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Preface

Qui scribunt libros caveant a judice multo

Cum multus judex talibus immineat

Abelard ������

Writers of books should beware of the verdict of the crowd

For the verdict of the crowd is prejudiced against them

Translation by Christopher Platt

In a recent issue� The New Scientist ran a cover story under the title� �Mission

improbable	 How to predict the unpredictable
� see Matthews ���	 In it� the

author describes a group of mathematicians who claim that extreme value

theory �EVT� is capable of doing just that� predicting the occurrence of rare

events� outside the range of available data	 All members of this group� the

three of us included� would immediately react with� �Yes� but� � � �
� or� �Be

aware � � �
	 Rather than at this point trying to explain what EVT can and

cannot do� we would like to quote two members of the group referred to in

���	 Richard Smith said� �There is always going to be an element of doubt�

as one is extrapolating into areas one doesn�t know about	 But what EVT

is doing is making the best use of whatever data you have about extreme

phenomena	
 Quoting from Jonathan Tawn� �The key message is that EVT

cannot do magic � but it can do a whole lot better than empirical curve�

�tting and guesswork	 My answer to the sceptics is that if people aren�t given

well�founded methods like EVT� they�ll just use dubious ones instead	


These two quotes set the scene for the book you are holding	 Over many

years we have been in contact with potential users of EVT� such as actuaries�
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risk managers� engineers� � � �	 Whatever theory can or cannot predict about

extremal events� in practice the problems are there� As scientists� we cannot

duck the question of the height of a sea dyke to be built in Holland� claiming

that this is an inadmissible problem because� to solve it� we would have to

extrapolate beyond the available data	 Likewise� reinsurers have for a long

time known a great deal about extremal events� in their case� premiums

have to be set which both cover the insured in case of a claim� and also are

calculated in such a way that in the event of a catastrophe� the company stays

solvent	 Finally� recent developments in the �nancial markets create products

such as catastrophe�linked bonds where the repayment value is contingent

on the occurrence of some well�de�ned catastrophe	 These and many more

examples bene�t from a well�established body of theory which is now referred

to as EVT	 Our book gives you an introduction to the mathematical and

statistical theory underlying EVT	 It is written with a broad audience of

potential users in mind	 From the subtitle however� it is clear that the main

target group is in the �nancial industry	 A reason for this emphasis is that

the latter have been less exposed to EVT methodology	 This is in contrast

to hydrologists and reliability engineers� for instance� where for a long time

EVT has belonged to the standard toolkit	

While our readership is expected to be broad� we do require a certain

mathematical level	 Through the availability of standardised software� EVT

can be at the �ngertips of many	 However� a clear understanding of its capa�

bilities and limitations demands a fair amount of mathematical knowledge	

Basic courses in linear algebra� calculus� probability and statistics are essen�

tial	 We have tried hard to keep the technical level minimal� stressing the

understanding of new concepts and results rather than their detailed discus�

sions and proofs	 Plentiful examples and �gures should make the introduction

of new methodology more digestible	

Those who have no time to read the book from cover to cover� and rather

want a fairly streamlined introduction to EVT in practice� could immediately

start with Chapter �	 Do however read the Guidelines �rst	 From the applied

techniques presented in Chapter �� you will eventually discover relevant ma�

terial from other chapters	

A long list of references� together with numerous sections of Notes and

Comments should guide the reader to a wealth of available material	 Though

our list of references is long� as always it re�ects our immediate interest	 Many

important papers which do not �t our presentation have been omitted	 Even

in more than ��� pages� one cannot achieve completeness� the biggest gap is

doubtless multivariate extreme value theory	 This is de�nitely a shortcoming�

We feel that mathematical theory has to go hand in hand with statistical
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theory and computer software before it can safely be presented to the end�

