satisfying (4.6.12) 
and 1 ~ u ~ 2(1 + p)-1/2(log n/K)1/2. 

To complete the proof we will show that (4.6.17), rather trivially, is 
satisfied also for u > 2(1 + p)-1/2(log n/K)1/2. In fact, 

IP{Mn ~ u} - <I>(utl = IP{Mn > u} - (l - <I>(u)") I 

~ P{Mn > u} + (1 - <l>(u)") 

~ 2n(1 - <I>(u», 

by Boole's inequality. Since 1 - <I>(u) ~ rP(u)/u, we have for 

( n)1/2 
u ~ 2(1 + p)-1/2 log K ~ 1, 

that 

(4.6.18) 

{ 1( (n)1/2)2}( n)-1/2 1 - <I>(u) ~ (2n)-1/2 exp -"2 2(1 + p)-1/2 log K log K 

(
K)2/(1 + p) ( n ) - 1/2 

~ (2n)-1/2 n log K ' 
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and hence, by (4.6.18), 

(
K)2/(1+P)( n)-1/2 

IP{Mn ~ u} - <l>(u)nl ~ 2(2n)-1/2n n log K ~ 4Rn, 

by straightforward calculation. o 

Thus, by the theorem, if p > 0 or p = 0, v < 00 and I:=1 Ir,l does not 
grow too rapidly, the rate of convergence is at least of the order 

n-(1-P)/(1+ p)(log n)-p/(1+ p). 

This is the right order, at least if {e,} is m-dependent. In fact, if r, = 0 for 
I t I > m for some positive integer m, and n(1 - <I>( un)) -+ K > 0, then if p > 0, 

(4.6.19) 

and if p = 0, then 

(4.6.20) 

see Rootzen (1982). Comparing (4.6.19) and (4.6.20) with the bounds of 
Theorem 4.6.3, we see that for p > 0 or p = 0, v < 00, the bounds asymptoti­
cally are too large by a factor 4eK • Here, the factor 4 is due to inaccuracies in 
the estimates (4.6.11) and (4.6.14), and can be easily reduced by restricting the 
range of u further, while the factor eK is due to the estimate (4.6.3). 

If p = 0, v = 00, and I;";o Ir,l < 00, the bound given by Theorem 4.6.3 
is of the order 

1 
-log n. 
n 

It seems unlikely that this is the correct order, but the loss does not seem 
important, since clearly the rate of convergence cannot be better than lin, in 
general. 

Finally, as mentioned above, it is an easy corollary to the theorem that the 
convergence to the limiting double exponential distribution is as slow as for 
an independent normal sequence. For example, if an, bn and C1, C2 are given 
by (2.4.9) and (2.4.10), then, under a suitable condition on the growth of 
I~=l Ir,l, 

0< C1 ~ lim inf{SUP log nIP{an(Mn - bJ ~ x} - exp( _e-X)I} 
n-+ 00 x 

~ lim sup {sup log nIP{an(Mn - bn) ~ x} - exp( -e-11} 
n-+ 00 x 
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and the order 1/10g n of convergence cannot be improved by choosing other 
normalizing constants than an, bn. In particular, for 

an = (2 log n)112, 

bn =an - (2an)-1{log log n + log 4n}, 

the approximation is 

(log log n)2 
P{aiMn - bn) :$; x} - exp( _e- X ) '" l6 e- x exp( _e- X ) --:-1---

ogn 

The reader is referred to Rootzen (1982) for the exact condition on L~= 1 I r t I 
and the proofs of these assertions, and for further aspects of the rate of con­
vergence of extremes of stationary normal sequences. 



CHAPTER 5 

Convergence of the Point Process of 
Exceedances, and the Distribution of 
kth Largest Maxima 

In this chapter we return to the general situation and notation of Chapter 3 
and consider the pointsj (regarded as "time instants") at which the general 
stationary sequence {~j} exceeds some given level u. These times of exceed­
ance are stochastic in nature and may be viewed as a point process. Since 
exceedances of very high levels will be rare, one may suspect that this point 
process will take on a Poisson character at such levels. An explicit theorem 
along these lines will be proved and the asymptotic distributions of kth 
largest values (order statistics) obtained as corollaries. Generalizations of 
this theorem yield further results concerning joint distributions of kth largest 
values. The formal definition and simple properties of point processes which 
will be needed are given in the appendix. 

5.1. Point Processes of Exceedances 

If u is a given" level" we say that the (stationary) sequence {~n} has an exceed­
ance of u atj if ~j > u. Suchj may be regarded as "instants of time", and the 
exceedances therefore as events occurring randomly in time, i.e. as a point 
process (cf. Appendix). 

We shall be concerned with such exceedances for (typically) increasing 
levels and will define such a point process, Nn , say, for each of a sequence 
{un} of levels. Since the Un will be typically high for large n, the exceedances 
will tend to be rarer and we shall find it convenient to normalize the "time" 
axis to keep the expected number of exceedances approximately constant. 
For our purposes the simple scale change by the factor n will suffice. Speci­
fically we define for each n a process '1n(t) at the points t = j/n,j = 1,2, ... by 
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Unr---------.--.------------~---

Figure 5.1.1. Point process of exceedances. 

11nU/n) = ej • Then 11n has an exceedance of Un at j/n whenever {ek} has an 
exceedance at j. Hence, while exceedances of Un may be lost as Un increases, 
this will be balanced by the fact that the points j/n become more dense. 
Indeed, the expected number of exceedances by 11n in the interval (0, 1] is 
clearly nP{ e 1 > Un} which tends to a finite value t, if Un is chosen by (3.4.2). 

Our first task will be to show that (under D(un), D'(un) conditions) the 
exceedances of Un by 11n become Poisson in character as n increases (actually 
in the full sense of distributional convergence for point processes described 
in the appendix). In particular, this will mean that the number, N n(B), say, 
of exceedances of Un by 11n in the (Borel) set B, will have an asymptotic Poisson 
distribution. From this we may simply obtain the asymptotic distribution of 
the kth largest among el"'" en, and thus generalize Theorems 2.2.1 and 
2.2.2. The Poisson result will be proved in the next section and the distri­
butional corollaries in Section 5.3. 

It will also be of interest to generalize Theorems 2.3.1 and 2.3.2, giving 
joint distributions of kth largest values. This will require an extension of our 
convergence result to involve exceedances of several levels simultaneously, 
as will be seen in subsequent sections. 

5.2. Poisson Convergence of High-Level Exceedances 

In the following theorem we shall first consider exceedances of Un by 11n on 
the unit interval (0, 1] rather than the whole positive axis, since we can then 
use less restrictive assumptions, and still obtain the corollaries concerning 
the distributions of kth maxima. 

Theorem 5.2.1. (i) Let t > ° be fixed and suppose that D(un), D'(un) hold for 
the stationary sequence {en} with Un = un(t) satisfying (3.4.2). Let 11nU/n) = 
ej , j = 1, 2, ... ; n = 1, 2, ... , and let N n be the point process on the unit 
interval (0,1] consisting of the exceedances of Un by 11n in that interval, (i.e. 
the points j/n, 1 5, j 5, n, for which 11nU/n) = ej > un). Then N n converges 
in distribution to a Poisson process N on (0,1] with parameter t, as n -. 00. 
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(ii) Suppose that,for each r> 0, there exists a sequence {uir)} satisfying 
(3.4.2), and that D(un(r», D'(uir» holdfor all r > O. Thenfor any fixed r, 
the result of (i) holds for the entire positive axis in place of the unit 
interval, i.e. the point process Nn of exeedances of un(r) by l1n' converges 
to a Poisson process N on (0, (0) with parameter r. 

PROOF. By Theorem A.1 to prove part (i) it is sufficient to show that 

(a) E(Nn«c, d]» --. E(N«c, d]» = r(d - c) as n --. 00 for all 0 < c < d :::;; 1, 
and 

(b) P{NiB) = O} --. P{N(B) = O} = exp( -rm(B»(m being Lebesgue mea­
sure) for all B of the form U~(Cj' dj ], 0 < Cl < d1 < C2 < ... < Cr < dr :::;; 1. 

Here (a) is immediate since 

E(Nn«c, d]» = ([nd] - [nc])(l - F(un» '" ned - c)r/n = r(d - c). 

To show (b) we note that for 0 < C < d :::;; 1, 

P{Ni(c, d]) = O} = P{M(Jn) :::;; un}, 

where In = {[nc] + 1, ... , End]}. Now In contains Vn integers where Vn = 
End] - [nc] '" ned - c) as n --. 00. Thus, by Corollary 3.6.4 with 
fJ = d - c < 1, 

P{Nn«c, d]) = O} --. exp(- r(d - c» as n --. 00. (5.2.1) 

Now, let B = U~(c;, d,], where 0 < Cl < d1 < C2 < d2 < ... < Cr < dr ::;; 1. 
Then, writing Ej for the set of integers {[ncj] + 1, [ncj] + 2, ... , [nd j]}, 
it is readily checked that 

P{Nn(B) = O} = P COl {M(E) ::;; unl) 

r 

= n P{Ni(cj' dj ]) = O} 
j= 1 

+ {p COl {M(E) :::;; Un}) - Xl P{M(E) ::;; Un}}. 

By (5.2.1), the first term converges, as n --. 00, to ni= 1 exp( - r(dj - c) = 
exp( -rm(B» (where m denotes Lebesgue measure). On the other hand, by 
Lemma 3.2.2 it is readily seen that the modulus of the remaining difference 
of terms does not exceed (r - l)an,[nAI where A = min 1 ::;j,,;r-l(Cj+l - dJ 
But by D(un), (cf. (3.2.3», an, [nA] ~ 0 as n --.00 so that (b) follows. Hence (i) 
of the theorem holds. 

The conclusion (ii) follows by exactly the same proof except that we use 
Theorem 3.6.3 instead of Corollary 3.6.4, taking Vn to be un(fJr) (thus satisfying 
D(vn), D'(vn), n(l - F(vn» --. fJr by assumption) where now we may have 
fJ > 1. Correspondingly c, d and Cj, d j are no longer restricted to be no greater 
than 1. 0 
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It is of interest to note that the conclusion of (i) applies to any interval 
of unit length, so that the exceedances in any such interval become Poisson 
in character. But if the assumption of (ii) is not made, it may possibly not 
happen that the exceedances become Poisson on the entire axis (or on an 
interval of greater than unit length). 

Corollary 5.2.2. Under the conditions of (i) of the theorem, if B c: (0, 1] is 
any Borel set whose boundary has Lebesgue measure zero, (m(oB) = 0), then 

P{Nn(B) = r} ~ exp( -rm(B»(rm(B»' , 
r! 

r = 0, 1,2, ... 

The joint distribution of any finite number of variables N n(B 1),· •• , Nn(Bk) 
corresponding to disjoint B i , (with m(oBi ) = ° for each i) converges to the 
product of corresponding Poisson probabilities. 

PROOF. This follows at once since (N iB1), ••• , NiBk» ~ (N(B l ), ••• , N(Bk» 
(as noted in the appendix) when N n ~ N. 0 

It should be noted that the above results obviously apply very simply to 
stationary normal sequences satisfying appropriate covariance conditions 
(e.g. (4.1.1». 

5.3. Asymptotic Distribution of kth Largest Values 

The following results may now be obtained from Corollary 5.2.2 generalizing 
the conclusions of Theorems 2.2.1 and 2.2.2. 

Theorem 5.3.1. Let M~k) denote the kth largest of ~l>'''' ~n' (M~l) = Mn), 
where k is afixed integer. Let {un} be a real sequence and suppose that D(un), 
D'(un) hold. If (3.4.2) holdsfor some fixed finite r ~ 0, then 

(5.3.1) 

Conversely if (5.3.1) holds for some integer k, so does (3.4.2), and hence 
(5.3.1) holds for all k. 

PROOF. As previously, we identify the event {M~k) ~ un} with the event that 
no more than (k - 1) of ~1"'" ~n exceed Un' i.e. with {Nn«O, 1]) ~ k - 1}, 
so that 

k-l 

p{M~k) ~ un} = L P{Nn«O, 1]) = s}. (5.3.2) 
s=o 

If (3.4.2) holds the limit on the right of (5.3.1) follows at once by Corollary 
5.2.2. 
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Conversely if (5.3.1) holds but (3.4.2) does not, there is some 't' =F 't 

a ~ 't' ~ 00, and a sequence {nj} such that np - F(un) -+ 't'. Now a brief 
examination of the proof of Theorem 5.2.1 (cf. also the remark at the end of 
Section 3.4) shows that if (3.4.2) is not assumed for all n but just for a sequence 
{nj} then N n} has a Poisson limit. If't' < 00, replacing 't by 't' in the argument 
above, we thus have 

k-1 'S 

p{M(k) } - t' " 't 
nj ~ un} -+ e L. " 

s=O s. 

But this contradicts (5.3.1) since the function e- X L~;;;J xSls! is strictlydecreas­
ing in x ~ a and hence 1 - 1. Thus 't' < 00 is not possible. But 't' = 00 cannot 
hold either since as in (3.4.4) we would have 

P{M[nlk] ~ un} ~ 1 - [nlkJ (l - F(un» + Sn,k' 

which would be negative for large n by the finiteness of lim SUPn-+oo Sn,k 
implied by D'(un), at least for some appropriately chosen large k. Hence 
(3.4.2) holds as asserted. 0 

The case k = 1 of this theorem is just Theorem 3.4.1 again. Of course 
Theorem 3.4.1 is used in the proof of Theorem 5.2.1 and hence of Theorem 
5.3.1. The following corollary covers the case 't = 00. 

Corollary 5.3.2. Suppose that, for arbitrarily large 't, there exists a sequence 
{vn = vn('t)} satisfying D(vn), D'(vn) and such that n(1 - F(vn» -+ 'to If, for a 
sequence {un}, n(1 - F(un» -+ 00, then p{M~k) ~ un} -+ afor all k. 

Conversely if p{M~k) ~ un} -+ a for some k, then n(1 - F(un» -+ 00 and 
p{M~k) ~ un} -+ a for all k. 

PROOF. If n(l - F(un» -+ 00, 't < 00 and Vn is chosen as above then 
P{M~k) ::; vn} -+ e- t by the theorem. But clearly Vn > Un for sufficiently large 
n, so that 

n-+ 00 n-+ 00 

Since this holds for arbitrarily large 't < 00, p{M~k) ~ un} -+ a as asserted. 
Conversely, if P{M~k) ~ un} -+ a for some k, it follows, since Mn ~ M~k), 

that P{Mn ~ un} -+ a so that n(1 - F(un» -+ 00 by Corollary 3.4.2. 0 

The following obvious corollary also holds. 

Corollary 5.3.3. Theorem 5.3.1 holds if the assumption (or conclusion) that 
{un} satisfy (3.4.2), is replaced by either of the assumptions (conclusions) 

(where Mn as usual denotes the maxima for the associated independent 
sequence). Correspondingly the assumption (or conclusion) n(1 - F(un» -+ 00 
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in Corollary S.3.2 may be replaced by either P{Mn:::;; un} --+ 0 or 
P{Mn :::;; un} --+ O. 

PROOF. The statements regarding Theorem S.3.1 follow at once from Theo­
rems 3.4.1 and 1.S.1. Those for Corollary S.3.2 follow from Corollary 3.4.2 
and Theorem 1.S.1. 0 

Theorem 5.3.4. Let an > 0, bn be constants for n = 1,2, ... , and G a nondegen­
erate d/., and suppose that D(un), D'(un) hold for all Un = xlan + bn, - 00 < 
X < 00. If 

P{an(Mn - bn) :::;; X} --+ G(x), 

then for each k = 1, 2, ... 

P{an(M~k) _ bn) :::;; x} --+ G(x)kf (-log ~(x»' 
.=0 s. 

where G(x) > 0 (zero where G(x) = 0). 

(S.3.3) 

(S.3.4) 

Conversely if(S.3.4) holds for some k, so does (S.3.3) and hence (S.3.4) holds 
for all k. Further, the result remains true if Mn replaces Mn in (S.3.3). 

PROOF. For G(x) > 0 the result follows from the first part of Corollary S.3.3 
by writing Un = xlan + bn, 'r = - log G(x). The case G(x) = 0 will follow 
from the second part of Corollary S.3.3 provided it can be shown that for 
arbitrarily large 'r there is -a sequence {vn} satisfying D(vn), D'(vn) such 
that n(1 - F(vn» --+ 'r. But since G is continuous (being an extreme value 
dJ.) there exists Xo such that G(xo) = e-< from which it is easily seen that 
xolan + bn provides an appropriate choice of Vn. 0 

5.4. Independence of Maxima in Disjoint Intervals 

It would clearly be natural to extend the theorems of Chapter 3 to deal with 
the joint behaviour of maxima in disjoint intervals. We shall do so here­
demonstrating asymptotic independence under an appropriate generaliza­
tion of the D(un) condition, and then use this to obtain a Poisson result for 
exceedances of several levels considered jointly. This, in turn, will lead to 
the asymptotic joint distributions of various quantities of interest, such as 
two or more M~k), and their locations, as n --+ 00. 

As in (2.3.1), consider r levels U~k) satisfying 

(S.4.1) 

where U~l) ~ U~2) ~ ••• ~ u~) as in Chapter 2 and consequently 'rl :::;; 'r2 

:::;; ... :::;; 'rr· 

It is intuitively clear that we shall need to extend the D(un) condition to 
involve the r values U~k), and we do so as follows. 
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The condition Dr(Dn) will be said to hold for the stationary sequence {~j} 
if, for each choice of i = (il" .. , ip), j = 01" .. ,ip'), 1 ::;; i1 < i2 < ... < 
ip < i1 < i2 < ... < i p' ::;; n,il - ip 2 I, we have (using obvious notation) 

(5.4.2) 

where v = (V1' ... , vp), w = (W1' ... , wp.), the Vi and Wj each being any choice 
of the r values U~1), ... , u~), and where (Xn,l n ~ 0 for some sequence In = o(n). 

The condition Dr(Dn) extends D(un) in an obvious way (and clearly implies 
D(u~k» for each k) and will be convenient even though its full strength will 
not quite be needed for our purposes. It will not be necessary to define an 
extended D'(un) condition, since we shall simply need to assume that D'(u~k» 
holds separately for each k = 1, 2, ... , r. 

The next result extends Lemma 3.2.2 (with slight changes of notation). 

Lemma 5.4.1. With the above notation, if Dr(Dn) holds, if n, s, k are fixed in­
tegers, and E1, ... , Es subintervals of {1, ... , n} such that Ei and Ej are 
separated by at least I when i i= i, then 

I P Co {M(E) ::;; Un)) - il P{M(E) ::;; un) I::;; (s - 1)(Xn,1 

where for each j, Un,j is anyone of u~ 1), ... , u~). 

PROOF. This is proved in exactly the same manner as Lemma 3.2.2 and the 
details will therefore not be repeated here. 0 

In the following discussion we shall consider a fixed number s of disjoint 
subintervals J 1, J 2, ... , Js of {I, ... , n} such that Jk (= In,k) has Vn,k '" Okn 
elements, where Ok are fixed positive constants with LL 1 Ok ::;; 1. By slightly 
strengthening the assumptions, we may also allow L~= 1 Ok > 1, and let J 1, 

J 2, ... ,Js be more arbitrary finite disjoint intervals of positive integers. 
Note that the intervals J k do increase in size with n, but remain disjoint, and 
their total number s is fixed. 

The following results then hold. In the proofs, details will be omitted where 
they duplicate arguments given in Chapter 3. 

Theorem 5.4.2. (i) Let J b J 2, ... , Js be disjoint subintervals of {1, 2, ... , n} as 
defined above, Jk having Vn,k '" Okn members,for fixed positive 01, O2, ... , Os, 
(LIOk::;; 1). Suppose that the stationary sequence {~) satisfies Dr(Dn) 
where the levels U~l) 2 U~2) 2 ... 2 u~) satisfy (5.4.1). Then 

P(Ol {M(Jk) ::;; Un,k}) - t\ P{M(Jk) ::;; Un,k} ~ 0 as n ~ 00 (5.4.3) 

for any choice of Un,k from U~1), ... , u~) for each k. 



108 5. Point Process of Exceedances 

(ii) For fixed s, m, let J h J 2, ... , J. be disjoint subintervals of the positive 
integers 1,2, ... , mn, where J,,( = I n,,,) has vn,,, '" lJ"n members, lJ h . .. , lJ. 
being fixed constants (L lJk ~ m). Let uir) satisfy (1 - F(un(r» '" "tIn 
for each "t > 0, let "tl ~ "t2 ~ ••• ~ "tr be fixed, and suppose that Dr(un) 
holdsfor Un = (un(m"tl),"" un(m"tr». Then (5.4.3) holds. 

PROOF. Let I" denote the first Vn," - In elements of Jk> and It the remaining 
In, where In is chosen as in Dr(un), (These lk' It are different from those in 
Chapter 3, but are so named since they play a similar role.) By familiar 
calculation we have 

• 
~ L P{M(It) > Un,k} ~ sPn' (5.4.4) 

k=l 

where Pn = max1 sks. P{M(It» > Un,k}' Further 

I P (01 {M(Ik) ~ Un,k}) - i).l P{M(Ik) ~ Un,k} I ~ (S - l)lXn"n 

(5.4.5) 

by Lemma 5.4.1, and 

• • 
o ~ n P{M(Ik) ~ Un,k} - n P{M(Jk) ~ Un,k} 

k=l "=1 
• • 

~ n (P{M(Jk) ~ Un,k} + Pn) - n P{M(Jk) ~ Un,,,} 
k= 1 k = 1 

~ (1 + Pn)' - 1 (5.4.6) 

since n~= 1 (y" + Pn) - n~= 1 Yk is increasing in each Y/t when Pn > O. 
Now 

Pn = max P{M(It) ~ Un,k} ~ max In{l - F(Un,k» 
ISks. ls"s. 

which tends to zero by (5.4.1) since In = o(n). Hence, by (5.4.4), (5.4.5), 
and (5.4.6), the left-hand side of (5.4.3) is dominated in absolute value by 
SPn + (s - 1)lXn,ln + (1 + Pn)' - 1 which tends to zero, completing the proof 
of part (i) of the theorem. 

Part (ii) follows along similar lines and only the required modifications 
will be indicated. First I" is defined to be the first vn," - Inm elements of Jk, 
and It the remaining Inm. If un," = u~) = un("t j), write Vn,k = unm(m"t j)' Then 
(5.4.4) holds with Vn,k replacing un," as does (5.4.5) on replacing also IXn,ln by 
IXnm,lnm (using Lemma 5.4.1 with mn for n).1t then follows as above that 

P COl {M(J/t) ~ Vn,k}) - i).l P{M(J,,) ~ Vn,/t} -+ O. (5.4.7) 
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Now again, if Un,k = u~) = ui7:) we have Vn,k = unm(m7:) and 

n(1 - F(un,d) --+ 7:j 

n(m7:.) 
n(1 - F(vn k» '" __ J --+ 7:J. , nm 

so that Lemma 3.6.1(i) gives 

P{M(Jk):-:; Vnk} - P{M(Jk) :-:;und --+ O. , , 

By writing 

Ak = {M(Jk) :-:; Vn,k}' 

and using the obvious inequalities 

IP(n Ai) - pen BJI :-:; pen Ai - n Bi) + pen Bi - n Ai) 

:-:; P{U (Ai - Bi)} + P{U (Bi - Ai)} 
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we may approximate the first term in (5.4.7) by replacing Vn,k by Un,k' A 
slight ~xtension of a corresponding calculation in (i) above shows a similar 
approximation for the second term of (5.4.7), from which it follows that 
(5.4.7) tends to zero when Un,k replaces Vn,k' so that (5.4.3) follows, as desired. 

o 

Note that the proof of this theorem is somewhat simpler than that, e.g. 
in Lemmas 3.3.1 and 3.3.2. This occurs because we assume (5.4.1) whereas 
the corresponding assumption was not made there. We could dispense with 
(5.4.1) here also with a corresponding increase in complexity, but since we 
assume (5.4.1) in the sequel, we use it here also. 

Corollary 5.4.3. (i) If, in addition to the assumptions of part (i) of the theorem, 
we suppose that D'(U~k» holdsfor each k = 1,2, ... , r, then (for Li ek :-:; 1), 

P{M(Jk):-:; Un,b k = 1,2, ... , s} --+ exp (- ± ek7:~)' 
k=l 

where 7:~ is that one of 7: b ... , 7:r corresponding to un, k' i.e. such that 
n(1 - F(Un,k» --+ 7:". 

(ii) If in addition to the assumptions of part (ii) of the theorem, D'(vn) holds 
with Vn = uiek 7:D, 1 :-:; k :-:; s, then the conclusion holds for these arbitrary 
positive constants ek • 

PROOF. (i) follows by Corollary 3.6.4 which shows that 

P{M(Jk):-:; Un,k} --+ exp( -ek7:D, 1 :-:; k :-:; s. 

For (ii), the same limit holds for each k by Theorem 3.6.3. For (noting 
Un,k = ulrk», D'(vn) holds with Vn = un(ek7:;J, as also does D(vn), since the 
assumption Dr(un) made implies D(uim7:,,» which in turn (since ek :-:; m) 
implies D(un(ek 7:,,» by Lemma 3.6.2(iv). 0 
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It is easy to check that Dr(un) holds for normal sequences under the stand­
ard covariance conditions and hence Corollary 5.4.3 may be applied. 

Theorem 5.4.4. Let {en} be a stationary normal sequence with zero means, 
unit variances and covariance sequence {rn}. Suppose {un(t)} satisfies 
n(l - <ll(un(t») --+ t for each t > 0, let O:$; t1 < t2 < '" < t r . Suppose 
that r n --+ 0 as n --+ 00 and 

(5.4.8) 

for some m ~ 1 (which will hold, in particular,Jor any such m ifrn log n --+ 0, 
by Lemma 4.3.2). Then Dr(un) holds with Un = (un(mt1),"" un(mtr» as does 
D'(un(t» when 0 < t < mtr' Itfollows that if °1 , " ., Os are positive constants 
with Lf= 1 0i :$; m, then 

P{M(Jk) :$; Un,k, k = 1,2, ... , s} --+ exp(- ± Ok tic) 
k=1 

where J k are as in Theorem 5.4.2(ii) and un,k> tic as in Corollary 5.4.3. 

(5.4.9) 

PROOF. With the notation of (5.4.2) we may identify the ej of Theorem 4.2.1 
with eil' ... , eip ' eit, ... , ejp" here and the 1'fj ofthat theorem with ell' ... , elp ' 

ell' ... , elp" such that ell"'" elp have the same joint distribution as 
eit , ..• , eip ' but are independent of ell"'" ejp' which in tum have the same 
joint distribution as {it' ... , {jp.' Then Corollary 4.2.2 gives 

IF',J(v, w) - Fb)Fj(w) I :$; K L Iri,-hl exp(-1 +~. . I)' 
1$s$p r •• - 1, 
1 $t$P' 

where un = min(v1,""Vp, w1, ... ,wp') and V1,""Vp, W1""'Wp' are 
chosen from uimt 1), ... , un(mtr). Replacing Un by un(mtr) (:$; Un for sufficiently 
large n) and using the fact that for eachj there are at most n terms containing 
rj, we obtain 

n ( (un(mtr»2) 
IF',J(v, w) - Fb)FJ<w) I :$; Knj~1lrjl exp - 1 + Irjl 

which tends to zero by (5.4.8) so that D.(un) holds as claimed (OCn,1 being inde­
pendent of 1, in fact). 

Now if 0 :$; 'r :$; mt" un(t) ~ un(mtr) for sufficiently large n so that (5.4.8) 
holds with t replacing mtr and hence Lemma 4.4.1(ii) shows that D'(un(t» 
holds as required. 

Finally if Ok > 0, Ll Ok :$; m, D'(vn) holds with Vn = UiOk t;') by the pre­
vious statement of the theorem since t = Ok tic :$; mtr' Since we have shown 
above that D.(un) holds with Un = (uimt 1), ••• , un(mtr», (5.4.9) follows from 
Corollary 5.4.3(ii). 0 
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The following result, generalizing Theorem 3.6.6, also follows from Corol­
lary 5.4.3. 

Theorem 5.4.5. Let {~n} be a stationary sequence, an > 0, bn, constants, and 
suppose that 

P{an(Mn - bn) :::; x} ~ G(x) as n --+ OCJ 

for some nondegenerate df G. Suppose that Dr(un), D'(U~k» hold for all 
sequences of the form U~k) = xk/an + bn, and let Jk = In,k, k = 1,2, ... , r be 
disjoint subintervals of {I, ... , mn}, J k containing Vn,k integes where vk,n '" Okn, 
m being afixed integer and 01 > 0, ... , Or > 0, 2:'i Ok:::; m. Then 

r 

P{aiM(Jk) - bn) :::; Xb k = 1,2, ... , r} --+ n G8k(Xk)' 
k =1 

PROOF. This follows from Corollary 5.4.3 in a similar way to the proof of 
Theorem 3.6.6, identifying Tk with -log G(Xk), Un,k = Xk/an + bn, Un(Ok Tk) = 
Yk/an + bn where Ok Tk = -log G(Yk), and similarly for un(mTk)' D 

5.5. Exceedances of Multiple Levels 

It is natural to consider exceedances of the levels u~l), ... , u~) by '1n,('1n(jjn) = 
~j as before), as a vector of point processes. While this may be achieved 
abstractly, we shall here, as an obvious aid to intuition represent them as 
occurring along fixed horizontal lines L 1, ... , Lr in the plane-exceedances 
of U~k) being represented as points on Lk. This will show the structure imposed 
by the fact that an exceedance of U~k) is automatically an exceedance of 
U~k+ 1), ... , u~), as illustrated in Figure 5.5.1. In the figure, (a) shows the levels 
and values of'1n from which one can see the exceeded levels, while (b) marks 
the points of exceedance of each level along the fixed lines L I , ••• , L r • 

To pursue this a little further, the diagram (b) represents the exceedances 
of all the levels as points in the plane. That is, we may regard them as a 
point process in the plane if we wish. To be sure, all the points lie only on certain 
horizontal lines, and a point on any Lk has points directly below it on all 
lower Lb but nevertheless the positions are stochastic, and do define a two­
dimensional point process, which we denote by N no 

We may apply convergence theory to this sequence {N n} of point processes 
and obtain the joint distributional results as a consequence. The position of 
the lines L I , •.• , Lr does not matter as long as they are fixed and in the indi­
cated order. From our previous theory each one-dimensional point process, 
on a given Lb N~k), say, will become Poisson under appropriate conditions. 
The two-dimensional process indicated will not become Poisson in the plane 
as is intuitively clear, in view of the structure described. However, the ex­
ceedances N~k) on Lk form successively more" severely thinned" versions of 
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U~l) 1-------------..------.--

U~-l) I_------------~---

u~)I---------.-----~~-

(a) 

Llr---~--------~-----

(b) 

Figure 5.5.1. (a) Levels and values of'1n(t). (b) Representation in plane (fixed Lk)' 

N~) as k decreases. Of course, these are not thinnings formed by independent 
removal of events, except in the limit where the Poisson process N(k) on Lk 

may be obtained from N(H 1) on LH 1 by independent thinning, as will 
become apparent. 

More specifically, we define the point process N in the plane, which will 
tum out to be the appropriate limiting point process, as follows. 

Let {ali; j = 1, 2, ... } be the points of a Poisson process with parameter 
Tr on L r • Let Pi,j = 1,2, ... , be i.i.d. random variables, independent also of 
the Poisson process on L" taking values 1,2, ... , r with probabilities 

P{p. = s} = {(Tr - s +1 - Tr-s)/T" S = 1,2, ... , r - 1, 
J T1/T" S = r, 

i.e. P{Pi ~ s} = Tr - s+ tlTr for S = 1,2, ... , r. 
For each j, place points a2i' a3i"'" apJi on the Pi - 1 lines L r - 1 , 

L r - 2, ... , L r- PJ +1' vertically above ali' to complete the point process N. 
Clearly the probability that a point appears on L r - 1 above ali is just 
P{Pi ~ 2} = Tr-1/Tr and the deletions are independent, so that N(r-1) is 
obtained as an independent thinning of the Poisson process N(r). Hence 
N(r-1) is a Poisson process (cf. Appendix) with intensity Tr(Tr- tlTr) = Tr - 1 , 

as expected. Similarly N(k) is obtained as an independent thinning of N(k+ 1) 

with deletion probability 1 - TJTk+ 1, all N(k) being Poisson. 
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We may now give the main result. 

Theorem 5.5.1. (i) Suppose that D,(un) holds, and that D'(u~) holds for 
1 :s; k :s; r, where the u~") satisfy (5.4.1). Then the point process Nn of 
exceedances of the levels U~1), ... , u~) (represented as above on the lines 
L 1, ... , L,) converges in distribution to the limiting point process N, as 
point processes on (0, 1] x R. 

(ii) If further for O:S; -r < 00, un(-r) satisfies n(1 - F(un(-r») - -r, D,(un) 

holds for un = (un(m-r1)"'" un(m-r,», all m ~ 1, and D'(un(-r» holds for all 
-r > 0, then N n converges to N, as point processes on the entire right half 
plane, i.e. on (0, 00) x R. 

PROOF. Again by Theorem A.1 it is sufficient to show that 

(a) E(Nn(B» - E(N(B» for all sets B of the form (c, dJ x (y, 15], y < 15, 
o < c < d, where d :s; 1 or d < 00, respectively, and 

(b) P{Nn(B) = O} - P{N(B) = O} for all sets B which are finite unions of 
disjoint sets of this form. 

Again (a) follows readily. If B = (c, dJ x (y, 15] intersects any of the 
lines, let these be L., L.+ 1, ••• ,Lt , (1:s; S :s; t :s; r). Then Nn(B) = 
L~=s N~")«c, dJ), N(B) = B=s N(k)«C, d]), and the number of points j/n 
in (c, dJ is [nd] - [nc] so that 

t 

E(Nn(B» = ([nd] - [nc]) L (1 - F(U~k)) 
k=. 

- ned - C)"t. (:" + 0 (~)) - (d - c) "t. -r" 
which is clearly just E(N(B». 

To show (b) we must prove that P{Nn(B) = O} - P{N(B) = O} for sets 
B of the form B = U'i' C" with disjoint C" = (c", die] X (y", ble]. Clearly, we 
may discard any set C" which does not intersect any of the lines L 1, ••• , L,. 
By considering intersections and differences ofthe intervals (Ck, d,,], we may 
change these and write B in the form U:= 1 (Cle' die] X Ek , where (c", die] are 
disjoint and Ek is a finite union of semiclosed intervals. Thus 

s 

{Nn(B) = O} = n {Nn(F,,) = O}, 
k=1 

(5.5.1) 

where F" = (Cle' dk] X Ek. If the lowest L j intersecting Fk is Lmk , then, by the 
thinning property, clearly 

(5.5.2) 

But this is just the event {M([c"n], [d"n]) :s; um,J, so that Corollary 5.4.3, 
parts (i) and (ii), respectively, gives 

P{Nn(B) = O} - exp( - let1 (dk - CIe)-rmk) = P{N(B) = O}, 
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since (5.5.1) and (5.5.2) clearly also hold with N instead of Nil, and the result 
follows. 0 

Corollary 5.5.2. Let {en} satisfy the conditions of Theorem 5.5.1(i) or (ii), and 
let B 1, ... , B. be Borel subsets of the unit interval, or the positive real line, 
respectively, whose boundaries have zero Lebesgue measure. Thenfor integers 
ml!') 

J ' 

p{N~k) (B) = m~k),j = 1, ... , s, k = 1, ... , r} 

_ p{N(k) (Bj) = m~k),j = 1, ... , s, k = 1, ... , r}. (5.5.3) 

PROOF. Let Bjk be a rectangle in the plane with base Bj and such that Lk inter­
sects its interior, but is disjoint from all other Lj • Then the left-hand side of 
(5.5.3) may be written as 

P{Nn(Bjk) = m~k),j = 1, ... , s, k = 1, ... , r}, 

which by the appendix converges to the same quantity with N instead of 
N", i.e. to the right-hand side of (5.5.3). 0 

5.6. Joint Asymptotic Distribution of the 
Largest Maxima 

We may apply the above results to obtain asymptotic joint distributions for 
a finite number of the kth largest maxima M~k), together with their locations 
if we wish. Such results may be obtained by considering appropriate contin­
uous functionals of the sequence N n , but here we take a more elementary 
approach, in giving examples of typical results. First we generalize Theorems 
2.3.1 and 2.3.2. 

Theorem 5.6.1. Let the levels U~k), 1 ~ k ~ r, satisfy (5.4.1) with 
u~1) ~ U~2) ~ ... ~ u~), and suppose that the stationary sequence {en} satisfies 
D,(un), and D'(U~k) for 1 ~ k ~ r. Let S~k) denote the number of exceedances 
of U~k) by e1"'" en. Then, for k1 ~ 0, ... , k, ~ 0, 

p{S(1) = k S(2) - k + k s(,) - k + ... + k } n 1, n - 1 2"", n - 1 , 

as n - 00. 
(5.6.1) 

PROOF. With the previous notation S~) = N~)«O, 1]) and so by Corollary 
5.5.2 the left-hand side of (5.6.1) converges to 

p{S(1) = k1' S(2) = k1 + k2, ... , S(,) = k1 + ... + k,}, (5.6.2) 

where S(}) = N(})«O, 1]). But this is the probability that precisely k1 + k2 
+ ... + k, events occur in the unit interval for the Poisson process on the 
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line L, and that k1 ofthe corresponding {J's take the value r, k2 take the value 
r - 1, and so on. But the independence properties of the {J's show that, con­
ditional on a given total number k1 + k2 + ... + k" the numbers taking the 
values r, r - 1, ... , 1 have a multinomial distribution based on the respective 
probabilities 1:1/1:" (1:2 - 1:1)/1:" ... , (1:, - 1:,-1)/1:,. Hence (5.6.2) is 

(kl + k2 ... + k,)! (1: 1)kl (1:2 - 1:1)k2 ... (1:, - 1:,_l)kr 

k1 ! k2!. .. k,! 1:, 1:, 1:, 

X P{N(')«O, 1]) = k1 + k2 + ... + k,} 

which gives (5.6.1) since 

Of course this agrees with the result of Theorem 2.3.1. The next result 
(which generalizes Theorem 2.3.2 again) is given to exemplify the applicability 
of the Poisson theory. 

Theorem 5.6.2. Suppose that 

P{a,,(M~l) - b,,) ::;; x} ~ G(x) (5.6.3) 

for some nondegenerate df. G and that Diu,,), D'(u~k» hold whenever U~k) = 

xJa" + b", k = 1,2. Then the conclusion of Theorem 2.3.2 holds, i.e. for 
Xl > X2, 

P{a,,(M~1) - b,,) ::;; Xl' a,,(M~2) - b,,) ::;; X2} 

--+ G(X2)(lOg G(Xl) - log G(X2) + 1) 

when G(X2) > 0 (zero when G(X2) = 0). 

(5.6.4) 

PROOF. If U~k) = x,Ja" + b", by (5.6.3) and the assumptions of the theorem it 
follows from Theorem 3.4.1 that n(1 - F(U~k») --+ 1:k where 1:k = -log G(xk ) 

if G(X2) > 0 (and hence G(Xl) > 0). But clearly 

p{M~1) ::;; U~1), M~2) ::;; U~2)} = P{S~2) = O} + P{S~l) = 0, S~2) = 1}, 

where S~) is the number of exceedances of u~) by e 1 , ... , e". By Theorem 
5.6.1 we see that the limit of the above probabilities is 

e- t2 + (1:2 - 1:1)e- t2 = e- t2 (1:2 - 1:1 + 1), 

which is the desired result when G(X2) > o. The case G(X2) = 0 may be dealt 
with directly by taking 1:2 = 00 or perhaps most simply from the continuity 
of G by dominating the left-hand side of (5.6.4) by its value with y replacing 
X2 where G(y) > O. 0 

As a final example, we obtain the limiting joint distribution of the second 
maximum and its location (taking the leftmost if two values are equal). 
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Theorem 5.6.3. Suppose that (5.6.3) holds and that D4(un), D'(U~k» hold for all 
U~k) = x,Jan + bn, k = 1,2,3,4. Then if L~2), Mf) are the location and height 
of the second largest of ~l' ... , ~n' respectively, 

P {~L~2) :::;; t, anCM~2) - bn) :::;; X} -+ tG(x)(1 - log G(x», (5.6.5) 

x real, ° < t :::;; 1. That is, the location and height are asymptotically inde­
pendent, the location being asymptotically uniform. 

PROOF. As in the previous theorem, we see that (5.4.1) holds with 
't'k = - log G(Xk)' Write I, J for intervals {1, 2, ... , [ntJ}, {[ntJ + 1, ... , n}, 
respectively, M(l) (1), M(2) (1), M(l) (J), M(2) (J) for the maxima and second 
largest ~j in the intervals I, J, and let HnCXl' X2, X3, X4) be the joint dJ. of the 
normalized r.v.'s 

x(1) = a (M(l) (I) - b ) 
n n n " , 

X(2) = a (M(2) (I) - b ) 
n n nil' 

y(1) = a (M(l) (J) - b ) 
n n nil,' 

y(2) = a (M(2) (J) - b ) n n n n • 

That is, with Xl > X2 and X3 > X4' 

HnCx 1, X2, X3, X4) = p{M~I) (1) :::;; U~l), M~2) (1) :::;; U~2), 

M~l) (J) :::;; U~3), M~2) (J) :::;; U~4)}, 

where U~k) = x,Jan + bn as above. Alternatively, we see that 

Hn(xt. X2, X3' X4) = P{N~1) (1') = 0, N~2) (1') :::;; 1, 

N~3) (J') = 0, N~4) (J') :::;; I}, 

where I' = (0, tJ and J' = (t, 1J, so that an obvious application of Corollary 
5.5.2 with Bl = 1', B2 = J' gives 

lim H n(X 1, X2' X3, X4) = P{ N(l) (1') = 0, N(2) (1') :::;; 1} 
n .... oo X p{N(3) (J') = 0, N(4) (J') :::;; 1} 

= e- tt2(t('t'2 - 't'l) + 1)e-(l-t)t4«(1 - t)('t'4 - 't'3) + 1) 

= HtCXl' x2)H(1-t)(X3' X4) = H(Xl' X2, X3, X4), 

say, where 

Ht(Xl, X2) = Gt(x2)(log Gt(XI) - log Gt(X2) + 1), 

for Xl > X2' Now clearly 

P H L~2) :::;; t, an(M~2) - bn) :::;; X2} 

= p{M~2) (1) :::;; U~2), M~2) (1) ~ M~l) (J)} 

+ p{M~l) (1) :::;; U~2), M~l) (J) > M~l) (1) ~ M~2) (J)} 

(5.6.6) 

= p{X~2) :::;; X2, X~2) ~ y~l)} + p{X~l) :::;; X2, y~1) > X~l) ~ y~2)}. 

(5.6.7) 
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But, by the above calculation (X~l), X~2), y~l), y~2» converges in distribution 
to (X 1, X 2, Y 1, Y 2), whose joint dJ. is H, which is clearly absolutely contin­
uous since G is (being an extreme value dJ.). Hence, since the boundaries 
of sets in R4 such as {(WI, W2, W3, W4); W2 ~ X2, W2 > W3} clearly have zero 
Lebesgue measure, it follows that the sum of probabilities in (5.6.7) con­
verges to 

P{X2 ~ X2, X 2 ~ Yl} + P{XI ~ X2, Y1 > Xl ~ Y2}, (5.6.8) 

and therefore the left-hand side of (5.6.5) converges to (5.6.8). This may be 
evaluated using the joint distribution H of X I , X 2, Y 1, Y 2 given by (5.6.6). 
However, it is simpler to note that we would obtain the same result (5.6.8) 
if the sequence were i.i.d. But (5.6.5) is simply evaluated for an i.i.d. sequence 
by noting the independence of L~2) and M~2) and the fact that L~2) is then 
uniform on (1, 2, ... , n), giving the limit stated in (5.6.5), as is readily shown. 

o 

5.7. Complete Poisson Convergence 

In the previous point process convergence results, we obtained a limiting 
point process in the plane, formed from the exceedances of a fixed number 
r of increasingly high levels. The limiting process was not Poisson in the 
plane, though composed of r successively more severely thinned Poisson 
processes on r lines. 

On the other hand, we may regard the sample sequence {en} itself-after 
suitable transformations of both coordinates-as a point process in the 
plane and, by somewhat strengthening the assumptions, show that this con­
verges to a Poisson process in the plane. This procedure has been used for 
independent r.v.'s by, e.g. Pickands (1971) and Resnick (1975) and subse­
quently for stationary sequences by R. J. Adler (1978), who used the linear 
normalization of process values provided by the constants an, bn appearing 
in the asymptotic distribution of M n' Here we shall consider a slightly more 
general case. 

Specifically, with the standard notation, suppose that un(r) is defined for 
n = 1, 2, ... ; r > 0 to be continuous and strictly decreasing in r for each n, 
and satisfying (1.5.1), viz. 

(5.7.l) 

For example, un(r) = a,;-lG-1(e- t ) + bn with the usual notation when Mn 
has a limiting dJ. G. 

Here we will use N n to denote the point process in the plane consisting of 
the points U/n, u,;- l( ej », j = 1, 2, ... , where u,;- I denotes the inverse function 
of un(r), (defined on the range ofthe r.v.'s ej ). 
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Theorem 5.7.1. Suppose un(r) are defined as above satisfying (5.7.1) and that 
D'(un) holdsfor each Un = un(r), and that Dr(un) holdsfor each r = 1,2, ... ; un = 
(ulr1)"'" un(rr»for each choice of't1>"" 'Cr' Then the point processes N n , 

consisting of the points (jjn, u;; ~ej», converge to a Poisson process N on 
(0, (0) x (0, (0), having Lebesgue measure as its intensity. 

PROOF. This follows relatively simply by using the previous r-Ievel exceedance 
theory. It will be convenient, and here permissible, to use rectangles which 
are closed at the bottom rather than the top, so that we need to show 

(a) E(Nn(B» -+ E(N(B» for all sets B of the form (c, d] x [y, ~), 0 < c < d, 
0< y <~, and 

(b) P{NiB) = O} -+ P{N(B) = O} for sets B which are finite unions of sets 
of this form. 

Here, (a) follows simply since if B = (c, d] x [y, ~), 

E(NiB» = ([nd] - [nc])P{y ~ U;;~e1) < ~} 
'" n(d - c)P{un(~) < e1 ~ ub)} 

= n(d - c){F(ub» - F(un(~»} 

'" n(d - c)(~ - y)/n, 

while E(N(B» = (d - c)(~ - y). 
To show (b) we note that any finite disjoint union of such rectangles may 

be written in the form Uj (Ej x F), where Ej = (Cj' dj] are disjoint and F j 
is a finite disjoint union Uk[Yi,k, ~j,It)' (cf. the proof of Theorem 5.5.1). 
Suppose first that there is just one set E j , i.e. B = Uk'= I E x F", say, where 
we write Fk = ['tn-I, 'tn), k = 1, ... , m, and where we may clearly take 
't1 < 'tz < ... < 'tr(r = 2m). 

Now N n(B) = 0 means that, for each k, there is no j/n E E for which 
U;;~ej)EFk' i.e. such that Un('tZk) < ej ~ Un('tZk-1)' But this is equivalent 
to the statement that for j/n E E, el exceeds un( 't Zk-1) as many times as it 
exceeds ubz,,). That is, writing N~) (E) for the number of exceedances of 
Un('tk) by ej for j/n E E, 

r/2 
{Nn(B) = O} = n {N~2k-1) (E) = N~Zk) (E)}. (5.7.2) 

"=1 

But N~k) is precisely the same as in Theorem 5.5.1 and its corollary, and 
their conditions are clearly satisfied, so that by Corollary 5.5.2(ii) we have 

(N~1) (E), N~2) (E), ... , N~) (E» .4 (N(1) (E), N(2) (E), . .. , N(r) (E», (5.7.3) 

where N(1), ... , N(r) are the r succesively thinned Poisson processes on r 
fixed lines as defined prior to Theorem 5.5.1, but since all the r.v.'s 
N~k)(E), N(k)(E) are integer valued, it is an obvious exercise in distributional 
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convergence in R r to show from (5.7.3) that the probability of pairwise equality 
in (5.7.2) converges to the same probability with N(k) replacing N~k). Thus 

P{Nn(B) = O} -+ P COl {N(2k-l) (E) = N(2k) (E)}). 

From the discussion prior to Theorem 5.5.1 we see that the events in 
braces on the right occur if the {3j corresponding to each Poisson event on the 
line Lr is even, i.e. {3j = 2, 4,6, ... , r. Since P{{3j = s} = (rr-s+l - rr-s)/rr 
if s ~ r - 1, and rtlrr if s = r, we have, writing 

a = (rr-l - rr-2) + (rr-3 - rr-4) + ... + (r3 - r2) + rl' 

ex) (r.(d - c))i (a)j 
P{Nn(B) = O} -+ j~O exp( -rr(d - c» j! r. 

= exp«d - c)(a - rr» = e-m(B), 

where m denotes Lebesgue measure, since 
~2 ~2 

(d - c)(a - rr) = I (d - c)(r2k-l - r2k) = - I m(E x Fk) = - m(B). 
k= I k= 1 

Hence (b) follows when B = Uk E X Fk • When B = Uj (E j x F) the same 
proof applies-using the full statement of Corollary 5.5.2 with slightly more 
notational complexity since more rk's may be needed corresponding to the 
additional E /s. 0 

In the theorem above it is required, of course that P{Mn ~ un(r)} -+ e-'. 
If there is adJ. G(x) and r may be chosen as a function rex) such that 
P{Mn S unCr(x»} -+ G(x), then we would have rex) = -log G(x) and 
P{Mn ~ vnCx)} -+ G(x), with vn(x) = unCr(x». In such a case it would be 
natural to consider the point process formed from points (jjn, v;; 1(~) in­
stead of (jjn, u;; 1(~). In particular, when a linear normalization leads to an 
asymptotic distribution, i.e. P{an(Mn - bn) ~ x} -+ G(x) we have vn(x) = 
x/an + bn and it is natural to consider the point process N~ consisting of 
points (jjn, anC~j - bn». This is the case considered in Adler (1978) where it 
is shown that a (nonhomogeneous) Poisson limit holds. Here we obtain this 
result as a corollary of Theorem 5.7.1. 

Theorem 5.7.2. Suppose that (5.3.3) holds, i.e. P{anCMn - bn) ~ x} .!!+ G(x) 
for some nondegenerate d.! G, and let Xo = inf{x; G(x) > O}. Suppose that 
D'(un) holds for all sequences Un = x/an + bn, and that Dr(un) holds for all 
r = 1,2, ... , and all sequences U~k) = Xk/an + bn, 1 ~ k ~ r, for arbitrary 
choices of the Xk' Then if N~ denotes the point process in the plane with points 
at (jjn, an(~j - bn» we have N~ J4 Nt on (0,00) x (xo, 00), where N' is a 
Poisson process whose intensity measure is the product of Lebesgue measure 
and that defined by the increasing function log G(y). 
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PROOF. By Theorem 3.4.1 the conditions of Theorem 5.7.1 hold, and hence 
Nn ~ N, with the notation of Theorem 5.7.1 But if N n has an atom at (s, t), 
N~ has an atom at (s, .. -l(t» where .. (x) = - log G(x). Hence by Theorem 
A.3(i) N~ ~ N' where N' is obtained from the Poisson process N by replacing 
atoms at points (s, t) by atoms at points (s, .. -l(t», and by Theorem A.2(ii), 
this is also a Poisson process, with intensity measure A' defined by 

A'((c, d] x (y,I5]) = (d - c)( .. (y) - .. (15» = (d - c) (log G(I5) - log G(y» 

from which the result follows. (Note that since G is an extreme value distri­
bution, .. is continuous and strictly decreasing where G is nonzero.) 0 

Note that, unlike earlier results, the lower boundary (0, 00) x {xo} of 
S = (0, 00) x (xo, 00) must be excluded. For otherwise, if Xo is finite, 
(0,1] x (xo, Xo + 1] would be bounded (in the technical meaning ofp. 306) 
but N((O, 1] x (xoxo + 1]) would be infinite a.s., so that N would not be a 
point process. A similar remark applies in Theorem 5.8.1 below. Finally we 
note that all the results which follow from the multilevel result (Theorem 
5.5.1) may be obtained from the last two theorems-however, the D­
assumptions made are correspondingly more stringent. 

5.8. Record Times and Extremal Processes 
There is a sizeable literature on record times of i.i.d. sequences and on so­
called extremal processes. As an illustration to the results of the previous 
section we shall consider the asymptotic distribution of record times in 
dependent processes, and make a brief comment about extremal processes. 

By definition, 'l is a record of the sequence ~ 1, '2" .. , and, for j ~ 2, 'j 
is a record if 'j > M j - 1. The record times are then" l = 1, and for k ~ 2, 

"k = infU > "k-1; 'j> Mj-d· 

We shall start by noting some properties of record times of i.i.d. sequences. 
One interesting fact for i.i.d. e~ s is that the distribution of {"k} does not depend 
on the marginal dJ. F for continuous F's. In fact, the record times of e 1 , '2, ... are then the same as those of F(e1), F(e2),'" and these variables are 
obviously Li.d. with distributions uniform on (0, 1]. Further, for {en} i.i.d. 
with continuous marginal dJ., and for A j the event that j is a record time, 
clearly 

(5.8.1) 

and further, for m > j ~ 1, 

f P{"k+ 1 > m, "k ~ j} = P{Mm = M j } = 1_ ° as m - 00, (5.8.2) 
k=l m 
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for fixedj. In particular, (5.8.2) shows that for k = 1,2, ... 

P{'t"k+1 > m} ~ P{'t"k > j} + P{'t"k+1 > m, 't"k ~ j} -+ P{'t"k > j} as m -+ 00, 

and hence, for any j;?: 1, lim SUPm-+oo P{'t"k+1 > m} ~ P{'t"k > j}. Since 
't" 1 = 1 it follows by induction that 't" 2, 't" 3, ••• are all finite with probability 
one. 

Let Rn be the point process on the unit interval (0, 1] consisting of the 
points 't"kln, for 0 < 't"Jn ~ 1, i.e. if ~ 1, ~2' ... , ~n has a record at time j, then 
Rn has a point atj/n. By (5.8.1), for {~n} Li.d. with continuous dJ., for 0 < c ~ 
d ~ 1, 

[ndl 1 fd 1 d 
E(Rn«c, d])) = L -;- '" - dt = log-, 

j = [nc) + 1 ] etc 
(5.8.3) 

and it can be proved simply that asymptotically Rn is a Poisson process with 
intensity lit. Several further results about record times for Li.d. sequences 
can be obtained by straightforward calculations. The paper by Glick (1978) 
contains a quite readable elementary exposition of these and related matters. 

Obviously these results need not hold for dependent sequences but, as 
shall be seen, for many such sequences the asymptotic distribution of record 
times is the same as for independent sequences. This can be proved by elemen­
tary means, in the same way as Theorems 5.6.2 and 5.6.3, but here we shall 
use instead the general approach to point process convergences, as outlined 
in the appendix, as an illustration to the power of that approach. 

Theorem 5.8.1. Suppose that the hypothesis of Theorem 5.7.1 is satisfied. Then 
the point process Rn consisting of the points 't"Jn converges, as n -+ 00, to a 
Poisson process R with intensity lit on (0, 1]. In particular, if 0 < c < d ~ 1, 

(log(dlc)t c 
P{Rn«c, d]) = k} -+ k! ·d as n -+ 00, 

for k = 0, 1, .... 