user� but for the multivariate case� despite important recent progress� we

do not feel that the theory has reached a stage as well�established as the

one�dimensional one	

As with any major project� we owe thanks to lots of people	 First of all�

there are those colleagues and friends who have helped us in ways which go

far beyond what normally can be hoped for	 Charles Goldie was a constant

source of inspiration and help� both on mathematical issues� as well as on

stylistic ones	 He realised early on that three authors who are not native

English speakers� when left alone� will produce a Flemish�Dutch�German�

Swiss version of the English language which is bound to bemuse many	 In

his typical diplomatic manner� Charles constructed con�dence bands around

proper English which he hoped we would not overstep too often	 The �ne

tuning and �nal decisions were of course always in our hand� hence also the

full responsibility for the �nal outcome	

Gabriele Baltes� Jutta Gonska and Sigrid Ho�mann made an art out of

producing numerous versions in LaTEX of half readable manuscripts at var�

ious stages	 They went far beyond the support expected from a secretary	

The many computer graphs in the book show only the tip of the iceberg	

For each one produced� numerous were proposed� discussed� altered� � � �	 We

owe many thanks� also for various other support throughout the project�

to Franco Bassi� Klemens Binswanger� Milan Borkovec� Hansj�org Furrer�

Natascha Jung� Anne Kampovsky� Alexander McNeil and Patricia M�uller	

For the software used we thank Alexander McNeil� John Nolan and Richard

Smith	

Many colleagues helped in proofreading parts of the book at various

stages� Gerd Christoph� Daryl Daley� R�udiger Frey� Jan Grandell� Maria

Kafetzakis� Marcin Kotulski� Frank Oertel� Sid Resnick� Chris Rogers� Gen�

nady Samorodnitsky� Hanspeter Schmidli and Josef Steinebach	 Their crit�

ical remarks kept us on our toes� Obviously there has been an extensive

exchange with the �nance industry as potential end�user� in the form of

informal discussions� seminars or lectures	 Moreover� many were generous in

sharing their data with us	 We hope that the �nal outcome will also help them

in their everyday handling of extremal events� Alois Gisler �Winterthur Ver�

sicherungen�� Ren�e Held and Hans Fredo List �Swiss Reinsurance�� Richard

Olsen �Olsen and Associates�� Mette Rytgaard �Copenhagen Reinsurance�

and Wolfgang Schmidt �Deutsche Bank�	

All three of us take pleasure in thanking our respective home institu�

tions and colleagues for their much appreciated support	 One colleague means

something special to all three of us� Hans B�uhlmann	 His stimulating enthu�
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siasm for the beauty and importance of actuarial mathematics provided the

ideal environment for our project to grow	 We have bene�tted constantly

from his scholarly advice and warm friendship	

The subtitle of the book �For Insurance and Finance
 hints at the poten�

tial �nancial applications	 The �real thing
� be it either Swiss Francs� Ger�

man Marks or Dutch Guilders� was provided to us through various forms of

support	 Both the Forschungsinstitut f�ur Mathematik �ETH� and the Math�

ematisches Forschungsinstitut Oberwolfach provided opportunities for face�

to�face meetings at critical stages	

PE recalls fondly the most stimulating visit he had� as part of his sab�

batical in the autumn of ����� at the School of ORIE at Cornell University	

The splendid social and academic environment facilitated the successful con�

clusion of the book	 CK worked on this project partly at ETH Z�urich and

partly at the Johannes Gutenberg University of Mainz	 During most of the

time she spent on the book in Z�urich she was generously supported by the

Schweizerische Lebensversicherungs� und Rentenanstalt� the Schweizerische

R�uckversicherungs�Gesellschaft �Swiss Re�� Winterthur�Versicherungen� and

the Union R�uckversicherungs�Gesellschaft	 Her sincere thanks go to these

companies	 TM remembers with nostalgia his time in New Zealand where he

wrote his �rst parts of the book	 The moral support of his colleagues at ISOR

of the Victoria University of Wellington allowed him to concentrate fully on

writing	 He gratefully acknowledges the �nancial support of a New Zealand

FRST Grant	

Last but not least� we thank our students� One of the great joys of being

an academic is being able to transfer scienti�c knowledge to young people	

Their questions� projects and interest made us feel we were on the right

track	 We hope that their eagerness to learn and enthusiasm to communicate

is felt throughout the pages of this book	

November� ���� PE� Z�urich

CK� Mainz

TM� Groningen
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The basic question each author should pose him!herself� preferably in the

future tense before starting� is

Why have we written this book�

In our case the motivation came from many discussions we had with mathe�

maticians� economists� engineers and physicists� mainly working in insurance

companies� banks or other �nancial institutions	 Often� these people had as

students learnt the more classical theory of stochastics �probability theory�

stochastic processes and statistics� and were interested in its applications to

insurance and �nance	 In these discussions notions like extremes� Pareto� di�

vergent moments� leptokurtosis� tail events� Hill estimator and many� many

more would appear	 Invariably� a question would follow� �Where can I read

more on this"
 An answer would usually involve a relatively long list of books

and papers with instructions like �For this� look here� for that� perhaps you

may �nd those papers useful� concerning the other� why not read � � �
	 You

see the point� After years of frustration concerning the non�existence of a rel�

evant text we decided to write one ourselves	 You now hold the fruit of our

e�orts� a book on the modelling of extremal events with special emphasis on

applications to insurance and �nance	 The latter �elds of application were

mainly motivated by our joint research and teaching at the ETH where var�

ious chapters have been used for many years as Capita Selecta in the ETH

programme on insurance mathematics	 Parts of the book have also formed

the basis for a Summer School of the Swiss Society of Actuaries ����� and

the Master�s Programme in Insurance and Finance at ESSEC� Paris ������	

These trials have invariably led to an increase in the size of the book� due to
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questions like �Couldn�t you include this or that"
	 Therefore� dear reader�

you are holding a rather hefty volume	 However� as in insurance and �nance

where everything is about �operational time
 rather than real time� we hope

that you will judge the �operational volume
 of this book� i	e	 measure its

value not in physical weight but in �information
 weight	

For whom have we written this book�

As already explained in the previous paragraph� in the �rst place for all

those working in the broader �nancial industry faced with questions con�

cerning extremal or rare events	 We typically think of the actuarial student�

the professional actuary or �nance expert having this book on a corner of

the desk ready for a quick freshen�up concerning a de�nition� technique� es�

timator or example when studying a particular problem involving extremal

events	 At the same time� most of the chapters may be used in teaching

a special�topics course in insurance or mathematical �nance	 As such both

undergraduate as well as graduate students interested in insurance and!or

�nance related subjects will �nd this text useful� the former because of its

development of speci�c techniques in analysing extremal events� the latter

because of its comprehensive review of recent research in the larger area of

extreme value theory	 The extensive list of references will serve both	 The

emphasis on economic applications does not imply that the intended read�

ership is restricted to those working on such problems	 Indeed� most of the

material presented is of a much more general nature so that anyone with

a keen interest in extreme value theory� say� or more generally interested in

how classical probabilistic results change if the underlying assumptions allow

for larger shocks in the system� will �nd useful material in it	 However� the

reader should have a good background in mathematics� including stochastics�

to bene�t fully	 This brings us to the key question

What is this book about�

Clearly about extremal events� But what do we mean by this"

In the introduction to their book on Outliers in Statistics� Barnett and

Lewis ����� the authors write� �When all is said and done� the major problem

in outlier study remains the one that faced the very earliest research workers

in the subject � what is an outlier"
 One could safely repeat this sentence for

our project� replacing outlier by extremal event	 In their case� they provide

methodology which allows for a possible description of outliers �in�uential

observations� in statistical data	 The same will be true for our book� we will
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mainly present those models and techniques that allow a precise mathemat�

ical description of certain notions of extremal events	 The key question to

what extent these theoretical notions correspond to speci�c events in prac�

tice is of a much more general �and indeed fundamental� nature� not just

restricted to the methodology we present here	 Having said that� we will not

shy away from looking at data and presenting applied techniques designed

for the user	 It is all too easy for the academic to hide constantly behind

the screen of theoretical research� the actuary or �nance expert facing the

real problems has to take important decisions based on the data at hand	 We

shall provide him or her with the necessary language� methods� techniques

and examples which will allow for a more consistent handling of questions in

the area of extremal events	

Whatever de�nition one takes� most will agree that Table �� taken from

Sigma ����� contains extremal events	 When looked upon as single events�

each of them exhibits some common features	

	 Their ��nancial� impact on the �re�insurance industry is considerable� As

stated in Sigma ������ at #US ��� billion� the total estimated losses in

���� amounted to ten times the cost of insured losses � an exceptionally

high amount� more than half of which was accounted for by the Kobe

earthquake	 Natural catastrophes alone caused insured losses of #US ��	

billion� more than half of which were accounted for by four single disasters

costing some billion dollars each� the Kobe earthquake� hurricane �Opal
�

a hailstorm in Texas and winter storms combined with �oods in Northern

Europe	 Natural catastrophes also claimed �� ��� of the �� ��� fatalities

in the year of the report	

	 They are di�cult to predict a long time ahead� It should be noted that ��

of the insurance losses reported in Table � are due to natural events and

only � are caused by man�made disasters	

	 If looked at within the larger context of all insurance claims� they are rare

events�

Extremal events in insurance and �nance have �from a mathematical point

of view� the advantage that they are mostly quanti�able in units of money	

However most such events have a non�quanti�able component which more

and more economists are trying to take into account	 Going back to the data

presented in Table �� extremal events may clearly correspond to individual �or

indeed grouped� claims which by far exceed the capacity of a single insurance

company� the insurance world�s reaction to this problem is the creation of

a reinsurance market	 One does not however have to go to this grand scale	

Even looking at standard claim data within a given company one is typically

confronted with statements like �In this portfolio� ��$ of the claims are
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Losses Date Event Country

�� ��� ��	��	
� Hurricane �Andrew� USA
�� ��� ��	�	
� Northridge earthquake in California USA
� �� �
	�	
� Tornado �Mireille� Japan
� 
�� ��	��	
� Winterstorm �Daria� Europe
� �
 �
	��	�
 Hurricane �Hugo� P� Rico
� ��� ��	�	�
 Loma Prieta earthquake USA
� �� ��	��	
� Winter storm �Vivian� Europe
� �� �	��	�� Explosion on �Piper Alpha� o�shore oil rig UK
� ��� ��	�	
� Hanshin earthquake in Kobe Japan
� 
�� ��	��	
� Hurricane �Opal� USA
� �� ��	��	
� Blizzard over eastern coast USA
� ��� �
	��	
� Hurricane �Iniki� USA
� ��� ��	��	�
 Explosion at Philips Petroleum USA
� ��� �
	��	
 Tornado �Frederic� USA
� ��� �
	��	� Tornado �Fi�� Honduras
� ��� �
	��	�� Hurricane �Gilbert� Jamaica
� ��� ��	�	�� Snowstorms� frost USA
� ��� ��	��	
� Forest �re which spread to urban area USA
� ��� ��	��	� Tornados in �� states USA
� �� ��	��	� Tornado �Celia� USA
� ��� ��	��	� Flooding caused by Mississippi in Midwest USA
� ��� ��	��	
� Wind� hail and �oods USA
� ��� ��	��	� Storms over northwestern Europe Europe

�� ��	�	�� Hurricane �Alicia� USA

�� ��	��	
� Storms and �ooding in northern Europe Europe

�� ��	��	
� Forest �re which spread to urban area USA
�
� ��	��	
� Tornado �Herta� Europe
�� �
	��	
� Typhoon �Yancy� Japan
��� ��	��	
� Hurricane �Bob� USA
��� ��	��	�� Floods in California and Arizona USA

Table � The �� most costly insurance losses ���������� Losses are in million �US
at ���	 prices� For a precise de
nition of the notion of catastrophic claim in this
context see Sigma ������

responsible for more than ��$ of the total portfolio claim amount
	 This is

an extremal event statement as we shall discuss more in detail in Section �	�	

By stating above that the quanti�ability of insurance claims in monetary

units makes the mathematical modelling more tractable� we do not want to

trivialise the enormous human su�ering underlying such events	 It is indeed

striking that� when looking at the �� worst catastrophes� in terms of fatalities

over the same period in Table � only one event �the Kobe earthquake� �gures
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Fatalities Date	start Event Country

��� ��� ��	��	� Hurricane Bangladesh
��� ��� �	��	� Earthquake in Tangshan China
��� ��� ��	�
	
� Hurricane �Gorky� Bangladesh
�� ��� ��	��	� Earthquake Peru
�� ��� ��	��	
� Earthquake Iran
�� ��� ��	�	�� Earthquake in Armenia former USSR
�� ��� �
	��	� Earthquake Iran
�� ��� ��	��	�� Volcanic eruption �Nevado del Ruiz� Columbia
�� ��� ��	��	� Earthquake Guatemala
�� ��� �
	�
	�� Earthquake in Mexico City Mexico
�� ��� ��	��	
 Damburst India
�� ��� �
	��	� Flood India
�� ��� ��	��	� Flood India
�� ��� ��	��	�� Hurricane Bangladesh
�� ��� ��	��	 Tornado India