PROOF. By definition, convergence of Rn on (0,1] is equivalent to convergence 
of the joint distribution of Ri(C1, d1]), ... , Ri(Ck, dk]) for 0 < C1 < d1 < 
C2 < ... < dk ~ 1, which in turn follows if Rn converges to R on (e, 1], for 
o < e ~ 1. Hence, to conclude that Rn converges to R on (0,1] it is sufficient 
to prove convergence on (e, 1], for each e > O. 

Let Nn and N be as in Theorem 5.7.1. Then, on (e, 1], the measure Ni·) on 
R2 clearly determines the measure Ri·) on R1, i.e. Rn = h(Nn), where h maps 
measures on R 2 to measures on R 1. Suppose the integer-valued measure v on 
(0,1] x (0,00) is simple and has the property that for some constant y > 0, 
v«O, e) x (0, y)) > 0, v«O, 1] x (0, y)) < 00 and v«O, 1] x {x}) ~ 1 for all 
0< x < y.1t is then immediate from Proposition A.4 that h is continuous at 
v, cf. Figure 5.8.1. (Note that U;;1 is decreasing so the records of {~) corre­
spond to the successive minima of u;; 1(~).) Since N a.s. has the properties 
required of v, h is a.s. N-continuous (as defined after Theorem A.4) and thus 

(5.8.4) 
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v 

--------------
o e 

Figure 5.8.1. The dots are the points of v and the crosses the points of h(v). The dashed 
lines illustrate, for some important points, that no two points of v are on the same 
horizontal line above y. 

on (e, 1]. To complete the proof we only have to show that h(N) has the distri­
bution specified for R, i.e. that it is a Poisson process with intensity l/t. 

One easy way to do this is to show directly that Rn -+ R in some special 
case, since it then follows from the uniqueness of limits of distributions that 
h(N) has the required distribution. Thus, we shall use Theorem A.1 to show 
that Rn ~ R if {en} is i.i.d. with continuous marginal distribution. In fact, 
A.1(a) then follows at once, by (5.8.3). Further, it is easily checked that, for 
e < Cl < dl < Cz < ... < dk :s;; 1, Rn«CI, dl ]), ••• , Rn«ck> dk]) are indepen­
dent, as are, by definition, R«CI' d l ]), ••• , R«Ck, dJ). Hence, to prove A.1(b) 
it suffices to note that by (5.8.2) 

P{Rn«c, d]) = O} = P{M[nc) = M[nd)} = - '" - = exp - - dt , [nc] C (f4 1 ) 
End] d c t 

for e < C < d :s;; 1. Thus Rn ~ R in the special case of Li.d. variables, and by 
(5.8.4), hence also in general, under the hypothesis of the theorem. D 

Finally it is natural to consider the simultaneous distribution of record 
times and the values ofthe records, which in turn lead to the process M(t) = 
maxI :sk51 ek. The study of such processes and their convergence, after 
suitable scaling, to so-called extremal processes, was initiated by Dwass 
(1964) and Lamperti (1964), and has led to interesting results about M(t) and 
about the limiting extremal processes. However, as was noted by Resnick 
(1975), convergence to extremal processes is easily derived from complete 
Poisson convergence by similar considerations as in the proof of Theorem 
5.8.1. Since no new ideas are involved in doing so, we shall not pursue this 
further. 



CHAPTER 6 

Nonstationary, and Strongly Dependent 
Normal Sequences 

While our primary concern in this volume is with stationary processes, the 
results and methods may be used to apply simply to some important 
nonstationary cases. In particular, this is so for nonstationary normal 
sequences having a wide variety of possible mean and correlation structures, 
which is the situation considered first in this chapter. 

One important such application occurs when the process consists of a 
stationary normal sequence together with an added deterministic part, such 
as a seasonal component or trend. Cases of this kind have been discussed 
under certain conditions by Horowitz (1980), and as part of a more general 
consideration of stationary sequences which are not necessarily normal, by 
H lisler (1981 ). Ideas from both of these works will be used in our development 
here. 

In discussing stationary sequences, it was found that the classical limits 
still hold under quite a slow rate of dependence decay (e.g. D(u,,». It is also 
of interest to determine the effect on the extremal results by permitting a 
very persistent dependence structure. It will be shown, following Mittal 
and Ylvisaker (1975), that for stationary normal sequences with such very 
strong dependence, limits other than the three extreme value types may occur. 
In particular, these cases show that the weak covariance conditions used in 
the previous chapters are almost the best possible for the limiting distribution 
of the maximum to be a Type I extreme value distribution. 

6.1. Nonstationary Normal Sequences 

Let {e,,} be a normal sequence (in general non stationary) with arbitrary 
means and variances, and correlations rij = corr(ei> e). We shall be 
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concerned with conditions under which 

(6.1.1) 

where 0 :::; 1: < 00, Uni being constants defined for 1 :::; i :::; n, n ~ 1. In 
this section we consider general forms for the constants Uni and obtain a 
result (Theorem 6.1.3) giving conditions under which (6.1.1) holds. This will 
be specialized in Section 6.2 by specific choice of Uni to yield results concerning 
asymptotic distributions of maxima. A still more general form of Theorem 
6.1.3 will be given in Section 6.3. This result was proved by Hiisler (1981) for 
stationary normal sequences as a particular case of a consideration of 
stationary sequences under extended D(un), D'(un) types of conditions. Our 
proof for the nonstationary normal sequences considered here uses a version 
of an interesting and somewhat delicate estimation employed by Hiisler 
(1981). 

Clearly by standardizing each ei (and correspondingly replacing Uni by 
Vni = (Uni - E(ei»/Var(ei)I/2) we may assume in (6.1.1) that each ei has 
zero mean, unit variance, and the same given correlation structure. Of 
course, in applications any conditions assumed on the Uni must be translated 
to apply to the original forms of the Uni' Thus, unless stated otherwise, we 
assume then that each ei has zero mean and unit variance. 

In most of the first three sections we assume that the correlations rij satisfy 
Irijl < Pli- jl when i =F j, for some sequence {Pn} such that Pn < 1 for n ~ 1 and 
Pn log n ~ O-an obvious generalization of the condition r n log n ~ 0 used 
for stationary sequences. Our main results then concern conditions on the 
{Uni} under which the ei behave like an independent sequence in so far as the 
probability p(nH ei :::; Uni}) is concerned, in the specific sense that 

P(OI {ei :::; Uni}) - II <D(Uni) ~ O. (6.1.2) 

From such results it will then follow simply that if also 
n 

I (1 - <D(Uni» ~ 1: (6.1.3) 
i=l 

then (6.1.1) holds, generalizing a conclusion of Theorem 4.3.3 in the stationary 
case. 

The proofs ofthese results hinge on calculations similar to those of Lemma 
4.3.2 and will be given by means of several lemmas. In this section we require, 
in proving (6.1.2), that the {Uni} should be such that Ii (1 - <D(Uni» is 
bounded and that mini <i<n Uni tends to infinity as fast as some multiple of 
(log n)I/2-which will be the case in our applications to maxima in the next 
section. In Section 6.3 the more delicate arguments using ideas from Hiisler 
(1981) will be employed to extend the result to sequences for which 
mint ,siSnuni tends to infinity but not necessarily even as fast as a multiple of 
(log n)I/2. 
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First we give a simple preliminary lemma generalizing Theorem 1.5.1. 

Lemma 6.1.1. Let {Uni' 1::; i ::; n, n = 1,2, ... } be constants such that 
An = min 1 < i < n Uni -+ 00. Then,for 0 ::; 't" :s; 00, 

" n Cl>(U"i) -+ e- t as n -+ 00 (6.1.4) 
i=1 

if and only if 
n 

I (1 - <I>(U"i» -+ 't" as n -+ 00. (6.1.5) 
i=1 

PROOF. By using the fact that log(1 - x) = -x + l/I(x) where, for small 
x> 0, Il/I(x)1 < AX2 for some A > 0, it is simply seen that 

n n" 

I 10g{1 - (1 - <I>(un)} = - I (1 - <I>(Uni» + I l/I(1 - Cl>(U"i»' 
i=1 i=1 i=1 

where 

I it1 l/I(1 - Cl>(Uni» I ::; A it1 (1 - <I>(Uni»2 ::; A(1 - Cl>(A,,» it1 (1 - <I>(Uni» 

so that clearly 

from which both implications of the lemma follow simply. o 

In the following results the notation already established in this section 
will be used without comment. 

Lemma 6.1.2. Let {Uni} be such that If= 1 (1 - Cl>(Uni» is bounded, and 
An = min1sis"uni -+ 00. Suppose that the correlations rij satisfy Irijl ::; (j 
for i =F j, where (j < 1 is a constant. Then 

S~1) = I Irijl exp(- !(U;i + U;)) -+ 0 as n -+ 00, (6.1.6) 
1Si<jS" 1 + Irijl 
li-jlsOn 

where 0" = elJ).~, for any '1 < '10 = !<1 - (j)/(l + (j) 

PROOF. Clearly 

S~1) :s; (j I exp _ 2 ni nj . ( 
1.(U2 + U2 ») 

1Si<jsn 1 + (j 
li- jl SOn 
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The exponential term does not exceed 

( min(u;i' U;)) (U;i ) (U;j ) 
exp - 1 + 15 ::; exp - 1 + 15 + exp - 1 + 15 

giving, for a suitable constant K 

S~1)::; 2M)n itl exp( - 1 ~i b) = 2b()n it u;;;t exp( - U1i) UnieXP(-I'/OU;i) 

n 

::; K()nAn exp( -1'/0 A;) I (1 - <l>(Uni» 
i=1 

since Uni ~ An -+ 00, so that u;;;t exp( - u;J2)/(1 - <l>(Uni» is (for An > 0) 
uniformly bounded in i, and x exp( -l'/oX2) decreases for sufficiently large x. 
But Ll (1 - <l>(Uni» is bounded, and it thus follows that 

S~I) ::; KAn exp( - (1'/0 - I'/)A;) -+ 0 as n -+ 00, 

since 1'/ < 1'/0' o 
The main result of this section may now be readily proved. 

Theorem 6.1.3. Suppose that the correlations rij of the normal sequence {~n} 
aresuchthatlrijl::; Pli-jlfori =fjwherepn < Iforalln ~ landpnlogn-+O 
as n -+ 00. Let the constants {unJ be such that II: 1 (1 - <l>(Uni» is bounded 
and An = minl!>i!>n Uni ~ c(log n)1/2 for some c > O. Then (6.1.2) holds. If 
further, (6.1.3) holdsfor some T ;::: 0, then so does (6.1.1), i.e. p(ni= 1 {~i :::; unJ) 
-+ e- t • 

PROOF. The assumptions clearly imply those of Lemma 6.1.2, so that S~I) 
(given by (6.1.6» tends to zero as n -+ 00. Write 

S~2) = I Irijl exp(- !(u;; + U;)). 
l,;;i<j';;n 1 + Irijl 
li- jl>8n 

Since en = exp(I'/A;) ~ exp(c21'/10g n) = nit, r:x = c21'/ > 0, it is clear that 
S~2) does not exceed the same sum with nit replacing en, and bn~ replacing 
Irijl where bx = SUPj~x Pj' This gives, writing p = nit, 

S~2) ::; bp{tl exp( - 1 ~;~J r· 
Now define Un by 1 - <l>(un) = lin and split the sum in braces into two 

parts for Uni ~ Un' and Uni < Un' giving simply 



6.2. Distribution of the Maximum 127 

which tends to zero since c5p u; '" 2c5n .. log n = (2/rx)c5n .. log na. -+ 0, and the 
term in braces does not exceed K {n(1 - ~(un» + Li (1 - ~Uni»} which is 
bounded. Since S~1) -+ 0, S~2) -+ 0 it follows that 

L Irijl exp(- !(U;i + U;j») -+ 0 
ISi<jSn 1 + Irijl 

(6.1.7) 

and (6.1.2) follows at once from Theorem 4.2.1 (Eqn. (4.2.3» on taking 11j to 
be independent standard normal variables and making the obvious identifica­
tions, (using the fact that SUPi") rij I < 1 under the assumption made). 

Finally, if further (6.1.3) holds for some 't' ~ 0, then Lemma 6.1.1 shows 
that Oi ~Uni) -+ e- t so that (6.1.1) follows by (6.1.2). 0 

6.2. Asymptotic Distribution of the Maximum 

The results of the last section may be used to give the actual asymptotic 
distribution of the maximum in many cases of interest. We shall be especially 
concerned with stationary normal sequences to which a known (or in 
practice, perhaps, well-estimated) trend or seasonal component has been 
added. In such a case we will see how the classical normalizing constants are 
modified to include the added component. This is along the broad lines of a 
result by Horowitz (1980), (with a necessary correction to a normalizing 
constant given there) but under the present types of correlation condition. 
However, as will be further seen, the results apply without change to a non­
stationary normal sequence with constant, say unit, variance but arbitrary 
correlations rij under the usual conditions Irijl < Pli-jl with Pn log n -+ O. 

We shall be concerned then with the maxima Mn = max{11b"" 11n} 
from a normal sequence {11n, n = 1,2, ... } given by 11i = ~i + mi where gn} 
is the normal sequence defined in the previous section (EGi) = 0, Var(O = 1, 
Cov(~;, ~) = ri), and {mn} are added deterministic components. Hence of 
course E(11i) = mi' Var(11i) = 1, COV(11i, 11) = rij' We shall assume that the 
constants mi are such that 

13n = max 1m;! = o((log n)1/2) as n -+ 00. (6.2.1) 
1 Sisn 

This restriction is quite mild in practice and includes the most important 
case of bounded m;'s considered by Horowitz (1980) as well as a variety of 
unbounded trends. Of course, constants tending more rapidly to infinity 
could be considered but may yield degenerate results. It should be noted 
that the restriction (6.2.1) may be weakened in an appropriate way to 
restrict max mi rather than max I mi I, since it may be seen that 11i with small mi 
are less likely to provide the maximum value and may be disregarded. 
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However, for simplicity of statement and calculation it is convenient to 
require (6.2.1) as stated, and this will be sufficient for practical purposes. 

It will be shown that the usual limit law still holds provided the classical 
constant bn is replaced by bn + m: where m: is chosen so that I m: I =:;; Pn and 

in which a: = an - log log n/2an, (an = (2 log n)I/2). The solution m: to 
(6.2.2), (putting the left-hand side equal to 1, say) could be a difficult numerical 
problem, though for large n a solution with I m: I =:;; Pn clearly exists under 
(6.2.1) (e.g. I/I(x) = n- l Ii ea~(mi-x)(1-1/2a~-I(mi-X)) satisfies I/I(PJ =:;; 1 =:;; 
I/I( - Pn) when Pnl a: < I.) In some cases we will find an explicit form for 
m: -e.g. when the mi are bounded. (The simple form for m: given by Horowitz 
(1980) is not in general correct even for bounded mi' though it does apply 
under further appropriate conditions. With this notation we now give the 
main result. 

Theorem 6.2.1. Let {I1n} be defined as above by 111 = ~i + ml where {~n} is a 
normal sequence with zero means, unit variances and correlations rij such that 
Irijl < P'i- il for i =F- j with Pn < 1 and Pn log n -+ O. Let {mil satisfy (6.2.1) 
and m: be defined by (6.2.2). Then the maximum Mn = max{I11, ... , I1n} 
satisfies 

P{an(Mn - bn - m:) =:;; x} -+ exp( _e- X), 

an and bn being given by (1.7.2). 

(6.2.3) 

PROOF. Write Uni = Un + m: - mi where Un = x/an + bn. Then the left-hand 
side of (6.2.3) may be written as 

Since I m: I < Pn for sufficiently large n, and Un '" (2 log n)I/2 (cf. (4.3.2)(ii», 
it follows that mini sisn Uni = (2 log n)I/2(1 + 0(1». Thus if it is shown that 
(6.1.3) holds with 't' = e- X the result will follow from Theorem 6.1.3. To see 
that (6.1.3) holds we note that since mini sisn Uni -+ 00 as n -+ 00, 
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since 

IUni _ 11 = I(m: - mi)1 < KPn ..... 0 
Un Un - (log n)I/2 

uniformly in i =:;; n. But also 

Iun(mi - m:) - a:(mi - m:)1 =:;; 21un - a:IPn 

KPn < -::-----'--'~ - (log n)I/2 
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using the explicit forms of an' bn from (1.7.2) in Un = x/an + bn. Hence by 
(6.2.1) and (6.2.4), 

by (6.2.2) since n(1 - <p(un» ..... T. Hence (6.1.3) holds and the proof of the 
theorem is complete. 0 

As noted above, it is sometimes possible to obtain an explicit expression 
for m:. For example, suppose that the mi are bounded and max mi = p. 
Suppose that Vn of mI' ... , mn are equal to p, where Vn '" n. Then m: may be 
taken to be a;1 log(n -1 Ii em,an ) = m:(l), say. For it is readily checked 
that m:(I) = P + o(a; 1) and that the choice m: = m:(1) satisfies (6.2.2). 
This is the formula for m: given by Horowitz (1980) which does in fact hold 
in this and similar cases. 

However, if it is just assumed that the mi are bounded the choice of m: 
as m:(l) no longer satisfies (6.2.2) and indeed does not suffice in (6.2.3). A 
simple example of such a case may be constructed by taking Vn of ml' ... , ~ 
to be + 1 and the remaining (n - vn) to be -1 where Vn '" ne- an• It is then 
simply seen that m: = o(a; 1), the limit of the left-hand side of (6.2.2) is e- 1/2 , 

and indeed that I7= 1 (1 - <Il(un + m: - mi» ..... e- x - 1/ 2 so that it is readily 
seen that (6.2.3) does not hold. (The modification to m: required in this case 
is of course obvious.) 

In cases where the mi are bounded (or, more generally, when Pn = 
o((log n)I/6» an appropriate form for m: turns out to be 

m: = m:(2) = m:(1) + a; 1 log k~l), 

where 
1 n 

k~l) = - I exp(an(mi - m:(1) - !(mi - m:(1»2). 
n i=1 

Repetitions of this procedure in the obvious way can give explicit expressions 
for m: in cases where the mi grow more rapidly (but are still subject to 
Pn = o«(log n)I/2». 
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6.3. Convergence of PCn?=1 {~i < unJ) Under 
Weakest Conditions on {unJ 

We return now to the generalization of Theorem 6.1.3 by removing the 
... (1 )1/2 . . I h . restnctIonmm1:5i:5n Uni > C og n , requmng on yt atmm1:5i:5n Uni -+ 00. 

As noted, this was done by Hiisler (1981) for stationary normal sequences 
as a particular case of a theorem for stationary (but not necessarily normal) 
sequences. A key technique of that work involved the combining of the Uni 
into groups whose members are of comparable size. Here we use a somewhat 
simplified version of that technique in obtaining our result for nonstationary 
normal sequences. This involves grouping the Unio 1 :s; i :s; n, in sets of 
comparable values in the following way. Write C1 = A.n = min1:5i:5n Uni and 
partition the integers (1, ... , n) into disjoint subsets J 1, ... , J L as follows. 
Define 

d1 = max unio 
ieJl 

d2 = max Uni, 
ieJ 2 

and so on, until a set JL is obtained with maX1:5i:5n UniEJL' Thus Jk is a 
nonempty subset of the integers (1, ... , n) such that the minimum and 
maximum values of Uni for i E Jk are Ck, db respectively, where dk :s; 2Ck' 

Clearly also ck+ 1 > 2Ck for each k. Finally by way of notation write 

Pk = L (1 - <I>(Uni)), k = 1,2, ... , L. 
ieJk 

Of course, L, Ck, dk , Pb and the sets Jk all depend on n, but this dependence 
is suppressed in the notation, which will be used without comment for the 
remainder of this section. The first lemma shows that sets Jk , making a 
relatively small contribution to L (1 - <I>(Uni)), can be discarded. 

Lemma 6.3.1. With the above notation write A = {k; Pk ~ exp( -cV4), 
1 :s; k:s; L} and suppose that A.n = min1:5i:5n Uni -+ 00 and LI=1 (1 - <I>(Uni)) 
is bounded. Then 

(6.3.1) 

and 

(6.3.2) 
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PROOF. The difference in probabilities in (6.3.1) is clearly non-negative and 
dominated by 

(6.3.3) 

But if k ¢ A and k > 1, since Ck > 2Ck-l, 

( cf) 2 I 2 exp(-!C;_I) 
Pk < exp - -4 < exp( -Ck-t) = Ck-I exp( -zCk - l ) ---=-'---=-.:.:.......::.:.. 

Ck-t 

:$ KAn exp( - 1A;)(1 - W(Ck-I» :$ KAn exp( - 1A;)Pk-1 

since xe- x2j2 decreases for large x, and 1 - W(Ck_ d is one of the terms 
contributing to P k _ l' But if 1 ¢ A, P 1 :$ exp( - A;/4) so that 

L ( A2) L Pk :$ KAn exp( -1A;) L Pk + exp -; -+ 0 
kjA k= 1 

since Lr= 1 Pk = Li'= 1 (1 - W(Uni» is bounded. Hence (6.3.1) follows from 
(6.3.3). The second conclusion (6.3.2) is also immediate from the fact that 
(6.3.1) applies in particular to independent normal random variables-no 
assumption having been made about the correlation structure in this lemma. 

o 

In view of this lemma it is sufficient, in obtaining (6.1.2), to show that 

p(n gi :$ Uni}; i E U Jk ) - n {W(Uni); i E U Jk } -+ O. (6.3.4) 
keA keA 

This will be shown by means of the next two lemmas. 

Lemma 6.3.2. Suppose that the correlations rij satisfy 1 rij 1 :$ Pli- il where 
Pn -+ 0 as n -+ 00. Suppose that An = mint <i<n Uni -+ 00 and that 
L;i'=1 (1 - W(Uni» is bounded. Thenfor k, mEA, k ~ ~, 

( 
11 2 2») (12) 2\Uni + Uni II.n 

Sk,m = . ~ Irijl exp - 1 1 .. 1 :$ K exp -16 PkPm, 
On<I'-JI<Yn,m + r'J 
ieJk,jeJm,i<j 

where On = e"l;>' for 11 as in Lemma 6.1.2, and Yn,m = ecln/B• 

PROOF. Writing again bx = sUPi~x Pi we have 

S < ~ " ex (_ f(U;i + U;)) 
k, m - UOn L. PIS:' 

li-jl<Yn,m + UOn 
ieJk,jeJm, i<j 

Now the exponential term does not exceed 

exp( -t(U;i + u;}(l - bo) :$ exp( -tU;i) exp(1d;bon - tc;,(1 - bo» 

:$ exp( -1U;i) exp( -c;,(t - !boJ) 
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since dk ~ 2Ck ~ 2cm. Multiplying this last bound by dk/uni (~ 1) and summing 
over the indicated range for (i, j) we obtain 

Sk,m ~ KYn,m dkPk exp( -c;'(t - ic5oJ) 
which gives, since Pm ~ exp( -c;/4) and Yn,m = exp(c;'/8), dk ~ 2ck ~ 2cm, 

Sk,m ~ KCm exp( -c;(t - * -k --ic50J)PkPm ~ K exp( - ~DPkPm' 
for some K, since Cm ~ An and c50n --+ O. o 
Lemma 6.3.3. Suppose that I rijl ~ Pli- jl where Pn log n --+ 0 as n --+ 00, 

An = minI sisn Uni --+ 00 and Li'= 1(1 - Cl>(Uni» is bounded. Then,Jor k ~ m, 

where Yn,m = ec;,,/8 and Pn --+ 0, Pn depending only on n. 

PROOF. With bx = SUPj~x Pj we have by similar arguments to those above, 
and writing Yn,m = Yn, 

Now 

S~,m ~ c5 Yn{.L exp( -tu;;(l - c5 yJ)}{.I exp( -tu;p - by)} 
1EJk )EJrn 

~ Kc5Yn dk dmPkP m exp(t(d~ + d;')c5 yJ 
s KbYn d; exp(d; byJPkP m' 

c5 Yn d; ~ 4c5Yn c; = 32c5Yn log Yn' 

where Yn = Yn,m = exp(c;/8) ~ exp(A;/8) --+ 00, from which the result follows. 
o 

By collecting these lemmas we can now show that Theorem 6.1.3 remains 
valid if the requirement that An = minI SiSn Uni be bounded below by 
c(log n)I/2 is replaced by the simple condition An --+ 00. 

Theorem 6.3.4. Let the correlations rij of the normal sequence {~n} satisfy 
I rijl ~ Pli- jl for i =1= j where Pn < 1 for all n ~ 1 and Pn log n --+ 0 as n --+ 00. 

Let the constants {un;} be such that Ii= 1(1 - Cl>(unJ) is bounded and An = 
minlSiSnuni --+ 00. Then (6.1.2) holds. Ifalso (6.1.3) holdsfor some r > 0, so 
does (6.1.1), i.e. p(ni=I {~i ~ un;}) --+ e-<. 

PROOF. Letting A be as defined in Lemma 6.3.1 we see from Lemmas 6.1.2, 
6.3.2, and 6.3.3 that 
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where en --+ 0 as n --+ 00. But Lk,meA PkP m $ {L7= 1 (1 - <I>(Uni»}2 which is 
bounded so that the left-hand side of (6.3.5) tends to zero as n --+ 00. It 
thus follows from Theorem 4.2.1 that (6.3.4) holds and hence so does (6.1.2) 
by Lemma 6.3.1. 

Finally if also (6.1.3) holds then so does (6.1.1) by Lemma 6.1.1. 0 

6.4. Stationary Normal Sequences with 
Strong Dependence 

We tum, in this and the remaining sections, to the second topic of the chapter, 
to see the effect on extremes of a more persistent dependence structure in a 
stationary normal sequence {~n}' It was shown in Chapters 4 and 5 that 
Mn = max{~l"'" ~n} has a Type I limiting distribution, and the numbers 
of exceedances in disjoint intervals are asymptotically independent, provided 
the covariances rn decay to zero at a rate which is not too slow. Specifically, 
the crucial conditions needed for these results concern the behavior of r n log n; 
they hold if rn log n --+ 0 or, in somewhat more general circumstances, if 
rlllog n is not too large, too often. Results of Mittal and Ylvisaker (1975), 
which will be given below, show that these conditions are almost the best 
possible ones. For example, if rn log n --+ y > 0 then an(Mn - bn) does not 
tend in distribution to exp( - e - X) but to a convolution of exp( - e - X) and a 
normal distribution function, and further if r n log n --+ 00 in a sufficiently 
smooth manner (but r n --+ 0 still) then a different normalization is needed, 
and the limiting distribution is normal. 

In this and the next section we will consider the case r" log n --+ y > 0, and 
use ideas from Mittal and Ylvisaker (1975) to show that then the point process 
of exceedances of the (usual) level Un converges weakly to a Cox process 
(i.e. a mixture of Poisson processes with different intensities). The slow 
decay of the correlations not only changes the limiting distribution of 
extremes, but also destroys the asymptotic independence between extreme 
values in disjoint intervals. The reason for this is explained in an instructive 
way in the proof of Theorem 6.5.1 below, where the limiting distribution of 
the exceedances of Un is obtained as the limiting distribution of the 
exceedances by an independent normal sequence of a random level 

(x + y - ,J2i()/all + bn, where (is a standard normal variable representing 
"the common part" of the first n dependent variables. 

The main tool for the proof will, as in Chapter 4, be the Normal Comparison 
Lemma (Theorem 4.2.1) which relates the distributions of the maxima of two 
normal sequences with different correlations. Now it is, of course, no longer 
sufficient to compare with an independent sequence. Instead it will be 
convenient to compare the distribution of Mn with that of the maximum 
Mn([» of n standard normal variables which have constant covariance 
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() ~ 0 between any two variables. The usefulness of this comparison stems 
from the fact that if (, (10 (2, ... are independent standard normal variables 
then (1 - b)1/2( 1 + bI/2(, ... , (1 - b)1/2(n + b1/2( have constant covariance 
b between any two, and thus Mib) has the same distribution as 
(1 - b)1/2Mn(0) + bI/2 (. The following lemma, akin to Lemma 4.3.2, will 
enable the use of the desired comparison to be given in the next section. 

Lemma 6.4.1. Let d > 0 and y ~ 0 be constants, put Pn = y/log n and suppose 
that 

rn log n -+ y as n -+ 00. (6.4.1) 

Then,for any sequence {un} such that n(1 - <l>(un» is bounded 

end) (u2 ) 
nd'i, Irk - Pnl exp - -1-n - -+ 0 

k~1 + Wk 
as n -+ 00, (6.4.2) 

PROOF. As in the proof of Lemma 4.3.2 we may assume that n(1 - <l>(un» 
converges (so that (4.3.4)(i) and (ii) hold). Put b(k) = sUPk<ms[ndlwm' 

Clearly Wk, and hence b(k), also depend on n, but we do not make this 
dependence explicit in the notation. Further, let IY. be such that 0 < IY. < 
(1 - b(O»/(1 + b(O» for all sufficiently large n (which clearly is possible 
since SUPk> 0 rk < 1), and let p = [n~]. 

As in the proof of Lemma 4.3.2, the contribution to the sum in (6.4.2) 
from terms up to p tends to zero, so we have only to prove that the remaining 
part of the sum also tends to zero. Now 

[nd) (u2 ) (u2) end) 
n 'i, Irk - Pn I exp - -1 _n - ::; n exp - 1 ~() L Irk - Pn I 
k~p+l + Wk + P k~p+l 

n2 ( u2 ) log n [nd] 
= -1 - exp - 1 J() - 'i, Irk - Pnl· (6.4.3) 

ogn + p n k~p+l 

Since rn log n -+ y there is a constant C such that rn log n ::; C, n ~ 1. 
Hence also b(p) log p ::; C so by (4.3.4) we have (letting K be a constant 
whose value may change from line to line) 

n2 (Un) 2/(1 +C/logn«) 
-K- -

log n n 

::; Kn(2C/logn«)/(1+C/logn«) = 0(1) (6.4.4) 
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as n --+ 00. Moreover, adding and subtracting Pn log n/log k = y/log k and 
using the fact that log k ~ n~ for k > p, gives 

log n [ndl 1 [ndl 1 [nd] I log n I - L Irk - Pn I ~ - L I rk log k - y I + y - L 1 - -I k' 
n k=p+l om k=p+l n k=p+l og 

(6.4.5) 

Here the first term to the right tends to zero by (6.4.1). Furthermore, 
estimating the second sum by an integral, we obtain 

1 [ndl I log nil [ndl I k 11 - L 1 - - < -- I log - -
n k=p+l log k - Q( log n k=p+l n n 

= 0(-1-1 - idiiog xl dX), 
or: og n 0 

and hence the left-hand side of (6.4.5) tends to zero. Since by (6.4.4), the 
first factor on the right of (6.4.3) is bounded, this concludes the proof of 
(6.4.2). [] 

It is possible to weaken the hypothesis of Lemma 6.4.1, and thus of 
Theorem 6.5.1 below, in the same way as (4.1.1) is weakened to (4.5.3). 
However, this is quite straightforward and is left to the reader. 

6.5. Limits for Exceedances and Maxima 
when rn log n ~ y < 00 

In this section we investigate the limiting behavior of the point process of 
exceedances of the level Un when (6.4.1) holds with y < 00, obtaining the 
asymptotic distribution of the maximum as a corollary. First recall from 
Chapter 5 the notation N n for the point process of exceedances of the level Un 

by the process '1n' where '1n is defined from the stationary sequence {~j} 
by '1nU/n) = ~j' j = 1, 2, ... ; n = 1, 2, .... Further, let N be a Cox process 
(cf. Appendix) with (stochastic) intensity exp( -x - y + j2Yo, where' is 
a standard normal random variable, i.e. let N have the distribution 
determined by 

P(Ol {N(Bi)) = k;}) 

= 1-00
00 l~ {(m(B i ) exp( -x ~i ~ + J2yz)t;) 

x exp{ -m(Bi)e-X-Y+J2YZ} }<t>(Z) dz (6.5.1) 
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for B l , ••• , Bk disjoint positive Borel sets (and m(B) denoting Lebesgue 
measure). 

Theorem 6.5.1. Suppose that {~n} is a stationary normal sequence with co­
variances {rn} and that Un = x/an + bn, with an = (2 log n)l/2 and bn = an -
(2an)-l(log log n + log 4n). ffrn log n -+ y > 0, then the point process N n of 
time-normalized exceedances of the level Un converges in distribution to N on 
(0, 00), where N is the Cox process defined by (6.5.1). 

PROOF. Again we have to verify (a) and (b) of Theorem A.I. As in the proof of 
Theorem 5.2.1, E(Nn«c, d]» ~ (d - c)e- X , so since 

E(N«c, d]» = E«d - c) exp( -x - y + .J2Ym = (d - c)e- x - y e(./2Y)2/2 

= (d - c)e-X, 

the first condition follows immediately. 
We use the notation Mn(c, d) = max{~k; [cn] < k :s; [dn]} and write 

Mic, d; p) for the maximum ofthe variables with index k, [cn] < k:s; [dn], 
in a normal sequence with constant covariance P between any two variables. 
Letting c = Cl < dl < ... < Ck < dk = d it then follows, as noted in Sec­
tion 6.4, that Mn(ct>dl;p), ... ,Mn(Cbdk;P) have the same distribution 
as (1 - p)l/2Micl' dl ; 0) + pI/2e ... , (1 - p)l/2Micb dk; 0) + pl/2( where 
{Mn(cj, dj; Om= I and ( all are independent and ( is standard normal. Now 

P(bl {NnC(cj, dJ) = O}) = P(Ol {Mn(cj, dj) :s; Un}) 

and with Pn = y/log n it follows readily from Corollary 4.2.2 and Lemma 
6.4.1 that 

p(l\ {Micj, dj) :s; Un}) - p(Q {Mn(cj, dj; Pn) :s; Un}) -+ 0 

as n -+ 00. Thus, to prove (b) of Theorem A.l it is enough to check that 

p(6 {Micj, dj; Pn) :s; Un}) -+ P(OI {N«cj' dJ) = O} ). (6.5.2) 

However, 

p(6 {MiCj, dj; Pn) :s; Un}) 

= p(ll {(l - Pn)l/2 Mn(Cj, dj; 0) + p;/2( :s; Un}) 

= toooo p(6 {Mn(Cj, di ; 0) :s; (1 - Pn)-l/2(Un - p;/2Z)} )4>(Z) dz, 
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and using the expressions an = (2 log n)1/2, bn = an + O(a;; 1 log log n), and 
Pn = y/log n we obtain 

(1 - Pn)-1/2(un - p~/2Z) = (1 + ~ + O(Pn»)(:n + bn - p~/2Z) 
X ( Y )1/2 (yjIog n)(2 log n)1/2 

=-+bn - -- Z+--------
~ ~gn 2 

+ o(a;;l) 

= x + y - J2yZ + bn + o(a;;l). 
an 

Hence it follows from Corollary 5.2.2 that, for fixed z, 

P(Ol{MiC;,d;; 0) ~ (1 - Pn)-1/2(un - p~/2Z)}) 
k 

-+ n exp{ -Cd; - c;)e- x - v+ J2rZ }, 
;= 1 

and by dominated convergence this proves that 

5:oop(Q {Mn(c; , d;; 0) ~ (1 - Pn)-1/2(un - p~/2Z)})¢(Z)dZ 

foo k 

-+ _ 00 ;1] exp{ -Cd; - c;)e- x - v+J2YZ}¢(z) dz 

= p(Cl {N«ci , d;]) = O}), 
i.e. that (6.5.2) holds. o 

Corollary 6.5.2. Suppose that the conditions of Theorem 6.5.1 are satisfied 
and that B1, ... , Bk are disjoint positive Borel sets whose boundaries have 
Lebesgue measure zero. Then p(nf=1 {Nn(BJ = k;}) tends to the expression 
in the right-hand side of(6.5.1), In particular, 

P{an(Mn - bn) ~ x} = P{Nn«O, 1]) = O} 

-+ 5:00 exp( _e- X - Y+J2YZ)¢(z) dz 

as n -+ 00. 

From this result we see (as noted in Section 6.4), that the asymptotic 
distribution ofthe maximum is now the convolution of a Type I with a normal 
distribution - but still with the" classical" normalizing constants. It may also 
be noted that it is quite straightforward to extend the above result to deal 
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with crossings of two or more adjacent levels. However, to avoid repetition 
we will omit the details. 

6.6. Distribution of the Maximum when 'n log n -+ 00 

In the case when rn log n -+ 00, the problem of exceedances of a fixed level by 
the dependent sequence can again be reduced to considering the exceedances 
of a random level by an independent sequence. But in this case the random 
part of the level is "too large"; in the limit the independent sequence will 
have either infinitely many or no exceedances of the random level. Thus it is 
not possible to find a normalization that makes the point process of exceed­
ances converge weakly to a nontrivial limit, and accordingly we will only 
treat the one-dimensional distribution of the maximum. Since the derivation 
of the general result is complicated we shall consider a rather special case, 
which brings out the main idea of the result of Mittal and Ylvisaker (1975), 
while avoiding some of the technicalities of proof. 

First we note that for y'> 0, 0 < q < 1, there is a convex sequence 
{rn}:;'o with ro = 1, rn = y/(log n)q, n ~ no, for some no ~ 2. (This is easy to 
see since y/(log n)q is convex for n ~ 2, and decreasing to zero.) By Polya's 
criterion {rn} is a covariance sequence, and we shall now consider a stationary 
zero mean normal sequence {~n} with this particular type of covariance. 
Further, since {rn}:;'o is convex, for each n ~ 1 also (ro - rn)/(1 - rn), ... , 
(rn-1 - rn)/(l - rn), 0, 0, ... is convex, so again according to Polya's 
criterion there is a zero mean normal sequence {nn), ,~), ... } with these 
covariances. Clearly ~1"'" ~n have the same distribution as (1 - rn)1/2nn) 
+ r~/2" ... , (1 - rn)1/2,~n) + r~/2" where , is standard normal and in­
dependent of {,~n)}. 

Putting M~ = max1 :s;k:s;n ,~n) the distribution of Mn = max1 :s;k:S;n ~k 
therefore is the same as that of (1 - rn)1/2 M~ + r~/2,. This representation is 
the key to the proof of Theorem 6.6.3 below, but before proceeding to use it 
we shall prove two lemmas. The first one is a "technical" lemma of a type 
used several times already. In this an, bn (e.g. as in Theorem 6.5.1) denote the 
standard normalizing constants. 

Lemma 6.6.1. Let n' = [n exp( -(log n)1/2)] and, suppressing the dependence 
on n, let Pk = (rk - r n)/(1 - r n), k = 1, ... , n. Then,for each e > 0, 

n' { (b _ er1/2)2} 
n L IPk-Pn,lexp - n1 n -+0 asn-+oo. 

k=1 + Pk 
(6.6.1) 

PROOF. Set p = [nIX] where 0 < IX < (1 - r1)/(1 + r1) < (1 - P1)/(1 + P1)' 
Since rn is decreasing we have as in the proof of Lemma 4.3.2 that the sum 
up to p tends to zero, and it only remains to prove that 

n' { (b _ er1/2)2} 
n L IPk - Pn,1 exp - n n -+ 0 as n -+ 00. (6.6.2) 

k=p+1 1 + Pk 
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Now, using (4.3.4) (with Un = bn), 

n' {(b _ U1!2)2} n L exp _ n n 

k=p+l 1 + Pk 

= n L exp - ~ . 2 n n 
n' {b2 (1 _ erl!2jb )2} 

k=p+l 2 1+Pk 

~ K log n L - exp 2 1 - - n n log n . (6.6.3) n' 1 {( (1 erl!2jb )2) } 
k=p+ln l+Pk 

Here 1 - (1 - er~!2jbn)2j(1 + Pk) ~ 1 - (1 - 2er~!2jbn)j(l + Pk) ~ Pk 
+ 2er~!2jbn' and since 

r~!2b;; 1 log n ~ K'(log np -q)/2, 

we obtain the bound 

n' 1 
K log n exp{K'(log n)(1-q)!2} L - exp(2Pk log n). 

k=p+ln 
(6.6.4) 

Furthermore, for k ~ p + 1 we have log k ~ a log n, and then 

I yj(log k)q - yj(log n)q I 
Pk og n = 1 _ yj(log n)q og n 

< K log n {1 _ (lOg k)q} 
- (a log n)q log n 

~ K(log n)l-q{ 1 - C~:gk~n + 1) q} 

~ K(log n)-q{ - 10g~} 
so that 

n' 1 n' 1 {( k)}K(lOgn)-q L - exp(2pk log n) ~ L - exp -log-
k=p+l n k=p+l n n 

rexp{- (log n)1/2) 

~ Jo {exp( -log x)}K(logn)-q dx 

fexp{ - (logn)1/2) 
= x-K(logn)-q dx 

o 

exp{ -(log n)1!2(1 - K(log n)-q)} 
1 - K(log n)-q 
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Together with (6.6.3) and (6.6.4) this implies that (6.6.2) is bounded by 

K log n exp{ -(log n)I/2(1 - K(log n)-ll) + K'(log n)(1-q)/2} 
---=----=--=----=---'---::---=-=-=--'----=:---':,........:.---=--..:::.-.-'-----.-:... -+ 0, 

1 - K(log n) q 

as n -+ 00, which proves (6.6.1). 

Lemma 6.6.2. For all e > 0 

P(IM~ - bnl > er~/2) -+ 0 as n -+ 00, 

o 

for M~ = maxI <k<n nn), with ,~), ... , ,~n) standard normal and with co­
variances {PA:} as defined in Lemma 6.6.1. 

PROOF. As above write MnCp) for the maximum of n standard normal vari­
ables with constant correlation P between any two. By definition, PA: ~ 0, 
and hence, by Corollary 4.2.3, 

P{M~ > bn + er~/2} !5: P{MnCO) > b" + er~/2an/an}' 

Further, by the definitions, anr~/2 -+ 00 as n -+ 00, and by Theorem 1.5.3 it 
follows readily that 

To show that 

(6.6.5) 

we place an upper bound on the difference 

P{M~ < bn - er~/2} - P{Mn(Pn') < bn - er~/2} 

by means of (4.2.5) in Corollary 4.2.2. Since {PA:} is convex and thus decreasing, 
Pk !5: Pn' for k ~ n' (and hence (PA: - PnY = 0 for n' < k !5: n), and we 
obtain the upper bound 

II' { (b - erl/2)2} 
Kn L (PA: - Pn') exp - n 1 n 

k=1 +Pk 

which tends to zero by Lemma 6.6.1, so that 

lim sup(P{M~ < bn - er~/2} - P{Mn(P~) < bn - er~/2}) !5: O. (6.6.6) 
"-+00 

\Moreover, Mn(Pn.) has the same distribution as (1 - p",)1/2M,,(O) + p~!2, 
where M ,,(0) and , are independent, so that 

P{M"(p,,.) < b" - er~/2} = P{(l - p".)1/2Mn(O) + p~!2, < bn - er~/2} 
= P{(l - Pn,)1/2r;;I/2a;;lan(Mn(0) - bn) 

+ «1 - Pn,)1/2 - 1)b"r;;I/2 
+ p~!2r;;I/2, < -e}. (6.6.7) 
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For n large, using the definition of n', 

y/(log n,)q - y/(log n)q 
Pn' = 1 - y/(log n)q 

y { 1 I} (l )-1/2- q 
'" (log n)q (1 - (log n)-1/2)q - '" yq og n . 

Thus 

«(1 - Pn·)1/2 - l)bnr;; 1/2 '" 1Pn.bnr;; 1/2 '" q A (log n)-q/2 - 0 

as n _ 00 and also p~!2r;; 1/2 '" ql/2(log n)-1/4 _ O. Moreover, 

(1 - Pn.)1/2r;;1/2a;; 1 '" (2y)-1/2(log n)-(1-q)/2 _ 0, 
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and since an(M n(O) - bn) converges in distribution by Theorem 1.5.3 it 
follows that the probability in (6.6.7) tends to zero, so that from (6.6.6), 
lim SUPn-+oo P{M~ < bn - Br~/2} S 0, yielding (6.6.5), to complete the proof. 

o 
Theorem 6.6.3. Suppose that the stationary, standard normal sequence {en} 
has covariances {rn} with {rn}:;"o convex and rn = y/(log n)q, with y ~ 0, 
0< q < l,for n ~ no, some no. Then 

P{r;; 1/2(Mn - (1 - rn)1/2bn) S x} - ct>(x) as n - 00. 

PROOF. As was noted just before Lemma 6.6.1, Mn has the same distribution 
as (l - rn)1/2M~ + r~/2" where' is standard normal. It now follows simply 
from Lemma 6.6.2 that 

P{r;;1/2(Mn - (1 - rn)1/2bn) S x} = P{(1 - rn)1/2rn-l/2(M~ - bn) + , S x} 

-P{(sx}=ct>(x) asn-oo. 0 

Of course the hypothesis of Theorem 6.6.3 is very restrictive. The following 
more general result was proved by McCormick and Mittal (1976). Their 
proof follows similar lines as the proof of Theorem 6.6.3 above, but the 
arguments are much more complicated. 

Theorem 6.6.4. Suppose that the stationary standard normal sequences {en} 
has covariances {rn} such that rn - 0 monotonically and rn log n - 00, 

monotonically for large n. Then 

P{r;; 1/2(Mn - (1 - rn)1/2bn) S x} - ct>(x) as n - 00. 0 

In the paper by Mittal and Ylvisaker (1975), where the above result 
was first proved under the extra assumption that {rn}:;"o is convex, it is 
also shown that the limit distributions in Theorems 6.5.1 and 6.6.4 are by 
no means the only possible ones; they exhibit a further class of limit distribu­
tions which occur when the covariance decreases irregularly. Further 
interesting related results are given by McCormick (l980b); in particular he 
obtains a double exponential limit for the" Studentized maximum ", i.e. for 
Mn normalized by the observed mean and standard deviation. 



PART III 

EXTREME VALUES IN 
CONTINUOUS TIME 

In this part of the work we shall explore extremal and related theory for 
continuous parameter stationary processes. As we shall see (in Chapter 13) it 
is possible to obtain a satisfying general theory extending that for the sequence 
case, described in Chapter 3 of Part II, and based on dependence conditions 
closely related to those used there for sequences. In particular, a general 
form of the Extremal Types Theorem will be obtained for the maximum 

M(T) = sup{~(t); 0 ~ t ~ T}, 

where ~(t) is a stationary stochastic process satisfying appropriate regularity 
and dependence conditions. 

Before presenting this general theory, however, we shall give a detailed 
development for the case of stationary normal processes, for which very 
many explicit extremal and related results are known. For mean-square 
differentiable normal processes, it is illuminating and profitable to approach 
extremal theory through a consideration of the properties of upcrossings of a 
high level (which are analogous to the exceedances used in the discrete case). 
The basic framework and resulting extremal results are described in Chapters 
7 and 8, respectively. 

As a result of this limit theory it is possible to show that the point process 
of upcrossings of a level takes on an increasingly Poisson character as the 
level becomes higher. This and more sophisticated Poisson properties are 
discussed in Chapter 9, and are analogous to the corresponding results for 
exceedances by stationary normal sequences, given in Chapter 5. 

The Poisson results provide asymptotic joint distributions for the loca-­
tions and heights of any given number of the largest local maxima. 

The local behaviour of a stationary normal process near a high-level 
upcrossing is discussed in Chapter 10, using, in particular, a simple process 
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(the "Slepian model process") to describe the sample paths at such an 
upcrossing. As an interesting corollary it is possible to obtain the limiting 
distribution for the heights of excursions by stationary normal processes 
above a high level, under appropriate conditions. 

In Chapter 11 we consider the joint asymptotic behaviour of the maximum 
and minimum of a stationary normal process, and of maxima of two or 
more dependent processes. In particular it is shown that-short of perfect 
correlation between the processes-such maxima are asymptotically 
independent. 

While the mean square differentiable stationary normal processes form a 
substantial class, there are important stationary normal processes (such as 
the Omstein-Uhlenbeck process) which do not possess this property. Many 
of these have covariance functions of the form r(t) = 1 - Cltl" + o(ltl") as 
t --+ 0 for some IX, 0 < IX < 2 (the case IX = 2 corresponds to the mean­
square differentiable processes). The extremal theory for these processes 
is developed in Chapter 12, using more sophisticated methods than those of 
Chapter 8, for which simple considerations involving upcrossings sufficed. 

Finally, Chapter 13 contains the promised general extremal theory (includ­
ing the Extremal Types Theorem) for stationary continuous-time processes 
which are not necessarily normal. This theory essentially relies on the discrete 
parameter results of Part II, by means of the simple device of expressing the 
maximum of a continuous parameter process in say time T = n, an integer, 
as the maximum of n "submaxima", over fixed intervals, viz. 

M(n) = max«(l, (2, ... , (n), 

where (i = sup{e(t); i-I ~ t ~ i}. It should be noted (as shown in Chapter 
13) that the results for stationary normal processes given in Chapters 8 and 
12 can be obtained from those in Chapter 13 by specialization. However, since 
most of the effort required in Chapters 8 and 12 is still needed to verify the 
general conditions of Chapter 13, and the normal case is particularly im­
portant, we have felt it desirable and helpful to first treat normal cases 
separately. 



CHAPTER 7 

Basic Properties of Extremes and 
Level Crossings 

We turn our attention now to continuous parameter stationary processes. 
We shall be especially concerned with stationary normal processes in this 
and most of the subsequent chapters but begin with a discussion of some 
basic properties which are relevant, whether or not the process is normal, 
and which will be useful in the discussion of extremal behaviour in later 
chapters. 

Our main concern is with upcrossings of a level by stationary processe~, 
and the expected number of such upcrossings-in the particular case of a 
stationary normal process leading to a celebrated formula, due to S. O. Rice, 
for the mean number of upcrossings per unit time. The results are also 
extended, in various ways, to "marked crossings" and to the expected 
number of local maxima, obtained by considering the downcrossings of the 
zero level by the derivative process. 

7.1. Framework 

Consider a stationary process {e(t); t ~ O} having a continuous ("time") 
parameter t ~ O. Stationarity is to be taken in the strict sense, i.e. to mean 
that any group ~(tl)"'" Wn) has the same distribution as Wl + t), ... , 
e(tn + t) for all t. Equivalently this means that the finite-dimensional distri-
butions F,1 ..... ,Jxt. ... , xn) = p{e(tl ) ~ Xl"'" Wn) ~ Xn} are such that 
F'I +< ..... I n +< = F'I ..... 'n for all choices of t, n, and tl> t2, ... , tn. 

It will be assumed throughout, without comment, that for each t, the 
dJ. F,(x) of ~(t) is continuous. It will further be assumed that, with probability 
one, ~(t) has continuous sample functions-that is, the functions {~(t)} 
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are a.s. continuous as functions of t ~ O. Simple sufficient conditions for 
sample function continuity will be stated in Section 7.3 for normal processes. 
For the general case the reader is referred to Cramer and Leadbetter (1967, 
Chapter 4), and Dudley (1973). 

Finally, it will be assumed that the basic underlying probability measure 
space has been completed, if not already complete. This means, in particular, 
that probability-one limits of r.vo's will themselves be r.vo's-a fact which will 
be useful below. 

A principal aim in later chapters will be to discuss the behaviour of the 
maXImum 

M(T) = sup{W); 0:::;; t :::;; T} 

(which is well defined and attained, since e(t) is continuous) especially when 
T becomes large. It is often convenient to approximate the process e(t) by a 
sequence {en(t)} of processes taking the value W) at all points of the form 
jqn, j = 0, 1,2, ... , and being linear between such points, where qn ~ 0 as 
n - 00. In particular, this is useful in showing that M(T) is a r.v., as the 
following small result demonstrates. 

Lemma 7.t.t. With the above notation, suppose that qn ~ 0 and write MlT) 
= max{eUqn); 0 :::;;jq,.:::;; T}. Then M,.(T) - M(T) a.s. as n - 00, and 
M(T) is a r.v. 

PROOF. Mn(T) is the maximum of a finite number of r.vo's and hence is a r.v. 
for each n. It is clear from a.s. continuity of e(t) that Mn(T) - M(T) a.s. 
and hence by completeness M(T) is a r.v. 0 

We shall also use the notation M(I) to denote the supremum of ,(t) in any 
given interval I -of course, it may be similarly shown that M(I) is a r.v. 

7.2. Level Crossings and Their Basic Properties 

In the discussion of maxima of sequences, exceedances of a level played an 
important role. In the continuous case a corresponding role is played by the 
upcrossings of a level for which analogous results (such as Poisson limits) may 
be obtained. To discuss upcrossings, it will be convenient to introduce-for 
any real u-a class G u of all functions f which are continuous on the positive 
real line, and not identically equal to u in any subinterval. It is easy to see that 
the sample paths of our stationary process ,(t) are, with probability one, 
members of Gu • In fact, every interval contains at least one rational point, 
and hence 

00 

p{eo¢Gu}:::;; LP{,(tj ) = u}, 
j= 1 
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where {t j} is an enumeration of the rational points. Since e(t j) has a continuous 
distribution by assumption, p{e(tj) = u} is zero for every j. 

We shall say that the function f E Gu has a strict upcrossing of u at the 
point to > 0 if for some e > 0, f(t) ~ u in the interval (to - e, to) and 
f(t) ~ uin(to, to + e). The continuity off requires, of course, thatf(to) = u, 
and the definition of Gu that f(t) < u at some points t E (to - '1, to) and 
f(t) > u at some points t E (to, to + '1) for each '1 > O. 

It will be convenient to' enlarge this notion slightly to include also some 
points as upcrossings where the behaviour of f is less regular. As we shall see, 
these further points will not appear in practice for the processes considered 
in the next two chapters, but are useful in the calculations and will often 
actually occur for the less regular processes of Chapter 12. Specifically we 
shall say that the functionf E Gu has an upcrossing of u at to > 0 if for some 
e > 0 and all '1 > 0, f(t) ~ u for all t in (to - e, to) and f(t) > u for some t 
(and hence infinitely many t) in (to, to + '1). An example of a nonstrict up­
crossing of zero at to is provided by the function f(t) = t - to for t ~ to 
and f(t) = (t - to) sin«t - to)-l) for t > to. 

The following result contains basic simple facts which we shall need in 
counting upcrossings. 

Lemma 7.2.1. Let f E Gu for some fixed u. Then, 

(i) iffor fixed t1, t2, 0 < tl < t2, we have f(t 1) < u < f(t 2), then f has an 
upcrossing (not necessarily strict) ofu somewhere in (tl' t2), 

(ii) iff has an upcrossing of u at to which is not strict, it has infinitely many 
upcrossings ofu in (to, to + e), for any e > O. 

PROOF. (i) Iff(tl) < u < f(t2) with tl < t2 write 

to = sup{t > t 1;f(s) ~ u for all tl ~ s ~ t}. 

Clearly tl < to < t2 and to is an upcrossing point of u by f. 
(ii) If to is an upcrossing point of u by f and e > 0, there is certainly a 

pointt2 intheinterval(to, to + e)withf(t2 ) > u.Iftoisnotastrictupcrossing 
there must be a point tl in (to, t2 ) such that f(t 1) < u. By (i) there is an up­
crossing between tl and t2 , so that (ii) follows, since e > 0 is arbitrary. 0 

Downcrossings (strict or otherwise) may be defined by making the obvious 
changes, and crossings as points which are either up- or downcrossings. 
Clearly, at any crossing to of u we have f(to) = u. On the other hand there 
may be "u-values" (i.e. points to where f(to) = u) which are not crossings­
such as points where f is tangential to u or points to such that f(t) - u is 
both positive and negative in every right and left neighbourhood of to-as 
for the function u + (t - to) sin«t - to) -1). 

The above discussion applies to the sample functions of the process e(t) 
satisfying the general conditions stated since, as noted, the sample functions 
belong to Gu with probability one. Write, now, N u(l) to denote the number of 
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upcrossings of the level u by ,(t) in a bounded interval I, and N ,,(t) = 
Nu«O, tJ). We shall also sometimes write N(t) for N,,(t) when no confusion 
can arise. 

In a similar way to that used for maxima, it is convenient to use the 
"piecewise linear" approximating processes {,it)} to show that N,,(1) 
is a r.v. and, indeed, in subsequent calculations as, for example, in obtaining 
E(N ,,(1». This will be seen in the following lemma, where it will be con­
venient to introduce the notation 

1 
Jq(u) = - P{,(O) < u < ,(q)}, q > 0. (7.2.1) 

q 

Lemma 7.2.2. Let I be a fixed, bounded interval. With the above general 
assumptions concerning the stationary process {,(t)}, let {qn} be any sequence 
such that qn t ° and let N n denote the number of points jqn' j = 1,2, ... such 
that both U - I)qn andjqn belong to I, and ,(U - I)qn) < u < 'Uqn). Then 

(i) Nn ~ N,,(1), 
(ii) N n --+ N ,,(1) a.s. as n --+ 00 and hence N u(1) is a (possibly infinite-valued) 

r.v., 
(iii) E(Nn) --+ E(N,,(1» and hence E(N,lt» = t limq!o Jq(u), (and hence 

E(N,,(t» = tE(N,,(1»). 

PROOF. (i) If for some j, ,(U - I)qn) < u < ,Uqn) it follows from Lemma 
7.2.I(i), that ,(t) has an upcrossing between U - I)qn and jqn so that (i) 
follows at once. 

(ii) Since the distribution of ~Uqn) is continuous and the set {kqn; k = 0, 
1,2, ... ; n = 1,2, ... } is countable, we see that P{,(kqn) = u for any k == 
0, 1,2, ... ; n = 1,2, ... } = 0, and hence we may assume that ,(kqn) oF u 
for any k and n. We may likewise assume that ,(t) does not take the value u 
at either endpoint of I and hence that no upcrossings occur at the endpoints. 

Now, if for an integer m, we have N ,,(1) ~ m, we may choose m distinct 
upcrossings t 1, ... , tm of u by ,(t) in the interior of I which may, by choice of 
e > 0, be surrounded by disjoint subintervals (t j - e, tj + e), i = I, 2, ... , m, 
of I, such that ,(t) ~ u in (t j - e, t j) and ,('r) > u for some 'r E (t;, tj + e). 
By continuity, 'r is contained in an interval-which may be taken as a sub­
interval of (t j, tj + e)-in which ,(t) > u. For all sufficiently large n this 
interval must contain a point kqn. 

Thus there are points lqn E (t j - e, t j), kqn E (t j, tj + e) such that Wqn) < 
u < '(kqn). For some j with 1< j ~ k we must thus have ,(U - I)qn) < 
u < ,Uqn). Since eventually each interval (t j - e, tj + e) contains such a 
point jqn we conclude that N n ~ m when n is sufficiently large, from which it 
follows at once that lim infn .... oo Nn ~ N,,(1) (finite or not). Since by (i), 
lim supn .... oo Nn ~ N,,(1) we see that limn"" 00 Nn = N,,(1) as required. 

Finally, it is easily seen that Nn is a r.v. for each n (Nn is a finite sum of 
r.v.'s Xk' Xk = 1 if ,«k - I)qn) < u < ,(kqn), and zero otherwise) so that, by 
completeness, its a.s.limit N,,(1) is also a r.v., though possibly taking infinite 
values. 
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(iii) Since N n --+ N u(I) a.s., Fatou's lemma shows that lim infn-> 00 E(N n) ;;:: 
E(N u(I». If E(N u(I» = 00 this shows at once that E(N n) --+ E(N u(I». But 
the same result holds, by dominated convergence, if E(N u(I» < 00, since 
N n S N u(/) and N n --+ N u(I) a.s. 

Finally, if I = (0, t], then I contains Vn ~ tq;; 1 points jqn so that, using 
stationarity, 

E(Nn) = (vn - I)P{~(O) < u < ~(qn)} ~ tJqn(u). 

Hence tJ q/u) --+ E(N u(t» from which the final conclusion of (iii) follows since 
the sequence {qn} is arbitrary. 0 

Corollary 7.2.3. If E(Nif) < 00, or equivalently if lim infn-> 00 Jqn(u) < 00 

for some sequence qn t 0, then the upcrossings of u are a.s. strict. 

PROOF. If E(N if) < 00 then N if) < 00 a.s. and the assertion follows from 
(ii) of Lemma 7.2.1. 0 

Under mild conditions one can express E(Nil» = limq->o Jiu) in a 
simple and useful integral form. This will in the next section be adapted to 
normal processes and it will playa major role in the subsequent development. 
In Section 7.5 it will be further extended to deal with more complicated 
situations concerning marked crossings. 

The first results of this kind were obtained by S. O. Rice (1939,1944,1945) 
for normal processes, by intuitive methods related to those used in this 
work. The first rigorous proofs made use of a zero-counting device developed 
by Kac (1943). Under successively weaker conditions the formula was 
verified for normal processes by Ivanov (1960), Bulinskaya (1961), Ito 
(1964), and Ylvisaker (1965). The general formulation we shall use here is 
due to Leadbetter (1966c); see also Marcus (1977). 

Theorem 7.2.4. Suppose ~(O) and (q = q-l(~(q) - ~(O» have a joint density 
gq(u, z) continuous in ufor all z and all sufficiently small q > 0, and that there 
exists a p(u, z) such that giu, z) --+ p(u, z) uniformly in ufor fixed z as q --+ O. 
Assume furthermore that there is a function h(z) with SO' zh(z) dz < 00 and 
giu, z) s h(z)for all u, q. Then 

E(Ni1» = lim Jq(u) = roo zp(u, z) dz. (7.2.2) 
q->O Jo 

PROOF. By writing the event {~(O) < u < ~(q)} as {~(O) < u < ~(O) + q(q} 
= {~(O) < u} n {(q > q-l(U - ~(O») we have 

Jq(u) = q-lP{~(O) < u, Cq > q-l(U - ~(O»} 

= q-l f= _ 00 i:q-I(U_XlgiX, y) dy dx. 
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By change of variables, x = u - qzv, y = z, (v = (u - x)/(qy», this is equal 
to 

i:/ i1=ogiU - qzv, z) dv dz, 

where giu - qzv, z) tends pointwise to p(u, z) as q ~ 0 by the assumptions 
of uniform convergence and continuity. Since gq is dominated by h(z) it 
follows at once that the double integral tends to SO' zp(u, z) dz. D 

In many cases the limit p(u, z) in (7.2.2) is simply the joint density of ~(O) 
and the derivative ~'(O). (This holds, for example, for normal processes, as 
will be seen in the next section.) If we write p(u) and p(z! u) for the density of 
~(O) and the conditional density of ~'(O) given ~(O) = u, respectively, (7.2.2) 
can then be written as 

E(Nil» = p(u) lXlZp(Z!U) dz = p(u)E(e'(O)+ !~(O) = u) (7.2.3) 

(where e'(0)+ = max(O, ~'(O»), so that the mean number of upcrossings is 
given by the density of ~(O) multiplied by the average positive slope of the 
sample functions at u. 

Finally, in this section we derive two small results concerning the maximum 
M(T) and the nature of solutions to the equation ~(t) = uo, which rely 
only on the assumption that E(N il» is a continuous function of u. 

Theorem 7.2.5. Suppose that E(N il» is continuous at the point Uo and, as 
usual that Pg(t) = u} = o for all t, so that ~(')EGu with probability one. 
Then 

(i) with probability one, all points t such that ~(t) = Uo are either (strict) 
upcrossings or downcrossings, 

(ii) the distribution of M(T) is continuous at uo, i.e. P{M(T) = uo} = O. 

PROOF. (i) Clearly it suffices to consider just the unit interval. If ~(t) = Uo 
but t is neither a (strict) upcrossing nor a (strict) downcrossing it is either a 
tangency from below or above, i.e. for some 6 > 0, ~(t) :s:; Uo (~uo) for all 
t E (to - 6, to + 6) or else there are infinitely many upcrossings in (to - 6, to), 
(and this is precluded by the finiteness of E(Nu(1»). Further, for each fixed u 
the probability oftangencies of u from below is zero. To see this, let Bu be the 
number of such tangencies of the level u in (0,1], write Nu = Nu(I), and 
suppose N u + Bu ~ m, so that there are at least m points t to .•. , tm which are 
either u-upcrossings or tangencies from below. Since ~O E Gu with prob­
ability one, there is at least one upcrossing of the level u - lin just to the left 
of any t i , for all sufficiently large n. This implies that Nu - 1/n ~ m for suffi­
ciently large n, and hence that 

Nu + Bu:S:; lim inf N u- 1/n, 
n"'OO 



7.3. Crossings by Normal Processes 151 

and applying Fatou's lemma, 

/1-+00 

if E(Nu(1» is continuous. Since Bu ~ 0, we conclude that Buo = 0 (with 
probability one). A similar argument excludes tangencies from above, and 
hence all u-values are either up- or downcrossings (and strict). 

(ii) Without loss of generality take T = 1. Since 

P{M(I) = u} ~ P{~(O) = u} + P{~(I) = u} + P{Bu ~ I} 

the result follows from P{Buo = O} = 1. o 

7.3. Crossings by Normal Processes 

Up to this point we have been considering a quite general stationary process 
{~(t); t ~ O}. We specialize now to the case of a (stationary) normal or 
Gaussian process, by which we mean that the joint distribution of ~(tl)' ... , 
~(t,,) is multivariate normal for each choice ofn = 1,2, ... and t 1, t2 , ••• , t". 
It will be assumed without comment that ~(t) has been standardized to have 
zero mean and unit variance. The covariance function r(-r) will then be 
equal to E(~(t)~(t + -r». 

Obviously r(-r) is an even function of -r, with r(O) = E(~2(t» = 1. Thus if 
r is differentiable at -r = 0, its derivative must be zero there. It is of particular 
interest to us whether r has two derivatives at -r = 0.1f r"(O) does exist (finite), 
it must be negative and we write A2 = - r"(O). The quantity A2 is the second 
spectral moment, so called since we have A2 = J~ 00 A 2 dF(A), where F(A) is 
the spectral dJ., i.e. r(-r) = J~oo eiA< dF(A). If r is not twice differentiable at 
zero then J~ 00 A2 dF(A) = 00, i.e. A2 = 00. When A2 < 00 we have the expan­
sion 

(7.3.1) 

Furthermore, it may be shown that A2 = - r"(O) < 00 if and only if ~(t) 
is differentiable in quadratic mean, i.e., if and only if there is a process {nt)} 
such that h-l(~(t + h) - ~(t» -+ ~'(t) in quadratic mean as h -+ 0, and 
that then 

E(f(t» = 0, Var(~'(t» = -r"(O), 

W), ~'(t) being jointly normal and independent for each t. Furthermore 

Cov(~'(t), ~'(t + -r» = -r"(-r). 
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For future use we introduce also 

where also .14 = r(4)(0), when finite. An account of these and related properties 
may be found in Cramer and Leadbetter (1967, Chapter 9). 

To apply the general results concerning upcrossings to the normal case 
we require that ~(t) should have a.s. continuous sample paths. It is known 
(cf. Cramer and Leadbetter (1967, Section 9.5», that if, as 't" --+ 0 

1 - r('t") = O(llog l't"ll-a) for some a> 1, (7.3.2) 

it is possible to define the process ~(t) as a continuous process. This is a very 
weak condition which will always hold under assumptions to be used here 
and subsequently-for example, it is certainly guaranteed if r is differentiable 
at the origin, or even if 1 - r('t") ::;; CI't"11l for some ex> 0, C > O. 

In the remainder of this and in the next chapters we shall consider a 
stationary normal process ~(t), standardized as above, and such that .12 < 00. 

Then ~(t) and nt) are independent normal with Var(~'(t» = .12 • Their joint 
density 

p(u, z) = 21n .1;1/2 exp( - ~ (U2 + ~:) ) 
is the limit of the density giu, z) of ~(O) and Cq = q-1(~(q) - ~(O» appearing 
in Theorem 7.2.4. In fact ~(O) and Cq are bivariate normal with mean zero 
and covariance matrix 

( 1 q-1(r(q) - r(O» ) 
q-1(r(q) - r(O» 2q- 2(r(0) - r(q» , 

and, by (7.3.1), q-1(r(q) - r(O» --+ 0, 2q-2(r(0) - r(q» --+ .12 as q --+ 0, which 
implies the convergence oftheir density to p(u, z). The dominated convergence 
required in Theorem 7.2.4 can also be checked, and hence 

foo 1 (u2
) E(Nil» = 0 zp(u, z) dz = 2n A.~/2 exp - 2 . 

This is Rice's original formula for the mean number of upcrossings in normal 
processes. Similar reasoning shows that if ~(t) is not mean square differ­
entiable (i.e. if .12 = (0) then E(Nu(l» = 00, as suggested by Rice's formula. 

However, we need a slightly more general result about Jq(u), allowing for 
u --+ 00 as q --+ 0, and we shall prove this directly along similar lines as in the 
proof of Theorem 7.2.4 and obtain Rice's formula via this route. To simplify 
notation we use the normal structure explicitly, making a slightly different 
transformation of variables. 
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Lemma 7.3.1. Let {~(t)} be a (standardized) stationary normal process with 
il2 < 00 and write Jl. (=Jl.(u)) = (l/2n)ilY2 exp(-u2/2). Let q -+ 0 and u 
either be fixed or tend to infinity as q -+ 0 in such a way that uq -+ O. Then 

Jq(u) = q-1P{~(0) < u < ~(q)} '" Jl. asq-+O. 

PROOF. By rewriting the event {~(O) < u < ~(q)} as {I~(O) + ~(q) - 2ul 
< ~(q) - ~(O)}, i.e. as {I(I - u I < (q/2K2} where '1 = (~(O) + ~(q))/2, '2 = (~(q) - ~(O))/q, are uncorrelated, and hence independent, being 
normal, with respective variances O"f = (1 + r(q))/2, O"~ = 2(1 - r(q))/q2, 
we obtain 

Jl.- 1Jiu) = (jl.q0"2)-1 L:otP(:Jp{I(l - ul < ~}dY 

= {j1.qO"l0"2)-1 tP - tP - dx dy foo Iu+qY'2 (x) (y) 
y=o x=u-qy/2 0"1 0"2 

foo Y ( y2){ 0"2 II ,/.,(u + qXY/2)d }d - -exp -- 'I' X Y 
- )1=0 O"~ 20"~ 20"1JJ.fo x= -1 0"1 . 

(7.3.3) 

Now the factor in braces in the integrand may be written as 

0"2 fl {u2 2 uqxy q2X2y2} exp - - (1 - 0"1) - -- - -- dx 
20"1A x=-l 20"f 20"f 80"f ' 

which by bounded convergence (0"1 -+ 1, 1 - O"f = il2q2/4 + 0(q2), 
0"2 -+ A) tends to 1. By replacement of uqxy by -uqy it is seen that the 
integrand of (7.3.3) is dominated by the integrable function Aye-Cy2 (for 
some constants A, c > 0) so that an,application of dominated convergence 
gives 

foo y ( y2) lim Jl.- 1Jq(u) = y-exp -u:- dy = 1. 
q-+O 0 2 2 

o 

Rice's result is now an immediate consequence of this lemma. 

Theorem 7.3.2 (Rice's Formula). If {~(t)} is a (standardized) stationary normal 
process withfinite second spectral moment Ai = - r"(O)) then the mean number 
of upcrossings of any fixed level u per unit time is/inite and given by 

(7.3.4) 

(Hence also all upcrossings are strict.) 

PROOF. This follows from the case u fixed, in the above lemma, together with 
(iii) of Lemma 7.2.2. 0 
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The above discussion has been in terms of upcrossings. Clearly, similar 
results hold for downcrossings. In particular, the mean number of down­
crossings is also given by (7.3.4). 

7.4. Maxima of Normal Processes 

In discussing the maximum of a stationary normal process e(t) we shall 
find it useful to compare it with a very simple normal process e*(t) whose 
maximum is easily calculated using properties of upcrossings. Specifically 
let '1, , be independent standard normal r.v.'s and define 

e*(t) = '1 cos rot + 'sin rot, (7.4.1) 

where ro is a fixed positive constant. 
It is clear that e*(t) is normal and that e*(t 1), ... , e*(tn) are jointly normal 

for any choice of t j • (This follows most simply from the observation that 
L~ Cje*(t,) is normal for any choice of tj and Cj.) Thus e*(t) is a normal 
process and E(e*(t» = O.lts covariance function is calculated at once to be 

r(t) = E{('1 cos rot + , sin rot)('1 cos ro(t + t) + , sin ro(t + t»} 

= cos rot cos w(t + t) + sin rot sin ro(t + t) 
= cos rot. 

Thus e*(t) is strictly stationaq', being normal. 

(7.4.2) 

Write now '1 = A cos <p and ~ = A sin <p, with 0 ;S; <p < 2n. Then e*(t) 
may be written in its standard cosine form, 

e*(t) = A cos(rot - 4J). (7.4.3) 

The Jacobian 0('1, Ojo(A, 4J) = A, and it follows simply that A, 4J have joint 
density 

1 (X2) fA.~(x, y) = 2n x exp - 2 ' x ~ 0, 0 :::;; y < 2n, 

showing that A, 4J are independent, A having the Rayleigh distribution 
x exp( -x2j2) (x ~ 0) and 4J being uniform over [0, 2n). The sample paths of 
e* are thus cosine functions with angular frequency ro, and having indepen­
dent random amplitude A and phase 4J. 

The distribution of the maximum M*(T) for this process can be obtained 
geometrically. However, it is more instructive (and simpler) to use properties 
of upcrossings. 

Lemma 7.4.1. For the cosine process e*(t) given by (7.4.3) 

P{M*(T) :::;; u} = ~u) _ ~~ exp ( _ ~2) (7.4.4) 

for 0 < T < njro and u > O. 
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PROOF. Clearly A,2 = w2 for the process ~*(t) and, writing N = N:(T) for the 
number of upcrossings of u in (0, T), we have 

E(N) =-exp --wT ( u2
) 

2n 2 
(7.4.5) 

and 

P{M*(T) > u} = P{~*(O) > u} + P{~*(O) ~ u, N ~ 1}. 

Now take wT < n. Then if ~*(O) > u > 0, the first upcrossing of u occurs 
after t = n/w (see Figure 7.4.1), and hence {N ~ 1, ~*(O) > u} is empty, so 
that 

P{~*(O) ~ u, N ~ 1} = P{N ~ 1}. 

Thus, since N = ° or 1, 

P{M*(T) > u} = 1 - <D(u) + P{N ~ 1} = 1 - <I>(u) + E(N) 

= 1 - <D(u) + ~~ exp( - ~), 
which is equivalent to (7.4.4). 

A cos(wt - </» 

~ 

n!w 

Figure 7.4.1. Upcrossings for the cosine process ¢*(t) = A cos(wt - </». 

(7.4.6) 

o 

As a matter of interest and for later use, it follows for the cosine process 
~*(t) that for fixed h, 0 < wh < n, 

P{M*(h) > u} (A,2)1 /2 
h</J(u) -.. 2n as u -.. 00 (7.4.7) 

(since 1 - <I>(u) '" </J(u)/u and A,2 = w2 ). This limit in fact holds under much 
more general conditions, as we shall see. 

As noted above we will want to compare in the next chapter a general 
stationary normal process with this special process. This comparison will 
be made by an application of the following easy consequence of the Normal 
Comparison Lemma (cf. Slepian (1962». 
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Theorem 7.4.2 ("Slepian's Lemma"). Let {~l(t)} and {~it)} be normal 
processes (possessing continuous sample functions but not necessarily being 
stationary). Suppose that these are standardized so that E(~l(t» = E(~2(t» = 0, 
E(~i(t» = E(~~(t» = 1, and write PI(t, s) and P2(t, s) for their covariance 
functions. Suppose that for some b > 0 we have PI(t, s) ~ P2(t, s) when 
o ::; t, s ::; b. Then the respective maxi,na M let) and M 2(t) satisfy 

P{MI(T)::; u} ~ P{M2CT)::; u} 

when 0 ::; T::; b. 

PROOF. Define M~l) and M~2) relative to ~ICt), ~2Ct) as in Lemma 7.1.1 where 
qn = 2- n. Then, with probability one M~l) i MI(T), so that {M~l) ::; u} t 
{M leT) ::; u} and hence P{M~I) ::; u} -+ P{M leT) ::; u} as n -+ 00. Similarly 
p{M~2) ::; u} -+ P{MzCT) ::; u}. But it is clear from Corollary 4.2.3 that 
p{M~2) ::; u} ::; p{M~l) ::; u} so that the desired result follows. 0 

7.5. Marked Crossings 

The material in the remainder of this chapter will not be used until Chapter 9 
and subsequent chapters. The reader may wish to proceed directly to 
Chapter 8, and return to this section when needed. 

We shall consider situations where we not only register the occurence 
of an upcrossing, but also the value of some other random variable connected 
with the upcrossing. We may, for example, be interested in the derivative 
~'(ti) at upcrossing points ti of u by ~(.) or the value ~(Si) at downcrossing 
points Si of zero by ~'O, i.e. at points where ~(t) has a local maximum. We 
shall refer to these as marked crossings and, for example, regard ~'(ti) and 
~(Si) as marks attached to the crossings at ti and Si' We shall here develop 
methods for dealing with such marks, along similar lines to those leading to 
Rice's formula (although with some increase in complexity). 

We shall let {W); t ~ O} and {,,(t); t ~ O} be jointly stationary processes 
with continuous sample paths and consider level crossings in (t) marked 
by ,,(t). In the examples above (t) would be ~(t) and - ~'(t), respectively, and 
,,(t) would be ~'(t) and ~Ct). Denote by {tJ the upcrossings of the level u by 
(Ct), and let, for any interval A, N uCf; A) be the number of t;'s in f such that 
"Cti)EA, and write NuCT; A) = NuCCO, TJ; A). The notation Nu(l), NuCT) 
will have the same meaning as before, e.g. N uCf) = N uCf; C - 00, 00». 

Further define 

1 
Jiu; A) = - P{(O) < u < (Cq), ,,(0) E A}. 

q 

Lemma 7.5.1. Let f be a bounded interval, qn -+ 0 as n -+ 00, and let N nCA) 
be the number of points jqn E f (with (j - l)qn E f) such that 

(C(j - l)qn) < u < (jqn) and "C(j - l)qn) E A. 
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Then 

(i) if A is an open interval, 

lim inf Nn(A) ~ Nil; A), a.s. 
n-+ 00 

(ii) if,for every v, 

P{ (t) = U, 1](t) = v for some tEl} = ° 
then,for any interval A, 

Nil; A) = lim N n(A), a.s., 
n-+ 00 

(iii) if A is an open interval, 

E(N u(l; A)) ~ lim inf E(N n(A)) 
n-+ 00 

and, if (7.5.1) holds, and E(Nu(l)) < 00, 

E(Nn(A)) -? E(Nu(l; A)) 

and,for I = (0, 1], 

E(Nil; A)) = lim Jq(u; A). 
q~O 

157 

(7.5.1) 

PROOF. (i) Suppose that N u(l; A) ~ m and that (t) has upcrossings of u at 
t 1, ... , tm in the interior of I, with 1](t;) E A, i = 1, ... , m. (By the continuity 
of the distribution of (t) no upcrossings occur at the endpoints of I.) Since 
1](t) is continuous and A is open, we can surround the t;'s by disjoint sub­
intervals (t i - S, ti + s) of I in which l1(t) E A. It then follows as in the proof 
of Lemma 7.2.2(ii) that lim infn-+oo Nn(A) ~ m. 

(ii) First assume Nil; A) = m < 00, and let t 1, ... ,tm be as in (i). If 
(a, b) is the interior of A, (7.5.1) precludes 1](ti) = a or b, so that 1](ti) E (a, b), 
and we may therefore take disjoint intervals (t i - S, ti + s) in which 
1](t) E (a, b). Write I n for the set ofj's such that (j - l)qn andjqn both belong 
to (t i - S, ti + s) for some i, and J: for the set of j's such that (j - l)qn and 
jqn belong to I but j ¢ I n• Clearly ti is the only upcrossing of u by (t) for 
t E (t i - t:, ti + t:), and therefore by Lemma 7.2.1(i), 

where 

lim sup L Xi ~ m, 
n-+C() jeJn 

Xi = {01" if ((j - l)qn) < u < ((jqn) and 1]«(j - l)qn) E A, 
otherwise. 

Furthermore, if 

lim sup L Xi > 0, 
n-+ co jEJ~ 

(7.5.2) 
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then for n arbitrarily large there arejn E J: with Xin = 1 and hence a sequence 
of integers Vi} such that jiiqii -+ 't', with 't'li (t j - e, tj + e), i = 1, ... , m, and 
Xi;; = 1. From the continuity of ,,(t) it follows that ,,('t') E [a, b], and hence, by 
(7.5.1), ,,('t') E (a, b). Thus ,,(t) E (a, b) c A for t E ('t' - e', 't' + e') for some 
e' > 0, which can be taken small enough to make tj II ('t' - e', 't' + e'), 
i = 1, ... , m. Further, for ii large enough, both Uii - l)qii andjijqii belong to 
('t' - e', 't' + e') and thus, by Lemma 7.2.1(i), W) has a u-upcrossing in 
('t' - e', 't' + e') which contradicts Ny(I; A) = m. This shows that 

lim sup L Xi = 0, 
n-+oo jeJ~ 

which together with (7.5.2) proves that lim supn .... oo Nn(A) ::; Ny(I; A), a.s. 
Since furthermore, (7.5.1) implies that Ny(I; A) = Nil; (a, b», part (i) gives 

lim inf Nn(A) ~ lim inf Ni(a, b» ~ Ny(I; (a, b» = Ny(I; A). 
n .... oo n .... oo 

Hence NiA) -+ Ny(I; A) = m < 00 a.s. as asserted. If Ny(I; A) = 00, the 
conclusion follows from part (i) with (a, b) replacing A, since Nil; A) = 

Ny(I, (a, b» by (7.5.1). 
(iii) The first conclusion follows at once from Fatou's lemma and part 

(i), while it follows from part (ii) that E(Nil; A» = limn .... oo E(Nn(A», 
since Nn(A) ::; Ny(I) and E(Ny(I» < 00 by assumption. Further, if 1= (0, 1), 
there are approximately q;; 1 points jqn E I, so that 

E(Nn(A» '" q;;lE(Xl) = Jqn(u; A). 

The last assertion of (iii) follows, since the sequence {qn} is arbitrary. 0 

We shall now evaluate the limit of Jq(u; A) for the case when '(t) and ,,(t) 
are jointly normal processes with zero means. Let r(t) denote the covariance 
function of W), and write A.o = r(O) = Var(C(t». As was noted earlier, if W) 
is quadratic mean differentiable then A.2 = -r"(O) = Var("(t» < 00 and 
W) and nt) are independent for each t anq normal with joint density 

p(u, z) = A.o 1/2cfJ(UA.O 1/2)A.2'1/2cfJ(ZA.2' 1/2). (7.5.3) 

Further it can be shown that the three processes {'(t)} , {nt)}, and {,,(t)} 
are jointly normal, and that the crosscovariances and covariances can be 
obtained as limits, e.g. 

Cov("(t), ,,(t + 't'» = lim E(h -l(W + h) - W»,,(t + 't'». 
h .... O 

Conditional distributions can also be defined, using ratios of density functions 
when they exist, e.g. for a measurable set A, we define 

P{ ,,(0) E A I '(0) = u, "(0) = z} 

= f p{(O), {'(O), ,!(O)(u, z, y) dy, 
yeA p(U, Z) 
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where p,(O).,'(O).,,(O) is the density function of (0), ('(0), '1(0). In the sequel, 
conditional probabilities will always be understood as defined in this way. 

Lemma 7.5.2. Let {W)} and {'1(t)} be jointly normal zero mean processes such 
that (0), nO), '1(0) have a nonsingular distribution. Assumefurther that {'1(t)} 
has continuous sample paths and that W) is differentiable in quadratic mean. 
Then,for any measurable set A and any u, 

lim Jq(u; A) = f.ex> zp(u, z)P{'1(O)EA,,(O) = u, nO) = z} dz. 
dO %=0 

PROOF. Write '1 = '1(0), and as in the proof of Lemma 7.3.1 introduce the 
independent normal r.v.'s (1 = «((0) + (q»/2, (2 = «((q) - (O»/q with 
variances O"~ = (r(0) + r(q»/2, O"~ = 2(r(0) - r(q»/q2, and note that 

Jq(u;A) = q-lp{"l - ul < q~2''1EA} 

= (qO"l0"2)-1 l/J - l/J -f. ex> jU+QZ/2 (x) (z) 
%=0 x=u-Q%/2 0"1 0"2 

x P{'1 E A "1 = x, (2 = z} dx dz 

_ f.ex> Z l/J( z) Jl .1 (u + XqZ/2) 
- %=0 0"2 0"2 x=-l 20"1 l/J 0"1 

{ xqz} x p '1EA"l = U +2,'2 = z dxdz. (7.5.4) 

To obtain the limit of the conditional normal probability 

P{'1 EA "1 = v, (2 = z} 
as q -+ 0 (and v -+ u) we note that since {(t)} and {'1(t)} are jointly normal 
processes, the conditional distribution of'1 = '1(0) given (1 = «((0) + (q»/2 
= v, (2 = «((q) - (O»/q = z, is also normal with mean 

mq(v, z) = E('1) + vO"1 2 Cov('1, (1) + zO""2 2 Cov('1, (2) 

and variance 

Yq = Var('1) - 0"1 2 Cov2('1, (I) - 0""2 2 Cov2('1, (2), 

see e.g. Rao (1972) p. 522. 
Since (I -+ (0), (2 -+ nO) in quadratic mean as q -+ 0 it follows that 

Cov('1, (I) -+ Cov('1(O), (0», COV('1,(2) -+ Cov('1(O), ('(0» as q -+ O. Since 
furthermore, O"~ -+ AO = r(O) = Var«((O», O"~ -+ A2 = -r"(O) = Var(nO», 
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and (0), (' (0), ,,(0) are nonsingular by assumption we have Var(" I (0), nO» = 

Vo = limq .... o Yq > O. With mq = miu + kqz/2, z), E(" 1(0) = u, ('(0) = z) = 
mo = limq .... o mq , and thus dominated convergence gives that for all x and z, 

P{"EAI(l = U + X~Z'(2 = z} = Lft.<p(Y ft.q)dY 

f 1 <p (Y - mo) d 
- AvVo Fa Y 

= P{,,(O)EAI(O) = u, ('(0) = z} 

as q - O. Again by dominated convergence it follows that 

J (u- A) _ foo _z <p(_z ) _1 <p(~) 
q' z=oA A Fo Fo 

x P{,,(O) E A 1(0) = u, nO) = z} dz 

which by (7.5.3) is the conclusion of the lemma. o 

7.6. Local Maxima 

As an application of the marked crossings theory we end this chapter with 
some comments concerning local maxima. To avoid technicalities we assume 
that {~(t)} is stationary normal and, in addition, has sample functions which 
are, with probability one, everywhere continuously differentiable. Sufficient 
conditions for differentiability can be found in Cramer and Leadbetter (1967, 
Chap. 9), and they require slightly more than finiteness of the second spectral 
moment ,12 ; cf. the condition (7.3.2) for sample function continuity. 

Clearly then ~(t) has a local maximum at to if and only if nt) has a down­
crossing of zero at to, and a number of results for local maxima can therefore 
trivially be obtained from corresponding results for downcrossings. 

In particular, to ensure that ~(t) has only finitely many local maxima in a 
finite time, it suffices that ,14 = ,(4)(0) < 00, where ,14 is the fourth spectral 
moment f~oo ,14 dF(.1). 

If ,14 < 00, then ~(t) has also a second derivative ~"(t), defined in quadratic 
mean, and W), ~'(t), ~"(t) are jointly normal with mean zero and the co­
variance matrix 



7.6. Local Maxima 161 

where we assume Ao = 1. Further ~(t), nt), f'(t) have a nonsingular distri­
bution provided ~(t) is not of the form ~(t) = A cos(wt - ljJ). (In fact, the 
determinant of the covariance matrix is 

Az(AO A4 - A~) = A2{ f dF(A) f A4 dF(A) - (f A 2 dF(A) ) 2}. 

which is zero only if F is concentrated at two symmetric points.) If A4 < 00 
we also have the analogue of (7.3.1), 

Cov(~'(t), ~'(t + 't» = -r"('t) = A2 - tA4 't2 + 0('t2) as 't -+ 0, 

and, normalizing to variance one, we obtain 

lA 
Cov(A2"1/2f(t), A2"1/2~'(t + 't» = 1 - "2 A: 't2 + 0('t2) as 'to -+ 0. (7.6.1) 

We will temporarily use the notation N'(T) for the number of local maxima 
of ~(t), ° < t ~ T. Since N'(T) is just the number of downcrossing zeros 
for ~'(t), we obtain from (7.6.1) and Rice's formula (7.3.4) that the expected 
number of local maxima in (0, T] is 

E(N'(T» = !.- (A4)1/2. 
2n A2 

In Chapter 9 we shall study heights and locations of high local maxima. 
Write N~(T) for the number of local maxima of ~(t), 0< t < T, whose 
height exceeds u, i.e. with the previous notation, if ~(t) has local maxima 
at the time points {sJ, then N~(T) is the number of Sj E (0, T) such that 
~(Sj) > u. 

Lemma 7.6.1. If {~(t)} is stationary normal, with continuously differentiable 
sample paths, and with a quadratic mean second derivative ~"(t) with 
Var(~"(t» = A4 < 00 such that ~(t), ~'(t), ~"(t) have a nonsingular distribution, 
then 

(i) E(N~(T» = T L:ui:_oo/Z/P(X,O,Z)dZdX, 

where p(x, y, z) is the joint density of ~(t), ~'(t), ~"(t), and 
(ii) assuming ~(t) to be standardized with mean zero and unit variance 

(7.6.2) 

E(N~(T» = ~ {G:r
/2 (1 - w( u(~ r/2)) + (2nA2)1/2ljJ(U)$(~~/2)}' 

(7.6.3) 

where D = A4 - A~. 
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PROOF. We shall use Lemmas 7.5.1 and 7.5.2, identifying W) = -nt) and 
,,(t) = ~(t). By assumption, {(t)} and {,,(t)} satisfy the hypotheses of Lemma 
7.5.2, with Var«('(t» = A.4, so that for any open interval A, 

limJq(O; A) = foo zh(o),no)(O, z)p{,,(O) EAIC(O) = 0, ('(0) = z} dz 
q!O %=0 

= iO=_oo'Z'P(O, z)P{~(O)EAlf(O) = 0, ~"(O) = z} dz, (7.6.4) 

where h(o), "(O)(x, z) = p( -x, -z) is the density of «0), nO) (= - ~'(O), 
-~"(O». By Theorems 7.2.5 and 7.3.2, all t such that (t) = nt) = 0 are 
either (strict) upcrossing or downcrossing points. Lemma 7.5.1(iii) implies 
that, writing N o(T; VJ for the number of maxima in (0, T] with height in 
Y. = (I) - e, v + t), 

p{nt) = 0, ~(t) = v for some t E (0, T]} ~ 2E(No(T; Y.» 
~ 2T lim inf Jq(O; Y.), 

q!O 

since E(Nn(y'» - Jqn(O; Y.). By (7.6.4) the right-hand side can be made 
arbitrarily small by choosing e small. Thus (t), ,,(t) satisfy condition (7.5.1) 
and by Lemma 7.5.1(iii) and stationarity 

E(No(T; (u, 00») = TE(No(1; (u, 00))) = Tlim Jq(O; (u, 00». 
q-+O 

Inserting 

P{~(O)E(U, 00)1~'(0) = 0, ~"(O) = z} = 100 ~~,;)Z) dx 

into (7.6.4), part (i) follows. 
Part (ii) follows after some calculation by inserting the normal density 

p( 0 ) -(2 )-3/2(1 D)-l/2 {_ (A'4 X2 + 21l2xz + Z2)} x, ,z - 1t A2 exp 2D ' 

into (7.6.2). 0 



CHAPTER 8 

Maxima of Mean Square Differentiable 
Normal Processes 

In this chapter the theory of maxima of mean square differentiable stationary 
normal processes will be developed under simple conditions-giving anal­
ogous results to those of Chapter 4. This will be approached using the proper­
ties of upcrossings developed in the previous chapter and will result in the 
limiting double exponential distribution for the maximum, with the appro­
priate scale and location normalization similar to that in Chapter 4. 

There are many important normal processes which are not differentiable 
(such as the Omstein-Uhlenbeck process) and in Chapter 12 we shall develop 
a general theory for extremes of normal processes, including differentiable 
and many nondifferentiable processes as special cases. 

However, we think it is illuminating to treat the regular case separately, 
since it allows for much simpler proofs, due to the possibility of a comparison, 
via Slepian's Lemma, with the cosine process of Section 7.4. 

8.1. Conditions 

We shall assume throughout the chapter that {e(t); t ~ O} is a stationary, 
normal process with E(e(t» = 0, E(e 2(t» = 1, E(e(t)e(t + -r» = r(t) where 
the spectral moment A,2 = - r"(O) exists, finite. Equivalently, this requires that 
the mean number of upcrossings of any level per time unit is finite (Theorem 
7.3.2), and also equivalently that the covariance function has the following 
representation, 

(8.1.1) 
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A more general class of processes with covariance function of the type 

r(r) = 1 - CI-r11Z + o(I-rIIZ) as-r -+ 0, 

where 0 < ex ::; 2 is considered in Chapter 12. This includes the regular pro­
cesses as the special case ex = 2, while ex < 2 implies .12 = 00 and thus that 
the process is nondifferentiable and has an infinite mean number of up­
crossings. 

As for normal sequences, the double exponential limit 

P{aT(M(T) - bT ) ::; x} -+ exp( - e- X ) as T-+ 00 

(for M(T) = sup{ e(t); 0 ::; t ::; T} as in Chapter 7) will be derived under 
the weak condition 

ret) log t -+ 0 as t -+ 00. (8.1.2) 

This is the continuous time analogue of (4.1.1), and it will be used to derive 
a version of Lemma 4.3.2 before starting the main development. Still weaker 
conditions corresponding to (4.5.4) will be studied in Chapter 12. In particu­
lar, these conditions will include the case SO' r2(t) dt < 00, sometimes used 
in the literature. 

In the following lemma we shall consider a level u which increases with 
the time period T in such way that E(N u(T» remains constant, i.e. TJl remains 
constant where JI. = E(Ny(l» = (1/2n) .1Y2 exp( -u2/2). 

To obtain the asymptotic distribution of M(T), the maximum of the 
continuous process, it will again be convenient to approximate by the 
sequence {e(kq); k = 1,2, ... } obtained by sampling the process at the points 
{kq; k = 1,2, ... }, where we shall let q -+ 0 as u -+ 00 (or equivalently 
T -+ 00). The rate of decrease of q (as specified below in Lemma 8.1.1) will 
be a compromise between two requirements. On the one hand, the sampled 
process shall approximate the continuous process sufficiently well, and on 
the other hand, the sampling points should be sufficiently far apart to avoid 
too high a dependence between consecutive values e(kq), e«k + 1)q). 

The statement that "a property holds provided t/I = t/I(u) ! 0 sufficiently 
slowly" is to be taken to have the meaning that there exists some t/lo(u) ! 0 
for which the property holds, and it holds for any t/I(u) such that t/I(u) -+ 0 
but t/lo(u) ::; t/I(u) as u -+ 00. The following is the promised continuous ana­
logue of Lemma 4.3.2. 

Lemma 8.1.1. Let e > 0 be given. 

(i) If r(t) -+ 0 as t -+ 00, then sup{ 1 r(t) 1 ; 1 tl ~ e} = ~ < 1. 
(ii) Suppose that (8.1.1) and (8.1.2) both hold. Let T '" -r/JI., where -r is fixed and 

u = E(1Vu~l)) = (1/2n) .1y2 exp( -u2/2),sothatu '" (2 log T)1/2as T-+ 00 

(as is easily checked). If qu = q(u)u ! 0 sufficiently slowly as u -+ 00 then 

T {u2 
} - L 1 r(kq) 1 exp - 1 1 (k ) 1 -+ 0 as T -+ 00. 

q BSkqsT + r q 
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PROOF. (i) As in the discrete case (cf. remarks preceding Lemma 4.3.2) if 
r(t) = 1 for any t > 0, then r(t) = 1 for arbitrarily large values of t which 
contradicts r(t) --+ O. Hence lr(t)1 < 1 for It I ~ e, and since r(t) is continuous 
and tends to zero as t --+ 00, we must have lr(t)1 bounded away from 1 in 
I t I ~ e, and (i) follows. 

(ii) As in the discrete case, choose a constant P such that 0 < P < 
(l - 15)/(1 + b). Letting K be a generic constant, 

~ tSk~TP lr(kq)1 exp { - 1 + ~~kq)l} ~ T;2+ ~xp {- 1 : ~} 
TfJ+ 1 

= K -2- 1l2/(l H) 
q 

< K TfJ+ 1 - 2/(lH) 
- q2 

~ ~(log T)TfJ+ l - 2/(lH) 
q2u2 

since u2 '" 2 log T, as noted. If y is chosen so that 0 < y < (1 - 15)/(1 + b) - p, 
the last expression is dominated by K( qu) - 2T - Y which tends to zero provided 
uq --+ 0 more slowly than T-y/2 (~ K exp( -yu2/4». Hence this sum tends 
to zero. 

By writing 

exp { - 1 + ~:(kq)l} = exp( _u2
) exp {I u~ ~~:~)I} 

we see that the remaining sum does not exceed 

T 
- exp( _u2 ) L Ir(kq)1 exp{u2 Ir(kq)I}. 
q TP<kq:S,T 

Again as in the discrete case, if b(t) = sups~t I r(s) log sl then b(t) --+ 0 as 
t --+ 00 and for s ~ t > 1 we have I r(s) I ~ b(t)jlog s ~ b(t)jlog t. Thus for 
kq ~ TfJ, u21r(kq)1 ~ K log Tb(TIl)jlog Til = (KIP) b(TIl) which tends to 
zero, uniformly in k. Hence the exponential term exp{u21r(kq)l} is certainly 
bounded in (k, u).1t is thus sufficient to show that 

T exp( _u2) L lr(kq)I--+ 0 as T--+ 00. 
q TP<kqST 

But this does not exceed 

K T T- 2 T b(TIl) < K b(TIl) 
q q log Til - q2u2 

which again tends to zero provided qu --+ 0 sufficiently slowly (Le. slower 
than b(TIl)l/2). 0 
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8.2. Double Exponential Distribution of the 
Maximum 

Having proved the technical Lemma 8.1.1, we now proceed to the main 
derivation of the extremal results under the assumption that r"(O) exists 
(Le. A.2 < (0) and that (8.1.2) holds. The condition A.2 < 00 guarantees that 
the point process of upcrossings of a level u will have a finite intensity. The 
case A.2 = 00 is also of interest, and, as noted, will be treated in Chapter 12, 
but requires the use of more complex methods. 

Our basic technique here is to divide the interval (0, T) (where T becomes 
large) into n pieces of fixed length h (n = [T/h]). Then M(T) will clearly be 
close to M(nh) which is the maximum of n r.v.'s (i = M«j - l)h,jh), j = 1, 
2, ... , n, (the {(i} forming a stationary sequence). Thus we might expect that 
the methods used for sequences would apply here and this is the case (al­
though we shall organize our arguments slightly differently to better suit 
the present purposes). 

It is therefore not surprising that the tail of the distribution of the (i' i.e. 
P{M(h) > u} (for fixed hJ plays a central role. In fact the same asymptotic 
form (7.4.7) holds for this tail probability here, as did for the special process 
~*(t) = '1 cos rot + ~ sin rot. In this present chapter it will be sufficient to 
obtain the following somewhat weaker result. In this we shall use Slepian's 
Lemma (Theorem 7.4.2) to compare maxima of ~(t) and ~*(t) along the lines 
of a procedure originally used by S. M. Berman (1971a). 

Lemma 8.2.1. Suppose that the (standardized) stationary normal process{~(t)} 
satisfies (8.1.1). Then, with the above notation, 

(i) for all h > 0, P{M(h) > u} ~ 1 - <I>(u) + J1.h so that 

lim supP{M(h) > u}/(J1.h) ~ 1, 
u .... oo 

(ii) given 0 < 1 there exists ho = ho(O) such that for 0 ~ h ~ ho 

P{M(h) > u} ~ 1 - <I>(u) + OJ1.h 

so that lim infu .... oo P{M(h) > u}/(J1.h) ~ 0 for 0 ~ h ~ ho = ho(O). 

PROOF. (i) follows since 

P{M(h) > u} ~ P{~(O) > u} + P{Nu(h) ~ I} 

~ 1 - <I>(u) + E(Nih». 

(8.2.1) 

The second result (ii) follows simply from Slepian's Lemma (Theorem 
7.4.2) by comparison with the simple process ~*(t) given by (7.4.l). For if 
ro = OA.~/2 we have, by (8.1.1), r(t) ~ cos rot for 0 ~ t ~ ho < n/ro, (ho = 
ho(O) > 0). But this shows that the covariance function of ~(t) is dominated 
by that of ~*(t) in [0, ho] and hence P{M(h) > u} ~ P{M*(h) > u} for 
h ~ ho, (with M* as in (7.4.4», which then gives (ii). 0 



8.2. Double Exponential Distribution of the Maximum 167 

Our remaining task is to approximate the maximum M(T) (for increasing 
T) by the maxima over suitable, separated, fixed length subintervals, and 
show asymptotic independence of the maxima over these intervals. First we 
give a simple but useful lemma. In this, for q > 0, N u and N~q) will denote the 
number of upcrossings of u in a fixed interval I of length h, by the process 
{~(t)}, and the sequence {~(kq)}, respectively. More precisely, N~q) is the 
number of kq E I such that (k - l)q E I and ~«k - l)q) < u < ~(kq) (cf. 
Lemma 7.2.2 with q for q" and N" = N~q"». 

Lemma 8.2.2. If (8.1.1) holds, with the above notation and qu -+ 0 as u -+ 00 

then, as u -+ 00 

(i) E(N~q» = h/l + oC!l), 

(ii) P{M(I):::;; u} = P{~(kq):::;; u, kqEI} + oC!l), 

where each o(/l)-term is uniform in all such intervals I of length h :::;; hofor any 
fixed ho > O. 

PROOF. The number of points kq E I with (k - l)q E I is clearly (h/q) - P 
where 0:::;; p :::;; 2. Hence with Jiu) defined by (7.2.1), Lemma 7.3.1 implies 
that 

E(N~q» = (~ + p) P{~(O) < u < ~(q)} 
= (h + pq)Jq(u) 

= /lh(1 + 0(1» + O(/lq), 

where the 0- and O-terms are uniform in h so that (i) clearly holds with oC!l) 
uniform in 0 < h :::;; ho. 

To prove (ii), note that if a is the left-hand endpoint of I, 

0:::;; P{~(kq):::;; u, kqEI} - P{M(h):::;; u} 

:::;; pg(a) > u} + P{~(a) < u, Nu ~ 1, N~q) = O} 

:::;; 1 - <I>(u) + P{Nu - N~q) ~ I}. 

The first term is o(q,(u» = o(/l), independent of h. Since Nu - N~q) is a non­
negative integer-valued random variable (cf. Lemma 7.2.2(i», the second term 
does not exceed E(N u - N~q» which by (i) is oC!l), uniformly in (0, hoJ. Hence 
(ii) follows. 0 

Now let u, T -+ 00 in such a way that T/l -+ 1" > O. Fix h > 0 and write 
n = [17h]. Divide the interval [0, nhJ into n pieces each oflength h. Fix 
e, 0 < e < h and divide each piece into two-of length h - e and e, respec­
tively. By doing so we obtain n pairs of intervals 11 , It, ... , I", I:, alternately 
of length h - e and e, making up the whole interval [0, TJ apart from one 
further piece which is contained in the next pair, I" + 1 , 1:+ 1 . 
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Lemma 8.2.3. As T --+ 00 let q --+ 0, U --+ 00 in such a way that qu --+ 0 and 
TJl --+ 'L > O. Then 

(i) lin;~~plp{M ( 0 Ij ) ~ u} - P{M(nh) ~ U}I ~ *G, 

(ii) p{ ~(kq) ~ u, kq E Y I j } - P {M (Y I j ) ~ u} --+ O. 

PROOF. For (i) note that 

o ~ P{M (YIj ) ~ u} - P{M(nh) ~ u} 

~ nP{M(lV > u} 

'LG P{M(lV > u} 
'" h JlG 

since n = [17h] '" 'L/(Jlh). Since IT has length G, (i) follows from Lemma 
8.2.1(i). 

To prove (ii) we note that the expression on the left is non-negative and 
dominated by 

jt (P{~(kq) ~ u, kq E I j } - P{M(l) ~ U}) 

which by Lemma 8.2.2(ii) does not exceed nO(Jl) = [17h]o(,u) = 0(1), (the 
o(Jl)-term being uniform in the I/s), as required. D 

The next lemma, implying the asymptotic independence of maxima, is 
formulated in terms of the condition (8.2.2), also appearing in Lemma 8.1.1. 

Lemma 8.2.4. Suppose ret) --+ 0 as t --+ 00 and that, as T --+ 00, and u --+ 00, 

T L I r(kq) lexp {- 1 ~2(k )I} --+ 0 
q e",kq",T + r q 

(8.2.2) 

for each G > 0 and some q such that qu --+ O. Then if TJl --+ 'L, 

(i) P {~(kq) ~ u, kq E Y I j } - )] P{~(kq) ~ u, kq E I j } --+ 0, 

(ii) li~_s~p It1 P{~(kq) ~ u, kq E I j } - pn{M(h) ~ u} I ~ 2h'L G 

for each G, 0 < G < h. 

PROOF. To show (i) we use Corollary 4.2.2 and compare the maximum of 
~(kq), kq E U~ I j under the full covariance structure, with the maximum of 
~(kq), assuming variables arising from different Ij-intervals are independent. 
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To formalize this, let A 1 = OJ) be the covariance matrix of ~(kq), kq E U I j 
and let A 0 = (A~) be the modification obtained by writing zeros in the off­
diagonal blocks (which would occur if the groups were independent of each 
other); e.g. with n = 3, 

From (4.2.3) we obtain 

Ip{~(kq) ~ u,kqEYIj } - i\ Pg(kq) ~ U,kqEIj}1 

~~ I IAfj-A~I(1-p5)-lJ2exp(-~), (8.2.3) 
2n l:Si<j:sL 1 + Pij 

where Lis the total number of kq-points in Ui I j , and Pij = lAM Since all 
terms with i, j in the same diagonal block vanish, while otherwise sup Pij = 
1J < 1 by Lemma 8.1.1(i), we see that the double sum does not exceed 

K ,,* P" exp (-~) L. I) 1 + Pij , 

where I* indicates that the summation is carried out over i < j with (i,j) in 
the off-diagonal blocks only. But Pij is of the form I r(kq) I where there are not 
more than T/q terms with the same k-value. Thus, since the minimum value 
of kq is at least 8, we obtain the bound 

T {u2 
} ~ K - I 1 r(kq) 1 exp - 1 1 (k )1 

q t:Skq:sT + r q 

which tends to zero by assumption (8.2.2) so that (i) follows. 
To prove (ii), note that by Lemma 8.2.2(ii), 

o ~ P{~(kq) ~ u, kq E I j } - P{M(I) ~ u} = 0(/-1) 

(uniformly in j) and 

o ~ P{M(I) :::;; u} - P{M(h) ~ u} ~ P{M(Ij) > u} 

so that by Lemma 8.2.1(i), for sufficiently large n (uniformly inj) 

o ~ Pj - P ~ 2/-18, 
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where Pi = P{~(kq) :::; u, kq E I j }, P = P{M(h) :::; u}. Hence 

n 

0:::; n Pj - pn:::; (maxp)n - pn:::; 2n/l8 
j= 1 

(using the fact that yn - xn :::; n(y - x) for 0 < x < y < 1). Part (ii) now 
follows since nIl '" T/l/h ~ r/h. D 

The basic extremal theorem now follows readily. 

Theorem 8.2.5. Let u, T ~ 00 in such a way that T/l = (T /2n) A~/2 exp( - u2 /2)~ 
r ~ O. Suppose that ret) satisfies (8.1.1) and either (8.1.2) or the weaker con­
dition (8.2.2) for some q such that qu ~ 0 as T ~ 00 (cf. Lemma 8.1.1). Then 

P{M(T):::; u} ~ e- T as T~ 00. (8.2.4) 

PROOF. If T/l(u) ~ 0 then P{M(T) > u} :::; 1 - cI>(u) + T/l(u) ~ 0 and it only 
remains to prove the result for. > O. By Lemma 8.1.1 the assumption (8.2.2) 
of Lemma 8.2.4 holds. From Lemmas 8.2.3 and 8.2.4 we obtain 

lim sup IP{M(nh) :::; u} - pn{M(h) :::; u} I:::; 3hr 8 
T--> 00 

and since e > 0 is arbitrary it follows that 

P{M(nh) :::; u} - pn{M(h) :::; u} ~ O. 

Further, since nh :::; T < (n + l)h, it follows along now familiar lines that 

0:::; P{M(nh) :::; u} - P{M(T) :::; u} :::; P{Nih) ~ 1} :::; /lh 

which tends to zero, so that 

P{M(T) :::; u} = pn{M(h) :::; u} + 0(1). 

This holds for any fixed h > O. Suppose now that (J is fixed, 0 < () < 1, and 
h chosen with 0 < h < ho where ho = ho«() is as in Lemma 8.2.1(ii), from 
whence it follows that 

(). 
P{M(h) > u} ~ ()/lh(l + 0(1» = -(1 + 0(1» 

n 

and hence 

P{M(T) :::; u} = (1 - P{M(h) > u})n + 0(1) 

:::; (1 - ~r + 0 (~) r + 0(1) 

so that 

lim sup P{M(T) :::; u} :::; e- lJt• 

T-->oo 
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By letting (J i 1 we see that lim sup P{M(T) ::s; u} ::s; e- t • That the opposite 
inequality holds for the lim inf is seen in a similar way, but even more simply, 
from Lemma 8.2.1(i) (no (J being involved) so that the entire result follows. 

o 
Corollary 8.2.6. Suppose r(t) sati~fies (8.1.1) and (8.1.2), and let E = ET 
be any interval of length yT for a constant y > O. Then P{M(E) ::s; u} --+ e- Yf 

as T --+ 00. 

PROOF. By stationarity we may take E to be an interval with left endpoint 
at zero, so that P{M(E) ::s; u} = P{M(yT) ::s; u}.1t is simply checked that the 
process 11(t) = ,(yt) satisfies the conditions of the theorem, and has mean 
number of upcrossings per unit time given by f.l~ = Yf.l, so that f.l~T --+ yr. 
Writing M~ for the maximum of 11 the result follows at once since 
P{M(yT) ::s; u} = P{M~(T) ::s; u} --+ e- Yf• 0 

It is now a simple matter to obtain the double exponential limiting law 
for M(T) under a linear normalization. This is similar to the result of Theorem 
4.3.3 for normal sequences. 

Theorem 8.2.7. Suppose that the (standardized) stationary normal process 
{,(t)} satisfies (8.1.1) and (8.1.2) (or (8.2.2». Then 

where 

bT = (2 log T)1/2 + (lOg ~~2) /(2 log T)1/2. 

PROOF. Write T = e- X and define 

( ,P/2) 
u2 = 2 log T + x + log 22n 

so that 

A,1/2 (u2) 
Tf.l = T ;n exp - 2" = e- x = T. 

Hence (8.2.4) holds. But it follows from (8.2.7) that 

u = (2 log T)1/2 [1 + x + log (A,y2/2n) + 0 (_1_)] 
2 log T log T 

x 
= - + bT + o(aTi) 

aT 

(8.2.5) 

(8.2.6) 

(8.2.7) 

so that(8.2.4) gives P{ar<M(T) - bT) + 0(1) ::s; x} --+ e- f from which (8.2.5) 
follows at once. 0 
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It is of interest to note in passing that this calculation is somewhat simp­
ler-due to the absence of a log u-term in (8.2.7), than the corresponding 
calculation in the discrete case (cf. Theorem 1.5.3). 

In the discrete case we obtained Poisson limiting behaviour for the exceed­
ances of a high level. Corresponding results hold for the point processes of 
high-level upcrossings under the conditions ofthis chapter. These are readily 
obtained from the present extremal theory by means of our familiar point 
process convergence theorem, as in the discrete case, resulting in a number 
of interesting consequences concerning local maxima, height of excursions, 
etc. We will defer such a discussion to Chapters 9 and 10. However, it is worth 
noting here that historically the asymptotic Poisson distribution of the 
number of high-level upcrossings was proved first (under more restrictive 
conditions) by Volkonski and Rozanov (1961). Cramer (1965) noted the 
connection with the maximum given, e.g. by 

{Nu(T) = O} = {M(T) ~ u} u {NiT) = 0, ,(0) > u}, 

which led to the determination of the asymptotic distribution of M(T), and 
subsequent extremal development. 



CHAPTER 9 

Point Processes of Upcrossings and 
Local Maxima 

In the limit theory for the maximum of a stationary normal process ~(t), as 
developed in Chapter 8, substantial use was made of upcrossings, and of the 
obvious fact that the maximum exceeds u if there is at least one upcrossing 
of the level u. However, the upcrossings have an interest in their own right, 
and as we shall see here, they also contain considerable information about 
the local structure of the process. This chapter is devoted to the asymptotic 
Poisson character of the point process of upcrossings of increasingly high 
levels, and of the point process formed by the local maxima of the process. 

Indeed, only a little more effort is needed to prove Poisson convergence 
of the upcrossings, once the limiting theory for the maximum is available. 
The main step in the proofs is that maxima over disjoint intervals are asymp­
totically independent, from which convergence of the point processes of 
upcrossings of several levels follows by means of the basic point process 
convergence theorem. This then easily yields complete Poisson convergence 
of the point process formed by the local maxima, and as a consequence, the 
joint asymptotic dis!ribution of heights and locations of the highest local 
maxima. 

In our derivation of the results we shall make substantial use of the regul­
arity condition A,2 < 00, which ensures that the upcrossings do not appear 
in clusters, and remain separated as the level increases. Similar results will be 
established in Chapter 12 for the case A,2 = 00, with regular upcrossings 
replaced by so-called e-upcrossings. For the results about local maxima we 
shall require in addition that A,4 < 00, which in a similar way can be weak­
ened by replacing maxima by "e-maxima". 
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9.1. Poisson Convergence of U pcrossings 

Corresponding to each level u we have defined J.1. = J.1.(u) = (l/2n).W2 

exp( - u2/2) to be the mean number of u-upcrossings per time unit by the 
stationary normal process ~(t), and, as in Chapter 8, we consider T = T(u) 
such that TJ.1. ~ r as u ~ 00, where r > 0 is a fixed number. Let N~ be the 
time-normalized point process of u-upcrossings, defined by 

N}(B) = NiTB) = # {u-upcrossings by ~(t); tiT E B}, 

for any real Borel set B, i.e. N~ has a point at t if ~ has a u-upcrossing at tT. 
Note that we define N~ as a point process on the entire real line, and that the 
only significance of the time T is that of an appropriate scaling factor. This 
is a slight shift in emphasis from Chapter 8, where we considered UT = 
x/aT + bT as a height normalization for the maximum over the increasing 
time interval (0, T]. 

Let N be a Poisson process on the real line with intensity r. To prove 
point process convergence under suitable conditions, we need to prove 
different forms of asymptotic independence of maxima over disjoint intervals. 
For the one-level result, that N~ converges in distribution to N, we need only 
the following partial independence, (given in Qualls (1968». 

Lemma 9.1.1. Let 0 < c = Cl < d1 S; C2 < ... S; Cr < dr = d be fixed num­
bers E; = (Tc;, TdJ, and M(E;) = sup{~(t); Tc; < t S; TdJ. Then, if ret) 
satisfies (8.1.1) and (8.1.2), 

P(Ol {M(E;) S; U}) - tl P{M(E;) S; u} ~ 0 

as u ~ 00, TJ.1. ~ r ~ O. 

PROOF. The proof is similar to that of Lemmas 8.2.3 and 8.2.4. Recall the 
construction in Lemma 8.2.3, and divide the positive real line into intervals 11, 

Ii, 12 , ••. oflengths h - e and e, alternately. We can then approximate M(E;) 
by the maximum on the parts ofthe separated intervals I k which are contained 
in E;. Write n for the number of Irs which have nonempty intersection with 
Ui=l E;. We at once obtain 

S; nP{M(It) > u}, 

where (writing lEI for the length of an interval E), 
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Since Lemma 8.2.1(i) implies that 

limsupJ.t- 1p{M(I!) > u} =s; e, 
""'00 

we therefore have 

r:e(d - c) 
=s; h 
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(9.1.1) 

Now, let q .... 0 as u .... 00 so that qu .... O. The discrete approximation of 
maxima in terms of eUq), jq E Uk Ik n E; is then obtained as in Lemma 
8.2.3(ii). In fact, since there are n + J intervals Ik which intersect U E; (where 
I J I =s; r), we have 

o =s; P(Ol {eUq) =s; u,jq E Y Ik n E;}) - P(Ol {M( Y Ik n E;) =s; u}) 

=s; L L (p{eUq) =s; u,jq E Ik n E;} - P{M(Ik n E;) =s; u}) 
; k 

= (n + J)o(J.t) = 0(1) as u .... 00, 

by Lemma 8.2.2(ii). 
Furthermore, 

P (.0 {Wq) =s; u,jq E U Ik n E;}) - .n Y; .... 0, 
1-1 k 1=1 

(9.1.2) 

(9.1.3) 

where Yi = Ok P{l;Uq) =s; u, jq Elk n EJ, the proof this time being a re­
phrasing of the proof of Lemma 8.2.4(i), «8.1.2) implies (8.2.2) with Td 
replacing T). 

By combining (9.1.1), (9.1.2), and (9.1.3) we obtain 

I ( r ) r I r:e(d - c) 
li~ ... ~p P Dl {M(E;) =s; u} - I~ Y; =s; h 

and in particular, for i = 1, ... , r, 

. r:e(d - c) 
hm sup IP{M(E;) =s; u} - y;i =s; h . 

""'00 

Hence, writing X; = P{M(E;) =s; u}, we have 

li~ ... ~p Ip (01 {M(E;) =s; U}) - i\ P{M(E j ) =s; U}I 

r:e(d - c) I r r I =s; h + lim sup .n Yj - .n Xj • 
""'00 1=1 1=1 
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But, with z = max; Iy; - x;1 (so that lim sup z ~ u;(d - c)/h), 

r r r r n y; - n X; ~ n (x; + z) - n x; ~ 2r z, 
;=1 ;=1 ;=1 ;=1 

with a similar relation holding with y; and x; interchanged, and hence 

. I r r I 2rrs(d - c) 
hm sup n y; - n x; ~ h . 

u-+oo [=1 1=1 

Since s is arbitrary, this proves the lemma. o 

Theorem 9.1.2. Let u -+ 00 and T '" r/ /1, where /1 = (1/2n) A~/2 exp( - u2/2), 
and suppose the stationary normal process ~(t) satisfies (8.1.1) and (8.1.2). 
Then the time-normalized point process N~ of u-upcrossings converges in 
distribution to a Poisson process with intensity r on the positive real line. 

PROOF. By the basic convergence theorem for simple point processes, Theo­
rem A.l, it is sufficient to show that, as u -+ 00, 

(a) E(N~«c, d])) -+ E(N«c, d])) = r(d - c) for all 0 < c < d, and 
(b) P{NHB) = O} -+ P{N(B) = O} = exp{ - r LI=l (d; - c;)} for all sets B 

of the form U~= 1 (C;, d;], 0 < c1 < d1 < '" < Cr < dr· 

Here, part (a) is trivially satisfied, since 

E(N~«c, d])) = E(Nu«Tc, Td])) = T/1 (d - c) -+ r(d - c). 

For part (b), we have for the u-upcrossings, 

P{N~(B) = O} = P (Q {NH(c;, d;]) = O}) = P (01 {NiE;) = O}), 

where E; = (Tc;, Td;]. Now it is easy to see that we can work with maxima 
instead of crossings, since 

O~ P (01 {NiE;) = O}) - P (01 {M(E;) ~ U}) 

= P (01 {NiE;) = O} n ;01 {M(E;) > U}) 
r 

~ L P{~(Tc;) > u} -+ 0 as u -+ 00, 
;= 1 

and since furthermore Lemma 9.1.1 and Corollary 8.2.6 imply that 

!~~ P (01 {M(E;) ~ U}) = }~~ t\ P{M(E;) ~ u} = tl exp{ - r(d; - c;)}, 

we have proved part (b). 0 
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One immediate consequence of the distributional convergence of N~, is 
the asymptotic Poisson distribution of the number of u-upcrossings in in­
creasing Borel sets T· B. 

Corollary 9.1.3. Under the conditions of Theorem 9.1.2 if B is any positive 
Borel set whose boundary has Lebesgue measure zero, then 

P{N~(B) = r} -+ e-tm(B)(.m(B))'fr!, r = 0, 1, ... , (9.1.4) 

as u -+ 00, where m(B) is the Lebesgue measure of B. The joint distribution of 
N~(Bl)' ... , N~(B") corresponding to disjoint Bj (with boundaries which have 
Lebesgue measure zero) converges to the product of the corresponding Poisson 
probabilities. 

9.2. Full Independence of Maxima in 
Disjoint Intervals 

In this section we shall prove that, without any extra assumptions, the max­
ima in disjoint intervals are actually asymptotically independent, and not 
only "independent on the diagonal", as in Lemma 9.1.1. To prove this we 
must allow for different levels in different intervals, with correspondingly 
different crossing intensities. 

To this end, and also for use in the next section, we shall examine the re­
lationship between the intensity. and the height u of a level for which T Jl. -+ •. 

If T = .1Jl. = .2nA2"1/2exp(u2/2) we have 

u2 = 210 T (1 _ log • + IOg(2nIA~/2)) 
g log T 

or 

= (21 T)1/2 _ log • + log(2nIA~/2) «I T)-1/2) 
u og (2 log T)1/2 + 0 og . (9.2.1) 

However, any level which differs from u by o«log T)-1/2) will do equally 
well in Theorem 9.1.2, and it is often convenient as in Theorem 8.2.7 to use 
the level obtained by deleting the last term in (9.2.1) entirely. (The reader 
should check that for this choice the relation TJl. -+ • also holds.) If we write 

= (21 T)1/2 _ log. + log(2nIAy2) 
Ut og (2 log T)1/2 (9.2.2) 

we have, for. > .* > 0, 

log .1.* log ·1·* ° 
ut* - Ut = (2 log T)1/2 '" Ut >, (9.2.3) 
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so that levels corresponding to different intensities t, t* (under the same 
time-normalization T) become increasingly close to each other, the difference 
being of the order llut • Note that (9.2.3) holds for any Ut*' Ut which satisfy 
TJ.t(ut *) --+ t*, TJ.t(ut ) --+ t, and not only for the particular choice (9.2.2). 

We shall prove the full asymptotic independence of maxima in disjoint 
increasing intervals under the conditions (8.1.1) and (8.1.2), or condition 
(8.2.2) for some U satisfying TJ.t(u) --+ t with 0 < t < 00, i.e. 

:.$~$Tlr(kq)lexp{-1 + ~:(kq)I}--+O' (9.2.4) 

for each e > 0, and some q --+ 0 such that uq --+ O. 
Note that if {u*} is another family oflevels such that 

o < lim inf TJ.t(u*) ::;; lim sup TJ.t(u*) < 00 
T-+ 00 T-+ 00 

then it follows simply that u; - u2 is bounded. Hence (9.2.4) is satisfied also 
with u replaced by u*. Further (9.2.4) holds with T' = Td replacing T since 
then T' J.t --+ t' = td. 

Theorem 9.2.1. Suppose that r(t) satisfies (8.1.1) and either (8.1.2), (or the 
weaker condition (9.2.4), for some family of levels u --+ 00 as T --+ 00 such that 
TJ.t(u) --+ t > 0). LetO::;; c = C1 < d1 ::;; C2 < ... ::;; c. < d. = d befixed,and 
write Ei = (Tci, TdJ. Thenfor any s levels UT, 1"'" UT,s' 

1 P (el {M(Ei) ::;; UT'i}) - II P{M(Ei) ::;; UT,i} 1--+ 0, (9.2.5) 

as T --+ 00. 

PROOF. We shall first assume that there is a constant b > 0 such that 

I 
b $ TJ.t(UT,i) ::;; ';5 (9.2.6) 

for all sufficiently large T and all i so that (9.2.4) holds with U replaced by any 
of the UT, i and T replaced by Td. However, under this hypothesis, the proof 
of (9.2.5) goes step by step as the proof of Lemma 9.1.1, with the appropriate 
changes for U and Tin (9.2.4). 

Next, to remove assumption (9.2.6) we shall introduce truncated levels 
VT,1' ••• , VT,. as follows. Let b > 0 be given and let u~ and U¥6 be the positive 
solutions of TJ.t(u) = band TJ.t(u) = lib, respectively (these solutions exist 
for sufficiently large T). Define 

{ 

6'f 6 UT' I UT,i > UT' 
_ . 1/6 6 

VT, i - UT,i> If UT < UT,i ::;; UT' 
U 1/6 if U . < ul/6 

T , T,. - T' 
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Then clearly 

1 P (01 {M(Ei) ~ UT,;}) - P (01 {M(Ei) ~ VT,;})I 

• • 
~ L P{M(Ei) ~ U}/<l} + L P{M(Ei) > U~} 

i=1 i=1 

• • 
-+ L e-(dl-C;)/6 + L (1 - e-(d,-C;)/") (9.2.7) 

i=1 i=1 

Obviously, the same bounds hold for 

(since the proof of (9.2.7) does not use dependence or independence of the 
M(Ei)'S). 

Since the VT,;'S satisfy (9.2.6), and since 

Ip(01 {M(Ei) ~ UT'i}) - t~ P{M(Ei) ~ UT'i}1 

it follows that 

~ /p (01 {M(Ei) ~ UT,;}) - P (01 {M(E j ) ~ VT,;})I 

+ Ip (01 {M(Ei) ~ VT,;}) - t~ P{M(Ei) ~ VT,;}I 

+ It~ P{M(Ei) ~ VT,i} - t~ P{M(Ei) ~ UT,;}I 

li~_s~plp(ol {M(Ei) ~ UT'i}) - t~ P{M(E;) ~ UT,;}I 

• • 
~ L e-(d;-c;)/Ii + L (1 - e-(d;-c,)Ii). 

i= 1 i= 1 

Letting [) -+ 0 now concludes the proof of (9.2.5) in the general case. D 

From the theorem and Corollary 8.2.6 we immediately obtain the follow­
ing result. 

Theorem 9.2.2. Let u(1), ... , u(r) be levels such that 
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as T -+ 00, and suppose ret) satisfies (8.1.1), and either (8.1.2) or the weaker 
condition (9.2.4) with somejamily {u} such that TJ1(u) -+ T -+ O. Then,for any 
o ::;; c = Cl < dl ::;; Cz < ... ::;; Cs < ds = d (Ei = (Tci, Td;]), 

p(C\ {M(E;) ::;; UT, i} ) -+ exp{ - Jl T; (di - C;)}. (9.2.8) 

where each UT,i is one ojU(I), ... , u(r) and TJ1(UT,i) -+ Ti. 

9.3. Upcrossings of Several Adjacent Levels 

The Poisson convergence theorem, Theorem 9.1.2, implies that any of the 
time-normalized point processes of upcrossings of levels U(l) ~ ••• ~ u(r) are 
asymptotically Poisson if TJ1(u(i» -+ Ti > 0 as T, U(i) -+ 00. We shall now in­
vestigate the dependence between these point processes, following similar 
lines to those in Chapter 5. This dependence was first described by Qualls 
(1969); a point process formulation being given in Lindgren et al. (1975). 

To describe their dependence we shall represent the upcrossings as points 
in the plane, rather than on the line, letting the upcrossings of the level u(i) 

define a point process on a fixed line Li as was done in Chapter 5. However, 
for the normal process treated in this chapter, the lines Lb' .. , Lr can be 
chosen to have a very simple relation to the process itself by utilizing the 
process 

where time has been normalized by a factor T and height by 

aT = (2 log T)l/Z, 

bT = (2 log T)l/Z + 10g(Ai/z /2n)/(2 log T)l/Z 

as usual. 
Now, ~T(t) = x if and only if ~(tT) = x/aT + bT, and clearly the mean 

number of upcrossings of the level x by ~T(t) in an interval of length h is 
equal to (Th/2n) Ai/z exp{ -(x/aT + bT)2/2}, which by comments following 
(9.2.2) equals hT(l + 0(1» as T -+ 00, with T = e- x• Therefore, let Xl ~ 

X z ~ ... ~ Xr be a set of fixed numbers, defining horizontal lines L l , Lz, ... , 
L r , (see Fig. 9.3.1(b» and consider the point process in the plane formed by the 
upcrossings of any of these lines by the process ~T(t). Here the dependence 
between points on different lines is not quite as simple as it was in Chapter 5 
since, unlike an exceedance, an upcrossing of a high level is not an upcrossing 
of a lower level and there may in fact even be more upcrossings of the higher 
than of the lower level; see Figure 9.3.1, which shows the relation between the 
upcrossings of levels di) = x;/aT + bT by ~(t), and of levels Xi by ~T(t). As is 
seen, local irregularities in the process ~(t) can cause the appearance of extra 
upcrossings of a high level not present in the lower levels. 



9.3. Upcrossings of Adjacent Levels 181 

n 

~ 
1\ 

•••••••••••• Tr .••••• . .. . ... . .... 
(b) 

Figure 9.3.1. Point processes of upcrossings of several high levels, (a) ~(t), 0 :s; t :s; T, 
(b) ~T(t), 0 :s; t :s; 1. 

Let Nt denote the point process in the plane formed by the upcrossings of 
the fixed levels Xl ~ X2 ~ ••• ~ X, by the process ~~t} = a~~(tT} - br}, 
and let its components on the separate lines be MP, ... , Ni~) , so that 

Nt(B} = # {upcrossings in B of L l , .•• , L, by ~T(t}} 
r 

= L N!P (B n L;), 
i=l 

for Borel sets B s;;; R2. 
We shall now prove that Nt converges in distribution to a point process 

N in the plane, which is of a type already encountered in connection with 
exceedances in Chapter 5. The points of N are concentrated on the lines 
L to ••• , L, and its distribution is determined by the joint distribution of its 
components N(1), ... , N(') on the separate lines L l , ... , L,. 

As in Chapter 5, let {a 1j ; j = 1, 2, ... } be the points of a Poisson process 
N(r) with parameter r, = e- Xr on L,. Let /3j' j = 1, 2, ... be i.i.d. random 
variables, independent of N('), with distribution defined by 

P{/3. = s} = {(r,-s+ 1 - r,_s}/r" s = 1, ... , r - 1, 
J r1/r" s = r, 

so that P{/3j ~ s} = r,-s+ dr, for s = 1,2, ... , r. 
C h N(,-l) N(1) b I' . onstruct t e processes , ... , y p acmg pomts a2j' a3j' ... ' apjj 

on the /3j - 1lines L,-1,"" L,_pj+ to vertically above a1j,j = 1,2, ... , and 
finally define N to be the sum of the r processes N(1), ... , N('). 

As before, each N(k) is Poisson on L k , since it is obtained from the Poisson 
process N(') by independent deletion of points, with deletion probability 
1 - P{/3} ~ r - k + I} = 1 - rJr" and it has intensity r,(rJr,} = r k• 

Furthermore, N(l) is obtained from N(H 1) by a binomial thinning, with 
deletion probability 1 - rJrk+ l' Of course, N itself is not Poisson in the 
plane. 

When proving the main result, that Nt tends in distribution to N, we 
need to show that asymptotically, there are not more upcrossings of a higher 
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level than of a lower level. With a convenient abuse of notation, write N!P(l) 
for the number of points of N!P with time-coordinate in I. 

Lemma 9.3.1. Suppose Xi > Xj' and consider the point processes N!P and NY' 
of up crossings by ~rlt) of the levels Xi and Xj' respectively. Under the conditions 
of Theorem 9.1.2, 

P {N!P(l) > N¥'(l)} ~ 0 

as T ~ oo,for any bounded interval I. 

PROOF. By stationarity it is sufficient to prove the lemma for I c (0, 1]. Let 
Ik = «k - l)fn, kin], k = 1, ... , n, for fixed n and recall the notation (9.2.2), 
Utj = Xj/aT + bT, 1:j = e- XJ• Since by Theorem 7.3.2 all crossings are strict, 
the event {N~)(l) > NY'(I)} implies that one of the events 

or 
II 

U {N!P(lk) ~ 2} 
k=1 

occurs, so that Boole's inequality and stationarity give 

P{N¥)(l) > NY'(l)} ~ kt/{~e:) > Uti} + kt/{N!P(lk) ~ 2} 

= (n + I)P{~(O) > Ut .} + nP{N~)(l1) ~ 2}. 
J 

Obviously, (n + I)P{~(O) > ut ) ~ 0, while by Corollary 9.1.3 

P{N!P(l1) ~ 2} ~ 1 - exp ( -~) -~exp( -~), 
which implies 

li~ ... s:p P{N{}'{l) > N~)(l)} ~ n(1 - exp ( -~) - ~ exp ( -~)). 
Since n is arbitrary and 

n (1 - exp (- ~) - ~exp( -~))~ 0 

as n ~ 00, this proves the lemma. D 

Theorem 9.3.2. Suppose that r(t) satisfies (8.1.1) and (8.1.2) (or, more generally 
(9.2.4) for some {u} such that TJl(u) ~ 1: > 0), let 1:1 < 1:2 < ... < 1:, be real 
positive numbers, and let N~ be the point process of upcrossings of the levels 
Xl > X2 > ... > X, (1:i = e- Xi) by the normalized process ~T(t) = aT(~(tT) 
- bT) represented on the lines L l , ..• , L,. Then as T ~ 00, N~ tends in 
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distribution to the point process N on (0, (0) x R, described above, with 
points on the horizontal lines L i , i = 1, ... , r, generated by a Poisson process 
N(r) on Lr with intensity 'rr' and a sequence of successive binomial thinnings 
N(k) with deletion probabilities 1 - 'rk/'rk+ l' k = 1, ... , r - 1. 

PROOF. This is similar to the proof of Theorem 5.5.1, in that one has to show 
that 

(a) E(N~(B» -+ E(N(B» for all sets B of the form (c, d] x (y, 0], 0 < c < d, 
Y < 0, and 

(b) P{N~(B) = O} -+ P{N(B) = O} for all sets B which are finite unions of 
disjoint sets of this form. 

Here, if B = (c, d] x (y,o] and (y, 0] contains exactly the lines Ls' ••• , Lt , 

E(N~(B» = E Cts N~) «c, d]») = kts T(d - C)/l(U(k) -+ (d - c) kts 'r" 
= E(N(B» 

so that (a) is satisfied. 
To prove (b), as in the proof of Theorem 5.5.1 write B in the form 

B = "VI CIt = "VI (Ck' dJ X JOI (Yki' 0ki] ) , 

where (Cb dk] and (cj, d,] are disjoint for k i= I. For each k, let mIt be the index 
of the lowest L j that intersects Ck, i.e. Lmk n Ck i= 0, L j n Ck = 0 forj > mk' 

Clearly, if N!;k)«Ck' dk]) = 0 then either N~(Ck) = 0 or there is an index 
i < mIt such that N!P «Ck, dJ) > 0, i.e. in (Cb dJ there are more upcrossings 
of a higher level than of a lower level. Since obviously N~(C,,) = 0 implies 
N<!r) «Ck' dJ) = 0, 

o ~ PCOI {N!;ic)«Ck' dk]) = O}) - P{NHB) = O} -+ 0, 

since the difference is bounded by the probability that some higher level has 
more upcrossings than a lower level, which tends to zero by Lemma 9.3.1. 

But 

{N!;k)«C", dk]) = O} n {~T(C,,) ~ xmk } = {M«Tck' Tdk]) ~ UT,k}' 

where UT,k = xmJaT + bT, so that Theorem 9.2.2 implies that 

;~~ P(OI {N~mk)«Ck' dk]) = O}) = ;~ PCOI {M«Tc" , Td,,]) ~ UT,"}) 

m 

= n exp{ -'t,M" - Ck)}, 
k=1 

where 'tAo = 'tmk = e- xmk• Clearly this is just P{N(B) = O}, and thus the proof 
of (b) is complete. 0 
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Corollary 9.3.3. Let {~(t)} satisfy the conditions of Theorem 9.3.2, and let 
B 1, ••• , Br be positive Borel sets, whose boundaries have Lebesgue measure 
zero. Then, for integers m)k), 

P{N~) (B) = m)k),j = 1, ... , s, k = 1, ... , r} 

--+ p{N(k) (B) = m)k),j = 1, ... , s, k = 1, ... , r}. 

For example,for disjoint Bl and B 2 , (with IBI = m(B) for Lebesgue measure) 

P{MP(B 1) = mill, MP(B2 ) = m~l), MJl(B2) = m~Z)} 

(rt!B1I) m l') (1:zIBzl)m~2) 
--+ exp( -1:t!B 11) (1), • exp( -1:z IBz l) (Z), 

m1 • mz . 

. (m~Z»)(1:1)m~1) (1 _ ~)m~2)-m.\1) 
m~l) 1:z 1:2 

9.4. Location of Maxima 

So far, we have examined the extremal properties of a normal process 
~(t) by sections at certain (increasing) levels. Even if this gives perfect in­
formation about the height of the global maximum of the process, it does not 
directly tell us where this maximum occurs or how it is related to possible 
lower local maxima. 

The maximum of any continuous process ~(t), ° :::;; t :::;; T, is attained in 
[0, T]. However, the maximum level may be reached many times, or even 
infinitely often. But there will-by continuity of ~(t)-be a first occasion on 
which ~(t) attains its maximum in [0, T], and we denote this by L(T). 

We state the first result concerning L(T) as a lemma, though it is rather 
obvious. 

Lemma 9.4.1. L(T) is a r.v. For ° :::;; t :::;; T, P{L(T) :::;; t} = P{M«O, t]) :2: 
M«t, T])}. 

PROOF. Both statements follow from the equivalence of the events {L(T) :::;; t} 
and {M«O, t]) :2: M«t, T])}, the latter being measurable since M«O, t]) and 
M«t, T]) are r.v.'s. 

The distribution of L(T) can have a jump at ° and at T as simple examples 
(such as the process ~(t) = A cos(t - ¢) with T < 2n) show. However, for 
general continuous processes a simple condition precludes the possibility 
of any other jumps in the distribution of L(T). 
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Specifically we will say that ~(t) has a derivative in probability at to if there 
exists an r.v. '1 such that 

~(to + h) - ~(to) 
h -+ '1 in probability as h -+ O. 

Clearly, if ~ has a q.m. or probability-one derivative, it has a derivative in 
probability (with the same value). 

Theorem 9.4.2. Suppose that ~(t) has a derivative in probability at t (where 
o < t < T), and that the distribution of this derivative is continuous at zero. 
Then P{L(T) = t} = O. 

PROOF. Let '1 denote the derivative in probability at t. Clearly 

{L(T) = t} c {~(t) - !h -h) ~ o} (l r(t) - h(t + h) ~ o} 
for all h > 0 such that 0 ~ t - hand t + h ~ T. 

Now (~(t + h) - ~(t»/h -+ '1 in probability as h ~ 0 and there exists a 
sequence {hll} such that (~(t + hll) - ~(t»/hn -+ '1 with probability one. By 
considering a subsequence of {hll} we may also arrange that (~(t - hn) - ~(t»/ 
(-hn) -+ '1 with probability one, i.e. on a set B with P(B) = 1. We see that 
'1 = 0 on {L(T) = t} (l B, i.e. {L(T) = t} (l Be {"I = O} and hence 

P{L(T) = t} ~ P({L(T) = t} (l B) + P(lJC) ~ P{'1 = O} + P(lJC) = 0, 

when '1 has a continuous distribution at zero. 0 

Turning to stationary processes, one may be tempted to conjecture that 
if ~(t) is stationary, then L(T) is uniformly distributed over (0, T). For ex­
ample, this is so if ~(t) = A cos(t - cp), with cp uniformly distributed over 
(0, 2n], for T = 2n. (If A has a Rayleigh distribution and is independent of 
cp, ~(t), of course, is normal.) 

If T < 2n, there is a positive probability of L being ° or T, and L(T) is not 
strictly uniform. However, its distribution is still uniform between 0 and T as 
a simple calculation shows. 

In general, however, L need not be uniform in the open interval (0, T), 
even if ~(t) is normal and stationary. As an example of this, let 4>1' 4>2' 
A 1, and A2 be independent, with 4>1 and 4>2 uniform over (0, 2n], and with 
Al and A2 having Rayleigh distributions, and put ~(t) = Al cos(t - 4» + 
A2 cos(100t - 4>2)' Then ~(t) is a stationary normal process, and (e.g. by 
drawing a picture) it can be seen that if Al < A 2 , 4>1 E(3n/2, 2n], and 
4>2 E (n/4, 3n/4) then the maximum of ~(t) over [0, n/2] is attained in the 
interval (0, n/lOO]. Hence P{L(n/2) ~ n/lOO} ~ P{Al < A2, 3n/2 < 4>1 ~ 
2n,n/4 < 4>2 ~ 3n/4} = (t)(!)(!) = l2 > lo = (n/lOO)/(n/2),andL(n/2)can­
not be uniform over (0, n/2). 

However, for a stationary normal process the distribution of L is always 
symmetric in the entire interval [0, T], and possible jumps at ° and Tare 
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equal in magnitude. This follows from the reversibility of a stationary normal 
process in the sense that {~( -t)} has the same distribution as {~(t)}. 

One method of removing boundaries, like 0 and T, is to let them disappear 
to infinity, and one may ask whether L = L(T) might be asymptotically 
uniform as T --+ 00. For normal processes, this follows simply from the 
asymptotic independence of maxima over disjoint intervals, as was previously 
mentioned. We state these results here, as simple consequences of Theorem 
9.2.2. 

Theorem 9.4.3. Let {~(t)} be a stationary normal process (standardized as 
usual) with A2 < 00, and suppose that ret) log t --+ 0 as t --+ 00. Then 

P{L(T) ~ IT} --+ 1 as T --+ 00 (0 ~ 1 ~ 1). 

PROOF. With the usual notation, if 0 ~ 1 ~ 1, 1* = 1 - 1, and 

X T = a/T(M«O, IT]) - bIT), 

YT = al*T(M«IT, T]) - bl*T), 

where a's and b's are given by (8.2.6), then 

P{XT ~ X, Y T ~ y} --+ exp{ _e- X - e- Y } 

as T --+ 00. Furthermore, 

P{L(T) ~ IT} = P{M«O, IT]) ~ M«IT, T])} 

where al*Tla/T --+ 1 and a/T(bl*T - bIT) --+ log(l* Il). As T --+ 00 the above 
probability tends to 

P{X - Y ~ log 1*11}, 

where X and Yare independent r.v.'s with common dJ. exp( _e- X ), and an 
evaluation of this probability yields the desired value 1. 0 

9.5. Height and Location of Local Maxima 

One consequence of Theorem 9.4.3 is that asymptotically the global maxi­
mum is attained in the interior (0, T) and thus also is a local maximum. For 
sufficiently regular processes one might consider also smaller, but still high, 
local maxima, which are separated from L(T). 

We first turn our attention to continuously differentiable normal processes 
which are twice differentiable in quadratic mean. 

In analogy to the development in Chapter 5, we shall consider the point 
process in the plane, which is formed by the suitably transformed local 
maxima of ~(t). (Note that since the process ~(t) is continuous, the path of 
aT(WT) - bT) is also continuous, and although its visits to any bounded 
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rectangle B c: R2 are approximately Poisson in number, they are certainly 
not points.) 

Suppose ~(t), 0 ~ t ~ T has local maxima at the points Sj with height 
~(Sj). Let aT and bT be the normalizing constants defined by (8.2.6), and 
define a point process in the plane by putting points at (T -1 Sj, aT( ~(Sj) - bT )). 
We recall from Section 9.1 that asymptotically the upcrossings of the fixed 
level x by aT(~(t) - bT) form a Poisson process with intensity "C = e- x when 
time is normalized to tiT, and that an upcrossing of a level x is accompanied 
by an upcrossing of the higher level y with a probability e-Y/e- x = e-(Y-x). 

When investigating the Poisson character of local maxima, a question of 
some interest is to what extent high-level upcrossings and high local maxima 
can replace each other. Obviously there must be at least one local maximum 
between an upcrossing of a certain level u and the next downcrossing of the 
same level, so that, loosely speaking, there are at least as many high maxima 
as there are high upcrossings. As will now be seen there are, with high proba­
bility, no more. In fact we shall see that this is true even when T -+ 00 in 
such a way that T J1. = T(I/2n) A.~/2 exp( - u2/2) converges. 

First recall the notation from Section 7.6 

N~«a,b]) = # {sjE(a,b]; ~(Sj) > u}, 

N~(T) = N~«O, T]). 

Lemma 9.5.1. If .11.4 < 00 and T '" "C/ J1. = "C2n .11.2'1/2 exp(u2/2), then 

(i) E(N~(T)) -+ "C 

and, with Nu(T) = # {upcrossings ofu by ~(t), 0 ~ t ~ T} 

(ii) P{ IN~(T) - Nu(T) I ~ I} -+ 0 

as u -+ 00. 

PROOF. First note that at least one of the following events occur, 

{N~(T) ~ NiT)} or {~(T) ~ u} 

and that in the latter case, N~(T) ~ NiT) - 1. Therefore 

P{IN~(T) - NiT) I ~ I} ~ E(IN~(T) - Nu(T)I) 

~ E(N~(T) - Nu(T)) + 2P{~(T) ~ u}, 

and since E(Nu(T)) ,.., "C and P{~(T) ~ u} -+ 0, (ii) is a direct consequence of 
(i). But E(N~(T)) is given by (7.6.3) and since 1 - ell(x) ,...., cjJ(x)/x as x -+ 00, 

it follows that, for some constant K, with D = .11.4 - A.~, 

~ G:r/2 (1 - ell (u(~ r/2) ~ K ~ cjJ(u(~ r/2) ~ K ~ cjJ(u) -+ 0 
while 

~ (2nA.2)1/2cjJ(u)ell (;~:2) = ~ A.~/2 exp( - ~2)(1 + 0(1)) -+ "C 

as u -+ 00, which proves (i). o 
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Theorem 9.5.2. Suppose the standardized stationary normal process {~(t)} 
has continuously differentiable sample paths and is twice quadratic mean 
difJerentiable (i.e. A4 < (0), and suppose that ret) log t -+ 0 as t -+ 00. Then 
the point process N,/ of normalized local maxima (sdT, aT(~(si) - bT)) con­
verges in distribution to a Poisson process N' on (0, (0) x R with intensity 
measure equal to the product of Lebesgue measure and that defined by the 
increasing function - e - x. 

PROOF. By now familiar reasoning from Theorem A.I, it is sufficient to show 
that 

(a) E(N,/(B)) -+ E(N'(B)) = (d - c)(e- Y - e-b ) for any set B of the form 
(c, d] x (y, b], 0 < c < d, y < b, and 

(b) P{N,/(B) = O} -+ P{N'(B) = O} for sets B which are finite unions of 
sets of this form. 

To prove (a), we use Lemma 9.5.I(i). Then, with U(l) = blaT + bT, U(2) = 

ylaT + bT, 

E(N,/(B)) = E(N~(2)«Tc, Td])) - E(N~(I)«Tc, Td])) 

-+ (d - c)e- Y - (d - c)e- b = (d - c)(e- Y - e- b), 

since Tf.1(u(i)) -+ e- fJ , e- Y for i = 1,2. 
Part (b) is a consequence of Lemma 9.5.1(ii) and the multilevel upcrossing 

theorem, Theorem 9.3.2. Let N u(1), as before, denote the number of u-up­
crossings by ~(t), tEl, and write the set B in the form Uj E j x F j , where 
Ej = (Cj' dj] are disjoint and each Fj is a finite union of disjoint intervals. 
Suppose first that there is only one set E j , i.e. B = E X Uk Gk , where Gk = 
(Yk, bk], and write U<2k-l) = bklaT + bT, U(2k) = YkiaT + bT. According to 
Lemma 9.5.I(ii) asymptotically every upcrossing of the high level u is accom­
panied by one (and no more) local maximum above that level, and hence 

P{N,/(E x Gk) = O} = P{N~(2k)«Tc, Td]) = N~(2k-I)«Tc, Td])} 

= P{Nu(2k)«Tc, Td]) = N u(2k-I)«Tc, Td])} + 0(1). 

P{NU(2k)«Tc, Td]) = N u(2k-,l(Tc, Td])} 

~ { (d )}('e2id-c))j('e2k-l)j 
-+ L... exp -'e2k - C ., --

j=O J. 'e2k 

= exp{ - ('e2k - 'e2k-l)(d - c)} 

= exp{ - (d - c)( - e- Ok - (- e- Yk)} 

= P{N'(E x Gk) = O}. 
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By slightly extending the argument we obtain 

P{N'.f( E x Y Gk) = o} = p( 0 {Nu(2k)«Tc, Td]) = N U(2k-I)«Tc, Td])}) 

+ 0(1) 

- exp{ -(d - c) t (e- Yk - e-"k)} 

= P{N'(E x Y Gk ) = a}. 
and we have proved part (b) for sets B of the simple form B = E X Uk Gk• 

The general proof of part (b) is only notationally more complex. 0 

The limiting Poisson process in Theorem 9.5.2 has exactly the same distri­
bution as that in Theorem 5.7.2 for e(t) normal, since log G(s) = _e- S in 
this case. This means that all conclusions that can be drawn from that theorem 
about asymptotic properties of the normalized point process aiei - bn) also 
carryover to the normalized point process of local maxima aT(e(Si) - bT). 

As an example we shall use Theorem 9.5.2 to give the simultaneous distri­
bution oflocation and height of the two largest local maxima of e(t), t E (0, T]. 
Let M I(T) be the highest and MiT) the second highest local maximum, and 
Lt(T), LiT) their locations. 

Theorem 9.5.3. Suppose {W)} satisfies the hypotheses of Theorem 9.5.2. Then 

P{ar(Ml(T) - bT) ~ Xl' Lt(T) ~ 11 T, ar(M2(T) - bT) ~ X2' L2(T) ~ 12 T} 

_ 1112 exp( - e- X2)(1 + e- X2 - e- X1 ) (9.5.1) 

as T - oo,for 0 ~ 11, 12 ~ 1, X2 ~ Xl' 

PROOF. The asymptotic distribution of the heights of the two highest local 
maxima, 

P{aT(M 1 (T) - bT) ~ Xl> aT(M iT) - bT) ~ X2} 

_ exp( -e- X2)(1 + e- X2 - e- X1 ), 

follows in the same way as Theorem 5.6.2 formula (5.6.4) from the observation 
above that the limiting point process of normalized local maxima (sJT, 
aT(e(Si) - bT», 0 ~ Si ~ T, is the same as that of a normalized sequence of 
independent normal r.v.'s (i/n, an(ei - bn», i = 1, ... , n. 

But also the location of the local maxima can be obtained in this way. 
Suppose, e.g., 11 < 12, and write I, J, K for the intervals (0, 11 T], (11 T, 12 T], 
(/2 T, T], respectively. With U(l) = xdaT + bT, U(2) = X2/aT + bT the event 
in (9.5.1) can be expressed in terms of the highest and second highest local 
maxima over I, J, K as (with obvious notation) 

{M1(l) ~ u(1), Mil) ~ U<2), Ml(J) ~ u(2), M 1(J) ~ M 1(I), M 1(K) 

~ M 2(l u J)} 
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and the limit of the probability of this event, when expressed in terms of the 
point process N't of local maxima, is again the same as it would be for the 
point process of normalized independent r.v.'s. For such a process obviously 
Ll(T)/T and LiT)/T are independent and uniformly distributed over (0,1) 
and independent of the heights of the maxima, which proves the theorem. 0 

9.6. Maxima Under More General Conditions 

We have investigated the local maxima under the rather restrictive assump­
tion that ~(t) is twice differentiable (in quadratic mean), i.e. 11.4 < 00. If 11.4 = 00 

the mean number of zeros of ~'(t) is infinite, by Rice's formula, and in fact 
infinitely close to every local maximum there may be infinitely many more, 
which precludes the possibility of a Poisson type limit theorem for the 
locations of local maxima. 

One way of circumventing this difficulty is to exclude a small interval 
around each high maximum from further considerations, starting with the 
highest. To be more precise, let 

Ml (T) = sup{~(t); t E (0, T)} 

be the global maximum, and 

Lt(T) = inf{t > 0; ~(t) = M leT)} 

its location. For e > 0 an arbitrary but fixed constant, let I 1 = (0, Ll(T) - e) 
u (Lt (T) + e, T), and define 

M 2 ,.(T) = sup{~(t); tEId, 

L 2 ,.(T) = inf{tEIl; ~(t) = M 2 ,.(T)}. 

Proceeding recursively, with 

Ik = Ik- l n [Lk-l,.(T) - e, Lk-l,.(T) + e]', 

we get a sequence Mk,.(T),Lk,.(T),(Ml,.(T) = Ml(T), Ll,.(T) = Ll(T)) of 
heights and locations of e-maxima, and there are certainly only a finite number 
of these in any finite interval. In fact, it is not difficult to relate these variables 
to the point processes of upcrossings (in the same way as regular local maxima 
can be replaced by upcrossings of high levels if 11.4 < 00) and thereby obtain 
the following Poisson limit theorem, the proof of which is omitted. 

Theorem 9.6.1. Suppose {~(t)} is a standardized normal process with 11.2 < 00 

and with ret) log t -+ 0 as t -+ 00. Then the point process N~) of normalized 
e-maxima (L;,.(T)/T, aT(M;,.(T) - bT)) converges in distribution to the same 
Poisson process N' in the plane as in Theorem 9.5.2. 

Note that the limiting properties are independent of the e chosen. We 
shall return to this topic for more irregular processes in Chapter 12. 



CHAPTER 10 

Sample Path Properties at U pcrossings 

Our main concern in the previous chapter has been the numbers and loca­
tions of upcrossings of high levels, and the relations between the upcrossings 
of several adjacent levels. For instance, we know from Theorem 9.3.2 and 
relation (9.2.3) that for a standard normal process each upcrossing of the 
high level U = Ut with a probability p = T* IT is accompanied by an up­
crossing also of the level 

logp 
U .. =U---, 

U 

asymptotically independently of all other upcrossings of Ut and U ... 

We shall in this chapter show that the empirical distributions of the 
values of e(t) after a u-upcrossing converge, and shall represent the limiting 
distributions as the distribution of a certain model process. By studying in 
more detail the behaviour of this model process, we will then attempt to 
throw some further light on the structure of the sample paths of e(t) near 
an upcrossing of a high level u. 

10.1. Marked Upcrossings 

We assume that {W)} is a stationary normal process on the entire real line 
with E(e(t)) = 0, E(e2(t» = 1 and covariance function r(T) satisfying 

r(T) = 1 - tA,2 T2 + O(T2) as T -+ O. (10.1.1) 

With a slightly more restrictive assumption, 

-r"(T) = A,2 + O(llog ITW a) as T -+ 0 (10.1.2) 
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for some a > 1, we can assume that {e(t)} has continuously differentiable 
sample paths, (cf. condition (7.3.2) for sample function continuity) and we 
will do so since it serves our purposes of illustration. We also assume through­
out this chapter that for each choice of distinct nonzero points S 1> ••• , Sn' the 
distribution of e(O), e'(O), e(SI), ... , e(sn) is nonsingular. (A sufficient con­
dition for this is that the spectral distribution function F(A.) has a continuous 
component; see Cramer and Leadbetter (1967, Section 10.6).) 

Since A.2 = - r"(O) < 00 the number of upcrossings of the level u in any 
bounded interval has a finite expectation and so will be finite with prob­
ability one. Let 

... < Ll < to < tl < t2 < ... 

with to ~ 0 < t1, be the locations ofthe upcrossings of u by {e(t)}, and note 
that I tk I -+ 00 as I k I -+ 00. As before, we denote by N u the point process of 
upcrossings with events at {tIt}. 

In order to retain information about {e(t)} near its upcrossings, we now 
attach to each tIt a mark '1k' In Chapter 7 each mark was simply a real number 
(e.g. in Section 7.6 where the marks were the values of W) at the downcrossing 
zeros of e'(t». Here the useful marks are more abstract, and in fact we take 
'1" to be the function defined by 

'1k(t) = e(tk + t). 
Thus, the mark {'1k(t)} is the entire sample function of {e(t)} translated back 
by the distance tIt. By assumption e is continuously differentiable and has 
finite number of upcrossings in finite intervals. Since further e'(t,,) > 0 at 
any upcrossing it is easily seen that each '1k(t) is a r.v. For, with 't~n) = 
min{i/n, i = 1,2, ... ; e((i - 1)/n) < u < W/n)},clearlY't~n) -+ tl and e('t~n) + t)-+ 

WI + t), a.s., so that '11(t), being a limit ofr.v.'s is a r.v. In general, let 't~n) = 

min{i/n, i = I, 2, ... ; e(t"-1 + (i - 1)/n) < u < e(tk- 1 + i/n)}, leading to 
e(t"-1 + 4n) + t) -+ e(tk + t), and hence also '1,,(t) is a r.v. 

In particular, '1k(O) = u, while for small t-values '1,,(t) describes the be­
haviour of the e-process in the immediate vicinity of its kth u-upcrossing 

Figure 10.1.1. Point process {tIt} of upcrossings for W), t ~ O. 
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Figure 10.1.2. Realization of marks '1k(t) = Wk + t) describing eo after upcrossings. 

tk• Of course, any of the marks, say {'1o(t)}, contains perfect information 
about all the upcrossings and all other marks, so different {'1k(t)} are totally 
dependent. 

The marks are furthermore constrained by the requirement that t 1 is the 
first upcrossing of u after zero, t 2 the second and so on, which suggests 
that the different marks ... , {'11 (tn, {'12(tn, . .. are not identically distributed. 

A realization of {~(tn generates a realization of the sequence of marks 
{'11 (t)}, {'12(tn, ... , and this is what will actually be observed over a long 
period of time. For each such realization one can form the empirical distri­
bution of the observed values '1k(S), k = 1, 2, ... , i.e. of the values Wk + s) 
of the process a fixed time s after the u-upcrossings. We shall see below that 
this empirical distribution converges, for an increasing observation interval, 
and we shall consider the limit as the marginal distribution of an "arbitrary" 
mark at time s. Similarly, one can obtain joint distributions of an" arbitrary" 
mark at times s 1, ••• , Sn and of several consecutive marks. Such distributions 
are the main topic of this chapter. In point process theory similar objects 
are called Palm distributions (or Palm measures), and they formalize the 
notion of conditional distribution given that the point process has a point 
at a specified time T. 
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10.2. Empirical Distributions of the Marks at 
U pcrossings 

The point process N u on the real line formed by the upcrossings of the level 
u by {e(t)} is stationary and without multiple events, i.e. the joint distri­
bution of Nu(t + I),j = 1, ... , n does not depend on t, and Nu({t}) is either 
o or 1; (here t + I j is the set I j translated by an amount t, i.e. t + I j = 
{t + s; S E IJ). Further, Nu is jointly stationary with e(t), i.e. the distribution 
of Nu{t + I j), W + Sj),j = 1, ... , n does not depend on t. 

Let Sj, j = 1, ... , n, and Yj, j = 1, ... , n, be fixed numbers. For each up­
crossing, tk, it is then possible to check whether e(tk + s) ::::; Yj,j = 1, ... , n, 
or not. Now, starting from the point process Nu, form a new process Nu by 
deleting all points tk in Nu that do not satisfy e(tk + s)::::; Yj,j = 1, ... , n. 
The relative number of points in this new point process tells us how likely it 
is (for the particular sample function) that a point tk in N u is accompanied 
by a mark '1k(t), satisfying '1k{S) ::::; Yj,j = 1, ... , n. 

More explicitly, we shall assume that e(t) has been observed in the time 
interval (0, T] and, writing s = (S1' ... , sn), Y = (Y1, ... , Yn), define the 
empirical distribution functions Fi of a mark as the relative frequency of 
upcrossings satisfying e(tk + s) ::::; Yj,j = 1, ... , n, i.e. 

Fny) = NuCT ) = # {tk E (0, T]; Wk + Sj) ::::; Yj,j = 1, ... , n}. 
Nu(T) # {tk E (0, T]} 

It is a characteristic property of ergodic processes that empirical'distri­
butions such as ~T, as T -+ 00 converge a.s. to a specific, nonstochastic limit, 
in this case (as will be seen) to 

We recall here that a (strictly) stationary sequence {en} is ergodic if, for 
every (measurable) function h(O of the entire sequence, the time average 
of h over successively translated copies of the sequence 

1 n 

- L h(e.+k) 
n k=1 

as n -+ 00 converges, with probability one, to E(h(O) provided this is 
finite. Here e.+k denotes the original sequence e. translated k time units to 
the left. For a continuous time process the sum has to be replaced by an 
integral. 

Furthermore, if {e(t)} is a continuous time ergodic process and the r.v.'s 
Ciaredefinedasafunctionofe(t),i - 1 < t::::; i,Le.Ci = g(W),i - 1 < t::::; i), 
then K} is a stationary ergodic sequence; for more details about ergodicity, 
see, for example, Breiman (1968). 
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For normal processes and sequences there exists a simple criterion for 
ergodicity, viz. that the spectral distribution should contain no discrete 
part, i.e. the spectral dJ. should be a continuous function; this was proved 
by Maruyama (1949) and Grenander (1950). 

Theorem 10.2.1. If the process {~(t)} is ergodic and E(NIl(l» < 00, then, 
with probability one, 

T E(IVu(1» 
F's (y) -+ Fs(Y) = E(Ni1» as T -+ 00. (10.2.1) 

PROOF. If {~(t)} is ergodic, then (i= # {tkE(i-1, i]} and ei= # {tkE(i -1, i]; 
~(tk + Sj) S;; Yj,j = 1, ... , n} are also ergodic, and thus 

1 T 1 T 

T i~1 'i -+ E('1), T i~1 ei -+ E(e1) (10.2.2) 

when T -+ 00 through integer values. Now, e.g. 

1 [T] 1 [TIl, 
T NIl(T) = T' [T] i~l 'i + T'T, say, 

where 0 S;;'~ S;; '[Tl+l' Since ([T] + l)-l'[TI+l -+ 0 by (10.2.2) it follows 
that 

and similarly 

with probability one, as T -+ 00, which proves (10.2.1). o 

Up to this point we have, as customarily, not been specific about the 
basic underlying probability space. Now, let C1 be the space of continuously 
differentiable functions defined on the real line. We shall denote a typical 
element in C 1 by ~ and let ~(t) be the value of ~ at t, in complete agreement with 
previous usage. We can then think of the probability measure P for our 
original process {e(t)} as defined on C lor, more precisely, on the smallest 
u-field!F of subsets of C 1 which makes all the projections e 1""""11 e(t) measurable. 

As a generalization of the point process IV II studied above, define, for each 
E E!F, a new point process IVIl,E by deleting from Nil all points tk for which 
~(tk + .) rt E, i.e. for which the function tlk(') = ~(tk + .) does not belong to 
E. Then, motivated by (10.2.1), we define a second probability measure Pu 
on C1 by 

PUCE) = E(IVu,E(l» = E(#{tk E (0, 1]; ~(tk + .) E ED. 
E(Nu(l» E(#{tkE(O,l]}) 
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We shall call pu the Palm distribution or the ergodic distribution of e after 
a u-upcrossing. By additivity of expectations, pu is in fact a probability 
measure, and the finite-dimensional distribution of e(Sj), j = 1, ... , n are 
clearly exactly the functions F. appearing on (10.2.1). Thus 

pU{e(Sj) ~ Yj,j = 1, ... , n} = FiY) 

I. #{t"E(O, TJ; e(t" + Sj) ~ Yj,j = 1, ... ,n} 
= 1m . 

T-+oo # {t" E (0, TJ} 

Obviously, the result of Theorem 10.2.1 about the empirical distributions 
of'1,,(t) = e(t" + t) holds also with Nu replaced by Nu,E' for arbitrary E E f/, 
i.e. with P-probability one, 

Nu,iT ) -+ E(Nu,il» = PU(E). 
~u(T) E(~u(I» 

This leads to the convergence of the empirical distributions of many other 
interesting functionals, such as the excursion time, i.e. that time from an 
upcrossing to the next downcrossing of the same level, and the maximum in 
intervals of fixed length following an upcrossing, i.e. 

u{ <}_. #{t"E(O,TJ;S~~W,,+t)~XL 
P sup W) - x - hm {(O TJ} , 

tel T-+oo # t" E , 

for more examples, see Lingren (1977). 
The measure Pu formalizes the notion of a conditional distribution of the 

process given that it has a u-upcrossing at time 0, and by Theorem 10.2.1 it 
describes the long run properties of e(t" + t) as a function of t, when t" runs 
through the set of all positive u-upcrossings. One can therefore interpret the 
PU-distribution of W) as "the conditional distribution of the original process 
at time t after an arbitrary u-upcrossing". In particular 

p"{e(t) has an upcrossing ofu at t = O} = 1, 

so that '10 = e with pU-probability one. 
If e(t) is stationary normal, with continuously differentiable sample paths, 

it can be shown (although this involves crossing theory for nonstationary 
processes) that further, with obvious notation, EU(~u(t» < 00 for all t > 0, 
so that, under p u, there are only a finite number of u-upcrossings in any finite 
interval, and thus the marks '1,,(t), k = 1,2, ... are well defined. The following 
result gives further motivation for thinking of pu as the distribution of an 
arbitrary mark in the original process, and makes precise the intuitive notion 
that under pu the marks '1,,(t) = e(t" + t) have the same distribution, for 
k = 0, 1, ... , all being equally "arbitrary". 

Theorem 10.2.2. Suppose {e(t)} is stationary normal with continuously 
differentiable sample paths (e.g. satisfies the general hypothesis of the previous 
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section). Then the sequence of marks {'lo(t)}, {'l1(t)}, .. . is stationary under the 
Palm distribution P", in the sense that the finite-dimensional P"-distribution of 

j = 1, ... , n 

is independent of k. In particular,for a fixed t, all the f/J{t), j = 0, 1, ... , form a 
stationary real sequence, and hence have the same P"-distribution, whereas 
they are nonidentically distributed under P. 

PROOF. We only show that, under P", the distribution of f/it) is the same as 
that of f/j-1 (t). A full proof is only notationally more complicated. 

Put J.l = E(N "(0, 1]) = E( # {tk E (0, I]}). Then 

P"{f/it) ~ y} = J.l- 1E(# {tk E (0,1]; e(tk+j + t) ~ y}) 
= (J.lT)-l E( # {tk E (0, T]; Wk+ j + t) ~ y}). (10.2.3) 

Similarly, 

P"{'lj-1(t) ~ y} = (J.lT)-lE(# {tk E (0, T]; e(tHj - 1 + t) ~ y}). (10.2.4) 

Now take a pair of adjacent points tk and tk+ l' We see that tk is counted in 
(10.2.3) if and only if 

tk E (0, T] and e(tHj + t) ~ y 

while tk + 1 contributes to (10.2.4) if and only if 

tk+ 1 E (0, T] and e(tH 1+ j- 1 + t) ~ y, 

i.e. if and only if 

tk+ 1 E (0, T] and e(tk+ j + t) ~ y. 

Hence the numbers in (10.2.3) and (10.2.4) differ at most by + lor -1 so that 

1 
IP"{f/it) ~ y} - P"{f/j-1(t) ~ y}1 ~ J.lT --+ 0 as T --+ 00. D 

Palm probabilities can also be obtained as limits of ordinary conditional 
probabilities given a point, i.e. an upcrossing, not exactly at 0, but some­
where nearby. Let to be the last u-upcrossing for e(t) prior to O. Then 

p"{e(Sj) ~ yj,j = 1, ... , n} 
= lim P{Wo + s) ~ yj,j = 1, ... , nl - h < to ~ O}, (10.2.5) 

hlO 

where it may be shown that the limit (10.2.5) exists, and equals the ratio 
(10.2.1). In fact, (10.2.5) can be taken as a definition of the Palm distributions, 
an approach which was taken by Kac and Slepian (1959), who also termed 
it the horizontal window conditioning of crossings, indicating that the sample 
path e( t) has to pass through a horizontal window {( t, y); - h ~ t ~ 0, Y = u}. 
This is in contrast to vertical window conditioning which requires that 
u ~ e(O) ~ u + h, e'(O) > 0, so that the process has to pass through a 
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vertical window {(t, x); t = 0, u :::; x :::; u + h} with positive slope. The hori­
zontal and vertical conditioned distributions will differ in one particular re­
spect, namely, in the marginal distribution of the derivative '11.(0) = ~'(tk) of 
the mark at the upcrossing; cf. the end of the next section 

10.3. The Slepian Model Process 

We will devote the rest ofthis chapter to a more detailed study ofthe proper­
ties of the marks under the Palm distribution, in particular, as the level 
u gets high. In view of Theorem 10.2.2 all {'1k(t)} have the same pu distribution 
and we pick '1o(t) = ~(t) as a typical representative. 

Our tool will be an explicit representation of the PU-distribution of ~(t) 
in terms of a simple process, originally introduced by D. Slepian (1963) 
and therefore in this work termed a Slepian model process. The following 
theorem uses the definition of Palm distributions and forms the basis for 
the Slepian representation. 

Theorem 10.3.1. Under the hypothesis of Theorem 10.2.2 let JI. = E(Nu(1» = 
(1/2n)A.y2 exp( -u2/2). Then for t "# 0, 

PU{~(t) :::; y} = f= _ 00 {JI.- 1 1:0 zp(u, z)p(x lu, z) dZ} dx, (10.3.1) 

where p(u, z) is the joint density of ~(O) and its derivative nO), and p(x I u, z) 
is the conditional density of ~(t) given ~(O) = u, ~'(O) = z. Thus the PU-distri­
bution of ~(t) = '1o(t) is absolutely continuous, with density 

JI.- 1 1:0 zp(u, z)p(xlu, z) dz. 

The n-dimensional PU-distribution of ~(Sl)" .. , ~(sn) is obtained by replacing 
p(x lu, z)by P(Xl' ... , xnlu, z), the conditional P-densityof~(sd, . .. , ~(sn)given 
~(O) = u, ~'(O) = z. 

PROOF. The one-dimensional form (10.3.1) is a direct consequence of Lemmas 
7.5.1(iii) and 7.5.2 since we have assumed that ~(O) and ~(t) have a non­
singular distribution. We can take '(s) = ~(s), "(s) = ~'(s), '1(s) = ~(s + t) 
and, in the same way as in the proof of Lemma 7.6.1, check that 

so that 

P{W) = u, '1(t) = v for some t E (0, 1J} = 0 

E(fU1)) = 1:0 zp(u, z)P{~(t) :::; yle(O) = u, ~'(O) = z} dz 

= f= -00 1:/p(U, z)p(xlu, z) dz dx. 

The multivariate version is proved in an analgous way. o 
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Theorem 10.3.1 states that the joint density of ~(S1)"'" ~(sn) under pu 
is given by 

p.-1 i:oZP(U,Z)P(X1, ... , xnlu, z) dz, (10.3.2) 

where p(x 1, ... , xn I u, z) is the conditional P-density of ~(s 1), ... , ~(sn) given 
~(O) = u, ~'(O) = z. We shall now evaluate (10.3.2) in order to obtain the 
Slepian model process. 

With p. = (1/2nU1/2 exp( -u2/2), and using the fact that ~(O) and ~'(O) 
are independent and normal WIth E(f(O)) = 0, E(~'(0)2) = ..1.2, we have that 

p(u,z) = - exp --p. (Z2 ) 
..1.2 2..1.2 

and we can write (10.3.2) in the form 

foo Z (Z2 ) T exp - U p(x 1,···, Xn lu, z) dz. 
%=0 2 2 

(10.3.3) 

The covariance matrix of ~(O), ~'(O), ~(S1)' ... , ~(sn) is 

1 0 r(s1) r(sn) 

0 ..1.2 -r'(s1) -r'(sn) 

r(s1) -r'(s1) 1 r(sn - S1) 

r(sft) -r'(sft) r(S1 - sn) 1 

From standard properties of conditional normal densities-see Rao (1973, 
p. 522)-it follows that p(x1, ... , xnlu, z) is an n-variate normal density and 
that 

(10.3.4) 

and 

The density (10.3.3) is therefore a mixture of n-variate normal densities, 
all with the same covariances (10.3.5), but with different means (10.3.4), 
and mixed in proportion to the Rayleigh density 

z > O. (10.3.6) 
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Now we are ready to introduce the Slepian model process. Let , have a 
Rayleigh distribution with density (10.3.6) and let {K(t), t E R} be a non­
stationary normal process, independent of , with zero mean, and with the 
covariance function 

r'(s)r'(t) 
rl«s, t) = Cov(K(s), K(t» = r(s - t) - r(s)r(t) - A2 . 

That this actually is a covariance function follows from (10.3.5). Hence on 
some probability space which need not be specified further, there exist K and, 
with these properties. The process 

eu(t) = ur(t) - '~~t) + K(t) (10.3.7) 

is called a Slepian model process for e(t) after u-upcrossings. Obviously, 
conditional on , = Z, the process (10.3.7) is normal with mean and co­
variances given by the right-hand side of (10.3.4) and (10.3.5), respectively, 
and so its finite-dimensional distributions are given by the densities (10.3.3). 

Theorem 10.3.2. Under the hypothesis of Theorem 10.2.2, the finite-dimensional 
Palm distributions of the mark {'lo(t)} and thus, by Theorem 10.2.2, of all 
marks {'lIlt)}, are equal to the finite-dimensional distributions of the Slepian 
model process 

'r'(t) 
euCt) = ur(t) - ;:;- + K(t) 

i.e. 

for any Borel sets B h ••• , Bn. 

One should note that the height of the level u enters in eu(t) only via the 
function ur(t), while' and K(t) are the same for all u. This makes it possible 
to obtain the Palm distributions for the marks at crossings of any level 
u by introducing just one random variable , and one stochastic process 
{K(t)}. In the sequel we will use the fact that u enters only through the term 
ur(t) to derive convergence theorems for eu(t) as u -+ 00. These are then 
translated into distributional convergence under the Palm distribution p u, 

by Theorem 10.3.2, and thus, for ergodic processes, to the limiting empirical 
distributions by Theorem 10.2.1. 

As noted in the previous section the same reasoning applies to the limiting 
empirical distributions of certain other functionals. In particular, this 
includes maxima, and therefore it is of interest to examine the asymptotic 
properties of maxima in the Slepian model process. 
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Some simple facts about the model process {eit)} should be mentioned 
here. It may be shown that {K(t)} is continuously differentiable, and clearly 
E(K(t» = E(K'(t» = 0, E(K(0)2) = E(K'(0)2) = 0 so that P{K(O) = K'(O) = O} 
= 1. Since ..1.2 = - r"(O) one has 

e~(O) = ur'(O) - 'r;~o) + K'(O) = , 

so that, is simply the derivative of eu(t) at zero. From Theorem 10.3.2 this 
immediately translates into a distributional result for the derivative at 
upcrossings. 

Corollary 10.3.3. The Palm distribution of the derivative '1;'(0) of a mark at a 
u-upcrossing does not depend on u, and it has the Rayleigh density (10.3.6). 

The value of , determines the slope of eu(t) at O. For large t-values the 
dominant term in euCt) will be K(t), ifr(t) and r'(t) -+ 0 as t -+ 00. (A sufficient 
condition for this is that the process {W)} has a spectral density, in which 
case it is also ergodic.) Then r,lr + s, -r + t) -+ res - t) as -r -+ 00 so that 
eu(t) for large t has asymptotically the same covariance structure as the 
unconditioned process e(t), simply reflecting the fact that the influence of 
the upcrossing vanishes. 

With the vertical window conditioning mentioned in Section 10.2, an 
explicit model representation similar to (10.3.7) can be defined. The only 
diflerence is that the derivative, of the slope at 0 has a (positive) truncated 
normal distribution. Note that such a model does not describe the empirical 
behaviour of e(t) near upcrossings of a fixed level u. 

10.4. Excursions Above a High Level 

We now turn to the asymptotic form of the marks at high-level crossings 
under the limiting empirical distribution pu. For this we will simply in­
vestigate the model process eu(t) since, as shown in Theorem 10.3.2, its 
distribution is equal to the PU-distribution of a mark. 

The length and height of an excursion over the high level u will turn out 
to be of the order u-l, so we normalize eu(t) by expanding the scale by a 
factor u. Before proceeding to details we give a heuristic argument motivating 
the precise results to be obtained, by introducing the expansions 

(10.4.1) 
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as t/u --+ 0, which follow from (10.1.1), and by noting that hence K(t/U = o(t/u) 
as t/u --+ O. Inserting this into ~u(t) and omitting all o-terms we obtain 

(10.4.2) 

as u --+ 00 and t is fixed. 
The polynomial 't - A2t2/2 in (10.4.2) has its maximum for t = '/1.2 

with a maximum value of ,2/21.2 and therefore we might expect that ~uCt) 
has a maximum of the order u + (l/u) ,2/21.2. Hence, the probability that 
the maximum exceeds u + v/u should be approximately 

The following theorem justifies the approximations made above. 

Theorem 10.4.1. Suppose r satisfies (10.1.2) and ret) --+ 0 as t --+ 00. Thenfor 
each 't" > 0, V > 0 

p{ sup ~u(t) > u + ~} --+ e- V as u --+ 00, 
OStSt U 

i.e the normalized height of the excursion of ~u(t) over u is asymptotically 
exponential. 

PROOF. We first prove that the maximum of ~u(t) occurs near zero. Choose 
a function b(u) --+ 00 as u --+ 00 such that b(u)/u --+ 0 and b2(u)/u --+ 00. Then 

p{ sup 'u(t) > u} --+ 0, 
lJ(u)/u S t S t 

(10.4.3) 

since the probability is at most 

p{ sup (~u(t) - ur(t» + sup ur(t) > u} 
lJ(u)/u S t S t lJ(u)/u S t St 

~ p{ sup (- '~(t) + K(t») > U(l - sup ret»)}. 
OStSt 2 IJ(U)/UStS.t 

Here 

sup (- '~(t) + K(t») 
Os t S t 2 

is a proper (i.e. finite-valued) random variable, and (since 1 - ret) = 1.2 t2/2 
+ 0(t2) as t --+ 0, and the joint distribution of ~(O) and ~(t) is nonsingular 
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for all t, so that r(t) < 1 for t :f:: 0) 1 - r(t) ~ Kt2 for 0 ~ t ~ t, some K 
depending on t, so that 

u(t - sup r(t») ~ Ku <5\u) --+ 00 
a(u)/u SIS t U 

which implies (10.4.3). 
In view of (10.4.3) we now need only show that 

p{ sup ~u(t) > u + ~} = p{ sup u(~u (!) - u) > v} --+ e- v 
o SIS 6(u)/u u 0 SIS 6(u) U 

for v > O. By (10.4.1) 

u( ~u(~) - u) = _u2( 1 - r(~)) _ ,ur~~/u) + UK(~) 
A,2t2 K(tlu) 

= - T' (1 + 0(1» + 't(l + 0(1» + ttjU (10.4.4) 

uniformly for 0 ~ t ~ !5(u) as u --+ 00. Since {K(t)} has a.s. continuously 
differentiable sample paths with K(O) = K'(O) = 0, and !5(u)/u --+ 0, 

K(tlu) 
sup -1- --+ 0 (a.s.) as u --+ 00. 

Os I S 6(u) t U 

This implies that the maximum of u( ~u( t lu) - u) is asymptotically determined 
by the maximum of - A,2 t2/2 + 't and that 

lim p{ sup ~it) > u + ~} = p{sup(- A,~t2 + 't) > v} = p{;: > v} 
u"'oo OSISt U I 2 

as was to be shown. o 

As mentioned above, distributional results and limits for the model 
process {~U<t)} carryover to similar results and limits for marks '1k(t) = 
Wk + t), i.e. for the ergodic behaviour of the original process g(t)} after tk • 

In particular, Theorem 10.4.1 has the corollary that the limiting empirical 
distribution of the normalized maxima after upcrossings of a level u, for 
ergodic processes, is approximately exponential for large values of u, i.e. 

#{tk E (0, T]; sup Wk + t) >' u + V/U} 
lim OSISt --+ e- v 

r ... oo # {tk E (0, T]} 

as u --+ 00, a.s. This clarifies the observation at the beginning of this chapter, 
that an excursion over the high level u exceeds the level u - (log p)lu with 
probability eogp = p. 
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It should be noted here, even if not formally proved, that the excursions 
emerging from different upcrossings are asymptotically independent. This 
explains the asymptotic independence of extinctions of crossings with 
increasing levels. 

The following theorem follows from (10.4.4). 

Theorem 10.4.2. Suppose r satisfies (10.1.2) and r(t) -+ 0 as t -+ 00. Then with 
probability one the normalized model process ~uCt) = u(~uCt/u) - u) tends 
uniformly for I t I ::;; T to a parabola 

_ A,2 t2 

~oo(t) = - -2- + (t 

in the sense that, with probability one, 

sup l~uCt) - ~oo(t)I-+ 0 

as u -+ 00. 

This theorem throws some light upon the discrete approximation used in 
the proof of the maximum and Poisson theorems in previous chapters. The 
choice of spacing in the discrete grid, q, appeared to be chosen there for purely 
technical reasons. Theorem 10.4.2 shows why it works. By the theorem the 
natural time scale for excursions over the high level u is u - 1, so the spacing 
q = 0(u- 1) of the q-grid catches high maxima with an increasing number of 
grid points. 



CHAPTER 11 

Maxima and Minima and Extremal 
Theory for Dependent Processes 

Trivially, extremes in two or more mutually independent processes are 
independent. In this chapter we shall establish the perhaps somewhat 
surprising fact that, asymptotically, independence of extremes holds for 
normal processes even when they are highly correlated. However, we shall 
first consider the asymptotic independence of maxima and minima in one 
normal process. Since minima of e(t) are maxima for - W), this can in fact 
be regarded as a special case of independence between extremes in two 
processes, namely between the maxima in the completely dependent processes 
e(t) and - e(t). 

11.1. Maxima and Minima 

For a standardized stationary normal process, {e(t)} and {-e(t)} have the 
same distribution. Writing 

meT) = inf{e(s); 0 ~ s ~ T}, 

clearly meT) = -sup{ -e(s); 0 ~ s ~ T}, and hence meT) has the same 
asymptotic behaviours as -M(T). If {e(t)} satisfies the hypotheses of 
Theorem 8.2.5, then P{m(T) ~ -v} - e-~ as T, v - 00 and Tv -11 > 0 for 
v = (1/2n)ly2 exp( -v2/2). It follows, under the hypotheses of Theorem 
8.2.7, that 
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with the same normalizations as for maxima, i.e. 

aT = (2 log T)1/2, 

_ 1/2 log(AY2/21t) 
bT - (2 log T) + (2 log T)1/2 . 

It was shown by Berman (1971b) that, without any additional assumptions, 
the minimum m(T) and the maximum M(T) are asymptotically independent 
in analogy with the asymptotic independence of minima and maxima of 
independent sequences, established in Theorem 1.8.3. We shall now obtain 
Berman's result (Theorem 11.1.5). 

With the same notation and technique as in Chapter 8, we let Nu and 
N~q) be the number of u-upcrossings by the process {e(t); 0::;; t::;; h} and 
the sequence {eUq); 0::;; jq ::;; h}, and define similarly D-v and D~)v to be 
the number of downcrossings of the level - v. We first observe that if, for 
h = 1, 

_ _ ~ 1/2 (_ V2) 
V - E(D_ v) - 21t A2 exp 2' 

and if u, v --+ 00 so that Tp, --+ -r > 0 and Tv --+ 1'/ > 0, then we have u - v 
and 

10g(I'//-r) u - v _ ---=c...:..:.:..-....:.. (11.1.1) 
u 

cf. (9.2.3). In particular, this implies that if q --+ 0 so that uq --+ 0 then also 
vq --+ O. 

The following lemma contains the necessary discrete approximation and 
separation of maxima. As in Chapter 8, we split the increasing interval 
(0, T] into n = [T/h] pieces, each divided into two, Ik and It, of length 
h - e and e, respectively. Write m(I) for the minimum of e(t) over the 
interval I. 

Lemmall.l.l. If (8.1.1) holds then, as u, v --+ 00 and uq, vq --+ 0, 

(i) P{m(I) < -v, M(I) > u} 

= p{min eUq) < -v, max e(jq) > u} + o(v + fl.), 
jqeI jqeI 
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where o(v + Jl.) is uniform in all intervals I of length h ~ ho,for fixed 
ho > 0, 

(ii) lim sup Ip{-v ~ m( U Ik) ~ M( U Ik) ~ u} 
T .... oo k=1 k=1 

- P{ -v ~ m(nh) ~ M(nh) ~ u} I ~ 11 : r 1:, 

(iii) p{ - v ~ eUq) ~ u, jq E k VI I k } 

PROOF. (i) By Lemma 8.2.2(i) applied to {e(t)} and {- W)}, 

o ~ P{m(I) < -v, M(I) > u} - p{min eUq) < -v, max eUq) > u} 
jqeI jqeI 

~ E(D- v - D~)v) + E(Nu - N~q» + p{e(O) < -v} + p{e(O) > u} 

= o(v + Jl.). 

Parts (ii) and (iii) follow as in Lemma 8.2.3; we shall not repeat the details 
here. 0 

The following two lemmas give the asymptotic independence of both 
maxima and minima over the separate h-intervals. 

Lemma 11.1.2. Let e 1, ••• , en be standard normal variables with covariance 
matrix Al = (Ai~)' and 11 1, •.• , 11n similarly with covariance matrix A 0 = (AZ), 
and let Pij = max(IAbl, IA81). Further, let u = (Ul"'" un) and v = 
(VI' ... , vn) be vectors of real numbers and write 

w = min(lutl, ... , lunl, Ivtl, ... , Ivnl). 
Then 

P{ -Vj < ej ~ ujfor j = 1, ... , n} - P{ -Vj < 11j ~ ujfor j = 1, ... , n} 

(11.1.2) 

PROOF. This requires only a minor variation of the proof of Theorem 4.2.1. 
It follows as in that proof (and using the same notation) that the left-hand side 
of (11.1.2) equals 

II {L (At) - AZ) f· ~ . f iJ
2ii. dY} dh. 

o i<j -v iJYi iJYj 
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By performing the integrations on Yi and Yj we obtain four terms, containing 
the integrands 

fi.(Yi = Ui> Yj = Uj), -fh(yi = Ui' Yj = -Vj), -fh(yi = -Vi' Yj = u), 

and 
Ji,(Yi = -Vi> Yj = -Vj), 

respectively. Each of these terms can be estimated as in the proof of Theorem 
4.2.1 and the lemma follows. D 

Lemma 11.1.3. Suppose r(t) --+ 0 as t --+ 00, and that T/l --+ or, Tv --+" as 
T --+ 00, and that, if qu, qv --+ 0 sufficiently slowly 

T L 1 r(kq) 1 exp(- 1 T~k )1) --+ 0 (11.1.3) 
q ESkqST + q 

for every e > 0, where w = min(u, v) > O. (This holds in particular ifr(t) log t 
--+ 0 as t --+ 00.) Then 

(i) p{ -v ~ e(kq) ~ u, kq E jVIIj} - i\' P{ -v ~ e(kq) ~ u, kq E I j} --+ 0 

as T --+ 00, 

(ii) li~ .... s~p 1})1 P{ -v ~ e(kq) ~ u, kq E I j} - P"{ -v ~ m(h) ~ M(h) ~ u} I 
(" + or) 

~ h e. 

PROOF. Part (i) follows from Lemma 11.1.2 in the same way as Lemma 8.2.4(i) 
follows from Theorem 4.2.1. As for part (ii), note that 

o ~ P{ -v < m(Ij) ~ M(lj) ~ u} - P{ -v < m(h) ~ M(h) ~ u} 

~ P{m(I1) ~ -v} + P{M(l1) > u} ~ (v + /l)(e + 0(1» 

for Tsufficiently large, by Lemma 8.2.1(i).1t now follows from Lemma 11.1.1(i) 
and Lemma 8.2.2(ii) that for T sufficiently large, 

o ~ Pj - P ~ (v + /l)(e + 0(1» 

where P j = P{ -v < e(kq) ~ u, kqEIj}, P = P{ -v < m(h) ~ M(h) ~ u}. 
Hence 

o ~ t~ P j - P" ~ n(v + /l)(e + 0(1» '" (" ; or) (8 + 0(1» 

as in Lemma 8.2.4(ii). D 

The final essential step in the proof of asymptotic independence of m(T) 
and M(T) is to show that an interval of fixed length h does not contain both 
large positive and large negative values of e(t). 
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Lemma 11.1.4. If (8.1.1) holds, there is an ho > 0 such that as u, v -+ 00, 

P{M(h) > u, m(h) < -v} = o(v + J1.) 

for all h < ho. 

PROOF. By Lemma 11.1.1(i) it is enough to prove that 

p{max ~(jq) > u, min ~(jq) < - v} = o{J1. + v) 
OShSh OShSh 
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for some q satisfying uq, vq -+ O. By stationarity, this probability is bounded 
by 

~ p{~(O) > U, min ~(jq) < - v} 
q -hSjqSh 

~ ~ I P{~(O) > u, ~(jq) < -v}. 
q -hSjqSh 

(11.1.4) 

Here, for jq =/: 0, 

P{~(O) > u, ~(jq) < -v} = {X)4>(X)P{~(jq) < -vl~(O) = x} dx 

= J""4>(X)<I>(-v - X;(jq») dx, 
u Jl - r (jq) 

(11.1.5) 

since, conditional on ~(O) = x, ~(jq) is normal with mean xr(jq) and variance 
1 - r2(jq). Now, choose ho > 0 such that 0 < ret) < 1 for 0 < I t I ~ ho, 
which is possible by (S.1.1).1f0 < Ijql ~ h < ho, x ~ 0, then 

(-v - xr(jq»/Jl - r2(jq) ~ -v, 

for u, v > 0, so that (11.1.5) is bounded by 

f"" 4>(u)4>(v) 
4>(x)<I>( -v) dx = (1 - <I>(u»(1 - <I>(v» '" . 

u uv 

Together with (11.1.4) and (11.1.5) this shows that 

o ~ p{ max ~(jq) > u, min ~(jq) < -v} ~ h:. 4>(u)4>(v) 
OSjqSh OSjqSh q UV 

= h2 . 4>(u)4>(v) . _1_ (J1. + v) = o(I)(J1. + v), 
(J1. + v) quqv 

since 4>(u)4>(v)/{J1. + v) = O(J1.v/(J1. + v» -+ 0, and q can be chosen to make 
quqv -+ 0 arbitrarily slowly. 0 
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Theorem 11.1.5. Let u = UT -+ 00 and v = VT -+ 00 as T -+ 00, in such a way 
that 

TJl. = - A~/2 exp - - -+ t ~ 0, Tv = - Ay2 exp - - -+" ~ o. T (u2) T (V2) 
2n 2 2n 2 

Suppose the stationary normal process ~(t) satisfies (8.1.1) and either (8.1.2) or 
the weaker condition (11.1.3). Then 

P{ -v < meT) ~ M(T) ~ u} -+ e-'I- t as T-+ 00, 

and hence 

P{aT(m(T) + bT) ~ x, aT(M(T) - bT) ~ y} -+ (1 - exp( _eX» exp( -e-Y) 

with aT = (2 log T)1/2, bT = (2 log T)1/2 + log(A~/2/2n)/(210g T)1/2. Thus 
the normalized minimum and maximum are asymptotically independent. 

PROOF. By Lemma l1.1.1(ii) and (iii), and Lemma l1.1.3(i) and (ii) we have 

lim sup IP{ -v < m(nh) ~ M(nh) ~ u} - P"{ -v < m(h) ~ M(h) ~ u} I 
T"'oo 

2(" + t) 
~ h e, 

for arbitrary e > 0, and hence 

P{ -v < m(nh) ~ M(nh) ~ u} - P"{ -v < m(h) ~ M(h) ~ u} -+ 0 (11.1.6) 

as n -+ 00. Furthermore, by Lemma 11.1.4 

P"{ -v < m(h) ~ M(h) ~ u} 

= (1 - P{m(h) ~ -v} - P{M(h) > u} + o(v + Jl.»". 

Arguing as in the proof of Theorem 8.2.5, the result now follows from 
Lemma 8.2.1, using the fact that n(v + Jl.) ,.., (T/h)(v + Jl.) -+ (" + t)jh. 0 

This theorem, of course, has ramifications similar to those for maxima from 
Theorem 8.2.5, but before discussing them we give a simple corollary 
about the absolute maximum of ~(t). 

Corollary 11.1.6. If u -+ 00, TJl. -+ t, then 

p{ sup 1~(t)1 ~ u}-+e- 2" 
OSlsT 

and furthermore 

p{aT ( sup I ~(t) I - bT ) ~ X + log 2} -+ exp( - e -X). 
OSIST 

As for the maximum alone, it is now easy to prove asymptotic indepen­
dence of maxima and minima over several disjoint intervals with lengths 
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proportional to T. As a consequence one has a Poisson convergence theorem 
for the two point processes of upcrossings of u and downcrossings of - v, 
the limiting Poisson processes being independent. Furthermore, the point 
process of downcrossings of several low levels converges to a point process 
with Poisson components obtained by successive binomial thinning, as in 
Theorem 9.3.2, and these downcrossings processes are asymptotically 
independent of the upcrossings processes. Of course, it then follows that the 
entire point process of local maxima, considered in Theorem 9.5.2, is also 
asymptotically independent of the point process of normalized local minima. 

11.2. Extreme Values and Crossings for 
Dependent Processes 

One remarkable feature of dependent normal processes is that, regardless of 
how high the correlation-short of perfect correlation-the number of 
high-level crossings in the different processes are asymptotically independent, 
as shown in Lindgren (1974). This will now be proved, again by means of 
the Normal Comparison Lemma. 

Let {et(t)}, ... , {eit)} be jointly normal processes with zero means, 
variances one and covariance functions rk(r) = Cov(eit), ek(t + r». We shall 
assume that they are jointly stationary, i.e. COV(ek(t), e,(t + r» does not 
depend on t, and we write 

rk,(r) = Cov(eit), e,(t + r» 

for the cross-covariance function. Suppose further that each rk satisfies 
(8.1.1), possibly with different A.2'S, i.e. 

A. t2 

rk(t) = 1 - T + 0(t2), t ..... 0, (11.2.1) 

and that 

rk(t) log t ..... 0, 

rk,(t) log t ..... ° as t ..... 00, 
(11.2.2) 

for 1 ~ k, I ~ p. To exclude the possibility that ek(t) == ± e,(t + to) for 
some k :1= I, and some choice of to and + or -, we assume that 

max sup I rk,(t) I < 1. 
k*' 

(11.2.3) 

However, we note here that if inf! rk,(t) = -1 for some k :1= I, there is a 
to such that rk,(tO) = -1, which means that eit) == -e,(t + to). A maximum 
in e,(t) is therefore a minimum in ek(t), and as was shown in the first section 
of this chapter, maxima and minima are asymptotically independent. In 
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fact, with some increase in the complexity of proof, condition (11.2.3) can be 
relaxed to max" * I SUPt r",(t) < 1. 

Define 
M,,(T) = sup{e,,(t); 0 =::;; t =::;; T}, 

and let u" = u,,(T) be levels such that 

k = 1, ... ,p, 

T 11/2 (uf) Til" = 2n 11.2," exp - 2" -. 't" ;;:: 0 

as T-. 00. Write u = min{u1,' .. , up}. 
To prove asymptotic independence of the M,,(T) we approximate by the 

maxima over separated intervals IJ, j = 1, ... ,n, with n = [Tjh] for h 
fixed, and then replace the continuous maxima by the maxima ofthe sampled 
processes to obtain asymptotic independence of maxima over different 
intervals. We will only briefly point out the changes which have to be made in 
previous arguments. The main new argument to be used here concerns the 
maxima of e,,(t), k = 1, ... , p, over one fixed interval, I, say. 

We first state the asymptotic independence of maxima over disjoint 
intervals. 

Lemma 11.2.1. If r", r", satisfy (11.2.1)-(11.2.3) for 1 =::;; k, 1 =::;; p, and if 
Tilt. -. 't,,;;:: 0, thenfor h > 0 and n = [Tjh], 

P{M,,(nh) =::;; uk> k = 1, ... , p} - P"{M,,(h) =::;; u", k = 1, ... , p} -. O. 

PROOF. This corresponds to (11.1.6) in the proof of Theorem 11.1.5, and is 
proved by similar means. It is only the relation 

p{e"Uq) =::;; u",jqE rV1 Ir , k = 1, ... , p} 
.. - n p{e"Uq) =::;; u",jq E I r , k = 1, ... , p} -.0, (11.2.4) 

r= 1 

corresponding to Lemma 11.1.3(i), that has to be given a different proof. 
Identifyinge1,"" e .. in Corollary 4.2.2 with el(jq), ... , ep(jq),jqEU~=l I r , 

and '11> ••. , '1 .. , analogously, but with variables from different Ir-intervals 
independent, (4.2.6) gives, since sup 1 rt.l(t) 1 =::;; 1, for k =1= 1 and max" SUPt~& r,,(t) 
< 1, 

Ip{ et.Uq) =::;; u",jq E r01 Ir, k = 1, ... , p} 
- Jjl p{e"Uq) =::;; ut.,jq E Ir , k = 1, ... , p} I 

=::;; K t 'L* Ir,,«i - j)q)1 exp{- 1 + 1 ~~ _ ') )I} 
"=1 i<J r" z }q 

+ K 'L 'L* Ir",«i - j)q) 1 exp{- 1 + 1 ~:. _ ~ )I} 
1 !i>"*'!i>p i<j r", z } q 

(11.2.5) 
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where L* as before indicates that the sum is taken over i,j such that iq andjq 
belong to different I r • Since both rk(t) log t -+ 0, r",(t) log t -+ 0 and 
sup I r",(t) I < 1 we can, as in Lemma 8.1.1(ii), conclude that both sums in 
(11.2.5) tend to zero. 0 

Lemma 11.2.2. Ifr", r", satisfy (11.2.1) and (11.2.3),for 1 ~ k, I ~ p, 

(i) P{M,,(h) > 14k' M,(h) > u,} = o(p" + Ill) for k :f. I, 

and 

(ii) P{M,,(h) ~ u", k = 1, ... , p} = 1 - "t1 P{Mk(h) > 14k} + O(tlll"). 

PROOF. (i) As in the proof of Lemma 11.1.4 it is enough to prove that, if q -+ 0 
so that u"q '" u,q -+ 0 sufficiently slowly, 

p{ max e"Uq) > Uk' max e,Uq) > ul } = o(p" + Il,)· 
OSjqSh OSjqSh 

Since, for r = k, I, 

p{ max erUq) > ur} = O(Pr), 
OSjqSh 

and therefore 

p{ max e"Uq) > u,,}p{ max e,Uq) > u,} = O(P"Il,) 
OSjqSh OSjqsh 

= o(p" + Il,), 
it clearly suffices to prove that 

p{ max e"Uq) > u", max e,Uq) > U,} 
OSjqSh OSjqSh 

- p{ max ekUq) > u,,}p{ max e,Uq) > U,} 
OSjqSh OSjqSh 

(11.2.6) 

To estimate the difference we again use Corollary 4.2.2 with A 1 defined by 
rk> r" and r"" and A 0 obtained by taking r", identically zero for k :f. l. Ele­
mentary calculations show that the difference in (11.2.6) equals 

p{ max e"Uq) ~ u", max e,Uq) ~ U,} 
OSjqSh OSjqSh 

- p{ max e"Uq) ~ u,,}p{ max e,uq) ~ U,}, 
OSjqSh OSjqSh 
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which by Corollary 4.2.2 is bounded in modulus by 

K .L. Ir",«i - J)q) 1(1 - r~,«i - j)q»-1/2. exp{- 1 + I ~(~ _ ) )I} 
OSlq,}qSh rkl' J q 

(11.2.7) 

with U = min(u", U,), 
Now, by (11.2.3), sup 1 rkl(t) 1 = 1 - () for some () > 0, and using this, we 

can bound (11.2.7) by 

Kh2 -2 ( u2 ) Kh2 ¢(u) ( )-2 2 {2 () } 
q exp - 1 + 1 _ () = J.lk + J.l1 uq U exp - u . 2(2 _ (» 

x (J.lk + J.l,) = O(J.lk + J.l1) 

if uq --+ 0 sufficiently slowly, since ¢(u)/(J.lk + J.l,) is bounded. 
(ii) This follows immediately from part (i) and the inequality 

p 

L P{Mk(h) > Uk} - L P{Mk(h) > Uk' M,(h) > u,} 
k=l lSk<lsp 

Reasoning as in the proof of Theorem 8.2.5, and using Lemma 11.2.1 and 
Lemma 11.2.2(ii) we get the following result. 

Theorem 11.2.3. Let Uk = uk(T) --+ 00 as T --+ 00, so that 

TJ.lk = 2T lYi exp( - uf/2) --+ tk > 0, 1 ~ k ~ p, 
1t ' 

and suppose that the jointly stationary normal processes ~k(t) satisfy (11.2.1)­
(11.2.3). Then 

P{Mk(T) ~ Uk' k = 1, ... , p} --+ exp ( - kt1 tk) 
as T --+ 00. 

Under the same conditions as in Theorem 11.2.3, the time-normalized 
point processes of upcrossings of one or several levels tend jointly in distribu­
tion to p independent, binomially thinned, Poisson processes. Similarly, 
under the conditions of Theorem 9.5.2, the point processes of normalized 
local maxima converge to p independent Poisson processes in the plane. 
We shall state the latter result as a theorem, leaving its proof, and the former 
result, to the reader. 

For k = 1, ... ,p, suppose that ~k(t) has local maxima at the points 
s~) < 0 ~ S~k) < s~) < "', and let N~. T be the point process (Slk) IT, 
aT(~k(slk» - bT,k) of normalized local maxima. 
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Theorem 11.2.4. Suppose the standardized stationary normal processes 
{~l(t)}, ... , {~it)} have continuously differentiable sample paths, and are 
twice differentiable in quadratic mean, and suppose that the covariance and 
crosscovariance functions rt(t) and rk,(t) satisfy (11.2.1)-(11.2.3). Then the 
point processes N'l. T, .•• , N~. T of normalized maxima are asymptotically 
independent and each converges to a Poisson process on (0, (0) x R with 
intensity measure dt x e- x dx as T -+ 00, as in Theorem 9.5.2. 

We end this chapter with an example which illustrates the extraordinary 
character of extremes in normal processes. 

Let {( (t)} and {11( t)} be independent standardized normal processes whose 
covariance functions r, and r~ satisfy (8.1.1) and (8.1.2), let Ct, k = 1, ... , p, 
satisfying ICtl < 1, and Ck "# C" k "# I, be constants, and define 

~k(t) = Ck(t) + (1 - cf)l/211(t). 

Then the processes ~k(t), k = 1, ... , p are jointly normal and their covariance 
functions rk(t) and crosscovariance functions 

rk,(t) = ckc,r,(t) + (1 - cf)l/2(1 - cr)l/2r~(t) 

satisfy (11.2.1)-(11.2.3). Thus, even though ~ 1 (t), ... ,~p(t) are linearly 
dependent, their maxima are asymptotically independent. 

We can illustrate this geometrically by representing «((t), l1(t» by a point 
moving randomly in the plane. The upcrossings of a level Uk by ~k(t) then 
correspond to outcrossings of the line 

Ck X + (1 - cf)l /2y = Uk 

by mt), l1(t», as illustrated in Figure 11.2.1. The times of these outcrossings 
form asymptotically independent Poisson processes when suitably normal­
ized if Tllk -+ 't"k > O. 

y 

Figure 11.2.1. Outcrossings of straight lines Lk by a bivariate normal process (e 1 (t), e 2( t ». 



CHAPTER 12 

Maxima and Crossings of 
N ondifferentiable Normal Processes 

The basic assumption of the previous chapters has been that the covariance 
function r(-r) of the stationary normal process ~(t) has an expansion r(r) = 
1 - A,2 t 2/2 + o{ t 2) as t --+ O. In this chapter we shall consider the more 
general class of covariances which have the expansion ret) = 1 - Cltl lZ 

+ o{ I t lIZ) as t --+ 0, where the positive constant ex may be less than 2. This 
includes covariances of the form exp( - It n the case IX = 1 being that of the 
Ornstein-Uhlenbeck process. Since the mean number of upcrossings of 
any level per unit time is infinite when ex < 2, the methods of Chapter 8 do not 
apply in such cases. However, it will be shown by different methods that the 
double exponential limiting law for the maximum still applies with ap­
propriately defined normalizing constants, if (8.1.2) (or a slightly weaker 
version) holds. This, of course, also provides an alternative derivation of the 
results of Chapter 8 wl1en ex = 2. Finally, while clearly no Poisson result is 
possible for upcrossings when ex < 2, it will be seen that Poisson limits may 
be obtained for the related concept of e-upcrossings, defined similarly to the 
e-maxima of Chapter 9. 

12.1. Introduction and Overview of the Main Result 

Throughout the chapter it will be assumed that {~(t)} is a (zero mean and unit 
variance) stationary normal process with covariance function ret) satisfying 

ret) = 1 - Cltl lZ + o(ltltZ) as t --+ 0, (12.1.1) 

where ex is a constant, 0 < ex ~ 2, and C is a positive constant. As noted in 
Chapter 7, this assumption is, in particular, sufficient to guarantee continuity 
of the sample paths of the process, and thus ensure that the maximum 
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M(T) = sup{W); 0 ~ t ~ T} is well defined and finite for each T. Our main 
result (Theorem 12.3.5) is that, under (12.1.1) and the now familiar decay 
condition r(t) log t ~ 0, M(T) has the Type I limiting distribution, viz. 

P{aT(M(T) - bT) ~ x} ~ exp( -e- X ). 

Here the constant aT is the same as in Chapter 8, but the constant bT depends 
on cc 

aT = (2 log T)1/2, 

b _ 1/2 1 
T - (2 log T) + (2 log T)1/2 

x f ~ 0: log log T + IOg(Cl/aHa(2n)-1/22(2-al/2,,)}. 

where H IX is a certain strictly positive constant, (H 1 = 1, H 2 = n - 1/2). 

This remarkable result was first obtained by Pickands (1969a, b), although 
his proofs were not quite complete. Complements and extensions have been 
given by Berman (1971c), Qualls and Watanabe (1972), and Lindgren et ai. 
(1975). While we shall not follow the method of Pickands it does have some 
particularly interesting features in that it uses a generalized notion of up­
crossings which makes it possible to obtain a Poisson type result also for 
0: < 2. Briefly, given an e > 0, the function f(t) is said to have an e-upcrossing 
of the level u atto if f(t) ~ u for all t E (to - e, to), and,for all n > O,J(t) > u 
for some t E (to, to + 1]). Clearly, this is equivalent to requiring that it has a 
(nonstrict or strict) upcrossing there, and furthermore f(t) ~ u for all t in 
(to - e, to). An e-upcrossing is always an upcrossing, while obviously an 
upcrossing need not be an e-upcrossing. Clearly the number of e-upcrossings 
in, say, a unit interval is bounded (by lie) and hence certainly has a finite 
mean. Even if this mean cannot be calculated as easily as the mean number 
of ordinary upcrossings, its limiting form for large u has a simple relation to 
the extremal results for M(T). In particular, as we shall see, it does not depend 
on the e chosen. As noted we shall not use e-upcrossings in our main result, 
but will show (in Section 12.4) how Poisson results may be obtained for them. 

The main complication in the derivation of the main result, as compared 
with the case 0: = 2, concerns the tail distribution of M(h) for h fixed, which 
cannot be approximated by the tail distribution of the simple cosine process 
if 0: < 2. Our proof is organized in a number of parts, and it may be useful to 
get a "bird's-eye view" from the following summary of the main steps. 

1. Find the tail of the distribution of max {~(jq); j = 0, ... , n - I} for a 
fixed n: 

p{ max ~(jq) > u} '" </J(u) C 1/"H,.(n, a) 
OSj<n U 

as u ~ 00, q ~ 0, q '" au- 2 /", a> 0 and n fixed; H,.(n, a) a constant 
(Lemma 12.2.3). 
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2. Find the tail of the distribution of max {eUq); 0 ::::;; jq ::::;; h} for a fixed 
h > 0: 

where 

as n -+ 00 (Lemma 12.2.4). 

3. Approximate SUPO,;t,;h ~(t) by maxO,;jq,;h ~Uq) for fixed h: 

1 { aP } lim sup 2/l%tjJ( )/ P max ~Uq) < u - -, sup W) > u -+ 0 
u .... oo U U U O,;jq,;h u O,;t,;h 

as a -+ 0 (Lemma 12.2.5) 

and 

lim sup 2/1%;()/ p{u - aP < max eUq) ::::;; u} -+ 0 as a -+ 0 
u .... oo U U U U O,;jq,;h 

(Lemma 12.2.6). 

4. Find the tail distribution ofsuPo,;,,;h ~(t) for a fixed h: 

(Theorem 12.2.9), where 

HI% = lim Hia) > 0 
a"" 0 

(Lemmas 12.2.7 and 12.2.8). 

5. Once the tail distribution and its discrete approximation are obtained, 
continue as in Chapter 8 to prove asymptotic independence of maxima 
in disjoint intervals under suitable covariance conditions, e.g. r(t) log t -+ O. 

12.2. Maxima Over Finite Intervals 

We start the derivation with a general result, of some interest in its own right, 
giving an estimate of the probability of a large deviation. This is a special 
case of a result announced by Fernique (1964), a proof having been given by 
Marcus (1970). 
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Lemma 12.2.1. If {~(t); 0::5 t::5 I} is a normal process with mean zero, 
Var(~(O» = (12 ~ 0, such that 

E«~(s) - ~(t»2) ::5 CI t - S IIX (12.2.1) 

for some IX, 0 < IX ::5 2, then there exists a constant CIX > 0, only depending on IX, 

such that for all x, 

pt~~~1 ~(t) > x} ::5 4 exp ( - C~2) +! exp ( - ::2). 
If (12 = 0 the last term is zero. 

PROOF. The idea of the proof is to express all t E [0, 1] in dyadic form, 
t = a12-1 + a22-2 + "', with ak = 0, 1, and then write 

~(t) = ~(O) + (~(alrl) - ~(O» + (~(alrl + a22-2) - ~(aI2-1» + ... 
(12.2.2) 

and construct bounds for each of the terms in this telescoping sum. Define 
for p = 0, 1, ... ; k = 0, 1, ... , 2P - 1, 

C(k, p) = 1~(k2-P + 2- p - 1) - ~(k2-P)I, 

and note that since ~(t) is normal with mean zero, 

p{ C(k, p) } 2 SOO .I..(y) d -",2/2" 0 
E(C(k, p)2)1/2 ~ x = '" 'I' Y ::5 e lor x ~ . 

Now, let P > 0 and introduce the event 

A = pQo tS~~~-l E(,i~~~~~)1/2 ~ (2P(P + 1»1/2}-

If P > log 2, Boole's inequality, together with (12.2.3) implies 

00 2P -l { C(k ) } 
P(A) ::5 p~o k~O P E(C(k, ~~2)1/2 ~ (2P(P + 1»1/2 

< ~ p -P(P+l) _ e- P 

- L" 2 e - 1 -(P-iog2), 
p=O - e 

so that if P > 2 log 2, then P(A) ::5 2 exp( - P), so that 

P(A) ::5 4e- P• 

(12.2.3) 

(12.2.4) 

But for P ::5 2 log 2 this holds trivially (since P(A) ::5 1) and we can therefore 
use (12.2.4) for all values of P ~ O. 

Next, note that on the complementary event AC, 

I C(k, p) I ::5 E(C(k, p)2)1/2 . (2P(P + 1»1/2 

for p = 0, 1, ... ; k = 0, 1, ... , 2P - 1, and that (12.2.1) implies that 

E(C(k, p)2) ::5 C2-(p+l)lX. 
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Thus, by (12.2.2) we conclude that on AC, 

le(t) - e(O) I :::;; I C1/22-(P+1)f7./2(2P{p + 1»1/2 = (PC)1/2, say, 
p=O 4cf7. 

and that consequently, by (12.2.4), 

p{ sup le(t) - e(O) I > (4PC)1/2} :::;; 4e- fl• 
0:S1:S1 Cf7. 

The conclusion of the lemma now follows by choosing P = cf7.x2/C, since 

p{ sup e(t) > x} :::;; p{ sup I e(t) - e(O) I > ~} + p{e(o) > ~} 
0:S1:S1 0:S1:s1 

( 
C X2) (X2) :::;; 4 exp - f7.C + ! exp - 80'2 ' 

using the inequality in (12.2.3). o 

With this result out of the way we return to the process {e(t)} with mean 
zero, variance one, and covariance function r(t). When considering the 
distribution of continuous or discrete maxima like sUPO:SI:Sh e(t) and 
maxO:Sjq:Sh eUq) for small values of h, it is natural to condition on the value 
of e(O). In fact, the local behaviour (12.1.1) of r(t) is reflected in the local 
variation of W) around e(O). For normal processes this involves no difficulty 
of definition if one considers W) only at a finite number of points, say 
t = tj,j = 1, ... , n, since conditional probabilities are then defined in terms 
of ratios of density functions (cf. Section 7.5). Thus we can write, with to = 0, 

pt=~~~.ne(t):::;; u} = foofjJ(X)pt=n:~~.}(tj):::;; ule(O) = X}dX, 

where the conditional probability can be expressed by means of a (con­
ditional) normal density function (cf. Chapter 10). In particular, the con­
ditional probability is determined by conditional means and covariances. 

For maxima over an interval we have, e.g. with tj = hj2-",j = 0, ... ,2", 

p{ sup e(t) :::;; u} = lim p{max e(tj) :::;; u}, 
o :S1:sh " ... 00 Ij 

which by dominated convergence equals 

fu fjJ(x) lim p{max W) :::;; ule(O) = x} dx. 
-00 n-+c:o tJ 

Now, if the conditional means and covariances of e(t) given e(O) are such 
that the normal process they define is continuous, we define 

p{ sup W) :::;; ule(O) = x} 
O:SI:Sh 
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to be the probability that, in a continuous normal process with mean 
E(~(t) I ~(O) = x) and covariance function Cov(~(s), ~(t) I ~(O) = x), the 
maximum does not exceed u. Then clearly 

lim p{max W j ):$ ul~(O) = x} = p{ sup ~(t) :$ ul~(O) = x}, 
n"'oo tj O,.;;t,.;;h 

so that 

p{ sup ~(t) :$ u} = JU 4>(X)p{ sup ~(t) :$ ul~(O) = x} dx. 
O,.;;t,.;;h -00 O,.;;t,.;;h 

In the applications below, the conditional distributions define a continuous 
process, and we shall without further comment use relations like this. 

To obtain nontrivial limits as u - 00 we introduce the rescaled process 

~uCt) = u(~(tq) - u), 

where we shall let q tend to zero as u - 00. Here we have to be a little more 
specific about this convergence than in Chapter 8, and shall assume that 
u2 /"q _ a > 0, and let a tend to zero at a later stage. 

Lemma 12.2.2. Suppose u - 00, q - 0 so that u2/"q _ a > O. Then 

(i) the conditional distributions of ~uCt) given that ~uCO) = x, are normal with 

E(~u(t)I~uCO) = x) = x - Ca"ltl"(1 + 0(1», 

Cov(~u(s), ~u(t)l~u(O) = x) = Ca"(lsl" + Itl" - It - sl") + 0(1) 

where for fixed x the 0(1) are uniform for max( I s I, I t I) :$ to, for all 
to> 0, 

(ii) for all to > 0 there is a constant K, not depending on a or x, such thatJor 
lsi, It I :$ to, 

VarGu(s) - ~uCt)l~uCO) = x):$ Ka"lt - sl". 

PROOF. (i) Since the process {~u(t)} is normal with mean _u2 and covariance 
function 

Cov(~u(s), ~uCt» = u2r«t - s)q) 

we obtain (see, for example, Rao (1973, p. 522» that the conditional distribu­
tions are normal with 

1 
E(~uCt)1 ~u(O) = x) = _u2 + u2r(tq). 2: (x + u2) 

U 

= _u2 + (1 - Cq"ltl" + Itl"o(q"»(x + u2 ) 

= X - (x + u2)(Cq"ltl" + Itl"o(q"» 

= x - Ca"ltl"(l + 0(1» as q - 0, 
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since u2q(l -+ a(l > 0 and x is fixed. Furthermore, 

Cov(¢u(s), ¢uCt)l¢u(O) = x) = u2(r«t - s)q) - r(sq)r(tq» 

= u2(1 - Cq(llt - sl(l - (1 - Cq(llsl") 

x (1 - Cq(lltl(l) + o(q"» 

= Ca"(lsl" + Itl" - It - sl") + 0(1), 

uniformly for max(lsl, Itl) ~ to. 
(ii) Since ¢u(s) - ~u(t) and ¢JO) are normal with variances 2u2(1 -

r«t - s)q» and u2 , respectively, and covariance u2(r(sq) - r(tq», we have, 
for some constant K, 

Var(~uCs) - ~u(t) I ¢u(O) = x) = 2u2(1 - r«t - s)q» - u2(r(sq) - r(tq»2 

~ 2Cu2q"lt - sl" + 0(u2q"lt - sl") 

~ Ka"lt - sl", 

for I s I, I t I ~ to· D 

The first step in the derivation of the tail distribution of M(h) = 
sup{¢(t); 0 ~ t ~ h} is to consider the maximum taken over a fixed number 
of points, 0, q, ... , (n - 1 )q. 

Lemma 12.2.3. For each C there is a constant Hin, a) < 00 such that, if 
u -+ 00, q -+ 0, u2/"q -+ a > 0, then 

,/,.(1)/ p{ m~x ¢Uq) > u} -+ C1/"Hin, a). 
't' u U O:5,)<n 

PROOF. We have 

p{ m~x ¢Uq) > u} = p{ m~x ¢uu) > o} 
O:5,)<n O:5,)<n 

= P{¢u(O) > O} + p{¢uCO) ~ 0, max ¢uU) > o}, 
O<j<n 

where P{¢u(O) > O} = P{¢(O) > u} = 1 - <D(u) '" ¢(u)/u. Since, furthermore, 
~u(O) is normal with mean _u2 and variance u2 , we have 

p{¢uCO) ~ 0, m~x ¢uU) > o} 
O<)<n 

= fO ~ ¢(u + ~)p{ max ¢uU) > 0 I ¢u(O) = x} dx 
-00 u U O<)<n 

= ¢(u) fO exp(-x _ X22)P{ m~x (¢uU) - x) > -xl¢u(O) = X}dX. 
u - 00 2u O<)<n 

(12.2.5) 
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By Lemma 12.2.2(i), for any fixed x, 

E(eIlW - xlell(O) = x) -+ -Ca"'ljl"', 

Cov(eU<i) - x, ellw - xleu<O) = x) -+ Ca"'WI'" + iii'" - Ii - jl"') 

as q -+ O. Since limits of covariances are covariances, one can define normal 
r.v.'s, Y.,W,O <j < n, with means and covariances depending on a = lim qu2/"', 

E(Y.,W) = -Ca"'lil"', 

Cov(y"(i), Y.,W) = Ca"'WI'" + iii'" - Ii - jl",). 

Now convergence of moments implies convergence in distribution for jointly 
normal r.v.'s (as can easily be seen, e.g. using characteristic functions). If 
A = (-x, (0), (with boundary oA = {-x}), then clearly 

p{max Y.,U)EOA} ::;;nfp{Y.,w = -x} 
O<j<n )=1 

which is zero since the one-dimensional distributions of Y.,(1), ... , Y.,(n - 1) 
are all continuous. 

It follows that 

p{ m~x (euU) - x) > -xl ell(O) = x} -+ p{ max Y.,U) > -x}. 
O<J<n O<)<n 

To be able to use the dominated convergence theorem in (12.2.5) we note 
that, by Lemma 12.2.2(i) for x < 0 

p{ max (ellW - x) > -xlell(O) = x} 
O<j<n 

n 

::;; L PgllW - X > -x I ell(O) = x} 
j= 1 

"I,.(c' c"x) 
::;; n(l - Cll(c' - c"x» ::;; n ..:....'1'-'-:------:::---'­

c' - c"x 

for some constants c', c" > o. This shows that the convergence in (12.2.5) is 
dominated, and we obtain 

,,1,.(1)/ p{ m~x eUq) > u} -+ 1 + fO e-xp{ m~x Y.,W > -x} dx < 00, 
'I' U U OSJ<n -00 O<J<n 

which proves the existence and finiteness of the constant H",(n, a). 0 

For future use we note the following expression for the constant H",(n, a): 

H",(n, a) = C- 1/"'(1 + fO e-xp{ m~x Y.,W > -x} dX). (12.2.6) 
-00 O<J<n 
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Lemma 12.2.4. Suppose u -+ 00, q -+ 0, U2/~q -+ a> 0, and take h such that 
sUPe:s;t:S;h ret) < 1 for all E > 0. Then,for each e, 
(i) there is a constant H~(a) < 00 such that 

and 

H~(n, a) -+ Hia) 
na 

(ii) Hiao) > ° for some ao > 0. 

as n -+ 00, 

PROOF. (i) Let n be a fixed integer, write m = [h/nqJ, and 

Br = { max eUq) > u}. 
rn:s;j«r+ l)n 

Then 

PCV:Br) ~ pt~!~heUq) > u} ~ p(9oBJ 
where, by Lemma 12.2.3, 

p(9o Br) ~ (m + l)P(Bo) '" (m + 1) ¢~U) el/~H~(n, a) 

'" hu2/" ¢(u) e1/IX.HaCn, a) 
na u 

since l/q '" u2/~/a by assumption. Hence 

. 1 { } 1/ H~(n, a) 
bm sup 2/~¢( )/ P max eUq) > u ~ he ~ < 00. 

U"'oo u u u 0 :S;jq:s;h na 

Furthermore 

m-l 

~ mP(Bo) - m L P(Bo Il Br) 
r= 1 

so that 

lim inf 2/~ 1 p(T/ Br) ~ he1/~ H~(n, a) 
u'" 00 u ¢(u)/u r= 0 na 

(12.2.7) 

1 m-l 

- lim sup 2/~¢()/ m L P(Bo Il Br) 
u"'oo u u U r= 1 

= he1/~ Hin, a) _ 
Pn' say. 

na 
(12.2.8) 
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We shall now show that 

1 m-1 

Pn = lim sup 2/fLcfJ( )/ m L P(Bo n B,) --+ 0 as n --+ 00. (12.2.9) 
II~OO u u U ,=1 

By Boole's inequality and stationarity 

m~t:p(Bo n B,) = m~t:pCY<n 'n~;jlt+1)}Wq) > u, eUq) > U}) 
n-1 mn 

~ m L LP{Wq) > u, eUq) > u} 
i=O j=n 

n 

~ m LjP{e(O) > u, eUq) > u} 
j= 1 

mn 

+ mn L p{e(O) > u, eUq) > u}. 
j=n+1 

(12.2.10) 

To estimate these sums we use different techniques for small and large values 
of jq. Let e > 0 be such that 

C 
1 ~ 1 - ret) ~ "2ltlfL for It I ~ 6. 

Assume jq ~ e, and write r = rUq). Since the conditional distribution of 
eUq) given e(O) = x, is normal with mean rx and variance 1 - r2, 

p{e(O) > u, eUq) > u} = 100 cfJ(x)p{eUq) > ule(O) = x} dx 

= l°OcfJ(X)(l - <D(Ji=;)) dx 

= [-(1- <D(x» (1 - <D(p))]~=u 
+ foo (1 - <D(x» n cfJ(Ji=;) dx 

II 1 - r 1 - r 

~ (1 - <D(u» (1 - <D(uJ~ ~ :)) 

+ 100

(1 - <D(u» n cfJ(Jr=;) dx 

= 2(1 - <D(u» (1 - <D(uJ~ ~ ~)) 

~ 2 cfJ~U) (1 - <D(uJ~ ~ ~)). (12.2.11) 
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Here, 

1 - r 1 - r(jq) > C I' lIZ K:tz IZ - 2 
1 + r = -l-+-r(j:::"';'q"'-) - "4]q ~ J au, (12.2.12) 

for some constant K > 0, and thus if nq =s;; 8, 

n 

m L jP{~(O) > u, ~Uq) > u} 
j=l ' 

=s;; 2m f j 4J(u) (1 - (f)(jKj«alZ» 
j=l u 

'" 2h 4J(u) .! f j(l - (f)(jKj«alZ» 
q u n j= 1 

=s;; U2/1Z4J(U) . K'h! t j(l - (f)(jKj«alZ» 
u a n j=l 

(12.2.13) 

for some (generic) constant K'. Since 1 - cI>(x) =s;; 4J(x)/x the sum 

00 

L j(l - (f)(j Kj«alZ» 
j= 1 

is convergent, and since nq -+ 0 as u -+ 00 (n fixed) 

For the second sum in (12.2.10) we get, again using (12.2.11) and (12.2.12), 
as n -+ 00, 

[e/q] K' h U 2/1Z4J(U) 00 

mn L Pg(O) > u, ~Uq) > u} =s;; ~ L (1 - (f)(jKj«alZ», 
j=n+ 1 qu U j=n+ 1 

(12.2.15) 

where the sum is convergent. For terms withjq ~ 8 we use the estimate from 
Corollary 4.2.2, (using ~ = sUPe~;t!>h I r(t) I < 1), 

P{~(O) > u, ~Uq) > u} =s;; (1 - cI>(U»2 + K' exp ( - 1 + uI
2
r(jq) I)' 

which implies that 
mn 

mn L P{~(O) > u, ~Uq) > u} 
j= [e/q] + 1 

( h)2 K'h (u2 ) =s;; - (1 - cI>(U»2 + - ~ exp - 1 I U )1 . 
q q e<Jq~h + r q 
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Since again 15 < 1, this is bounded by 

h2 (l _ <l>(U»2 + K'h2 exp(-~) 
q2 q2 1 + 15 

= K'--exp --.-- + 0(1) u2 /acjJ(u) ( U (UZ 1 - b) ) 
u U2/aq2 2 1 + 15 

u2/acjJ(u) 
= . 0(1) as u -+ 00, (12.2.16) 

u 

since u/(u2/l1.qZ) '" U1+2/I1./a2. 
Together, (12.2.15) and (12.2.16) imply that 

1 mn 

li~ .... ~p u2/l1.cjJ(u)/u mnj=~+/{~(O) > u, ~Uq) > u} 

00 

= K' I (1 - <l>(JK/'"al1.» -+ 0 as n -+ 00, 
j=n+ 1 

and combining this with (12.2.14) and (12.2.10) we obtain (12.2.9). 
Thus we have shown that 

1/17. HaCn, a) 1·' f 1 { i«' ) } hC· - Pn:S; 1m In 2/l1.cjJ()/ P max.,,]q > u 
na u .... oo u u u 05,jq5,h 

:s; lim sup 2/11.;( )/ p{ max ~Uq) > u} 
u .... oo U U U 05,jq:sh 

< hC1/11. • HaCn, a) 
- , 

na 

where Pn -+ 0 as n --+ 00. Since Bin, a) < 00 for all n, and the-lim inf and 
lim sup do not depend on n, this implies the existence of 

1· HaCn, a) - H ( ) 1m - 11. a, 
n .... oo na 

which is then the joint value of lim inf and lim sup. Furthermore this proves 
that HI7.(a) < 00. 

(ii) Again take e > 0 small enough to make (12.1.2) hold for !jq I :s; e. 
Applying (12.2.11) we obtain for Ihl :s; e, 

p{ max ~Uq) > u} 
O:Sjq:sh 

2 [h/q]P{~(O) > u} - [h/q] I P{~(O) > u, ~Uq) > u} 
O<.iq:Sh 

~ [h/q] (1 - <l>(u» - 2[h/q] I cjJ(u) (1 - <l>(u ~ - ~~q~)) 
O<jq:Sh U + r ]q 

¢(u) ( lhlq) + 1 ) 
2 [h/q] -u- 1 + 0(1) - 2 J1 (1 - <l>(JK/'"al7.» . 
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But [h/q] - (h/a)u 2 /1Z, and 
[h/q] + 1 <Xl 

L (1 - W(JKla lZ» =:;; L (l - W(JKlal1.» 
j= 1 j= 1 

<Xl 4J(JKlal1.) 
=:;; L - 0 as a - 00, 

j=1 JKlaf1. 

and hence there is then certainly one ao that makes the sum less than 1/2, 
giving P{maXOSjqSh ~Uq) > u} ~ YfU2/11.4J(u)/u for some Yf > 0, from which 
(ii) clearly follows. 0 

The following three lemmas relate the continuous maximum sUPOStSh ~(t) 
to the discrete one maXOSjqSh ~Uq). We first prove that we can neglect the 
probability that the discrete maximum is less than u - y/u and the continuous 
is greater than u, as y = afJ - O. 

Lemma 12.2.5. Let u - 00, q - 0, u2/f1.q _ a > 0, and let y = afJ for some 
positive constant P < rt./2. Then 

Va = lim sup 2/11.;( )/ p{ max ~Uq) =:;; u _1:', sup ~(t) > u} - 0 
II-+<Xl U U U OSjqSh U OStSh 

PROOF. By Boole's inequality and stationarity 

p{ max ~Uq) =:;; u - l, sup~(t) > u} 
OSjqsh U OStSh 

asa - O. 

=:;; ([h/q] + 1) P{~(O) =:;; u - l, sup ~(t) > u}, 
U OStSq 

and with ~u(s) = u(~(sq) - u), we can write 

P{~(O) =:;; u - l, sup ~(t) > u} 
u OStSq 

= p{~u(O) =:;; -y, sup ~u(s) > o} 
OS.SI 

= 1-1 ~4J(u + ~)p{ sup ~u(s) > OI~u(O) = Y}dY. 
Y=-<Xl u u Os.SI 

By Lemma 12.2.2(i), the conditional distributions of ~u(s) given ~u(O) = Y 
are normal with mean 

J1.(s) = Y - Caf1.lsla{l + 0(1» as q - 0 

with the 0(1) uniform in lsi =:;; 1. Here J1.(s) < Y for small q, and 

p{ sup ~II(S) > OI~u(O) = Y} =:;; p{ sup (~u(s) - J1.(s» > -YI~u(O) = y}, 
OS.SI OS.SI 
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where, conditional on ~u(O), ~is) - J.l(s) is a nonstationary normal process 
with mean zero and, by Lemma 12.2.2(ii), incremental variance 

Var(~u(s) - ~it)l~iO) = y) ~ Ka"lt - sl", 

for some constant K which is independent of a and y. Fernique's lemma 
(Lemma 12.2.1) implies that, with c = cJK, 

pL~~~l (Us) - J.l(s» > -yl~iO) = y} ~ 4exp(-ca-"y2), 

and thus, using K and c as generic constants, 

1 { . y } 2/",I..()/ P max ~(Jq) ~ u - -, sup ~(t) > u 
u 'I' U U OSjqSh U OStSh 

Kh f- Y 
( ) ~ qu2/!l¢(u) -oo¢ u + ~ .exp(-ca-"y2)dy 

K f- Y 
~ ~ exp( _ca- Ily2) dy 

qu -00 

'" Ka!l/2-1<ll( -caP-"/2). 

Clearly, this tends to zero as a ~ 0, since P < a/2, which proves the lemma. 
o 

Lemma 12.2.6. If u ~ 00, q -. 0, U2/Ilq -. a > 0, and y = aP for some constant 
P > 0, then, with h as in Lemma 12.2.4, 

lim 2/";( )/ p{u - Z < max ~Uq) ~ u} = h(eY - I)C 1/"H,,(a). 
u-+oo u u u U OSjqsh 

PROOF. Since u2/"q -. a> ° implies (u - Y/U)2/Ilq ~ a, and since furthermore 

( u _ Z)2/" ¢(u - y/u) '" eY u2/"¢(u) 
u u - y/u u 

as u -. 00, it follows from Lemma 12.2.4(i) that 

1 {y .} 2/",1..( )/ p u - - < max ~(Jq) ~ u 
u 'I' U U U OSjqsh 

= 2/,,;( )/ (p{ m~x ~Uq) > u - Z} - p{ max ~Uq) > u}) 
u u U Os)qsh U OSjqSh 

o 
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Lemma 12.2.7. Under the conditions of Lemma 12.2.4, 

(i) hCl/a.Hia) :s; lim inf 2/a.;( )/ p{ sup ~(t) > u} 
u->oo u u U OStSh 

(ii) 

:s; lim sup 2/a.;( )/ p{ sup ~(t) > u} 
u->oo U U U OStSh 

:s; Va + h(eY - l)Cl/a.Hia) + hCl/a.Hia) < 00, 

for y = aP, where, by Lemma 12.2.5, Va -+ 0 as a -+ 0, 

lim Hia) = Ha.' say 
a->O 

exists finite, and 

2/a.;( )/ p{ sup ~(t) > U} -+ hCl/a.Ha., 
U U U OStSh 

(iii) Ha. is independent of C. 

PROOF. Since 

pt~j!~h~(jq) > u}:s; ptss~~h~(t) > u} 

(12.2.17) 

(12.2.18) 

:s; p{ max ~(jq) :s; u - E, sup ~(t) > u} 
OSjqSh U OStSh 

+ p{u - E < max ~(jq) :s; u} 
u OSjqSh 

+ pt~~~h~(jq) > u} 
part (i) follows directly from Lemmas 12.2.4, 12.2.5, and 12.2.6. 

Further, the middle limits in (12.2.17) are independent of a, and it follows 
that lim sUPa->O Hia) < 00. Therefore 

h(eY - 1)Cl/a.Hia) -+ 0 

as a -+ 0, and since Va -+ 0 it follows as in the proof of Lemma 12.2.4(i) 
that lima->o Hia) exists, finite and (12.2.18) holds. 

For part (iii), note that if ~(t) satisfies (12.1.1) then the covariance function 
r(r) of e(t) = W/Cl/a.) satisfies 

f(r) = 1 - Irla. + 0(1 ria.) as r -+ O. 

Furthermore, 

2/a.;( )/ p{ sup ~(t) > u} = 2/a.;( )/ p{ sup ~(t) > u}, 
u u U OStSh U U U OStShCl/~ 

which by (ii) shows that H a. does not depend on C. o 
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One immediate consequence of (12.2.18) and Lemma 12.2.4(i) is that 

lim sup 21";( )/ p{ max !;Uq) ~ u, sup !;(t) > u} 
" .... 00 U U U OSjqsh OStSh 

= lim sup ( 21";( )/ p{ sup !;(t) > u} 
" .... 00 u u U OStSh 

- 21";()/ p{ m~x !;Uq) > u}) u u U OS}qSh 
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(12.2.19) 

Of course, (12.2.18) has its main interest if H" > 0, but to prove this requires 
a little further work as follows. 

Lemma 12.2.8. H" > O. 

PROOF. We have from Lemma 12.2.4(i) and (ii) that there is an ao > 0 such 
that 

H ( ) - I' H,,(n, ao) 0 
"ao - 1m > . 

n .... oo nao 

Let the y"U) be as in the proof of Lemma 12.2.3, i.e. normal with mean 
-Ca"UI" and covariances Ca"(liI" + UI" - U - il"). Then we have from 
(12.2.6), 

C1/"H,.(n, a) = 1 + fO e-xp{ m~x Y"U) > -x} dx, 
-00 O<}<n 

C1/"H,,(nk, a) = 1 + fO e-xp{ m~x y"U) > -x} dx, 
-00 O<}<nk 

C1/"H,.(n, ak) = 1 + fO e-xp{ m~x YakU) > -x} dx. 
-00 O<}<n 

Here Y"Uk), j = 1, ... , n have the same distributions as Y"kU),j = 1, ... , n, 
which implies 

H,,(n, ak) ~ H,,(nk, a) 

for k = 1,2, ... , the r.v.'s in H,,(n, ak) forming a subset of those appearing in 
H,,(nk, a). Thus 

O H ( ) = I' H,,(n, ao) < l' H,,(nk, ao/k) = H ( /k) 
< " ao 1m - 1m k (/k) "ao, 

n .... oo nao n .... oo n . ao 

and since H,.(ao/k) -+ H" as k -+ 00, the lemma follows. o 
By combining Lemmas 12.2.7 and 12.2.8 we obtain the tail ofthe distribu­

tion of the maximum M(h) = sup{!;(t); 0 ~ t ~ h} over a fixed interval. 
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Theorem 12.2.9. If r(t) satisfies (12.1.1), then for each fixed h > 0 such that 
sUPe:St:Sh r(t) = be < 1 for all s > 0, 

1· 1 1/ 
u:~ U2Iacp(U)/U P{M(h) > U} = he aHa' 

where Ha > 0 is a finite constant depending only on Ct. 

Remark 12.2.10. In the proof of Theorem 12.2.9 we obtained the existence 
of the constant H a by rather tricky estimates, starting with 

H,,(n,a) = e- I/a (1 + fO e-xp{ m~xy"(j) > -X}dX). 
-00 O:s):Sn 

By pursuing these estimates further one can obtain a related expression 
for H a , 

Ha = lim T- 1 fO e-xp{ sup Yo(t) > -x} dx, 
T-oo -00 O:St:sT 

where {Yo(t)} is a non stationary normal process with mean - I t la and 
co variances I s I" + I t I" - It - s la. However, this does not seem to be very 
instructive, nor of much help in computing Ha • 

lt should be noted, though, that the proper time-normalization of the 
distribution of M(h) only depends on the covariance function through the 
time-scale ell" and on the constant H<1.. Therefore, if one can find the limiting 
form of the tail of the distribution of M(h) (for some h) for one single process 
satisfying (12.1.1) one also knows the value of H" for that particular 0(. For 
IY. = 2 this is easily done, by considering the simple cosine-process (7.4.3). 

By comparing (7.4.7) and Theorem 12.2.9, we find H2 = l/Jn. 
The only other value of 0( for which the tail of the distribution of M(h) 

has been found is 0( = 1. In fact, explicit expressions for the entire distribution 
of M(h) are known for the normal process with triangular covariance func­
tion r(t) = 1 - Itl, It I ~ 1, see Slepian (1961), and as a result one has 
HI = 1. In particular, this shows that for the Ornstein-Uhlenbeck process, 
with r(t) = exp( -Itl), P{M(h) > u} '" hucp(u). 0 

Before proceeding to the maxima over increasing intervals we formulate 
the following lemma for later reference. 

Lemma 12.2.11. Suppose {~(t)} satisfies (12.1.1), let h > 0 befixed such that 
sUPe:St:Sh r(t) < 1 for all s > 0, and let u -+ 00, q -+ 0, u2111.q -+ a > O. Then 
for every interval I of length h, 

o ~ P{ ~Uq) ~ u, jq E I} - P{M(l) ~ u} ~ JlhPa + o(Jl), 

where Jl = eI/I1.Hl1.u21I1.cp(u)/u, PI1. = 1 - HI1.(a)/HIl. -+ 0 as a -+ 0, and the 
o(Jl)-term is the same for all intervals of length h. 
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PROOF. By stationarity 

o ~ P{~Uq) ~ u,jq E I} - P{M(I) ~ u} 
s Pg(O) > u} + P{~Uq) S u,jq E [0, h]} - P{M(h) s u}, 

where P{~(O) > u} ~ cf>(u)/u = 0(f.1.). Therefore the result is immediate from 
Lemma 12.2.4(i), 

{ } 
hH,.(a) 

f.1.-1p m~x ~Uq) > u = ~ + 0(1), 
OS}qSh '" 

and (12.2.18), 

f.1.-1p{M(h) > u} = h + 0(1). o 

12.3. Maxima Over Increasing Intervals 

The covariance condition (8.1.2), i.e. r(t) log t -+ 0 as t -+ 00, is also sufficient 
to establish the double exponential limit for the maximum M(T) = 
sup{ ~(t); 0 S t S T} in this general case. We then let T -+ 00, U -+ ex) so that 

Tf.1. = TC 1/"'H",u 2/",cf>(u)/u -+ t > 0, 

i.e. TP{M(h) > u} -+ tho Taking logarithms we get 

2 - ct. u2 

log T + log(C*H,.(2n)-1/l) + -ex-log u - 2 -+ log t, 

implying 

u2 '" 2 log T, 

or log u = ! log 2 + ! log log T + 0(1), which gives 

2-ct. 
u2 = 2 log T + --log log T - 2 log r 

ct. 

(12.3.1) 

Lemma 12.3.1. Let E > 0 be given, and suppose (12.1.1) and (8.1.2) both hold. 
Let T", r/f.1. for t > 0 fixed and with f.1. = C1/"'H",u 2/",cf>(u)/u, so that u '" 
(2 log T)1/2 as T -+ 00, and let q -+ 0 as u -+ 00 in such a way that u2/"'q -+ 
a> O. Then 

T {u2 
} - L 1 r(kq) 1 exp - 1 1 (k )1 -+0 as T-+ 00. 

q fSkqsT + r q 
(12.3.2) 

PROOF. This lemma corresponds to Lemma 8.1.1. First, we split the sum in 
(12.3.2) at TP, where f3 is a constant such that 0 < f3 < (1 - (5)/(1 + (5), 
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() = sup{ I r(t) I; t :2:: e} < 1. Then, with the generic constant K, since 
exp( - u2/2) :s;; KIT, u2 '" 2 log T, 

~ £s~Tplr(kq)lexp{-1 +~~kq)I}:S;; T::l exp{-1 :()} 
< K TfJ+ 1- 2/(lH) '" K (log T)2/rzTfJ+1-2/(lH) 
- q2 (U2/rzq)2 

-+ 0 as T-+ 00, 

and u2/rzq -+ a > O. 
With ()(t) = sup{lr(s) log sl; s ~ t}, we have Ir(t)1 :s;; {)(t)!log t as t -+ 00, 

and hence for kq :2:: TfJ, 

{ U2 } {2 ( {)(TfJ»)} 
exp - 1 + I r(kq) I :s;; exp - u 1 - log TP , 

so that the remaining sum is bounded by 

T L I r(kq) I exp{- U2(1 - 1{)(TTfJ)fJ)} 
q TP<kqST og 

:s;; (T)2 exp{-U2(1- {)(TfJ»)}_I_.!i L I r(kq) I log kq. 
q log TfJ log TfJ T TP<kqST 

(12.3.3) 

Since r(t) log t -+ 0, we also have 

!i L lr(kq)llogkq-+O 
T TP<kqST 

as T -+ 00, while for the remaining factor in (12.3.3) we have to use the more 
precise estimate from (12.3.1), 

2-(X 
u2 = 2 log T + --log log T + 0(1). 

(X 

Since {)(t) -+ 0 as t -+ 00, we see that for some constant K > 0, since P < 1, 

exp{ _u2 (1 -1~~TifJ)}:S;; K exp( -u2):s;; KT-2(log T)-(2-rz)/rz. 

Thus, since u2 '" 2 log T and u2/rzq -+ a, 

T L I r(kq) I exp{ _u2 (1 - 1{)(TTfJ)fJ)} 
q T"<kqST og 

:s;; (T)2 T-2(log T)-(2-rz)/rz _1_ 0(1) 
q log TfJ 

= 1 (log T)2/rz(log T)-(2-rz)/rz _1_ 0(1) = 0(1), 
(U2/rzq)2 log TfJ 

and this concludes the proof of the lemma. o 
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We can now proceed along similar lines to the proof of Theorem 8.2.5. 
First, take a fixed h > 0, write n = [T/h], and divide [0, nh] into h intervals 
of length h, and then split each interval into subintervals I k , It of length 
h - e and e, respectively. We then show asymptotic independence of maxima, 
first giving the following lemmas, corresponding to Lemmas 8.2.3 and 8.2.4, 
respectively. 

Lemma 12.3.2. Suppose u -+ 00, q -+ 0, u2/lI.q -+ a> 0, (12.1.1) holds, and 
TJ1. -+ T > O. Then 

(i) li~-+~plp{M(y Ik) ~ u} - P{M(nh) ~ U}I ~ T'~' 

(ii) li~-+~plp{eUq) ~ u,jqE y Ik} - P{M(Y Ik) ~ u}1 ~ TPa, 

where Pa -+ 0 as a -+ O. 

PROOF. Part (i) follows at once from Boole's inequality and Theorem 12.2.9, 
since 

since nJ1. '" TJ1./h -+ T/h. 
Part (ii) follows similarly from Lemma 12.2.11, which implies 

o ~ p{eUq) ~ u,jqe y Ik} - P{M( Y Ik) ~ u} 

~ n max(p{eUq) ~ u,jqeIk} - P{M(lk) ~ u}) 
k 

~ nJ1.(h - e)Pa + no(J1.) -+ T( 1 - ~)Pa ~ TPa, 

where Pa = 1 - HII.(a)/HII. -+ 0 as a -+ O. D 

Lemma 12.3.3. Let r(t) -+ 0 as t -+ 00, and suppose that, as u2/lI.q -+ a > 0, 
(12.3.2) holds for each e > O. Then, as T -+ 00, u2/lI.q -+ a, 

(i) p{eUq) ~ U,jqEU Ik} - np{eUq) ~ u,jqEId -+0, 
t k=t 

(ii) li~-+~upl}j/{eUq) ~ u,jqEId - P"{M(h) ~ U}I ~ T(Pa + ~), 
where Pa -+ 0 as a -+ O. 
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PROOF. The proof of part (i) is identical to that of Lemma 8.2.4(i). As for 
part (ii), 

" " 0:0:;; np{~Uq):O:;; u,jqelk} - n P{M(lk):O:;; u} 
k=l k=l 

-+ t(1 - i)Pa:O:;; tpa 

as in the proof of Lemma 12.3.2(ii), which does not use dependence or 
independence between variables in different intervals. Furthermore, by 
stationarity 

" o :0:;; n P{M(lk) :0:;; u} - pn{M(h) :0:;; u} 
k=l 

= pn{M(ll) :0:;; u} - pn{M(h) :0:;; u} 

:0:;; n(P{M(ll) :0:;; u} - P{M(h) :0:;; un 
D 

Theorem 12.3.4. Let {~(t)} be a stationary normal process with zero mean and 
suppose r(t) satisfies (12.1.1) and (8.1.2), i.e. 

r(t) = 1 - Cltl" + o(ltl") as t -+ 0 

and 

r(t) log t -+ 0 as t -+ 00. 

Ifu = UT -+ 00 so that TJ1. = TC 1/"H"u 2/"4J(u)lu -+ t > 0, then 

P{M(T) :0:;; u} -+ e-< as T -+ 00. 

PROOF. By Lemma 12.3.1, condition (12.3.2) of Lemma 12.3.3 is satisfied, and 
by Lemmas 12.3.2 and 12.3.3 we then have 

li~ .... ~p IP{M(nh):o:;; u} - pn{M(h):o:;; u}1 :0:;; 2t(Pa + i). 

where Pa -+ 0 as a -+ O. Letting e -+ 0 and a -+ 0 this shows that 

lim(P{M(nh) :0:;; u} - P"{M(h) :0:;; u}) = O. 

By Theorem 12.2.9, P{M(h) :0:;; u} = 1 - J1.h + 0(J1.) and hence, as J1. '" tiT, 
n '" Tlh, 

P"{M(h) :0:;; u} = (1 - J1.h + o(J1.»n -+ e-<. 
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Since furthermore 

M(nh) ::;; M(T) ::;; M«n + l)h), 

this proves the theorem. o 

As is easily checked, the choice UT = x/aT + bT, with aT and bT given 
by (12.1.2), satisfies TJ1. ~ 't' = e- x , cf. (12.3.1), and we immediately have the 
following theorem. 

Theorem 12.3.5. Suppose {~(t)} satisfies the conditions of Theorem 12.3.4, 
and that. with H~ as in Remark 12.2.10, 

aT = (2 log T)1/2, 

_ 1/2 1 
bT - (2 log T) + (2 log T)1/2 

{2 - r:x. } x ~ log log T + log(C1/"Hi2n)-1/22(2-,,)/2,,) . 

Then P{aT(M(T) - bT) ::;; x} ~ exp( _e- X ) as T ~ 00. 

12.4. Asymptotic Properties of e-upcrossings 

As mentioned in Section 12.1, the asymptotic Poisson character of up­
crossings applies also to nondifferentiable normal processes, if one considers 
e-upcrossings instead of ordinary upcrossings. To prove this, we need to 
evaluate the expectation of N,jT), the number of e-upcrossings of u by 
~(t), ° ::;; t ::;; T. 

Lemma 12.4.1. Suppose ret) satisfies (12.1.1). Then, with h as in Theorem 
12.2.9, with e = h/2, 

PROOF. Write 

A = {~(t) > u for some t E (-e, OJ}, 

B = {~(t) > u for some t E (0, e)}. 

From Theorem 12.2.9 we have, for 2e s h, as u ~ 00, 

peA u B) '" 2eC1/"H"u2/"-1</J(u), 

peA) '" eC1/"H"u2/,,-1</J(u), 

PCB) '" eC1/"H"u2/"-1</J(u). 
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Hence 

and 
P(B n AC) ~ P{Ne.,,(e) = I} = E(Ne.,,(e» ~ P(B), 

since there is at most one e-upcrossing in [0, e]. Hence 

E(Ne.,,(e» '" eCl/IlHllu2/Il-lc/>(u) 

and thus 

as required. o 
In particular, the lemma implies that asymptotically the mean number of 

e-upcrossings of a suitably increasing level is independent of the choice of 
e > 0, (I: ~ h/2), and this leads us directly to the following Poisson result 
obtained in Lindgren et al. (1975). Let N~ be the point process on (0, 00) 
defined by 

N1{B) = N •. ,,(T.B), 

where the level u is chosen so that TJI. = TC 1/IlHll u2/1lc/>(u)/u '" T > 0, and 
let N be a Poisson process with intensity T. 

Theorem 12.4.2. Suppose that the assumptions of Theorem 12.3.4 are satisfied. 
Then the time-normalized point process N~ of 8-upcrossings of the level u 
converges in distribution to N as u --+ 00, where N is a Poisson process with 
intensity T on the positive real line. 

PROOF. As in the proof of Theorem 9.1.2 we only have to check that for 
O<c<d 

(a) limT-+oo E(N~«c, d]» = E(N«c, d]» = T(d - c), and if Ri = (Ci, d;] (dis­
joint), U = U7'=l Ri , then 

m 

(b) P{N~(U) = O} --+ P{N(U) = O} = n e-tmIRi). 

i= 1 

By Lemma 12.4.1, E(N~«c, d]» = E(N •. i(Tc, Td]» = TE(N •. u«c, d]» '" 
T(d - c)JI. '" T(d - c), which proves (a). For part (b) the same steps as 
in the proof of Theorem 9.1.2 go through, with only obvious changes. 0 

In previous chapters we have encountered a variety of results, related 
to the Poisson convergence of upcrossings of an increasing level. There are 
no further difficulties in extending these results to cover e-upcrossings. 
However, we do not want to lengthen an already long journey over an ocean 
of lemmas. We mention that a little further generality may be obtained 
throughout by including a function of slow growth (or perhaps slow decrease) 
instead of C in (12.1.1). This has been considered by Berman (1971b), and 
also by Qualls and Watanabe (1972). 
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12.5. Weaker Conditions at Infinity 

As already noted, the above extremal results may also be generalized by 
weakening the condition (8.1.2), which describes the behaviour of the cor­
relation at distant points. We shall proceed as in the discrete case (Section 
4.5), following Leadbetter et al. (1978) and Mittal (1979). Of course, we 
cannot expect a substantial weakening of (8.1.2) since it is clearly close to 
being a necessary condition. 

Let h(t) be any function and define 

lJrth) = {tE(O, T]; lr(t)llog t > h(t)}, 

IT(h) = Lebesgue measure of lJT(h). (12.5.1) 

By analogy with the conditions for discrete time we will place restrictions on 
the amount of time that lr(t)llog t is large by requiring that there is some 
nonincreasing function h with h(t) ~ 0 as t i 00 such that 

lrth) = O(T/(log T)Y) for some y > max(O, 1 - 1/(1.) (12.5.2) 

and some constant K > 0 such that 

IT(K) = O(T") for some", < 1. (12.5.3) 

Obviously, the condition r(t) log t --+ 0 as t --+ 00 implies that lJrth) is 
empty if, e.g. h(t) = sUP.~t lr(s)llog s, so that (12.5.2) is actually weaker 
than (8.1.2); see Mittal (1979) for examples. In fact, (12.5.2) is also weaker 
than some other conditions which have been used on occasions. For example, 
since g I r(t) IP dt ~ IT(h)(h(T)/log T)P if h is decreasing, Jg> r2(t) dt < 00 

implies that IT(h) = O((log T/h(T»2) for all h, so that (12.5.2) is indeed 
weaker than the condition Jg> r2(t) dt < 00, sometimes used in the literature. 

Theorem 12.5.1. Let e(t) be a (zero mean) stationary normal process with 
covariance function r(t) --+ 0 as t --+ 00, and satisfying (12.1.1), (12.5.2), and 
(12.5.3). Let u = UT --+ 00 so that TJ.t --+ or > O. Then 

P{M(T) ~ u} --+ e- t as T --+ 00. 

PROOF. In the proof of Theorem 12.3.4 the condition (8.1.2) was used 
exclusively to prove (12.3.2). Thus, to prove the theorem, let u --+ 00 as T --+ 00 

so that T'" or/J.t with or > 0 fixed and J.t = Cl/a.Ha.U2/2¢(U)/u, and take q --+ 0 
so that U2/ lZq --+ a > O. Then, as we shall see, (12.1.1) and (12.5.1)-(12.5.3) 
imply that for e > 0, 

T L I r(kq) I exp{- 1 ~2(k )I} --+ O. 
q e:SkqST + r q 

as T --+ 00, proving the theorem. 
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Let p(t) = sups~t I r(s) I, let p satisfy 0 < P < (1 - £5)/(1 + £5) for £5 = p(e), 
and split the sum in (12.3.2) into two parts at TfJ, i.e., let I' be the sum over 
e ~ kq ~ TfJ and I" the sum over TfJ < kq ~ T. As in the proof of Lemma 
12.3.1 

~ I' = ~ esJ;Tll1r(kq)1 exp{ - 1 + ~:(kq)l} ~ 0 

if qu2 /a ~ a > O. 
For the remaining sum I" we need a bound on the number of terms 

for which I r(kq) I log kq is not bounded by a small function. Define, for a 
function h, 

nrlh) = # {k; TfJ < kq ~ T, I r(kq) I log kq > h(kq)} 

in analogy with lrlh) in (12.5.1). 
Since r(t) satisfies a Lipschitz condition at 0 it does so uniformly for all t. 

In fact, if rl < min(1, oc) then 

Ir(t + s) - r(t)1 ~ Clsla ', 

for some constant C, see Boas (1967, Theorem 1). We will use this to give a 
bound for nrlh) in terms of 'T(h/2). Let y be as in condition (12.5.2) and take 
oc' such that oc/(1 + yoc) < oc' < min(l, oc). Note that we can always find such 
an oc' and that l/oc' - l/oc - y < O. We will show that for all nonincreasing 
functions h, 

( log T) l/a' (h) 
nT(h) ~ C' h(T) IT "2 ' (12.5.4) 

if T is large enough. Since, for t ~ kq > 1, I r(t) I log t > (I r(kq) I - Cit -
kq la,) log kq we see that if 

I r(kq) I log kq > h(kq) 

and t ~ T is such that 

then 

( h(T) )l/a.' 
kq < t < kq + 2C log T 

h(t) 
Ir(t)llog t > 2' 

We have q ,..., a/u2/a., u ,..., (2 log T)1/2 and thus 

(h(T)jlog T)l/a.'/q ,..., h(T)l/a.' (log T)-l/a'+l/a. ~ 0 
a 

since oc > oc'. This implies that for Tlarge enough the kq which contribute to 
nT(h) also contribute disjoint intervals of length (h(T)/(2C log T»l/a.' to 
'T(h/2), and we get (12.5.4) with C' = (2C)l/a.'. 
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We can now proceed by splitting the sum I" according to whether 
kq E (Jr(2K) or not. Recalling the notation p(t) = sUPs~t 1 r(s) I, we have 

T I" = T I 1 r(kq) 1 exp{- u2 
} 

q q Til<kqs.T 1 + 1 r(kq) 1 

T ~ {2( 2K )} + - L. lr(kq)lexp -u 1 - --P 
q TII<kqs.T,kqeOT(2K)" log T 

(12.5.5) 

(where the c denotes complement). For large T, the bound (12.5.4) applies 
to nT(2K), and therefore the first term in (12.5.5) is 

C' T (lOg T)1/2' I (K)T- 2/(1+P(Til» = ~ (log T)l/IZ' 
q 2K T U2/lZq 

as T -+ 00, since '1 < 1 by (12.5.3) and since p(TP) -+ O. 
The second term in (12.5.5) is bounded by 

(~)' exp{ -U'( 1 -P ~~ T)} p l:g T· ~ L I.(kq) I log kq ~ F,· F ;;2.5.6) 

say, where the sum is extended over all kq such that TP < kq ~ T and 
kq E 0T(2KY. We will see that F 1 is bounded and that F 2 -+ 0 as T -+ 00 

so that Fl· F 2 -+ O. We start with F 2, introducing the function h that appears 
in (12.5.2) and split the sum according to whether kq E OT(2h) or not, giving 

q T q 
:::; T . q 2h(TP) + T . 2KnT(2h) 

< 2h(TP) + 2KC'!!.. (lOg T)l/IZ'1 (h) 
- T h(T) T 

= 2h(TP) + h(T)-l/IZ'(log T)1/1Z'-1/IZ-Y(U2/lZq)0(1) 

say, by condition (12.5.2). Since l/rx' - l/rx - y < 0, we can deduce that 
F2 -+ 0 as T -+ 00, provided h(t) decreases sufficiently slowly. Note that if 
(12.5.2) is satisfied for some function h, then it is satisfied for all functions 
which decrease more slowly. The remaining factor F 1 in (12.5.6) is given by 

F 1 = (~r exp{ _u2
( 1 - P ~~ T)} p l:g T' 
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Using the fact that u2 = 2 log T + 2(1jrx. - t) log log T + 0(1) we obtain 

0(1) {(1 1) } 0(1) 
q2 log T exp - 2 ~ - 2 log log T = q2(log T)2/~ = 0(1). 

Thus, Fl' F 2 ~ 0, and we have proved that also the second term in (12.5.5) 
tends to zero, which completes the proof of the theorem. 0 

Remark 12.5.2. As in discrete time, one would be inclined to consider a 
condition like 

~ L I r(kq) I log kq exp{y I r(kq) I log kq} ~ 0 
TI/<qS.T 

(12.5.7) 

as T ~ 00, for some p < 1, y > 2 which in fact can replace (12.5.2). However, 
(12.5.7) contains the somewhat arbitrary spacing q, and a more natural 
condition for a continuous time process would restrict the size of 

flT1r(t)IIOg t exp{y I r(t)1 log t} dt. 

However, it is not clear how this might be done, in relation to (12.5.7). 0 



CHAPTER 13 

Extremes of Continuous Parameter 
Stationary Processes 

Our primary task in this chapter will be to discuss continuous parameter 
analogues of the sequence results of Chapter 3, and, in particular, to obtain 
a corresponding version of the Extremal Types Theorem whicli applies 
in the continuous parameter case. This will be taken up in the first section, 
using a continuous parameter analogue of the dependence restriction 
D(un). Limits for probabilities P{M(T) ~ UT} are then considered for arbitrary 
families of constants {UT}, leading, in particular, to a determination of 
domains of attraction. 

The theory is applied in two cases-first to normal processes, providing 
an alternative approach to the derivation of the results of Chapter 12, and 
then to stationary processes with finite upcrossing intensities. Finally, for this 
latter class, general Poisson results are obtained for upcrossings of high 
levels, giving, as applications, asymptotic distributions (and joint distribu­
tions) of kth largest local maxima. 

13.1. The Extremal Types Theorem 

Throughout this chapter we consider a (strictly) stationary process 
{e(t); t ~ O} satisfying the general conditions stated at the start of Chapter 7. 
In particular, it will be assumed that e(t) has a.s. continuous sample functions, 
continuous one-dimensional distributions, and that the underlying prob­
ability space is complete. As shown in Lemma 7.1.1, it then follows that 
M(l) = sup{W); t E J} is a r.v. for any interval J and, in particular, so is 
M(T) = M«O, T]). 

Our main interest in this section concerns asymptotic distributional 
properties of M(T), and especially what forms of nondegenerate limiting 



244 13. Extremes of Continuous Parameter Processes 

distribution are possible, in the sense that P{aT(M(T) - bT) :::;; x} converges 
to a nondegenerate dJ. G for some constants aT > 0, bT, as T ~ 00. Following 
Leadbetter and Rootzen (1982), we shall find that interesting forms of the 
Extremal Types Theorem hold under natural continuous parameter ana­
logues of the dependence restriction used in the discrete case. In fact our 
approach to the continuous situation is to relate it to the discrete case as in 
Chapter 8 by considering a sequence of "submaxima". Specifically, for 
some h > 0 (to be conveniently chosen) let 

(i = sup{~(t); (i - 1)h :::;; t :::;; ih}, (13.1.1) 

so that for any n = 1, 2, ... we have 

(13.1.2) 

It is apparent that the properties of M(T) as T ~ 00 may be obtained from 
those of M(nh) by writing n = [T/h] and thus approximating T by nh. 

As noted above, we shall consider a continuous parameter analogue (to 
be called C(UT» of the condition D(u,,), used for sequences. The condition 
C(UT) will be used in ensuring that the stationary sequence {(II} defined by 
(13.1.1) satisfies D(u,,). However, before introducing this condition we note 
a preliminary form of the Extremal Types Theorem which simply assumes that 
the sequence {("} satisfies D(u"). This result follows immediately from the 
sequence case and clearly illustrates the central ideas required in the con­
tinuous parameter context. The more complete version (Theorem 13.1.5) to 
be given later, of course simply requires finding appropriate conditions, of 
which the main one will be C(UT), on ~(t), to guarantee that {("} will satisfy 
D(u"). 

Theorem 13.1.1. Suppose thatfor somefamilies of constants {aT> O}, {bTl, 

P{arlM(T) - bT) :::;; x} ~ G(x) as T ~ 00 (13.1.3) 

for some nondegenerate G, and that the {(II} sequence defined by (13.1.1) 
satisfies D(u,,) whenever u" = x/anh + bnhfor some fixed h > 0 and all real x. 
Then G is one of the three extreme value types. 

PROOF. Since (13.1.3) holds, in particular, as T ~ 00 through values nh and 
the ("-sequence is clearly stationary, the result follows by replacing ~n by (II 
in Theorem 3.3.3 and using (13.1.2). 0 

Although we shall not make further use of the fact, it is interesting to note 
that this at once implies that the Extremal Types Theorem holds under 
"strong mixing" assumptions as the following corollary shows. 

Corollary 13.1.2. Theorem 13.1.1 holds, in particular, if the D(ull) condition 
is replaced by the assumption that {~(t)} is strongly mixing. For then the 
sequence {(II} is strongly mixing and hence satisfies D(u,,). 
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We now introduce the continuous analogue of the condition D(un), stated 
in terms of the finite-dimensional distribution functions Ftl "' tn of e(t), 
again writing F1I ... tn(u) for Ftl ... tn(u, ... , u). The points ti will be members 
of a discrete set {jqT;j = 1,2,3, ... } where {qT} is a family of constants 
tending to zero as T ~ OCJ at a rate to be specified later. 

The condition C(UT) will be said to hold for the process e(t) and the family 
of constants rUT; T > O}, with respect to the constants qT ~ 0, iffor any points 
Sl < S2 < ... < sp < t1 < ... < tp' belonging to {kqT; 0 ~ kqT ~ T} and 
satisfying t1 - sp ~ y, we have 

!FSI···Sp,tl···tp.(UT) - FSI···Sp(UT)Ft!"'lp.(UT)! ~ (XT,y 

where (XT,YT ~ 0 for somefamily YT = o(T), as T ~ oc. 

(13.1.4) 

As in the discrete case we may (and do) take (XT,y to be nonincreasing as Y 
increases and also note that the condition (XT, Yr ~ 0 for some YT = o(T) 
may be replaced by 

(XT,AT ~ 0 as T ~ OCJ (13.1.5) 

for each fixed A > O. 
The D(un) condition for {(n} required in Theorem 13.1.1 will now be 

related to C(UT) by approximating crossings and extremes of the continuous 
parameter process, by corresponding quantities for a "sampled version". 
To achieve the approximation we require two conditions involving the 
maximum of ~(t) in fixed (small) time intervals. These conditions are given 
here in a form which applies very generally-readily verifiable sufficient 
conditions for important cases are given later in this chapter. 

It will be convenient to introduce a function l/J(u) which will generally 
describe the form of the tail of the distribution of the maximum M(h) in a 
fixed interval (0, h] as u becomes large. Specifically as needed we shall make 
one or more of the following successively stronger assumptions: 

P{e(O) > u} = o(l/J(u», (13.1.6) 

P{M(q) > u} = o(l/J(u» for any q = q(u) ~ 0 as U ~ OCJ, 

(13.1.7) 

there exists ho > 0 such that 

I· P{M(h) > u} 1 c 
l~ .... ~p hl/J(u) ~ lor 0 < h ~ ho, (13.1.8) 

P{M(h) > u} '" hl/J(u) as U ~ OCJ for 0 < h ~ ho. (13.1.9) 

Note that equation (13.1.9) commonly holds and specifies that the tail 
of the distribution of M(h) is asymptotically proportional to l/J(u), whereas 
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(13,1.8) is a weaker assumption which is sometimes convenient as a sufficient 
condition for the yet weaker (13.1.7) and (13.1.6). As we shall see later, I/I(lI) 
can also be identified with the mean number of upcrossings of the level u 
per unit time, Jl.(u), in important cases when this is finite. In any case it is, of 
course, possible to define I/I(u) to be P{M(ho) > u}/ho for some fixed ho > 0, 
or some asymptotically equivalent function and then attempt to verify any 
of the above conditions which may be needed. 

We shall also require an assumption relating" continuous and discrete" 
maxima in fixed intervals. Specifically we assume, as required, that for each 
a > 0 there is a family of constants {q} = {qa(u)} tending to zero as u -+ 00 

for each a > 0, such that for any fixed h > 0, 

li P{M(h) > u, eUq) ~ u, 0 ~jq ~ h} 0 
m sup ./,( ) -+ as a -+ O. 
U-+O() 'I' U 

(13.1.10) 

Finally a condition which is sometimes helpful in verifying (13.1.10) is 

I, p{e(O) ~ u, e(q) ~ u, M(q) > u} 0 0 
1m sup ./,( ) -+ as a -+ . 

U-+O() q'l' U 
(13.1.11) 

Here the constant a specifies the rate of convergence to zero of qa(u)-as a 
decreases, the grid of points {qa(u)} tends to become (asymptotically) finer, 
and for small a the maximum of e(t) on the discrete grid approximates the 
continuous maximum well, as will be seen below. (Simpler versions of 
(13.1.10) and (13.1.11) would be to assume the existence of one family 
q = q(u) of constants such that the upper limits in (13.1.10) and (13.1.11) are 
zero for this family. It can be seen that one can do this without loss of generality 
in the theorems below, but it seems that, as was the case in Chapter 12, the 
conditions involving the parameter a may often be easier to check.) 

The following lemma contains some simple but useful relationships. 

Lemma 13.1.3. (i) If (13.1.8) holds, so does (13.1.7) which in turn implies 
(13.1.6). Hence (13.1.9) clearly implies (13.1.8), (13.1.7), and (13.1.6). 

(ii) If I is any interval of length h and (13.1.6) and (13.1.10) both hold, then 
there are constants Aa such that 

O I, p{eUq) ~ u,jq E I} - P{M(I) ~ u} A 0 
~ 1m sup ./,( ) ~ a-+ 

u-oo If' U 

(13.1.12) 

as a -+ 0, where q = qa(u) is as in (13.1.10), the convergence being uniform 
in all intervals of this fixed length h. 

(iii) If (13.1.7) and (13.1.11) hold, so does (13.1.10) and hence, by (ii) so does 
(13.1.12). 

(iv) If (13.1.9) holds and Ii = (0, h], 12 = (h,2h] with 0 < h ~ ho/2, then 
P{M(I1) > u, M(I2) > u} = o(I/I(u» as u -+ 00. 
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PROOF. (i) If (13.1.8) holds and q --+ 0 as u --+ 00, then for any fixed h > 0, q 
is eventually smaller than hand P{M(q) > u} ::; P{M(h) > u}, so that 

1· P{M(q) > u} l' P{M(h) > u} h 
1m sup ./,( ) ::; 1m sup '/,( ) ::; 

u-+ 00 ¥' U U-' 00 V' U 

by (13.1.8). Since h is arbitrary it follows that P{M(q) > u}!t/J(u) --+ 0, giving 
(13.1.7). It is clear that (13.1.7) implies (13.1.6) since 

P{~(O) > u} ::; P{M(q) > u}, 

which proves (i). 
To prove (ii) we assume that (13.1.6) and (13.1.10) hold and let I be an 

interval of fixed length h. Since the numbers of points jq in I and in (0, h] 
differ by at most 2, it is readily seen from stationarity that 

P{ ~Uq) ::; u, jq E I} ::; P{ ~Uq) ::; u,O ::; jq ::; h} 

+ P{~(O) > u} + P{~(h) > u} 

so that 

o ::; P{~Uq) ::; u,jq E I} - P{M(l) ::; u} 
::; P{~Uq)::; u,O ::;jq ::; h} - P{M(h)::; u} + 2P{~(0) > u} 

= P{M(h) > u, ~Uq) ::; u,O ::; jq ::; h} + 2P{ ~(O) > u} 

from which (13.1.12) follows at once by (13.1.6) and (13.1.10), so that (ii) 
follows. 

To prove (iii) we note that there are at most [hlq] complete intervals 
(0 - l)q,jq] in (0, h] with perhaps a smaller interval remaining so that 

P{M(h) > u, ~Uq) :5: u,O :5: jq :5: h} :5: ~ P{~(O) :5: u, ~(q) :5: u, M(q) > u} 
q 

+ P{M(q) > u} 

so that (13.1.10) easily follows from (13.1.11) and (13.1.7). 
Finally if (13.1.9) holds and 11 = (0, h], 12 = (h,2h] with 0 < h ::; ho/2, 

then 

P{M(lz) > u} = P{M(ll) > u} = htjJ(u)(1 + 0(1» 

and 

P({M(ll) > u} u {M(lz) > u}) = P{M(ll u I z) > u} = 2htjJ(u)(1 + 0(1» 

so that 

P{M(ll) > u, M(lz) > u} = P{M(ll) > u} + P{M(lz) > u} 

as required. 

- P({M(ll) > u} u {M(lz) > u}) 
= o(tjJ(u» 

D 
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For h > 0, let {1',.} be a sequence oftimepoints such that 1',. e (nh, (n + l)h] 
and write Vn = UTn ' It is then relatively easy to relate D(vn) for the sequence 
{Cn} to the condition C(UT) for the process e(t), as the following lemma 
shows. 

Lemma 13.1.4. Suppose that (13.1.6) holds for some function l/J(u) and let 
{qa(u)} be a family of constants for each a > 0 with qiu) > 0, qiu) -+ 0 as 
u -+ 00, and such that (13.1.10) holds. If C(UT) is satisfied with respect to the 
family qT = qiuT)for each a> 0, and Tl/J(UT) is bounded, then the sequence 
{Cn} defined by (13.1.1) satisfies D(vn), where Vn = UTn is as above. 

PROOF. For a given n, let i1 < i2 < ... < ip <j1 < '" <jp, < n,j1 - ip ~ l. 
Write I, = «i, - l)h, i,h], Js = (Us - l)h,jsh]. For brevity write q for the 
elements in one of the families {qa<-)} and let 

p 

Aq = n {eUq) ~ vn,jq e I,}, 
,=1 

p' 

Bq = n {eUq) ~ vn,jqeJs}, 
s= 1 

p 

A = n {Cir ~ vn}, 
,= 1 

p' 

B = n {Cis ~ vn}· 
s= 1 

It follows in an obvious way from Lemma 13.1.3(ii) that 

o ~ lim sup{P(AqBq) - P(AB)} ~ lim sup(p + p')l/J(VJAa 
n-+oo n-+oo 

n-+oo 
for some constant K (since nh '" 1',. and r,.l/J(vn) is bounded) and where 
Aa -+ 0 as a -+ O. Similarly, 

Now 
n-+oo n-+oo 

IP(A n B) - P(A)P(B) I ~ IP(A n B) - P(Aq n Bq)1 

+ IP(Aq n Bq) - P(Aq)P(Bq)I + P(Aq)IP(Bq) - P(B) I 
+ P(B)IP(Aq) - P(A) I 

= Rn,a + IP(Aq n Bq) - P(Aq)P(Bq) I , (13.1.13) 

where lim sUPn-+oo Rn,a ~ 3KAa. 
Since the largestjq in any I, is at most iph, and the smallest in any Js is at 

least U1 - 1)h, their difference is at least (/- 1)h. Also the largestjq in Jp' 

does not exceedjp,h ~ nh ~ 1',. so that from (13.1.4) and (13.1.13), 

IP(A n B) - P(A)P(B) I ~ Rn,a + oc!;!,('-1)h' (13.1.14) 

in which the dependence of OCT,' on a is explicitly indicated. Write now 
IX:', = infa>o {Rn,a + 1X!;!,(I-1)h}' Since the left-hand side of (13.1.14) does not 
depend on a we have 

IP(A n B) - P(A)P(B) I ~ IX:'" 
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which is precisely the desired conclusion of the lemma, provided we can show 
that limn .... <Xl a:, [An) = 0 for any A > 0 (cf. (3.2.3». But, for any a > 0, 

1X:,[An) ::;; Rn,a + 1X!;!,(An-l)h ::;; Rn,a + 1X!;!,ATn/2 

when n is sufficiently large (since IX!;~I decreases in I), and hence by (13.1.5) 

lim sup IX:, [An) ::;; 3KAa , 
n .... <Xl 

and since a is arbitrary and Aa -+ 0 as a -+ 0, it follows that IX:, [An) -+ 0 as 
~~d 0 

The general continuous version of the Extremal Types Theorem is now 
readily restated in terms of conditions on ~(t) itself. 

Theorem 13.1.5. With the above notation for the stationary process {~(t)} 

satisfying (13.1.6) for somefunction t/J, suppose that there are constants aT > 0, 
bT such that 

P{aT(M(T) - bT) ::;; x} ~ G(x) 

for a nondegenerate G. Suppose that Tt/J(UT) is bounded and C(UT) holds for 
UT = x/aT + bT for each real x, with respect to families of constants {qa(u)} 
satisfying (13.1.10). Then G is one of the three extreme value distributional 
types. 

PROOF. This follows at once from Theorem 13.1.1 and Lemma 13.1.4, by 
choosing T" = nh. 0 

As noted the conditions of this theorem are of a general kind, and more 
specific sufficient conditions will be given in the applications later in this 
chapter. 

13.2. Convergence of P{M(T) < UT} 

The Extremal Types Theorem involved consideration of 

P{aT(M(T) - bT) ::;; x}, 

whichmayberewrittenasP{M(T)::;; uT}withuT = x/aT + bT.Weturnnow 
to the question of convergence of P{M(T) ::;; UT} as T -+ 00 for families UT 
which are not necessarily linear functions of a parameter x. (This is analogous 
to the convergence of P{Mn ::;; un} for sequences, of course.) These results are 
of interest in their own right, but also since they make it possible to simply 
modify the classical criteria for domains of attraction to the three limiting 
distributions, to apply in this continuous parameter context. 
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Our main purpose is to demonstrate the equivalence of the relations 
P{M(h) > UT} '" tiT and P{M(T) :s;; UT} -+ e- f under appropriate con­
ditions. The following condition will be referred to as C'(UT) and is analogous 
to D'(un) defined in Chapter 3, for sequences. 

The condition C'(UT) will be said to holdfor the process {e(t)} and thefamily of 
constants rUT; T> OJ, with respect to the constants q = qT -+ 0 if 

lim sup T L p{e(O) > UT, eUq) > UT} -+ 0 
T-+<Xl q h<jq<.T 

as 8 -+ 0, for some h > O. 

The following lemma will be useful in obtaining the desired equivalence. 

Lemma 13.2.1. Suppose that (13.1.9) holds for some function t/I, and let rUT} 
be a family of levels such that C'(UT) holds with respect to families {qiu)} 
satisfying (13.1.10), for each a > 0, with h in C'(UT) not exceeding ho/2 in 
(13.1.9). Then Tt/I(uT) is bounded, and writing n' = [nlk],Jor n and k integers, 

o :s;; lim sup(n'P{M(h) > vn} - P{M(n'h) > vn}) = 0(k- 1) as k -+ 00, 
n-+<Xl 

with Vn = uTn,for any sequence {1',.} with 1',. E (nh, (n + l)hJ. 

PROOF. We shall use the extra assumption 

lim inf Tt/I(UT) > 0, 
T-+<Xl 

(13.2.1) 

(13.2.2) 

in proving Tt/I(uT) bounded and (13.2.1). It is then easily checked (e.g. by 
replacing Tt/I(uT) by max(I,Tt/I(uT» in the proof) that the result also holds 
without the extra assumption. 

Now, write I j = (U - l)h,jh],j = 1,2, ... and Mk(I) = max{eUq;jq E I}, 
for any interval/. We shall first show that (assuming (13.2.2) holds) 

o :s;; li~-+~p r,.;(V
n
) (n'P{M(h) > vn} - P{M(n'h) > vn}) = 0(k- 1) 

(13.2.3) 

as k -+ 00. The expression in (13.2.3) is clearly non-negative, and by station­
arity and the fact that M ~ M q' does not exceed 

1 n' 

li~-+~up 1',.t/I(vn) j~l (P{M(Ij) > vn} - P{MiIj) > vn}) 
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By Lemma 13.1.3(ii), the first of the upper limits does not exceed 
Aa lim SUPn-+oo n'/1',. = Aa/(hk), where Aa -t ° as a -t 0. The expression in the 
second upper limit may be written as 

T.;( ) [f P{MiI) > Vn} - .f p{MiI) > Vn' Mq( 0 II) ~ Vn}] 
n Vn =1 J=1 I=J+1 

1 n' 

~ t/J() 2: P{Mq(Ij) > Vm MiIi+ 1) > Vn} 
1',. Vn j= 1 

1 n' { (n' ) } + t/J().2: P Mil) > Vn' Mq l) I, > Vn 
1',. Vn J=1 I=J+2 

n' n'h 
s 1',. 0(1) + q1',.t/J(vn) h$j~n'/{~(O) > Vn' ~(jq) > Vn}, 

by Lemma 13.1.3(iv) and some obvious estimation using stationarity. By 
C(UT), using (13.2.2), the upper limit (over n) of the last term is readily seen 
to be o(k - 1) for each a > 0, and (13.2.3) now follows by gathering these 
facts. 

Further, by (13.2.3) and (13.1.9) 

lim inf ;() ~ lim inf :( ) P{M(n'h) > Vn} 
n-+oo 1',. Vn n-+oo 1',. Vn 

- lim sup ;() [n'P{M(h) > Vn} - P{M(n'h) > Vn}] 
n-+oo 1',. Vn 

= ~ - o(~), 
and hence lim infn-+ 00 (1',.t/J(vn»-1 > 0. Thus 1',.t/J(UTJ is bounded for any 
sequence {1',.} satisfying nh < 1',. ~ (n + l)h, which readily implies that 
Tt/J(UT) is bounded. Finally, (13.2.1) then follows at once from (13.2.3). 0 

Corollary 13.2.2. Under the conditions of the lemma, if 

An,k = In'ht/J(vn) - P{M(n'h) > vn}l, 

then lim sUPn-+oo An,k = 0(k- 1) as k -t 00. 

PROOF. Noting that n't/J(vn) is bounded, this follows at once from the lemma, 
by (13.1.9). 0 

Our main result now follows readily. 

Theorem 13.2.3. Suppose that (13.1.9) holds for some function t/J, and let {UT} 
be afamily of constants such thatfor each a> 0, C(UT) and C(UT) hold with 
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respect to the family {qa(U)} of constants satisfying (13.1.10), with h in C'(UT) 
not exceeding ho/2 in (13.1.9). Then 

Tt/I(UT) -+ t > 0 (13.2.4) 

if and only if 
(13.2.5) 

PROOF. If (13. 1.9), (13.1.10), and C'(UT) hold as stated, then Tt/I(UT) is bounded 
according to Lemma 13.2.1 and by Lemma 13.1.4 the sequence of "sub­
maxima" {(n} defined by (13.1.1) satisfies D(vn), with Vn = UTn , for any 
sequence {T,.} with T,. E (nh, (n + 1)h]. Hence from Lemma 3.3.2 writing 
n' = [n/kJ, 

P{M(nh) ~ vn} - P"{M(n'h) ~ vn} -+ 0 as n -+ 00. (13.2.6) 

Clearly it is enough to prove that 

T,.t/I(vn) -+ t > 0 (13.2.7) 

if and only if 

(13.2.8) 

for any sequence {T,.} with T,. E (nh, (n + 1)hJ. Further, Tt/I(UT) bounded 
implies that t/I(UT) -+ 0 as T -+ 00 so that 

o ~ P{M(nh) ~ vn} - P{M(T,.) ~ vn} 

::s;; P{M(h) > vn} '" ht/l(vn) -+ 0, 

and thus (13.2.8) holds if and only if 

P{M(nh) ~ vn} -+ e-'. (13.2.9) 

Hence it is sufficient to prove that (13.2.7) and (13.2.9) are equivalent under 
the hypothesis of the theorem. 

Suppose now that (13.2.7) holds so that, in particular, 

t 
n'ht/l(vn) -+ Ie as n -+ 00. (13.2.10) 

With the notation of Corollary 13.2.2 we have 

1 - n'ht/l(vn) - An,k ~ P{M(n'h) ~ vn} ~ 1 - n'ht/l(vn) + An,k (13.2.11) 

so that, letting n -+ 00, 

1 - ~ - 0(k- 1) ~ lim inf P{M(n'h) ~ vn} 
k n .... oo 

~ lim sup P{M(n'h) ~ vn} 
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By taking kth powers throughout and using (13.2.6) we obtain 

(1 - ~ - 0(k- 1)r:s; li~~nf P{M(nh):S; v,,} 

:s; lim sup P{M(nh) :s; v,,} 
,,-+ 00 

:s; (1 - ~ + 0(k- 1)t 
and letting k tend to infinity proves (13.2.9). 
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Hence (13.2.7) implies (13.2.9) under the stated conditions. We shall now 
show that conversely (13.2.9) implies (13.2.7). The first part of the above 
proof still applies so that (13.2.6) and the conclusion of Corollary 13.2.2, and 
hence (13.2.11), hold. A rearrangement of (13.2.11) gives 

1 - P{M(n'h) :s; v"} - A.",k :s; n'ht/J(v") 
:s; 1 - P{M(n'h) :s; v"} + A.",k' 

But it follows from (13.2.6) and (13.2.9) that P{M(n'h) :s; v"} --+ e- t /k and 
hence, using Corollary 13.2.2, that 

1 - e- t /k - 0(k- 1 ) :s; lim inf n'ht/J(v,,) 
"-+00 

"-+00 

:s; 1 - e- t / k + 0(k- 1 ). 

Multiplyingthroughbykandlettingk --+ 00 shows that T"t/J(v") ,..., nht/J(v,,)--+t, 
and concludes the proof that (13.2.9) implies (13.2.7). 0 

13.3. Associated Sequence of Independent Variables 

With a slight change of emphasis from Chapter 3 we say that any Li.d. sequence '1, '2,.·. whose marginal dJ. F satisfies 

1 - F(u) ,..., P{M(h) > u} 

for some h > 0, is an independent sequence associated with {~(t)}. If (13.1.9) 
holds this is clearly equivalent to the requirement 

1 - F(u) ,..., ht/J(u) as u --+ 00. (13.3.1) 

Theorem 13.2.3 may then be related to the corresponding result for i.i.d. 
sequences in the following way. 

Theorem 13.3.1. Let {UT} be afamily of constants such that the conditions of 
Theorem 13.2.3 hold, and let '1> '2" .. be an associated independent sequence. 
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Let 0 < p < 1. If 

P{M(T) :::;; UT} -+ P as T -+ 00 (13.3.2) 

then 

(13.3.3) 

with v" = U"h' Conversely, if(13.3.3) holds for some sequence {v,,} then (13.3.2) 
holds for any {UT} such that t/I(UT) '" t/I(V(T/hl)' provided the conditions of 
Theorem 13.2.3 hold. 

PROOF. If (13.3.2) holds, and p = e-', Theorem 13.2.3 and (13.3.1) give 

so that P{kI" :::;; U"h} -+ e-', giving (13.3.3). Conversely, (13.3.3) and (13.3.1) 
imply that ht/l(v,,) '" 1 - F(v,,) '" T/n and hence 

TT 
Tt/I(UT) '" Tt/I(V(T/hl) '" h[T/h] -+ T 

so that (13.3.2) holds by Theorem 13.2.3. D 

These results show how the function t/I may be used in the classical 
criteria for domains of attraction to determine the asymptotic distribution of 
M(T). We write D(G) for the domain of attraction to the (extreme value) 
dJ. G, i.e. the set of all drs F such that F"(x/a" + b,,) -+ G(x) for some 
sequences {a" > O}, {bIll. 

Theorem 13.3.2. Suppose that the conditions of Theorem 13.2.3 hold for all 
families {UT} of the form UT = x/aT + bT, where aT > 0, bT are given con­
stants, and that 

P{arlM(T) - bT) :::;; x} -+ G(x). (13.3.4) 

Then (13.3.1) holds for some FE D(G). Conversely, suppose (13.1.9) holds and 
that (13.3.1) is satisfied for some FE D(G), let a~ > 0, b~ be constants such 
that Fn(x/a~ + b~) -+ G(x), and define aT = alT/hl' bT = blT/hl' Then (13.3.4) 
holds, provided the conditions of Theorem 13.2.3 are satisfied for each UT = 
x/aT + bT, -00 < X < 00. 

PROOF. If (13.3.4) holds, together with the conditions stated, Theorem 13.3.1 
applies, so that, in particular, 

P{a"h(kI" - b"h) :::;; x} -+ G(x), 

where M n is the maximum ofthe associated sequence of independent variables 
C1' ... , Cn· It follows at once that their marginal dJ. F belongs to D(G), and 
(13.3.1) is immediate by definition. 
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Conversely, suppose (13.3.1) holds for some dJ. F E D(G), and let C1' C2' ... 
be an Li.d. sequence with marginal dJ. F, and suppose that for Vn = x/a~ + b~, 

P{Aln ~ vn} - G(x) as n - 00. 

t/I(UT) = t/I(V[T/hl) 

so that Theorem 13.3.1 applies, giving (13.3.4). 

13.4. Stationary Normal Processes 

D 

Although we have obtained the asymptotic distributional properties of 
the maximum of stationary normal processes directly, it is of interest to see 
how these may be obtained as applications of the general theory of this 
chapter. This does not lessen the work involved, of course, since the same 
calculations in the "direct route" are used to verify the conditions in the 
general theory. However, the use of the general theory does also give insight 
and perspective regarding the principles involved. We deal here with the 
more general normal processes considered in Chapter 12. This will include 
the normal processes with finite second spectral moments considered in 
Chapter 8, of course. The latter processes may also be treated as particular 
cases of general processes with finite upcrossing intensities-a class dealt 
with in the next section. 

Suppose then that ~(t) is a stationary normal process with zero mean and 
covariance function (12.1.1), viz. 

r(r) = 1 - Cltl" + o(ltl,,) as t - 0, (13.4.1) 

where 0 < a ;:5; 2. The major result to be obtained is Theorem 12.3.4 restated 
here. 

Theorem 12.3.4. Let {~(t)} be a zero-mean stationary normal process, with 
covariance function r(t) satisfying (13.4.1) and 

ret) log t - 0 as t - 00. (13.4.2) 

Ifu = UT- ooandJl = Jl(u) = C1/"H"u2/"cjJ(U)/U (withH"defined in Theorem 
12.2.9), and if TJl(UT) - t, then P{M(T) ~ u} - e- t as T - 00. 

PROOF FROM THE GENERAL THEoRY. Write t/I(u) = Jl(u) so that Tt/I(uT) - t. 

Theorem 12.2.9 shows at once that (13.1.9) holds (for all h > 0). Define 
qa(u) = au- 2/", and note that (13.1.10) holds, by (12.2.19). Hence the result 
will follow at once if C(UT), C(UT) are both shown to hold with respect to 
{qa(u)} for each a > O. 
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It is easily seen in a familiar way that C(UT) holds. For by Corollary 4.2.2 
the left-hand side of (13. 1.4)(with q,,(u) for q(u), u = UT) does not exceed 

pp' { 2} K.L .L Ir(t j - si)lexp - 1 1 ~ . _ -)1 ,= 1 J= 1 + r tJ s, 

which is dominated by 

K ~ YS~STIr(kq)lexp{ - 1 + ~~kq)l} 
and this tends to zero for each {q} = {q,,}, a fixed, by Lemma 12.3.1. If we 
identify this expression with (XT,y then (13.1.5) holds almost trivially since 
(XT,AT ::;; (XT,y for any fixed y when AT > y. 

C'(UT) follows equally simply by Corollary 4.2.4, which gives 

IP{e(O) > U, eUq) > u} - (1 - W(u»21 ::;; K1ruq)lexp{ - 1 + ~~q)l} 
so that 

T L p{e(O) > U, eUq) > u} 
q h<jqseT 

::;; e~2 (1 _ W(U»2 + K T ~ IrUq)lexp{- 1 + U
1
r(j2 . )I}' 

q q h<JqseT q 

The second term tends to zero as T -+ 00 again by Lemma 12.3.1. The 
first term is asymptotically equivalent to 

eT2 (cf>(U»2 eT2 
- -- -+ -:--;;-:---;::-
q2 u2 a2C2/a. H; 

by the definitions of q and I/I(u), and the fact that TI/I(u) -+ T. Since eT2/a2 -+ 0 
for each fixed a as e -+ 0, C'(UT) follows. 0 

Finally, we note that the "double exponential limiting distribution" 
for the maximum M(T) (Theorem 12.3.5) follows exactly as before from 
Theorem 12.3.4. 

13.5. Processes with Finite Upcrossing Intensities 

We show now how some of the conditions required for the general theory 
may be simplified when the mean number J.l(u) of upcrossings of each level 
u per unit time is finite. This includes the particular normal cases with finite 
second spectral moments already covered in Chapter 8 and in the preceding 
section but, of course, not the" nondifferentiable" processes with oc < 2. 
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We use the notation of Chapter 7 in addition to that of the present 
chapter and assume that JJ. = JJ.(u) = E(Ny(l» < 00 for each value of u. 
Writing as in (7.2.1) for q > 0, 

J (u) = p{e(O) < u < e(q)} 
q q (13.5.1) 

it is clear that 

Jq(u) ~ P{Nu(q) ;;:: I} ~ E(NJq» = JJ. 
q q 

(13.5.2) 

and it follows from Lemma 7.2.2(iii) that 

Jq(u) - JJ. as q - 0 (13.5.3) 

for each fixed u. 
In the normal case we saw (Lemma 7.3.1) that Jq(u) '" JJ.(u) as q - 0 

in such a way that uq - O. Here we shall use a variant of this property 
assuming as needed that, for each a > 0, there are constants qJu) - 0 as 
u - 00 such that, with qa = qJu), JJ. = JJ.(u), 

lim infJqa(u) > v 
- a' 

u~ao JJ. 
(13.5.4) 

where Va - 1 as a - O. (As indicated below this is readily verified when e(t) 
is normal when we may take qa(u) = a/u.) 

We shall assume as needed that 

p{e(O) > u} = o{JJ.(u» as u - 00, (13.5.5) 

which clearly holds for the normal case but more generally is readily verified 
if, for example, for some q = q(u) - 0 as u - 00, 

li p{e(O) > u, e(q) > u} 1 
~~~p p{e(O) > u} <, (13.5.6) 

since (13.5.6) implies that lim infu~ao qJq(u)/P{e(O) > u} > 0, from which 
it follows that p{e(O) > u}/Jq(u) - 0, and hence (13.5.5) holds since 
Jq(u) ~ JJ.(u). 

We may now recast the conditions (13.1.8) and (13.1.9) in terms of the 
function JJ.{u), identifying this function with I/I(u). 

Lemma 13.5.1. (i) Suppose JJ.(u) < 00 for each u and that (13.5.5) (or the 
sufficient condition (13.5.6» holds. Then (13.1.8) holds with I/I(u) = JJ.(u). 

(ii) If(13.5.4)holdsfor somefamily {qa(u)} then (13.1.11) holds with I/I(u) = JJ.(u). 

PROOF. Since clearly 

P{M(h) > u} ~ P{Nu(h) ;;:: I} + p{e(O) > u} ~ JJ.h + p{e(O) > u}, 

(13.1.8) follows at once from (13.5.5), which proves (i). 
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Now, if (13.5.4) holds, then with q = qa(u), J.l = J.l(u), 

so that 

p{e(O) ~ u, e(q) ~ u, M(q) > u} 

= p{e(O) ~ u, M(q) > u} - p{e(O) ~ u < e(q)} 
~ P{Niq) ~ 1} - qJq(u) 

~ J.lq - J.lqvO<l + 0(1» 

li p{e(O) ~ u, e(q) ~ u, M(q) > u} 1 
m sup ~ - Va' 
u .... oo qJ.l 

which tends to zero as a -+ 0, giving (13.1.11). o 
In view of this lemma, the Extremal Types Theorem now applies to 

processes of this kind using the more readily verifiable conditions (13.5.4) 
and (13.5.5), as follows. 

Theorem 13.5.1. Theorem 13.1.5 holds for a stationary process {e(t)} with 
tjJ(u) = J.l(u) < 00 for each u if the conditions (13.1.6) and (13.1.10) are re­
placed by (13.5.4) and (13.5.5) (or by (13.5.4) and (13.5.6». 

PROOF. By (i) of the previous lemma the condition (13.5.5) (or its sufficient 
condition (13.5.6» implies (13.1.8) and hence both (13.1.6) and (13.1.7). On 
the other hand (ii) of the lemma shows that (13.5.4) implies (13.1.11) which 
together with (13.1.7) implies (13.1.10) by Lemma 13.1.3(iii). 0 

The condition (13.1.10) also occurs in Theorem 13.2.3 and may, of course, 
be replaced by (13.5.4) there, since (13.1.7) is implied by (13.1.9) which is 
assumed in that theorem. 

Finally, we note that while (13.5.5) and (13.5.6) are especially convenient 
to give (13.1.8) (Lemma 13.5.1(i», the verification of (13.1.9) still requires 
obtaining 

. . P{M(h) > u} 
lim mf h ( ) ~ 1 for 0 ~ h ~ ho· 

u .... oo J.l u 

This, of course, follows for all normal processes considered by Theorem 
12.2.9 with Q( = 2. There are a number of independent simpler derivations 
of this when Q( = 2, one of these being along the lines of the" cosine-process" 
comparison in Chapter 7. The actual comparison used there gave a slightly 
weaker result, which was, however, sufficient to yield the desired limit 
theory by the particular methods employed. 

13.6. Poisson Convergence of Upcrossings 

It was shown in Chapter 9 that the upcrossings of one or more high levels 
by a normal process e(t) take on a specific Poisson character under appro­
priate conditions. It was assumed, in particular, that the covariance function 
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r(t) of ,(t) satisfied (8.1.1) so that the expected number of upcrossings per 
unit time, Jl. = E(Nil», is finite. 

Corresponding results are obtainable for e-upcrossings by normal 
processes when r(t) satisfies (13.4.1) with 0( < 2 and indeed the proof is 
indicated in Chapter 12 for the single level result (Theorem 12.4.2). 

For general stationary processes the same results may be proved under 
conditions used in this present chapter, including C, C'. Again when J1. = 
E(Nu (1» < 00 the results apply to actual upcrossings, while if J1. = 00 they 
apply to e-upcrossings. We shall state and briefly indicate the proof of the 
specific theorem for a single level in the case when Jl. < 00. 

As in previous discussions, we consider a time period T and a level UT 
both increasing in such a way that TJl. ~ t > ° (J1. = Jl.(UT», and define 
a normalized point process of upcrossings by 

for each interval (or more general Borel set) B, so that, in particular, 

E(Nt(l» = E(N uT(T» = Jl. T ~ t. 

This shows that the "intensity" (i.e. mean number of events per unit 
time) of the normalized upcrossing point process converges to t. Our task 
is to show that the upcrossing point process actually converges in distribution 
to a Poisson process with mean t. 

The derivation of this result is based on the following two extensions of 
Theorem 13.2.3, which are proved by similar arguments to those used in 
obtaining Theorem 13.2.3, and in Chapter 9. 

Theorem 13.6.1. Under the conditions of Theorem 13.2.3, if 0 < () < 1 and 
Jl.T ~ t, then 

P{M«()T) ::s; UT} ~ e- IJ< as T ~ 00. (13.6.1) 

Theorem 13.6.2. If 11, 12 , ••• , I r are disjoint subintervals of [0, 1] and 
Ij = TI j = {t; tiT E I j } then under the conditions of Theorem 13.2.3 if 
Jl.T~t, 

peel {M(Ij) ::s; UT}) - t\ P{M(Ij) ::s; UT} ~ 0, (13.6.2) 

so that by Theorem 13.6.1 

(13.6.3) 

where OJ is the length of I j , 1 ::s; j ::s; r. 
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It is now a relatively straightforward matter to show that the point 
processes N~ converges (in the full sense of weak convergence) to a Poisson 
process N with intensity -r. 

Theorem 13.6.3. Under the conditions of Theorem 13.2.3, if Til ~ -r where 
Il = Il(UT), then the family N~ of normalized point processes of upcrossings of 
UT on the unit interval converges in distribution to a Poisson process N with 
intensity -r on that interval as T ~ 00. 

PROOF. Again by Theorem A.l it is sufficient to prove that 

(i) E(Nj.«c, d]» ~ E(N«c, d]» = -r(d - c) as T ~ 00 for all c, d, 0 < c < 
d ~ I, and 

(ii) P{N~(B) = O} ~ P{N(B) = O} as T ~ 00 for all sets B of the form 
U~ Bj where r is any integer and Bj are disjoint intervals (Cj' dj] C (0, 1]. 

Now (i) follows trivially since 

E(Nj.«c, d]» = IlT(d - c) ~ -r(d - c). 

To obtain (ii) we note that 

o ~ P{NHB) = O} - P{M(TB) ~ UT} 

= P{NiTB) = 0, M(TB) > UT} 
r 

~ L P{,(Tcj) > UT} 
j= 1 

since if the maximum in TB = Ui=l (Tcj' TdJ exceeds UT' but there are 
no upcrossings of UT in these intervals, then ,(t) must exceed UT at the initial 
point of at least one such interval. But the last expression is just 

rP{,(O) > UT} ~ 0 
as T ~ 00. Hence 

P{NHB) = O} - P{M(TB) ~ UT} ~ O. 

But P{M(TB) ~ UT} = p(ni=l {M(TB) ~ UT}) ~ exp{ --rr.(dj - c)} by 
Theorem 13.6.2 so that (ii) follows since P{N(B) = O} = exp{ --rr.(dj - c)}. 

o 

Corollary 13.6.4. If Bj are disjoint (Borel) subsets of the unit interval and if the 
boundary of each Bj has zero Lebesgue measure then 

r (-rm(B.»'i 
P{N~(B) = rj' 1 ~ j ~ r} ~ n exp{ --rm(Bj)} /' 

j=l ~. 

where m(B) denotes the Lebesgue measure of Bj. 

PROOF. This is an immediate consequence of the full distributional con­
vergence proved (cf. Appendix). 0 



13.6. Poisson Convergence of Upcrossings 261 

The above results concern convergence of the point processes of up­
crossings of UT to a Poisson process in the unit interval. A slight modification, 
requiring C and C' to hold for all families UOT in place of UT for all () > 0, 
enables a corresponding result to be shown for the upcrossings on the whole 
positive real line, but we do not pursue this here. Instead we show how 
Theorem 13.6.3 yields the asymptotic distribution of the kth largest local 
maximum in (0, T]. 

Suppose, then, that ~(t) has a continuous derivative a.s. and (cf. Chapters 7 
and 9) define N~(T) to be the number of local maxima in the interval (0, T] 
for which the process value exceeds u, i.e. the number of downcrossing 
points t of zero by ~' in (0, T] such that ~(t) > u. Clearly N~(T) ;;:: Nu(T) - 1 
since at least one local maximum occurs between two upcrossings. It is also 
reasonable to expect that if the sample function behaviour is not too ir­
regular, there will tend to be just one local maximum above U between most 
successive upcrossings of U when U is large, so that N~(T) and NiT) will 
tend to be approximately equal. The following result makes this precise. 

Theorem 13.6.5. With the above notation let {UT} be constants such that 
P{~(o) > UT} --+ 0, and that TJ1. (= TJ1.(UT» --+, > 0 as T --+ 00. Suppose that 
E(N~(1» isfinitefor each U and that E(N~(1» '" J1.(u) as U --+ 00. Then, writing 
UT = U, E( I N~(T) - N u(T) I) --+ o. If also the conditions of Theorem 13.6.3 
hold (so that P{Nu(T) = r} --+ e-t,'lr!) it follows that P{N~(T) = r} --+ 

e- t ,' Ir!. 

PROOF. As noted above, N~(T) ;;:: Nu(T) - 1, and it is clear, moreover, that if 
N~(T) = Nu(T) - 1, then ~(T) > u. Hence 

E(IN~(T) - Nu(T)I) = E(N~(T) - Nu(T» + 2P{N~(T) = Nu(T) - 1} 

:::; TE(N~(1» - J1.T + 2P{~(T) > u}, 

which tends to zero as T --+ 00 since P{~(T) > UT} = P{~(O) > UT} --+ 0 
and TE(N~T(1» - J1.T = J1.T«(1 + 0(1» - 1) --+ 0, so that the first part 
of the theorem follows. The second part now follows immediately since the 
integer-v.alued r.v. N~(T) - Nu(T) tends to zero in probability, giving 
P{N~(T) =F NiT)} --+ 0 and hence P{N~(T) = r} - P{Nu(T) = r} --+ 0 for 
~~ 0 

Now write M(k)(T) for the kth largest local maximum in the interval (0, T). 
Since the events {M(k)(T) :::; u}, {N~(T) < k} are identical we obtain the 
following corollary. 

Corollary 13.6.6. Under the conditions of the theorem 

As a further corollary we obtain the limiting distribution of M(k)(T) in 
terms of that for M(T). 
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Corollary 13.6.7. Suppose that P{aT(M(T) - bT) S;; x} - G(x) and that the 
conditions of Theorem 13.2.3 hold with UT = x/aT + bT for each real x 
(and t/J = Jl). Suppose also that E(N~(1» '" E(Nu(1» as u - 00. Then 

P{aT(M(k)(T) - bT) S;; x} _ G(x)kf (-log ,G(x»S, 
0=0 s. 

(13.6.4) 

where G(x) > 0 (and zero if G(x) = 0). 

PROOF. This follows from Corollary 13.6.6 by writing G(x) = e- t since 
Theorem 13.2.3 implies that TJl - !. 0 

Note that, by Lemma 9.5.1(i), for a stationary normal process with finite 
second and fourth spectral moments E(N~(1» '" Jl so that Theorem 13.6.5 
and its corollaries apply. 

The relation (13.6.4) gives the asymptotic distribution of the kth largest 
local maximum M(k)(T) as a corollary of Theorem 13.6.5. Further, it is clearly 
possible to generalize Theorem 13.6.5 to give "full Poisson convergence" 
for the point process oflocal maxima of height above u and indeed to general­
ize Theorem 9.5.2 and obtain joint distributions of heights and positions of 
local maxima in this general situation. 

13.7. Interpretation of the Function t/I(u) 

The function t/J(u) used throughout this chapter describes the tail of the 
distribution ofthe maximum M(h) in a fixed interval h, in the sense of (13. 1.9), 
viz. 

P{M(h) > u} '" ht/J(u) for 0 < h S;; ho. 

We have seen how t/J maybe calculated for particular cases-as t/J( u) = Jl( u) 
for processes with a finite upcrossing intensity Jl(u) and as 

t/J(u) = KfjJ(U)U(2/rz)-1 

for normal processes satisfying (13.4.1). Berman (1982a) has recently con­
sidered another general method for obtaining t/J (or at least many of its 
properties) based on the asymptotic distribution of the amount of time spent 
above a high level. 

Specifically Berman considers the time Lr(u) which a stationary process 
spends above the level u in the interval (0, t) and proves the basic result 

1· P{vLr(u) > x} r'( ) 
1m -- x, 

u-+co E(vLr(u» 

at all continuity points x > 0 of r' (under given conditions). Here v = v(u) 
is a certain function of u and r(x) is an absolutely continuous nonincreasing 
function with density r ', and t is fixed. 
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While this result does not initially apply at x = 0, it is extended to so 
apply giving, since the events {M(t) > u}, {Llu) > O} are equivalent, 

P{M(t) > u} '" -r'(O)E(vLt(u» 

= - r'(O)vt(l - F(u», 

where F is the marginal dJ. of the process, since it is very easily shown that 
E(Llu» = t(1 - F(u». Hence we may-under the stated condition-obtain 
IjJ as 

ljJ(u) = - r'(O)v(u)(l - F(u». 

It is required in this approach that F have such a form that it belongs to 
the domain of attraction of the Type I extreme value distribution and it 
follows (though not immediately) that M(h) has a Type I limit so that (e.g. 
from the theory of this chapter) a limiting distribution for M(T) as T -+ 00 

must (under appropriate conditions) also be of Type I. However a number 
of important cases are covered in this approach including stationary normal 
processes, certain Markov processes, and so-called x2-processes. Further, 
the approach gives considerable insight into the central ideas governing 
extremal properties. 



PART IV 

APPLICATIONS OF EXTREME 
VALUE THEORY 

A substantial section of this volume has been directed towards showing 
that the classical theory of extremes still applies, under specified general 
assumptions, to a wide variety of dependent sequences and continuous 
parameter processes. It is tempting, by way of applications, to give examples 
which simply demonstrate how the classical extremal distributions do 
apply to such dependent situations. We have done this only to a limited 
extent, for two reasons. First, the literature abounds with applications of the 
classical theory, and many of these are really dependent cases although 
assumed independent. More importantly, however, we feel that each potential 
application should be understood as well as possible in terms of its under­
lying physical principles so that extremal theory may be thoughtfully 
applied in the light of such principles, rather than by routine" trial and error" 
fitting. 

Our approach in this part is therefore to primarily include applications 
which we feel do profit from a discussion of such underlying principles, 
occasionally involving modest extensions to the general theory, and to 
point out where difficulties may occur. For a more extensive compilation of 
the fitting of extremal distributions, under classical assumptions, we refer 
to the literature, e.g. Gumbel (1958); Harter (1978) contains a comprehensive 
listing of references. 



CHAPTER 14 

Extreme Value Theory and 
Strength of Materials 

Extreme value distributions have found widespread use for the description 
of strength of materials and mechanical structures, often in combination with 
stochastic models for the loads and forces acting on the material. Thus it is 
often assumed that the maximum of several loads follows one of the extreme 
value distributions for maxima. More important, and also less obvious, is 
that the strength of a piece of material, such as a strip of paper or glass fibre, 
is sometimes determined by the strength of its weakest part, and then perhaps 
follows one of the extreme value distributions for minima. Based on this 
so-called weakest link principle much of the work has been directed towards 
a study of size effects in the testing of materials. By this we mean the empirical 
fact that the strength of a piece of material varies with its dimensions in a way 
which is typical for the type of material and the geometrical form of the 
object. An early attempt towards a statistical theory for this was made more 
than a century ago by Chaplin (1880, 1882); see also Lieblein (1954) and 
Harter (1977). 

14.1. Characterizations of the Extreme Value 
Distributions 

Here we shall state and discuss some precise conditions under which the 
extreme value distributions would appear as distributions for material 
strength, and we also present some illustrating data. 

Suppose that a piece of material, such as a glass fibre or an iron bar, is 
subject to tension, and that it breaks if the tension exceeds the inherent 
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strength of the material. It has been found by experience that the breaking 
tension varies stochastically from piece to piece but that its distribution 
depends on the size of the material in quite a regular manner. 

Let ~L be the random strength of a piece of material L with length I, 
and suppose the material can be divided, at least hypothetically, into smaller 
pieces, L l , ••• , Ln of arbitrary lengths 110 , •• , 'n, and with (random) strength 
~LI' ••• , ~Ln' respectively. We say that the material is stochastically 

(i) brittle if ~L = min(~ 1, ..• , ~LJ, 
(ii) homogeneous if the marginal distributions of ~LI" •• , ~Ln depend only on 

' 1, ••• , 'n, 
(iii) disconnected if ~LI' ••. , ~Ln are independent for all disjoint subdivisions 

L l , ••• , Ln of L. 

Of these properties, (ii) and (iii) are of purely statistical character, while (i) 
depends on the mechanism involved in a failure. All properties have definite 
physical meaning, and any specific material can, at least approximately, 
have one or more of the three properties. Later we will discuss what happens 
when some of the requirements are relaxed, and see how far the present 
theory can describe properties of non brittle, inhomogeneous, and weakly 
connected materials. 

Suppose a material satisfies (i)-(iii), and let FI(x) be the (non-degenerate) 
d.f. of the strength of a piece with length I. Then 

1 - Fl(X) = (1 - Fl/n(x»n. (14.1.1) 

Now, any dJ. F leX) satisfies (14.1.1) for some dJ. F l/n(X), for example, 
taking Fl/nCX) = 1- (1- Fl(x»l/n, so that in order to obtain a simple 
structure, we therefore have to introduce one extra restriction on the material. 

A material is called stochastically 

(iv) size-stable if the distribution of ~L is of the same type regardless of the 
length t, i.e. there are constants al > 0, bl and adJ. F, such that FI(x) 
= F(al(x - bl»· 

This is an ad hoc notion, but is frequently used in this context, since it leads to 
considerable mathematical simplification. Unlike properties (i)-(iii) it has 
no strict physical meaning, but is sometimes defended from the intuitively 
appealing principle that the simplest model is also the physically most 
realistic one. 

For a size-stable material, writing (Xn = al /nal 1, 13n = b l - (Xnbl/n, 

so that, by (14.1.1), 

(14.1.2) 

Thus, F 1 is min-stable, and hence, according to Theorem 1.8.4, F can be 
taken to have one of the following forms. 
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Type I: F(x) = 1 - exp( -eX), - 00 < x < 00, 

{
I - exp( -( -x)-~), for some a> 0, 

Type II: F(x) = 1 
, 

Type III: F(x) = {01' (~) 
- exp - x , for some a > 0, 
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x<o 
x ~ 0, 

x<o 
x ~ 0. 

Thus strength distributions for materials satisfying (i)-(iv) are of one 
of the three minimum extremal types. If, furthermore, the scale of measure­
ment is such that the measured strength ¢L is bounded from below, ¢L ~ Xo 

for some Xo E ( - 00, 00), then the only possibility is the Type III (or Weibull) 
distribution, with location parameter xo, and generai scale parameter, i.e. 

F(x) = 1 - exp{ -(a(x - xo)Y}, x ~ Xo, (14.1.3) 

for some constant a > 0. Often Xo = ° is a natural choice, expressing the fact 
that strength can never be negative. However, even in cases when the strength 
must be positive, one may prefer to use one of the other types, e.g., the double 
exponential, 

F(x) = 1 - exp{ _ea(x-b)}, - 00 < x < 00, (14.1.4) 

since if the location parameter b is large enough, the probability of a value 
below the a priori lower bound is negligible. If (14.1.4) gives a better fit 
to data than (14.1.3) in the important region of variation it is therefore 
perhaps not necessary to favour the latter. However, great care must be taken 
when the aim of the analysis is prediction of very low values, as the following 
example shows. 

Example 14.1.1. (Yield strength of high-tensile steel). Test specimens of high­
tensile steel of a special quality were tested for yield strength. The samples 
were selected from the entire production of a specific manufacturer during 
two years (1975 and 1976). The empirical distribution of 100 observed 
values of yield strength is plotted on a nonstandard Wei bull probability 
paper in Figure 14.1.1 together with a fitted Wei bull distribution, 

(-log(1 - F(X»)l/~ = a(x - xo), x ~ Xo 

with a = 2.7, Xo = 463 MPa; (MPa = MegaPascal = 106 Newton per m 2). 

There is a good fit to the Weibull distribution, quite in accordance with 
theory. One could even be tempted to use Xo = 463 MPa as a true lower 
strength limit, and to predict the frequency of low strength values from this 
distribution function. 

For example, since the 0.1 % fractile of the fitted distribution is 470 MPa it 
appears that only lout of 1000 test probes should have a strength less than 
470 MPa. 
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Figure 14.1.1. Empirical distribution of 100 yield strength values with fitted Weibull 
d.f. F(x) = 1 - exp( -a(x - xo)") with a = 0.011, Xo = 463, IX = 2.7. 

However, Figure 14.1.2 shows the observed distribution of strength in a 
sample of 6262 items, in which as many as 25 are less than 470 MPa, and 12 
even less than 460 MPa. Hence, clearly the excellent Weibull fit obtained 
from the 100 values in the centre of the range does, for some reason, not 
extend to the tails. One explanation for the noted discrepancy between the 
behaviour in the tail and in the central region of the distribution could be that 
Figure 14.1.1 describes the variation in the material under some normal 
production conditions, while the extremely low strength values in Figure 
14.1.2 are due to gross effects, such as misc1assification of the product or 
external disturbances of the production. 

Regardless of the explanation, the example shows that great care has to be 
used when extrapolating from the normal range of variation to very extreme 
ranges, even in cases where theory and observations seem at first sight to 
agree. 

An account of the data presented above can be found in Of verbeck and 
Ostberg (1977), together with a discussion of gross error effects on construc­
tion steel. 0 
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Figure 14.1.2. Empirical distribution of 6262 yield strength values; scales chosen to 
give a straight line for the Type III (WeibulI) distribution. 

14.2. Size Effects in Extreme Value Distributions 

The conditions (i)-(iii) introduced in Section 14.1 state that the strength 
of a piece of material is determined by its weak points, of stochastic strength 
and location, distributed completely at random over the material. Together 
with the stability condition (iv) this led to a characterization of the possible 
strength distributions as the three types of extreme value distribution for 
minima. A simple consequence of the conditions is that the strength decreases 
in a specific way as the size of tested material increases. Here we shall give an 
example to illustrate this, and also show how an observed deviation from the 
simple law of decrease can suggest possible violations of one or both of the 
conditions (ii) and (iii). Harter (1977) gives an extensive discussion of the 
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literature of size effects from the earliest days; the bibliographic part of 
Harter's work is published separately as Harter (1978). 

If conditions (i)-(iv) hold, then the dJ. FI(x) of the strength ofa piece with 
length 1 is 

(14.2.1) 

Thus, FI being min-stable, it is simple to obtain the relation between size I 
and distributional parameters such as mean strength and standard deviation. 

For example, if F(x) = 1 - exp( _eX), writing a = aI' b = blo F l(X) = 
1 - exp( _ea(x-b») is a double exponential distribution with scale and 
location parameters a-I and b, and then 

so that FI(x) is double exponential with parameters 

al = a, 

bl = b - a-I log I. 

From this we can obtain the effect of size on other parameters, such as the 
mean strength mj, and the standard deviation (11' Since, in the standardized 
case with a = 1, b = 0, ml = -y, (where y is Euler's constant with the 
approximate value 0.577), and (11 = 1t/.}6 we have in the general case 

ml = b - a- 1(y + log I), 

(11 = a- 11t/.}6. 

Similar calculations may be done for the Type II and III distributions. 
Table 14.2.1 gives location and scale parameters and the mean and standard 
deviation of strength as functions of the tested length 1 (expressed in terms of 
r(a) = SO' x,.-l e-x dx). For completeness, all three types of distributions are 
included in the table, even though the Type II dJ. is not commonly used as 
strength distribution. 

Example 14.2.1. (Size effect on strength of paper strips). A strip of paper 
will burst when it is subjected to a tension which exceeds the strength at its 
weakest point. We shall discuss here the mean strength of paper strips (of 
constant width) with length varying from 8 cm up to 10 m. 

If an experiment is carried out several times with strips of various lengths 
one can check the fit of the extreme value distributions and the predicted 
dependence of the mean strength ml on the length I. Figures 14.2.1 and 14.2.2 
show observed mean values (measured in the unit kN, kilo Newton, per 
meter of paper width) obtained from experiments with paper strips of width 
5 cm, plotted on two different scales, chosen so that a Type I (Figure 14.2.1) 
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Table 14.2.1 

Type I (double exponential, F(x) = I - exp( _eX» 
F,(x) = F(a,(x - b,» = I - exp( _e·(x-b+.->lOgl» 

a, = a 
b, = b - a-I log I 

m, = b - a-I(y + log I) 

a/ = a- I n/J"6 
Type II (F(x) = 1 - exp( -( -x)-«), X < 0) 

F,(x) = F(a,(x - b,» = 1 - exp( -/( -a(x - xoW«), 

a, = al- I /« 

b, = b = Xo 

m, = Xo - II/«a-Ir(l - 1/1X) (ifIX> 1) 

a, = [I/«a-I{r(l - 2j1X) - r2(1 - 1/IXW/2 (if IX > 2) 

x < Xo 

Type III (Weibull distribution, F(x) = 1 - exp( -x«), x> 0) 

F,(x) = F(a,(x - b,» = 1 - exp( -/(a(x - xo)Y), x > Xo 

a, = all /« 

b, = b = Xo 

m, = Xo + I-I/«a- I r(l + 1/1X) 

at = 1-1/«a-1{r(l + 2j1X) - r2(1 + 1/1X)}1/2 
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and a Type III (Figure 14.2.2) distribution would give a straight line for m" 
Two qualities of paper were tested and for one of -the qualities three series 

of experiments were carried out. As is seen from the diagrams, mean strength 
clearly decreases with increasing length, but no decisive conclusion can be 
drawn from these data regarding the best fitting distribution. We are grateful 
to Dr Bengt Hallberg and Svenska Cellulosa Aktiebolaget, SCA, for making 
the data available. 0 

There is no difficulty in generalizing the theory above to apply in more 
than one dimension and to describe area and volume effects on the strength 
of materials. 

We shall now briefly discuss the possibility of handling nonbrittle, 
inhomogeneous and/or weakly connected materials for which one or more of 
(i)-(iii) does not hold. As mentioned previously, the size-stability condition 
(iv) cannot be removed completely, since then any strength distribution 
would apply. 

If a material is (stochastically) nonbrittle the strength of the whole is not 
equal to the strength of its weakest part. 

A number of different strength models would then be possible. If, for 
example, in a bundle of parallel fibres, the total load were distributed on the 
separate fibres in proportion to their individual strength, then the total 
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length 
1.00 L----1.._-'--_-'-_L----1.._----'_-'------' (m) 

0.05 0.1 0.2 0.5 2 5 10 20 

Figure 14.2.1. Mean bursting strength of paper strips of varying length; scales chosen to 
give straight lines for the Type I distribution. 

strength would be the sum of the strengths of the fibres, leading to a normal 
distribution for total strength, with mean proportional to the number of 
fibres. Also the case where the total load is distributed equally over all 
remaining, nonfailed parts of the material, those parts failing whose strength 
is less than its share of the total load, will lead to an asymptotic normal 
distribution for the total strength, see, for example, Smith (1980) and 
references therein. 

In a stochastically inhomogeneous material the strength distribution for 
a small piece of the material varies with its location. However, if the con­
ditions (i), (iii), and (iv) are satisfied, one can still obtain one of the extreme 
value distributions under mild conditions on the inhomogeneity. One simple 

mean strength 
(kNjm) 

2.00 

1.75 

1.50 

1.25 

length 
1.00 .1..-----1._-'--_-'-_+-----1.._----'_-'------' (m) 

0.05 0.1 0.2 0.5 2 5 10 20 

Figure 14.2.2. Mean bursting strength of paper strips of varying length; scales chosen 
to give straight lines for the Type III distribution. 
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kind of inhomogeneity is obtained by measuring the size of the material not 
as its physical dimension but in terms of an integral of a positive local size 
function, as will now be described. 

Let A.(x), x E L be a non-negative, integrable function, and define, for 
LjcL, 

lj = r A.(x) dx. JLi 
(14.2.2) 

Let L j, i = 1, ... , n be disjoint parts of L, u~= I L; = L, and let, as before, 
~LI' ... , ~Ln be the strengths of the separate pieces. 

The material is called stochastically 

(ii') inhomogeneous with size function A., if the marginal distributions of 
~LI' ... '~Ln depend only on It. ... , In as defined by (14.2.2). 

Now suppose a material satisfies (i), (ii'), (iii), (iv), and let F,(x) be the dJ. 
of the strength of a piece L with 

1 = {A.(X) dx. 

Then it is readily seen that (14.1.1) and (14.1.2) still hold, so that F1(x) is 
min-stable and one of the three extremal types for minima. Using a, b as the 
parameters in F1(x), we have in the Wei bull and double exponential case 

respectively. 

FJ(x) = 1 - exp{ -(a(x - xo»"}, 

FJ(x) = 1 - exp{ _ea(x-b)}, 

Starting from the local size function A.(x) one can simply derive explicit 
expressions for the location- and scale-parameters in the strength distribu­
tion for a piece L with size 1 = h A.(x) dx, which is F(L)(X) = F,(x) = 

Fa,(x - b,), with a, and b, given in Table 14.2.1. To obtain these expressions, 
define the functions a(x), b(x) as 

and 

a(x) = aAY"'(x) (Weibull), 

b(x) = b - a-I log A.(x) (double exponential) 

A(L) = ({a(x)'" dXr/<Z, 

B(L) = _a- l log {e-ab(X) dx. 

(14.2.3) 

(14.2.4) 
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We can then write the dJ. for minimum strength ~L of a piece L as 

F(L)(X) = 1 - exp{ -(A(L)(x - xo»)"}, 

F(L)(X) = 1 - exp{ _ea(x-B(L))}, 
(14.2.5) 

respectively. These formulae motivate the use of a(x)-l and hex) as "local" 
scale and location functions in standard extremal models. 

The average strength is given by 

in the two cases. 
The most interesting generalization of the properties (i)-(iv), from the 

point of view taken in this book, is to (weakly) connected materials, in which 
there is a dependence of the strength over separate parts of the material. 
However, this will lead to strength distributions which are not necessarily 
any of the extreme value types for any finite test size, although they may be 
asymptotically so as size increases, under natural conditions as in Chapter 13. 

Let the local strength parameters (14.2.3), a(x), x E L or hex), x E L, 
be, not deterministic functions but, stochastic processes with some distri­
bution that depends on the irregularity and connectedness of the material. 
Then A(L) and B(L) in (14.2.4) are r.vo's with dJo's F A(L) and F B(L), say, and 
if we let (14.2.5) define the conditional d.f. of ~L given a(x) or hex), then 

F(L)(X) = 1 - i:oexp{-(S(X - xo»)"'} dFA(L)(s) 

or 

(14.2.6) 

respectively. Furthermore, the strengths of disjoint pieces would be de­
pendent, through the outcome of the processes a(x) and hex). The average 
strength will be 

(~ ) = {xo + E(A(L)-l)r(1 + 1/~), 
E L a- 1y + E(B(L». 

The concept of a random local strength, averaging to a random location 
parameter B(L) in the dJ. F(L)(X) given by (14.2.6), is formally somewhat 
analogous to the "strong dependence case" for the maxima of normal 
sequences treated in Sections 6.4 and 6.5 in which one has to subtract a 
slowly varying mean level before obtaining the double exponential limit; 
compare formula (14.2.6) with the mixed double exponential limit for 
maxima in Corollary 6.5.2. 
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Example 14.2.2. It has been noted in experiments that the average strength 
does not always decrease with increasing length as in anyone case in Table 
14.1, but can fall off with varying rates for different lengths. For example, the 
strength of glass fibre seems to decrease more rapidly when the length 
exceeds a certain limit. Some authors, for example, Metcalfe and Smitz 
(1964) explain this by postulating that weak points of the fibres appear in 
certain semi-stochastic patterns, and that they tend to cluster at regular 
intervals. This can obviously be modelled by means of the random strength 
parameters A(L) and B(L) as described above. 0 



CHAPTER 15 

Application of Extremes and Crossings 
under Dependence 

In this chapter we shall present some examples of continuous parameter 
processes and sequences with dependence where extreme value theory may 
be applied for descriptive or predictive purposes. 

First, the important distinction between continuous time and discrete 
time extremes is illustrated, and the Poisson character of exceedances and 
crossings discussed in some examples. Descriptive models for some physical 
phenomena are discussed in connection with domains of attraction, particu­
larly relative to mixtures of distributions with random scale or location 
parameter. An important problem, lying behind many extremal problems, 
is that of extrapolating extreme value distributions over expanding intervals 
(cf. the discussion of size effect in Chapter 14). This gives rise to several 
statistical problems concerning the choice of proper normalizing constants 
and the effect of nonstationarity. A discussion of these and some examples 
of local extremes for the description of random waves concludes the chapter. 

15.1. Extremes in Discrete and Continuous Time 

Many physical phenomena are (seemingly) continuous by nature, and the 
mathematical models which describe them are most naturally phrased in 
terms of continuous time processes. For extreme values, it is, in many cases, 
the continuous time extremes which are of primary interest. However, most 
statistical observations are obtained from some sampling procedure, and 
this will have the obvious effect that extremes in many cases become less 
accentuated. Since there are fairly complete (asymptotic) theories for ex­
tremes in both the continuous and the discrete case (at least for normal 
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processes) a natural question concerns the relation between the two. The 
following example illustrates some practical consequences of the difference 
between discrete and continuous extremes. 

Example 15.1.1 (Extreme temperatures). Experiments with thermometers 
and temperature measurements were started in Uppsala, Sweden, around 
1712-1713, shortly after Fahrenheit had constructed his temperature scale 
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Figure 15.1.1. (a) Maximum and (b) minimum recorded temperature in Uppsala during 
the month of July ; note the introduction of a max- and min-thermometer in 1839. 
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Figure 15.1.2. Observed dJ. of (a) maximum and (b) minimum temperature in Uppsala 
during July; X = discrete recordings, 1739- 1838, 0 = continuous recordings, 1839-
1981. 
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in 1709. With Anders Celsius, these measurements became more regular and 
there is an almost complete series of daily temperature data from January 
1739. 

During the first century of this period measurements were made only 
three or four times a day, and sometimes at irregular intervals. In 1839 ob­
servations of the true maxima and minima were made possible by the installa­
tion of a max- and min-thermometer. The observed daily maximum or 
minimum for the period 1739-1838 should therefore be expected to be less 
extreme than the recordings from 1839 onwards. This effect can be expected 
to be particularly large for the minimum temperature during the summer 
months, since the lowest temperatures then occur very early in the morning 
at that latitude, while the discrete recordings were normally made when the 
sun had been up for several hours. This is illustrated in Figure 15.1.1 which 
shows the observed monthly maxima and minima for the month of July for 
each year (except for a few missing years during the 1770s). The data consists 
of M 1739, •.. , M 1838 (and m1739,··" m1838), where, e.g. Mi is the maximum 
of the discrete set of July temperatures in year i, and of M 1839,··., M 1981 

(and m1839,"" m1981), with M j equal to the absolute (continuous) July 
maximum in year j. The drs of these data are plotted in Figure 15.1.2 with 0 
for continuous and X for discrete recordings. There is a clear shift towards 
more extreme values with the introduction of the max- and min-thermometer, 
as is also seen, at least for minima, in the complete time series in Figure 
15.1.1. The data are plotted on double exponential probability paper, but 
the fit is not particularly good, and there is no strong reason why it 
should be; the maximum temperature over a month being determined more 
by the prevailing weather conditions during that month than by any extreme 
weather that might occur in particular months. 

The temperature data in this example have been extracted from the 
original manuscripts by Sverker Hellstrom, Uppsala, to whom we are 
grateful for permission to use them. D 

15.2. Poisson Exceedances and Exponential 
Waiting Times 

The Poisson character of exceedances or crossings of a high level, and the 
exponential waiting times between successive exceedances, is coupled to the 
weak dependence of maxima in adjacent intervals, as has been observed 
empirically in connection with rare events emerging from unlikely com­
binations of innocent causes, such as extreme floods or storm winds and 
extreme loads in mechanical structures. 

Example 15.2.1 (High river flows). Todorovic (1979) has obtained the ob­
served frequencies of N(T), the number of times in T days, that the water 
flow in the Greenbrier River, West Virginia, exceeds the level 17,000 cubic ft. 
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Figure 15.2.1. Observed (--) and fitted Poisson distribution (---) for the number of 
exceedances in time T; flood data from Todorovic (1979). 

The total observation period was 72 years between 1896 and 1967. The ob­
served frequences, together with theoretical Poisson probabilities are shown 
in Figure 15.2.1 for a few values of T. 

In this type of river and climate, the Poisson distribution gives a reasonably 
good fit to the observed distribution. The time between exceedances is also 
large and the independence therefore plausible. 

In other areas, with a climate that changes between wet and dry periods, 
the exceedances may occur in clumps and, of course, then deviate from the 
Poisson distribution. 0 

When no clumps of exceedances occur, one can use the approximation 

P{N(T) = O} ~ exp{ - T/l(u)}, (15.2.1) 

where /leu) is the mean number of exceedances of U per time unit (f1(u) = 
Pg i > u} if time is discrete). In other cases, better approximations to the 
probability of no exceedances may be obtained from the crossing rate for a 
smooth, enveloping process. 

However, even if(IS.2.1) provides a good approximation to the probability 
of no exceedance, there remains the more difficult problem of assessing the 
form of the crossing intensity /leu) as a function of u. In discrete time, /leu) = 
p{ei> u} is given by the marginal d.f., while in continuous time it is, by 
(7.2.3), 

What is needed then, apart from the density f~(o)( u), is a measure of the average 
steepness of the sample functions at various levels. For normal processes, 
/leu) is given by (7.3.4) and it can also be calculated exactly for a few non­
normal processes, some of them functions of multivariate normal processes, 
such as the x2-process; see Belayev (1968), Belayev and Nosko (1969), 
Veneziano (1979), Hasofer (1976), and Lindgren (1980b,c). 

Even if the mean crossing rate has a known functional form, some param­
eters have to be estimated from observations before the formula can be 
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used in practice. For example, if ~(t) is a stationary normal process with mean 
m and variance Ao, 

J1.(U) = ~ (A2)1/2 exp { __ 1 (u _ m)2} 
2n AO 2Ao 

so there are three parameters, m, AO, and v = (l/2n) (A2/AO)1/2 = mean num­
ber of upcrossings of the level m in unit time, to be estimated. Of course, for 
large values of u - m, predictions by means of this formula can be highly 
unreliable. 

Example 15.2.2 (Break frequency of paper; cf. Example 14.2.1). A paper web 
which runs through a printing press is subject to a tension which can cause 
a web break. Since a break usually starts at one of the side edges of the web 
we can model this phenomenon by considering the local strength of the paper 
(at any of the side edges) as a stationary stochastic process ~(t) with one­
dimensional parameter t running along the length of the paper. 

In Example 14.2.1 the object of study was min{~(t); 0 =:; t =:; T} for small 
values of T(between 0.08 m and 10 m), and from that example we can draw the 
conclusion that the mean local strength is certainly not less than 1.5 kN/m 
for those particular qualities of paper. 

In the model a web break starts when the local strength ~(t) has a down­
crossing of the tension level u, which in a printing press takes values some­
where around 0.3-0.5 kN/m. Suppose now that for small values of u the 
downcrossing rate is the same as for a normal process, 

p,(U) = v exp { - 2~o (u - m)2}. 

(This is consistent with Example 14.2.1 which did not exclude a Type I 
decrease of mean strength with increasing length.) Further assume that we 
can run the press at a series of different tension levels. An experiment carried 
out on tension level Ui will result in an observed distance to the first web 
break, which we can denote by Yi' The tension can be varied between each 
experiment. We thus obtain a sequence of tension levels Ui' and observed 
corresponding distances to web breaks, Y;. i = 1, ... , n. 

By the Poisson character of extreme crossings, for small values of Ui the 
y;'s are approximately independent and exponentially distributed with mean 
1/p,(ui), so one can write 

1 2 
log Yi = -log v + 2Ao (Uj - m) + log ej, (15.2.2) 

where log e;. i = 1, ... , n, are approximately independent r.v.'s with dJ. 
P{log ej =:; x} = 1 - exp( _eX), - 00 < x < 00. Thus (15.2.2) is a regression 
equation from which m, AO' and log v can be estimated. However, the levels 
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Ui need to be spread out over a wide range of values in order to give good 
estimates of the parameters and this is not always possible under experimental 
conditions; for a discussion of efficiency, see Hallberg and de Mare (1976). 

15.3. Domains of Attraction and Extremes from 
Mixed Distributions 

D 

In this section we shall discuss two important questions related to the do­
mains of attraction, namely, the effect on the extreme value distribution of 
a randomly varying parameter in a parent distribution, and the influence of 
deterministic components in nonstationary cases. We start with a discussion 
of some models for wind variation. 

Example 15.3.1. The variation in wind speed and direction has long been 
studied and documented in statistical terms and has an interesting history. 
Notable studies were made by Gustav Eiffel on top of the Eiffel tower during 
the early years after its construction; see Eiffel (1900). As an example, Figure 
lS.3.1(a) shows a recording of speed and direction during a day at the top of 
the tower (upper curve) and on the ground (lower curve). 
The speed was measured as the time it takes the wind to run SOOO m, which 

means that there is an averaging over a time interval with a length depending 
on the current wind speed. This averaging was partly due to the construction 
of the measuring and recording devices and, as Eiffel noted, has a consider­
able influence on the observed high speeds. To partly compensate for this, 
Eiffel installed an extra, more sensitive, anemometer which was engaged 
only when the slow anemometer showed values exceeding a certain level. 
Figure lS.3.1(a) and (b) shows examples of the slow and sensitive meter 
recordings. 

In Figure lS.3.2 empirical dJ.'s for wind speed on top of the tower are 
shown for two different months, (a) January and July, based on measurements 
from 1890 to 189S, and (b) for combined data for all twelve months in a year. 
Since there are some theoretical arguments for using a Rayleigh distribu­
tion in connection with speed measurements and random directions, the 
scales are chosen so that the Rayleigh distribution, F(v) = 1 - exp( - v2/2(12), 
is represented by a straight line: 

log( -log(l - F(v») = 2 log v - log(2(12). 

As is seen, the curves for the individual months show some definite curva­
ture, while the combined data show a good fit to the Rayleigh distribution. 
This has sometimes been taken as an indication that wind speed should be 
described by the Rayleigh distribution. As we shall see, there is at least some 
further rationale for this. D 



H
eu

re
s 

6 
7 

8 
9 

[0
 

[[
 

M
id

i 
[ 

:2 
3 

4 
5 

6 
7 

8 
Nj

 
I 

_ 
..§

. T
ou

r/
l 

f 
/ 
I
/
'
-

/'
 

/'
 

/ 
W

I 
B

ur
ea

u 
IS

 
/
~
-
-
~
~
/
-
-
-
/
+
-
-
-
r
-
~
r
-
-
/
7
-
-
-
/
+
-
-
/
,
~
-
~
/
~
_
~
-
-
/
?
+
-
-
/
7
r
-
-
/
~
-
/
,
~
-
-

30
m

 

20
 

10
 o 

(a
) 

T
em

pe
te

 d
u 

3 
M

ar
s 

[8
96

 

12
h 4

7"
's

oi
r 

12
h4

8 
12

h4
9 

12
h 5

0 
Ih

2"
' s

oi
r 

Ih
3 

[h
4 

Ih
5;

 

{\
 

J
\ 

40
m

 

35
 

! 
A

 
h. 
/
\
~
 

(\
!'J

 \
 

{ 
A

f\
..

0
 ~ 

( 
\ 

!I
./

\ 
30

 

J 
v

..
/v

v
 

V
 

\J
 

"\
J'

V
\,

 1
\(

 \j
 

V
 

\"
.J

 

\J
\. 

rJ
 

If 
I 

25
 

20
 

M
ax

im
a 

de
 v

il
es

se
 a

bs
o

[u
e 

du
 v

en
t 

(3
 M

ar
s 

18
96

) 
15

 

I 
I 

I 
i 

(b
) 

T
em

pe
le

 d
u 

3 
M

ar
s 

18
96

 

F
ig

ur
e 

15
.3

.1
. 

G
. 

E
if

fe
\'s

 r
eg

is
tr

at
io

n 
o

f 
w

in
d 

sp
ee

d,
 (

a)
 w

it
h 

sl
ow

 a
ne

m
om

et
er

 a
n

d
 (

b)
 w

it
h 

se
ns

it
iv

e 
an

em
om

et
er

 
sh

ow
in

g 
ex

tr
em

e 
w

in
ds

. 

V
>

 

~
 o o g :;'
 

V
> o .., ~ .... ~ 0'
 

;:
l 

I»
 

;:
l 

Q
. a:: ~
. 

Q
. o ~ .
 

.... &
 

S 0'
 

;:
l 

V
> N
 

0
0

 
V

I 



% 
99.9 

99 
97.5 

90 

75 

50 

25 

10 

5 

2 

% 
99.9 

99 
97.5 

90 

75 

50 

25 

10 

5 

2 

X 

x 
0 

x 0 

0 

x 

0 

x 
0 

2 5 10 
(a) 

X 

X 

X 

X 

2 5 10 

(b) 

~ 

X 

X 0 

-
0 

X 

X 
.., 

... x 

0 

0 

20 

X 
X 

20 

~ 

x 

speed 
50 (m/s) 

speed 
50 (m/s) 

Figure 15.3.2. Observed dJ. of wind speed on the Eiffel tower (scales chosen to give a 
straight line for the Rayleigh distribution); (a) 0 = January, x = July, (b) x = 
Yearly data. 
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The horizontal wind blowing at a specific point at time t can be represented 
as a vector W(t) = (el(t), eit» with components el(t) and e2(t) which are 
the wind velocities along, say, the N-S and E-W directions, respectively. The 
total wind speed is then 

W) = I W(t) I = (ei(t) + e~(t»1/2 

(with wind direction O(t), i.e. e I (t) = e(t) cos O(t), e2(t) = e(t) sin O(t». 
Suppose el(t) and e2(t) are independent normal processes with mean ml , 

m2 and the same covariance function r(t) = COv(ei(S), ei(S + t», i = 1,2, and 
variance (12 = r(0) = Var(ei(t». If both components have mean zero, 
ml = m2 = 0, then 

p{e(t) > v} = p{ei(t) + eHt) > v2} = exp ( - ;;2)' v> 0, 

so that e(t) has a Rayleigh distribution with density 

f~(tlv) = V(1- 2 exp ( - ;;2) , v> 0. (15.3.1) 

If ml or m2 are not zero, i.e. if there is a prevailing wind direction, the wind 
speed has a noncentral Rayleigh distribution with parameter A. = (mi + m~)1/2 
and probability density function 

v> 0, (15.3.2) 

where Io(x) is the modified Bessel function of the first kind of order 0; see 
Johnson and Kotz (1970, Section 28.3). 

Due to these relations between the normal and the Rayleigh distribution 
it is not surprising that the latter has been used as a parent distribution for 
wind speed measurements by many authors. However, in the example above 
(Example 15.3.1) the Rayleigh distribution did not fit the monthly data well. 

Note also that if e(t) = (ei(t) + e~(t»1/2 is a Rayleigh process with 
normal components, then the averages 

are still normal, so that 
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is also Rayleigh, but the observed mean of ~(t), 

~(t) = ~ LT (~i(t) + ~~(t»1/2 dt 

is not Rayleigh. The distributional properties of filtered wind speed data 
has been studied by Sharpe (1974). 

We turn now to a discussion of extreme wind data and the effect of non­
stationarity and time-varying parameters. The Rayleigh distributions (both 
central and noncentral) belong to the domain of attraction for the Type I 
double exponential extreme value distribution. One would therefore expect 
that the maximum wind M(T), taken over an interval of length T where 
stationary conditions hold, would follow this distribution, i.e. 

P{M(T) ~ u} ~ exp( - e-aT(U-hT» 

for some constants aT > 0, bT depending on the length of measurement and 
the correlation structure of the process. 

Example 15.3.2 (Yearly maximum of wind speed). Table 15.3.1 and Figure 
15.3.3 show the observed yearly maximum of the I-hour mean wind in 
London, Ontario for the years 1939-1961 (T = 1 year, unit of speed = m/s). 
(The data have been compiled from Davenport (1978).) The straight line 
in the figure is the dJ. for a double exponential distribution as fitted by 
Davenport: F(v) = 1 - exp( _e-(V-17)/3). 0 

As was seen in the previous example a Type I extreme value distribution 
can be reasonably well fitted to the yearly maxima of wind at a specific 
point. On the other hand, in Example 15.3.1 different short-term distribu­
tions had to be fitted for each month, and there is no reason to believe that 

Table 15.3.1 

Speed Year Speed Year 

14.3 1958 18.3 1947 
14.8 1944 18.3 1949 
15.2 1960 18.8 1954 
15.6 1946 19.2 1959 
16.1 1939 20.1 1941 
16.1 1956 20.1 1955 
16.5 1940 20.6 1952 
16.5 1945 22.4 1942 
17.4 1943 23.2 1948 
17.4 1951 24.6 1957 
17.4 1953 25.9 1950 
17.4 1961 
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Figure 15.3.3. Observed dJ. of maximum yearly wind speed 1939-61, plotted on double 
exponential probability paper (from Davenport (1977». 

it is not also the case in Example 15.3.2. There are many other situations, e.g. in 
modelling rainfall, waveheight, etc., when one has to use different models for 
different periods of time, and let the parameters of the model vary with time. 
This variation can then be considered either as deterministic, repeating a 
certain pattern from one period of time to the next, or as a random function 
with its own distributional properties. The former case is parallel to the con­
siderations leading to formula (14.2.5) for the strength of materials, and it 
involves taking the maximum of variables with nonidentical distributions. 
A theory for normal sequences with varying means was presented in Chapter 
6, and an example will be given at the end of the next section. 

In the latter case, when the variation is random, one is actually facing a 
situation in which the individual observations are identically distributed, 
and follow some mixed distribution, in analogy with formula (14.2.6). An 
important question then is to what extent extreme observations are due to 
extreme parameter values or to extreme experimental outcomes. 

Simiu and Filliben (1976) have demonstrated that the double exponential 
distribution does not describe extreme winds in climates characterized by 
the occurrence of special types of winds, such as hurricanes, which are con­
siderably stronger than the usual winds. They conclude that in such cases 
knowledge of the frequency and characteristics of hurricanes is vital for a 
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reliable prediction of strong winds. Similar problems occur in ocean engineer­
ing where the frequency of different weather types is used to mix the effects 
calculated from stationary short-term wind and wave models. 

As an example we will discuss in more detail a scale mixture F ~ of Rayleigh 
distributions, 

1 - Ff,(v) = p{e > v} = L"p{e > vlo- = s} dF,.(s) 

= {Xl exp ( _ ;S22) dF,,(s), (15.3.3) 

where F" is the dJ. of a random scale parameter in (15.3.1) (assuming ml = 
m2 = 0 to be constant). 

As follows simply from Theorem 1.6.1, each conditional distribution 
1 - exp( - v2/2s2) belongs to the domain of attraction to the Type I extreme 
value distribution, which means that the maxima, suitably normalized have 
approximately a double exponential distribution. When s varies as the r.v. 0-, 
extreme values of e may occur due to large values of (T, and the question we 
shall deal with is the domain of attraction for the mixed distribution (15.3.3) 
for different mixing distributions F". In the Type II case there is the following 
simple and satisfying answer: A scale mixture F~ of Rayleigh distributions 
belongs to the domain of attraction for the Type II extreme value distribution 
with parameter ex if and only if the same is true for the scale distribution F". 

Furthermore, if {an > O} is a sequence of scale parameters for F" such that, 
as n -+ 00, F..(x/an)n -+ exp( _x-a), x> 0, and c" = 2"/2r(ex/2 + 1), then 
a~ = a[e"n] is an appropriate sequence of scale parameters for F~, and 

F~ (:~r -+ exp( -x-a) as n -+ 00, x > O. 

We shall prove this here making use of the explicit form of the Rayleigh 
distribution, even though it seems likely that a direct estimate of the tail of 
the distribution of the mixture would work just as well. Let 

F1/(2,,2)(X) = 1 - F" (~) 

be the dJ. of 1/(20-2 ) and let 

L(t) = 100 e- tx dF1/(2,,2)(X) 

be·its Laplace transform, so that 

1 - F ~v) = 100 
e- v2x dF l /(2,,2)(X) = L(v2). 
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Now, by Theorem 1.6.2, F t/ belongs to the domain of attraction for the Type 
II extreme value distribution if and only if it is regularly varying with ex­
ponent IX, i.e. if 

1 - Ft/(tx) -" 
---'---'- -+ x as t -+ 00, 

1 - Fit) 
and hence with s = 1/(2t2 ), 

F 1/(2t/2)(S/X2) -+ (X2)-,,/2 as s -+ 0, 
F 1/(2t/2)(S) 

so that F 1/(2t/2)(S) is regularly varying at 0 with exponent 1X/2. Bya Tauberian 
theorem for Laplace transforms (see Feller (1971), Section XIII.5, Theorem 
3, formula (5.7», this is equivalent to L(t) being regularly varying at 00 and 

L(t) '" r (~ + 1) F1/(2t/2)(1/t) as t -+ 00. 

Thus 

'" 2"/2 r (~ + 1) (1 - Ft/(v» as v -+ 00, (15.3.4) 

proving the equivalence of domains of attraction. 
Further, Fix/an)" -+ exp( _x-") if and only if 

n(1 - Ft/(x/an» -+ x-". 

With a~ = a[c«n], (15.3.4) then shows that 

n(1 - F~(x/a~» '" [c"n]c;l (1 - F~ (~)) 
a[c«n] 

'" [c"n] (1 - Ft/ (~)) -+ x-", 
a[c«n] 

so that a~ is a proper choice of scale parameters. 
Thus in the Type II case with F t/ falling off regularly at infinity i.e. 

1 - Fix) '" x-"L(x) and L(x) varying slowly, the maximum M~~) of the 
independent variables ~ 1 , ••• , ~n' each with dJ. 

1 - 100 
exp( - ;;2) dF ,,(s), 

has an asymptotic Type II distribution 

P{a~M~~) ~ x} -+ exp( _x-"). 
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In this case the type of the maximum is therefore determined by the domain 
of attraction of the dJ. Fa of the parameter values. 

15.4. Extrapolation of Extremes Over an Extended 
Period of Time 

Suppose {e(t)} is a stationary continuous time process, for which the maxi­
mum is attracted to the double exponential law, so that with some aT > 0, bT, 

P{M(T) ::s; u} = P {sup e(t)::S; u} ~ exp( _e-aT(U-bT » (15.4.1) 
OStST 

and we want to use knowledge of aT' bT, for some T and "extrapolate" to 
the distribution of M(nT) for some fixed integer n. If T is large we can expect 
that the maxima over the intervals (0, T], (T, 2T], ... , «n - 1)T, nT] are 
approximately independent, so that 

P{M(nT) ::s; u} ~ P"{M(T) ::s; u} ~ exp( _ne-aT(u-bT » 

and hence we would have 

(15.4.2) 

as a possible choice for the location and scale parameter for the maximum 
over an extended period of time; cf. the discussion of the size effect on strength 
in Section 14.2. 

These relations hold as soon as {e(t)} belongs to the domain of attraction 
of the double exponential law. For a differentiable normal process 

aT = (2 log T)l/2, 

(15.4.3) 

by Theorem 8.2.7, where A,2 = Var(e'(t», which gives, as T -+ 00, 

anT = (2 log nT)l/2 = (2 log T)l/2 (1 + ~ 1::; + 0 (10~ T) ) 

= aT + ail log n + o(ail), 

bnT = anT + a;;llog(jI;/2n) 

= aT + ail log n + ail log(A/2n) + o(ail) 

= bT + ail log n + o(ai 1), 

agreeing with (15.4.2) up to terms of low order, as it should. 
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However, these scale and location parameters are dependent on the time­
scale of the process, in a way which sometimes can be a source of confusion. 
A change of scale units in (15.4.1) and (15.4.3), so that time T is replaced by 
T' = cT, will change (2 log T)1/2 into (2 log T + 2 log C)1/2 and A.y2 into 
c- 1 A.~/2, so the approximation (15.4.1) will be different. Of course, whatever 
the time scale, there is a precise limiting distribution for the maximum, the 
problem is that the error in using (15.4.1) for finite time intervals depends on 
the time scale. 

One natural way of counting time, which is often used, is in terms of zero 
crossing distances or mean period length. Let (assuming ..1.0 = 1), 

v = ~A.y2 
2n 

be the mean number of zero upcrossings per (old) time unit, and introduce 
the new time scale T' = vT, which counts the time in terms of the expected 
number of zero upcrossings. Then log(v-1A.~/2 j2n) = log 1 = 0, so the 
(standardized) approximation would be 

P{M(T) ::;; u} ~ exp( -e-(2 log vT)1/2(u-(2 log vT)1/2» 

with equal scale and location parameter, 

aT = bT = (2 log VT)I/2. 

The approximating distribution has mean and standard deviation 

mT = (2 log VT)I/2 + (2 I )' )1/2 
og vT , 

7t 
aT = fl (2 log VT)I/2, 

(15.4.4) 

which can be used as standard approximations of the limiting mean and 
standard deviations. 

Example 15.4.1 (Extremes in air pollution data). The United States Federal 
short-term standard for sulfur dioxide (S02) requires that the 3-hour mean 
concentration ofS02 should not exceed 50 pphm (parts per hundred million) 
more than once a year. To see how this can be complied with we shall discuss 
data from 19 years observations of I-hour mean concentrations from Long 
Beach, California (taken from Roberts (1979b». Clearly the 3-hour means 
have less accentuated extremes than the I-hour means so this procedure 
will certainly not underestimate the frequency of exceedances. 

Figure 15.4.1 shows the daily maxima of the hourly averages for each of 
the 365 days of 1979. 

As is seen in the diagram the data are clearly correlated. Furthermore, 
from a complete set of data from 1956-1974, shown in Table 15.4.1, it is seen 
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Figure 15.4.1. Observed values of daily maximum of I-hour mean SOz concentration 
at Long Beach, California, 1979. 

that the highest values are concentrated to the winter months, so that what 
we actually have is an example of a non stationary correlated sequence. 

The dJ. of mean concentration of air pollutants has been studied and de-
scribed by many authors, and it appears that a lognormal distribution would 

Table 15.4.1 Sulfur dioxide, I-hour average concentrations (pphm); monthly 
and annual maxima and annual averages. Ann. Ann. 

Year Jan. Feb. Mar. Apr. May Jun. JuI. Aug. Sep. Oct. Nov. Dec. Max. Ave. 

1956 47 31 44 12 13 3 14 21 33 26 40 32 47 4.0 
1957 22 19 20 32 20 23 18 16 13 14 41 25 41 3.0 
1958 15 13 20 12 24 13 37 20 32 27 27 68 68 3.4 
1959 20 32 20 15 3 6 8 15 17 15 20 20 32 2.1 
1960 22 18 23 20 8 13 14 9 13 16 27 20 27 1.9 
1961 25 20 20 16 10 10 8 10 12 16 14 43 43 1.9 
1962 20 13 15 18 10 12 10 10 11 11 14 7 20 1.5 
1963 12 18 27 21 2 7 4 4 15 10 18 18 27 1.3 
1964 16 10 3 3 19 9 16 25 4 14 18 21 25 1.4 
1965 16 18 9 14 8 10 18 18 14 12 17 14 18 2.6 
1966 27 33 25 10 17 30 13 18 22 15 25 23 33 3.0 
1967 30 40 32 10 8 7 8 26 10 40 18 17 40 2.5 
1968 51 30 18 22 10 19 22 25 26 29 50 40 51 3.1 
1969 37 13 55 14 9 10 13 17 33 13 15 44 55 2.5 
1970 23 19 10 11 15 12 25 40 25 20 12 8 40 2.4 
1971 22 36 20 28 10 15 20 55 38 41 26 25 55 2.5 
1972 30 32 18 27 37 13 23 19 21 31 25 13 37 2.5 
1973 10 8 8 12 11 16 25 16 11 28 10 23 28 1.9 
1974 8 9 9 13 8 14 9 9 25 11 19 15 34 1.7 

Average 23.8 21.6 20.8 16.3 12.7 13.7 16.0 19.6 19.7 20.4 22.9 25.0 2.4 
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Figure 15.4.2. Observed dJ. of monthly maxima (x), yearly maxima (0) from 1956 to 
1974 at Long Beach; - - fitted double exponential distributions, - - - dJ. for yearly 
maximum extrapolated from monthly maxima. 

give a reasonable fit, at least in the center of the distribution. The lognormal 
distribution belongs to the domain of attraction to the Type I distribution 
(see Example 1.7.4), and we shall try to fit a double exponential distribution 
to the extremal data in Table 15.4.1. Of course, a good fit to lognormality 
in the centre of the distribution does not ensure that this will work well. 

Figure 15.4.2 shows the empirical dJ.'s of the 19-yearly, and 19 x 12 
= 228 monthly maxima, plotted on double exponential probability 
paper. It is worth noting that the theory in Chapters 3 and 13 might be 
applicable to the correlated data here and that then the data should give an 
acceptable plot on the appropriate extreme value paper. However, the non­
stationarity, and perhaps also the dependence from month to month, affects 
the choice of scale and location parameters in the approximation formula 
(15.4.1) as will now be demonstrated. 

Assuming a double exponential distribution for M(month) and M(year), 
one can estimate parameters, e.g. by the maximum-likelihood method. 
Roberts (l979a,b), from which the complete set of data has been taken, uses a 
variant of the least-squares method and obtains the estimated distributions 

P{M(month) ~ u} = exp( _e- O. 115(u-14.5)), 

P{M(year) ~ u} = exp( _e- O.08 1(u-31.5)). 
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The estimated probability that the I-hour averages exceed 50 pphm at 
least once in one year is 

P{M(year) > 50} = 1 - exp( - e- O.081 (50-31.5» = 0.2, 

while the observed frequency is 4/19 ~ 0.21. This should be compared to 
(15.4.2) from which one would expect 

a year = amonth = 0.115, 

b b -1 2.48 
year = month + amonth log 12 = 14.5 + 0.115 = 36.1 

Using amonth and bmonth to estimate the probability of exceeding 50 pphm 
during one year, would then give 

P{M(year) > 50} ~ 1 - exp( _e- O. 115(50-36.1» = 0.18, 

and the correspondingly estimated dJ. of M(year) is represented by the 
dashed line in Figure 15.4.2. 

As seen from Figure 15.4.2, the location of the extrapolated distribution 
agrees reasonably well with that of F year but at the same time it is more 
concentrated, so that the probability of very high or very low yearly maxima 
will be underestimated. It is not clear whether this is caused by the non­
stationarity or by the strong correlation (or by both), but it is evident from 
the data in Table 15.4.1 that there are several runs of very low or very high 
values within individual years, and that high yearly maxima tend to encourage 
several high monthly maxima that same year. 0 

As was seen in Chapter 6, for normal sequences the "stationary" theory 
still applies to sequences with nonstationary mean or correlation structure, 
provided the location parameter is adequately adjusted and the correlations 
show the standard log-I-decay with time. 

Example 15.4.2 (Nonstationary ozone data). Horowitz (1980) has applied 
extreme-value theory to correlated, non stationary ozone data. Assuming 
daily maximal I-hour mean concentrations '1i to be lognormal, he allows for 
a time-dependent mean value function over the year, with residuals which 
are correlated normal variables with zero means and common variance a2• 

Normalizing the mean in terms of a we obtain the model 

log '1i = a(mi + ~;), i = 1, ... , n (= 365), (15.4.5) 

where a second degree polynomial is fitted for mi and ~i are assumed to be 
correlated standard normal variables. As Figure 15.4.3 shows there is clearly 
a need for a time-dependent model, and the model (15.4.5) at least gives a 
good fit for the marginal distribution of'1i' 

By Theorem 6.2.1, under mild conditions on the function mi we then have 
that 
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Figure 15.4.3. Observed daily maximum 1-hour average ozone concentrations. 

where m: is defined by (6.2.2). Writing dn = exp(o{bn + m:)), en = aj(adn), 

exp(a(~ + bn + m:)) = dn(l + :: + o(a;l)) = dn + ~ + O(C;l), 

and hence 

for large n. 
This is in sharp contrast to the extremal distribution that would appear 

for the yearly maximum of a sequence of (dependent) identically distributed 
variables, each with a marginal distribution equal to the observed "pooled" 
dis ribution ofthe 365 daily values, not accounting for a nonstationary mean. 

It is worth noting that the application of the normal extreme value theory 
to this nonstationary situation is not restricted by an assumption of station­
ary correlation structure, as was shown by the results of Sections 6.2-6.3. 

o 

15.5. Local Extremes-Application to 
Random Waves 

In this last section we shall discuss some applications of continuous time 
extremal theory which relates to the behaviour of the process as a sequence 
of random waves, in particular, the sequence of successive local maxima and 
mlmma. 
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Let ~(t) be a continuously differentiable normal process, twice differ­
entiable in quadratic mean, with local maxima at Si, 0:::;; Sl < S2 < ... < SN' 
:::;; T, where N' = N'(T) is the (random) number of local maxima in the 
interval [0, T] as in Section 7.6. Further, let s; be the locations of the 
local minima, indexed to make Si < s; < Si+1' For example, thinking of ~(t) 
as describing the height of the sea level above the mean level at a specific 
point at time t, a natural terminology is to call ~(s 1), ~(s1), ~(s 2), ... a sequence 
of random wave characteristics. The values ~(Si)' ~(s;) are the apparent ampli­
tudes, while the drops in height, ~(Si) - ~(s;), are the apparent waveheights. 
The extreme values of ~(Si) and ~(Si) - ~(s;) are of importance in many fields, 
marine sciences providing one prominent example. 

It is sometimes easier to obtain reliable measurements of the waveheights 
and amplitudes than to get continuous measurements of ~(t) itself. Since 

max(~(sl)"'" ~(SN'» = sup{~(t); Sl :::;; t :::;; SN'}' 

which equals M(T) = sup{~(t); 0:::;; t :::;; T} if M(T) is not attained at 0 or 
T, one can nevertheless use the continuous time extremal results to obtain 
the asymptotic distribution of the maximum of ~(Si)' i = 1, 2, ... 

We now specialize to a stationary normal process with ..1.4 = Var(~I/(t» < 00 

and general variance ..1.0 = Var(~(t». This requires only obvious changes in 
previous standardized (..1.0 = 1) formulae since ~(t) = ..1.0 1/2~(t) satisfies 
Var(~(t) = 1, Var(~'(t» = ..1.2/..1.0, Var(~I/(t» = ..1.4/..1.0, If, as in Section 7.6, 
N~(T) denotes the number of local maxima Si in [0, T] such that ~(Si) > u, 
then by (7.6.3) with v = (l/2n)(A.2/A.o)1/2, v' = (1/2n)(A.4/A.2)1/2, 
8 = (1 - (V/v')2)1/2 = (1 - A.~/A.OA.4)1/2, 

E(N~(T» = T{V'(1 - wCF,)) + v exp( - ;;JwCF,;')}-
Since the total expected number of maxima is Tv', the ratio E(N~(T»/Tv' 

may be regarded as a measure of how likely it is that a local maximum is 
greater than u, and we define the function F max by 

F () = 1 _ E(N~(1» 
max U ,. v 

Evidently Fmax(u) is nondecreasing, continuous, and Fmax(u) -+ 0 (or 1) as 
u -+ - 00 (or + 00) so that F max is a dJ. Write 

d 
fmax(u) = du F max(U) 

__ 8 c/J(_U ) 
- A sA 

+ (1 - 8
2)1/2 _U_ exp(- ~)W(1 _ 82)1/2 _ ~) 

..1.0 A 2..1.0 c.v ..1.0 

for the corresponding density function. If the process ~(t) is ergodic 
N~(T)/N'(T) -+ 1 - F max(u), with probability one (cf. Section 10.2), so that 



15.5. Local Extremes, Random Waves 299 

F max(u) is in that case the limit of the empirical distribution of the apparent 
amplitudes. The form of this distribution depends only on the so-called 
spectral width parameter e = (1 - A,~/A,0A,4)1/2. Values of e near 0 give a 
narrow banded spectrum, with one dominating frequency, while values e 
near 1 give a broad-band spectrum. 

Example 15.5.1. The apparent amplitudes of sea level were observed by a 
floating buoy off South Vist in the Hebrides. During several storms the em­
pirical distribution ofthe local wave maxima and minima were recorded and 
the spectral parameters estimated. Figure 15.5.1(a)-(c) shows the result of 
one such recording with moderate spectral width. The figures show in histo­
gram form the distribution of the sea level ~(t) sampled twice per second, 
the local maxima ~(Si)' and the local minima ~(sD. The density function 
fmax(u) (and the corresponding fmin(U) = fmax( -u) for minima) based on 
normal process theory is also shown, with e = 0.617 estimated from data. 
The observation time was T = 17.4 min. 

As is seen, the current sea level ~(t) is reasonably normal in this example, 
and it is striking how well the theoretical densities fmax(u) and fmin(U) describe 
the observed amplitudes, although they are fitted only via indirect estimation 
of the spectral moments A,o, A,2' A,4. D 

The apparent waveheight ~(Si) - ~(sD is frequently studied in oceano­
graphic surveys, but no closed form expression for its density is known. 
Some simple, and for many processes, reliable approximations have been 
given by Lindgren and Rychlik (1982), and by Cavanie et al. (1976). 

In oceanography the severity of the seas is often describe.d in terms of the 
significant waveheight or the significant amplitude. Let u1/3 be such that 

1 - F maxCU1/3) = 1/3, 

so that one-third ofthe amplitudes exceed u1/3' and define 

As = 3 foo ufmaxCu) du 
"1/3 

to be the mean of the one-third highest waves. Then As is called the significant 
amplitude. The significant waveheight Hs is defined similarly, and one often 
assumes Hs = 2As' an approximation which seems to be good if e is small, 
i.e. v ~ v' so that there is only one local maximum between every zero 
upcrossing. Furthermore, for small values of e, 

As ~ A(J210g 3 + 3)2n(1 - <I>(J210g 3») ~ 2.00A. (15.5.1) 

For any given significant amplitude one can ask for the maximum ampli­
tude one is likely to encounter over a period of time T. Since, as noted above, 
M N, = max{~(sl)' ... ' ~(SN.)} = supg(t); 0::; t ::; T} = M(T),exceptwhen 
M(T) is attained in [0, Sl) or in (SN" T], this can be solved within the present 
theory. 
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Figure 15.5.1(a). Histogram of observed water level; estimated spectral width parameter 
e = 0.617. 
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Figure 15.5.1(b). Height oflocal maxima; estimated spectral width parameter B = 0.617. 
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Figure 15.5.l( c). Height oflocal minima; estimated spectral width parameter E = 0.617. 

Let aT and bT be the standardized normalizing constants given by (15.4.4), 
again with general variance Ao = Var(e(t», 

aT = Ao 1/2(2 log VT)1/2, bT = AA/2(2 log VT)1/2. (15.5.2) 

Then, by Theorem 8.2.7, 

P{arlM(T) - bT ) ~ x} -+ exp( - e- X ) 

so that 

P{MN' ~ u} :::::: exp( - e-aT(U-bT », 

where N' = N'(T) is a random variable. All that is needed is therefore 
estimates of A and v, or equivalently of the significant mean period r. = l/v. 
(For small values of e one can estimate A by As/1.66, according to (15.5.1.) 

o 

Example 15.5.2. The highest encountered amplitude, together with the esti­
mated variance Ao and mean period T = l/v, were recorded during 12-minute 
periods eight times per day in the winter months January-March, 1973 at 
the Seven Stones Light Vessel between Cornwall and the Isles of Scilly. 

This results in a total of 8 x 90 = 720 triples of observations, 

MW}, AW, T!i), j = 1, ... , 720, 

where the MW} are the maximal wave amplitudes over separate intervals of 
length T = 12 min. Taken over the entire 3-month period the A~) (and 
M~I) vary considerably as is seen in Figure 15.5.2 (a) and (b). 
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Figure 15.5.2. Plot of temporal variation in standard deviation (a) of observed water 
level over 12-minute periods, and (b) of observed maximum water level over the same 
periods, January-March. 
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In Figure 15.5.3 the normalized amplitudes aY)(M~! - bY) are plotted 
on double exponential probability paper with 

a(j) = (A(j)-1 /2 (2 log ~)1/2 
T 0 T~J)' 

bY) = (A~)1 / 2 (2 log ~)) 1/2. 

This choice of normalizing constants is appropriate if the M~! are observa­
tions of the maximal wave amplitudes of a (nonstationary) normal process 
whose correlation structure is so slowly varying that it can be regarded as 
stationary over each individual interval. 

The theoretical (asymptotic, as T ~ CI) dJ. of these standardized variables 
is exp( _e- X ), and in Figure 15.5.3 this dJ. is illustrated by the straight 
dashed line. As seen in Figure 15.5.3 there is a considerable difference be­
tween the observed and the theoretical dJ. of standardized wave maxima. 
There may be physical reasons for this (such as breaking waves) but there 
are also two plausible statistical explanations. The observation interval 
T = 12 min may be too short for the asymptotic theory to be effective, and 
there may be long-ranging effects that shift the values of aY)(M<J,! - bY) up 
and down at a slow rate. To see this phenomenon we have plotted the entire 

% 
99.9 

99.5 

99 

95 

90 

75 

50 

25 

10 
5 
I 

0.1 
- 4 -3 

. 

/ 
/ / 

////' 
L~ // 

J 
/ ,., 

~ 
·~7 

-2 - I o 2 

~ 

. . . . 

// 

3 

/' 

4 

standard ized 
height 

Figure 15.5.3. Observed dJ. of standardized observed maximum over 12 minutes, 
January- March plotted on double exponential probability paper. 



304 

standa rd ized 
height 

15. Extremes and Crossings Under Dependence 

4 

2 

Figure 15.5.4. Plot of temporal variation in standardized maxima over 12-minute periods. 

series of normalized values in Figure 15.5.4. As can be seen there, such a slow 
variation seems to be present, and this might be the main reason for the 
deviation shown in Figure 15.5.3. 

The data behind Examples 15.5.1 and 15.5.2 were made available by the 
courtesy ofP. Challenor at the Institute of Oceanographic Sciences, Wormley, 
England. D 



APPENDIX 

Some Basic Concepts of 
Point Process Theory 

Intuitively, by a point process, we generally mean a series of events occurring 
in time (or space, or both) according to some statistical law. For example, 
the events may be radioactive disintegrations or telephone calls, occurring 
in time, or the positions of a certain variety of plant in a field (two-dimen­
sional space). The cases of particular interest to us are when the events are 
the instants of occurrence of exceedances of a level u by a stochastic sequence 
{~n} (Chapter 5) or of the upcrossings of a level u by a continuous parameter 
process {~(t)} (Chapter 9). 

These point processes occur in one dimension (which we may regard as 
"time" if we wish). We may simultaneously consider exceedances or up­
crossings of more than one level, and obtain a point process in the plane 
(cf. Chapters 5 and 9). 

Point process theory may be discussed in a quite abstract setting, leading 
to a very satisfying general theory, and we refer the interested reader to 
the books by Kallenberg (1976) and Matthes et al. (1978) for this. Here we 
shall just indicate some of the main concepts regarding point processes on 
the real line, and in the plane. 

If I is any finite interval on the real line, the number of events, N(l) say, 
of a point process occurring in I must be a random variable. More generally, 
for any bounded Borel set B, N(B) should be an r.v. Further, the number 
of events in the union of finitely or count ably many disjoint sets, is the sum 
of the numbers in each set, i.e. N(B) = If N(Bi) if Bi are disjoint (Borel) 
sets whose union is B. That is, NO is a measure on the Borel sets. Again 
the value of N(B) must be an integer as long as it is finite. Hence the following 
formal definition naturally suggests itself. 



306 Appendix. Some Basic Concepts of Point Process Theory 

u r--------------------------------------------

(a) 

ur---~~----------------~~--------~~--~ 

(b) 

Figure A.I. (a) Point process of exceedances. (b) Point process of upcrossings. 

A point process in a rectangle S c Rn is a family of non-negative integer 
(or + 00 )-valued r.v.'s N w(B) defined for each Borel set B c S and such that 
for each ro, N w( .) is a measure on the Borel sets, being finite valued on 
bounded sets. 

In the definition some useful extra generality has been gained by con­
sidering point processes defined on rectangles S c R" (where S may be 
finite or infinite, and open or closed at each of its boundaries) in addition 
to point processes on all of R". The requirement that a Borel set B is bounded 
has, in this context, the precise technical meaning that the diameter of B 
is finite and that the closure of B in R" is contained in S. Thus, for instance, 
if S = R", then any set with finite diameter is bounded, while if 
S = (0, 1] C Rl, say, then, e.g. the set (0, a], a > 0, has finite diameter but 
is not bounded. 

Note that the same definition may be used for more abstract topological 
spaces than S c R" by using the Borel sets of that space in lieu of those in 
R". Here, as noted, we shall mainly consider just the line and the plane. 
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If "C is a random variable we may consider the trivial point process con­
sisting of just one event occurring at the value which "C takes, i.e. the point 
process t5 t where t5 t(B) = 1 if"C E Band t5.(B) = 0 otherwise. Thus t5 t repre­
sents unit mass at the randomly chosen point "C. More generally, if "Cj are 
random variables (for j = 1,2, 3, ... or j = 0, ± 1 ±2, ... ) we may define 
a point process N = Lj t5tj provided that N(B) = Lj t5tiB) is finite a.s. for 
bounded sets B. For this point process, the events occur at the random 
points {"CJ. Going a little further still, we may conveniently include possible 
multiple events by writing N = Lj {3j t5tj where {3.i are non-negative integer­
valued r.v.'s and the "Cj taken distinct. 

In fact for a space with sufficient structure (such as the real line or plane) 
it may be shown that any point process N may be represented in terms of 
its atoms in this way, i.e. N = Lj {3j t5tj , where the "C j are a.s. distinct random 
elements of the space, and {3j are non-negative, integer-valued random 
variables. In the case where the {3j are each unity a.s., we say that the point 
process has no multiple events or is simple. 

If B1, ••• , Bk are bounded Borel sets, N(B 1), ••• , N(Bk) are random 
variables and have a joint distribution-termed a finite-dimensional 
distribution of the point process. In fact, the probabilistic properties of 
interest concerning the point process are specified uniquely by the collection 
of all such finite-dimensional distributions, i.e. for all choices of k and the 
sets B1 , ••• , Bk• Of course, to define a point process starting from finite­
dimensional distributions, we must choose these distributions in an appro­
priately consistent manner, so that the r.v.'s N(B) will not only be well 
defined but will be non-negative, countably additive in B, etc. We refer the 
interested reader to Kallenberg (1976) for details. 

If N is a point process the measure A defined on the Borel sets (of the 
space involved) by 

A(B) = E(N(B» 

is termed the intensity measure of the point process. Note that, unlike N(B) 
itself, A(B) may be infinite even when B is bounded (since while a r.v. is finite 
valued, its mean need not be). 

Although we shall not need them here, it is of interest to note that the 
probabilistic properties of a point process N may also be summarized by 
various generating functionals. In our judgement the most natural and use­
ful of these is the Laplace transform LN(f) defined for non-negative measur­
able functions f by 

LN(f) = E(exp( - f f dN)) = E(exp( - L {3d("C)) 

when N is represented as L {3jt5tj • Such generating functionals have properties 
and uses analogous to those of characteristic functions, moment generating 
functions, and Laplace transforms of random variables. In particular, if 
f(x) = txix) (where xix) = 1 or 0 according as x E B or x ¢ B) we have 
LN(f) = E(e-tN(B». This is simply the Laplace transform (or moment 
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generating function evaluated at - t) of the r.v. N(B), and it uniquely specifies 
the distribution of N(B). Similarly joint Laplace transforms for r.v.'s 
N(B1),···, N(Bk) may be specified by taking f = L~= 1 tiXB;· 

Probably the most useful point process-both in its own right, and also 
as a "building block" for other types-is the Poisson process. This may be 
specified by its intensity measure A(B) which may be taken to be any measure 
which is finite on bounded sets. The point process N is said to be Poisson 
with this intensity iffor each (bounded) B, N(B) is a Poisson r.v. with mean 
A(B), and N(B1)' ... , N(Bk) are independent for any choice of k, and disjoint 
B 1, ••• ,Bk • The existence of such a process N is easily shown under very 
general circumstances though we do not do so here. Further, N has the 
Laplace transform LN(f) = exp{ - J (l - e- flU»~ dA(u)}, and N is simple if 
the intensity A is absolutely continuous. 

It is readily checked that the choice f(x) = txJx) yields the Laplace 
transform of a Poisson r.v. with mean A(B). Incidentally this process may 
be called the "general Poisson process". The usual (stationary) Poisson 
process on the real line arises when A(B) is a constant multiple of Lebesgue 
measure m(B), i.e. A(B) = 7:m(B), in which case we say that the Poisson 
process has intensity 7:. 

As noted above, the Poisson process may be used as a building block 
for the construction of other point processes. In particular, a most useful 
case arises if the intensity measure A is itself allowed to be stochastic. Such 
a point process is no longer Poisson, but may be profitably thought of as 
"Poisson with a (stochastically) varying mean rate". We refer to such a 
process as a doubly stochastic Poisson or, more commonly, a Cox process. 
Specific use is made of such processes in Chapter 6, where the distribution 
is explicity given. 

A notion which will be useful to us is that of thinning of a point process­
and, in particular, of a Poisson process. Thinning refers to the removal 
of some of the events of the point process by a (usually) probabilistic mech­
anism which can be quite complicated. In its simplest form-with which 
we shall be concerned here-each event is removed or retained independently, 
with probabilities 1 - p, p, say. For example, if N is a Poisson process 
with intensity measure A, and N* a point process obtained from N by such 
independent thinning, we have, for a Borel set B, 

<Xl 

P{N*(B) = r} = L P{N(B) = s} P{N*(B) = rIN(B) = s} 
s=r 

<Xl e-)'(B)(A(B»S (s) L , pr(l - p)s-r, 
s=r s. r 

since given that N(B) = s, N*(B) is binomial with parameters (s, p). This 
expression reduces simply to yield 

- P)'(B)( A(B»r 
P{N*(B) = r} = e p 

r! 
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so that N*(B) is a Poisson r.v. with mean p)"(B). Similarly, it may be seen 
that N*(B l ), ... , N*(Bk) are independent whenever B l , ... , Bk are disjoint, 
so that N* is clearly a Poisson process with intensity measure p).,-an 
intuitively appealing result of which use is made, e.g. in Chapter 5. 

There are numerous structural properties of point process theory-such 
as existence, uniqueness, simplicity, infinite divisibility and so on-which 
we do not go into here. It will, however, be of interest to mention convergence 
of a sequence of point processes, and to state a useful theorem in this 
connection. 

Suppose that {N n} is a sequence of point processes on a rectangle S c R n 

and that N is a point process. Then we may say that N n converges in distri­
bution to N (written N n ~ N) if the sequence of vector r.v.'s (Nn(B 1), ••• , 

Nn(Bk» converges in distribution to (N(B1), ••• , N(Bk» for each choice 
of k, and all bounded Borel sets Bi c S such that N(aBi) = 0 a.s., i = 1, 
... , k, (writing aB for the boundary of the set B). 

A point process may be viewed as a random element of a certain metric 
space (whose points are measures) and convergence in distribution of N n 

to N becomes weak convergence of the distributions of Nn to that of N. 
Here we do not need this general viewpoint since the above definition is 
equivalent to it. However, at the end of this appendix we shall make a few 
more comments on the general approach, and exemplify how proofs can 
be simplified once results from the general theory are available. 

The main result which we shall need is the following simple sufficient 
condition for convergence in distribution. This is a special case of a theorem 
of Kallenberg (1976), stated here for semiclosed (finite or infinite) intervals 
and rectangles-obvious modifications apply to other types of set S. 

Theorem A.I. (i) Let N n, n = 1,2, ... , and N be point processes on the semi-
closed interval S in the real line, N being simple. Suppose that 

(a) E(NnC(c, d]» -. E(N«c, d]» for all - 00 < c < d < 00 such that 
[c, d] c S, and 

(b) P{NnCB) = O} -. P{N(B) = O} for all B of the form U~ (C;, dJ, with 
[c i , dJ c S, for i = 1, ... , k; k = 1,2, .... 

Then N n .!!. N. 

(ii) The same is true for point processes on a semi-closed rectangle S in the 
plane, if the semi-closed intervals (c, d], (Ci' dJ are replaced by semi­
closed rectangles (c, d] x (y, 15], (Ci' dJ X (Yi,J;]. 

The remarkable feature of this result is that convergence ofthe probability 
of occurrence of no events in certain given sets is essentially sufficient to 
guarantee convergences of quantities like P{NiB) = r} and corresponding 
joint probabilities. The simple conditions (a) and (b) are often readily 
verified. 

The following useful proposition is a main step in Kallenberg's proof of 
Theorem A.L (The idea of the proof is that (a) ensures that to each sequence 
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of integers there is a subsequence such that N n converges to some simple 
point process along the subsequence. Proposition A.2 and (b) of Theorem 
A.l then shows that the limit has the same distribution as N, which completes 
the proof.) 

Proposition A.2. (i) Suppose that Nand N' are simple point processes on a 
semiclosed interval S in the real line and that P{N(B) = O} = P{N'(B) = O} 
for all B of the form U~ (Ci' d;], with [ci , d;] c S for i = 1, ... , k; 
k = 1,2, .... Then Nand N' have the same distribution. 

(ii) The same is true for point processes on a semi-closed rectangle in the plane, 
if the semi-closed intervals (c i , d;] are replaced by semi-closed rectangles 
(Ci' d;] x (Yi,b i]. 

Our next result concerns convergence of a sequence of point processes 
in the plane, to a Poisson process in the plane, and shows how this property 
is preserved under suitable transformations of the points of each member 
of the sequence, and of the limit. Obviously this result could be stated in 
much greater generality but the form given here is sufficient for our 
applications. 

Theorem A.3. Let N n , n = 1,2, ... , and N be point processes on a semi-closed 
rectangle S in the plane, N being simple, and r(x) a strictly decreasing continuous 
real function. Define new point processes {N~}, N' such that if N n (N) has an 
atom at (s, t) then N~ (N') has an atom at (s, r-1(t», where r- 1 is the inverse 
function of r. 

(i) If N n ~ N then N~ ~ N'. 
(ii) If N is Poisson, with intensity measure A., then N' is Poisson with intensity 

A.T- \ where T denotes the transformation of the plane given by 
T(s, t) = (s, r-1(t». If A. is Lebesgue measure on the plane, the intensity 
A. T - 1 is the product of linear Lebesgue measure and the measure defined 
by the monotone function r. 

PROOF. (i) It is readily checked that for any rectangle B = (c, d] x (y,b] 

N'(B) = N«c, d] x [r(b), r(y))) = N(T- 1(B» 

and hence (by uniqueness of extensions of measures) N'(B) = N(T- 1(B» 
for all Borel sets B. This holds also with N~, Nn replacing N', N. 

Suppose now that B is a Borel set such that N'(oB) = 0 a.s. (again oB 
denotes the boundary of B). Now it may be seen (using the continuity of r) 
that oT- 1(B) c T- 1(oB) so that N(oT-l(B» ::; N(T-l(oB» = N'(oB) = 0 
a.s. Since Nn ~ N we thus have N n(T- 1(B» ~ N(T-l(B» or N~(B) ~ N'(B). 
This result extends simply to show that (N~(Bl)' ... , N~(Bk» ~ (N'(B 1),.··, 
N'(Bk» whenever N'(oB;) = 0 a.s. for each i = 1, ... , k and hence N~ ~ N' 
as required. 
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(ii) If N is Poisson with intensity A, and B is any Borel set in S 

- )'T- '(B)(AT-1(B))r 
P{N'(B) = r} = p{N(r1(B)) = r} = _e ---'---­

r! 
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for each r = 0, 1, 2, ... , so that N'(B) is Poisson with mean AT- 1(B). In-
dependence of N'(B1), ... , N'(Bk) for disjoint B1, ... , Bk follows from the 
fact that T- 1(B1), ... , T- 1(Bk) are also disjoint, and hence N(T- 1(B1)), ... , 
N(T- 1(Bk )) are independent. 

The last statement of (ii) follows simply if A is Lebesgue measure, 

AT- 1«c, d] x (y, c5]) = A{(C, d] x [r(c5), t(y))} 

= (d - cKr(c5) - t(y)), 

noting also that t is continuous. D 

As promised, we shall make some comments (without proofs) on the 
general approach to point processes. The reader should perhaps be warned 
that this presupposes some knowledge of weak convergence of probability 
measures on metric spaces, which is not needed elsewhere in the book. 

Let, as before, S be a rectangle in Rn and let M denote the set of positive 
integer-valued measures of S which are finite on bounded sets. A sequence 
{vn} eM is said to converge vaguely to a measure v E M (notation: Vn ~ v) 
if J f dVn --+ J f dv for all functionsfwhich are continuous and vanish outside 
some bounded set. The notion of vague convergence is particularly straight­
forward if v is simple, as can be seen from the following easily proven 
proposition. 

Proposition A.4. Suppose v is simple with atoms at the distinct points t 1• 

t 2, ..• E S, i.e. v = Lk c5'k' Then Vn ~ v if and only if there are bounded rect­
angles Sj i S with v(aSj n S) = 0 such that if tk " ••• , tk , are the atoms of v 
which are contained in Sj then for n large, Vn has precisely I atoms tn. 1, ••• , tn,l 
in Sj and they can be ordered so that tn, i --+ tk" as n --+ 00, i = 1, ... , I. 

Vague convergence induces a topology on M, and we let .It be the u­
algebra generated by the open sets of this topology. The space (M, .It) is 
Polish, i.e. there exists some metric on M which generates the topology 
of M and which makes M complete. A point process N can be defined as 
a random element in (M, .It) and convergence in distribution of point 
processes is just ordinary convergence of random elements in a metric 
space, as set forth, e.g. in Billingsley's (1968) monograph. Thus by definition 
Nn ..!!. N if E(h(Nn)) --+ E(h(N)) for all continuous bounded functions 
h: M --+ Rl. As noted above, this definition of convergence can be shown 
to be equivalent to the more elementary definition given on p. 309. 

An important result then is that Nn ..!!. N implies convergence in distri­
bution of a wide class of functions of N n • Let h be a function from (M, .It) 
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to some metric space R (e.g. R may be M itself) and let Dh be the set of dis­
continuity points of h, i.e. v E Dh if there is a sequence {vn} such that Vn ~ v 
but h(vn) -1+ h(v). Then, if P{N EDh} = 0 (h is then said to be a.s. N-continuous) 
and Nn .!!. N it follows that h(Nn) .!!. h(N). 

This can be used to give an alternative easy proof of Theorem A.3. In 
fact, if v E M is simple and v' = h(v) is such that if v has an atom at (s, t) 
then v' has an atom at (s, t -l(t», then it is immediate from Proposition A.4 
that h is continuous, and hence Theorem A.3(i) follows. A further example 
of the usefulness of the general theory is given in connection with record 
times in Section 5.8. 

As a final note, it is apparent that the concept of a point process may 
be generalized to include measures N for which N(B) is not necessarily 
integer valued. This generalization leads to a natural setting for point 
processes within the framework of the theory of random measures-a 
viewpoint developed in detail by Kallenberg (1976). 
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152,160,192,239,244 

Lieblein 267 
Lindgren 90,180, 196,211,217,238,239, 

282,299 
linearly dependent processes 215 
Lipschitz condition 240 
local maximum 160ff., 186ff., 211, 297ff. 
local minimum 211, 297ff. 



Index 

location of maxima I 84ff. 
log-normal distribution 21,294 
Loynes 52,55,58,60,61,66 

McCormick 141 
Marcus 149,218 
Mare,de 180,217,238,284 
marked crossing 156ff., I 92ff. 
Markov process 262 
Markov sequence 51,71 
Maruyama 194 
Matthes 305 
maximum 

absolute 210 
dependent sequence 49ff. 
f:-maximum 190 
iid r. v.'s Iff. 
process I 43ff. 

max-stable distribution 8ff. 
mean period 301 
m-dependence 52 
Mecke 305 
Metcalfe 277 
minimum 

iid r.v.'s 27ff., 267ff. 
normal process 205ff. 

min-stable distribution 29f., 268 
Mises, von; criterion 15f.,30 
Mittal 80, 123, 133, 138, 141,239 
mixture 133ff., 199,276, 289ff. 
moving average 72ff. 
multinomial distribution 115 

non brittle 273 
normal comparison lemma 8Iff.,207 
normal 

dependent sequence 79ff., 104, 110 
iid r.v.'s 14,20 
nondifferentiable process 216ff. 
nonstationary sequence 123ff., 296 
process 15Iff., 163ff., 173ff., 19Iff., 205ff. 

normalizing constants 16ff., 19,34, 39ff., 
128,133,137,171,177,180,217,232, 
292,301 

Nosko 282 

O'Brien 67,71 
Of verbeck 270 
Ornstein-Uhlenbeck process 144, 163,216, 

232 

Ostberg 270 
outcrossing 215 
ozone 296 

Palm distribution 193, 197, 200ff. 
paper strength 272, 283 
Pareto distribution 22 
Pickands 117, 217 

335 

point process 1OIff., 135ff., 173ff., 205ff., 
237ff., 305ff. 

in the plane Iliff., 180ff., 211, 214 
Poisson distribution 26, 4Off., 282 
Poisson limit 32ff., 1OIff., 173ff., 205 
Poisson process 308ff. 
Polya 138 

Qualls 174,180,217,238 

rank 31 
Rao 159,199,221 
rate of convergence 36ff., 92ff. 
Rayleigh distribution 154, 185, 199,200, 

284ff., 290ff. 
record 120 
record time 120 
regression 283 
regular variation 291 
Resnick 117, 122 
Rice 145, 149, 153 
Rice's formula 152, 153, 156, 161, 190 
river flow 281 
Roberts 293, 295, 
Rootzen 78,90,99, 100, 180,217,238, 

239,244 
Rosenblatt 52 
Rozanov 172 
Rychlik 299 

seasonal component 127 
Serfling 41, 42 
Sharpe 288 
Simiu 289 
simple point process 307ff. 
size effect 267ff. 
size function 275 
size stable 269 
Slepian 81, 197 
Slepian model process I 97ff. 
Slepian's lemma 156, 166 



336 

Smirnov 46,47,48 
Smith 274 
Smitz 277 
spectral distribution 151, 194 
spectral moments 151, 160,256,262 
spectral width parameter 299 
stable LV.'S 72ff. 
stationary sequence 49ff. 
stationary processes I 45ff. 
strength of materials 267ff. 
strong mixing 52,54,61,71,244 
studentized mean 141 
sufficiently slowly 164 
sulphur dioxide 293ff. 

tangent 147 
temperature 279 
thinning 11 Iff., 18Iff., 214, 308 
Tippett 1,4,39 
Todorovic 281 
trend 127 
truncated distribution 23 
type 9 
Type I extreme value distribution 4,9, 10, 

14,16,17,19,20,21,24,79,80,85,91, 
123, 133, 163,217,256,288,295 

for minimum 29, 269, 275ff. 
Type II extreme value distribution 4, 9, 10, 

16, 17, 19, 22, 24, 70, 78, 290, 291 
for minimum 29, 269, 272 

Type III extreme value distribution 4,9, 10, 
16,17,19,23,24,70 

for minimum 29, 30. 269, 272 

uniform distribution 23, 70f., 154, 185 
upcrossing 

E-upcrossing 173 
iid LV.'S 32f. 

Index 

process 147ff., 164ff., 172, 173ff., 19Iff., 
205,211, 214f., 256ff. 

strict 147 

vague convergence of point processes 311 
variational distance 41ff. 
Veneziano 282 
vertical window 197, 201 
Volkonski 172 

Watanabe 217,238 
Watson 52, 58 
Watts 48 
wave height 

apparent 298 
significant 299 

waves 
random 297ff. 

weakest link principle 267 
Wei bull distribution 30, 269, 272, 275ff. 
wind speed 284ff., 288 
Wu 48 

yield strength 269 
Ylvisaker 80, 123, 133, 138, 141, 149 
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