 ��� �
	��	
� Earthquake in Marashtra state India
� ��� ��	��	� Earthquake on Mindanao Philippines
� ��� ��	��	
� Typhoons �Thelma� and �Uring� Philippines
� ��� ��	�	
� Great Hanshin earthquake in Kobe Japan
� ��� ��	��	� Earthquake Pakistan
� ��� ��	��	� Earthquake in Fars Iran
� ��� ��	��	� Earthquake in Managua Nicaragua
� ��� ��	��	� Earthquake in Westirian Indonesia
� ��� ��	��	�� Earthquake Italy
� ��� ��	��	�� Earthquake Algeria
� ��� ��	��	� Storm� snow Iran
� ��� ��	��	� Earthquake in Van Turkey
� ��� �
	��	
� Floods in Punjab Pakistan
� ��� ��	��	� Tornado Reunion
� ��� ��	��	�� Flood Bangladesh

Table � The �� worst catastrophes in terms of fatalities ���������� taken from
Sigma ������

on both lists	 Also� Table � mainly involves industrialised nations� whereas

Table � primarily concerns Third World countries	

Within the �nance context� extremal events present themselves spectac�

ularly whenever major stock market crashes like the one in ���� occur	 Or

recent casualties within the realm of derivatives such as the collapse of Bar�

ings Bank� the losses of the Metallgesellschaft� Proctor % Gamble� Kashima

Oil� Orange County� or Sumitomo	 The full analysis of events of such grand

scale again goes well beyond the prime content of this book� and any claim

that the managements of �nancial institutions will �nd the means of avoid�
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ing such disasters in our book would be absurd	 In most of the above cases

the setting�up �both in structure as well as people� of a well�functioning

risk management and control system was called for	 On a much smaller scale

however� questions related to the estimation of Pro�t�and�Loss distributions

or Value�at�Risk measures have to be answered with techniques presented

in some of the following chapters	 Though not providing a risk manager in

a bank with the �nal product he or she can use for monitoring �nancial risk

on a global scale� we will provide that manager with stochastic methodology

needed for the construction of various components of such a global tool	

Events that concern both branches are to be found in credit insurance�

mortgage�backed securities� the recent developments around catastrophic in�

surance futures or indeed more generally the problem of securitisation of risk	

In all of these areas� there is an increasing need for modelling of events that

cause larger shocks to the underlying �nancial system	 As an example of how

knowledge of basic underlying stochastic methodology may be used� consider

the problem of potential increases in both the frequency as well as �in�ation�

adjusted� sizes of well�de�ned catastrophic claims	 A simple� but at the same

time intuitively clear method� is to plot the successive records in the data	

In Figure � we have plotted such records for yearly frequency and insured

loss data both for man�made as well as natural catastrophes over the period

���������	 For a precise de�nition of the underlying data see Sigma �����	 If

the data were independent and identically distributed �iid�� what sort of pic�

ture would one expect" An answer to this question is given in Section �	�		

Intuition tells us that successive records for iid data should become more and

more rare as time goes by� it becomes more and more di�cult to exceed all

past observations	

By now� the reader should have some idea of the type of problems we

are interested in	 The next step would be to dig a bit deeper and explain

which mathematical models we plan to discuss and what methodology we

want to introduce	 Before doing so� some general comments on the format of

the chapters is called for	

How is new material to be presented�

and indeed how should one read this book�

As stated before� we typically think of an actuary� a �nance expert or a stu�

dent� working on a problem in which a technique related to rare though po�

tentially in�uential events is to be used	 Take as an example a �nance expert

in the area of risk management� concerned with Value�at�Risk estimation

for a speci�c portfolio	 The Value�at�Risk may for instance be de�ned as

the left �$ quantile of the portfolio Pro�t�Loss distribution	 The latter is
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Figure � Record years of catastrophic insurance claims ���������� frequency and
insured losses �in ���	 prices� both for man�made and natural disasters� taken from
Sigma ������ The graphs show a jump for each year in which a new record occurred�
For instance� one observes � records for the frequency of natural disasters and �
records for the insured losses�

typically skewed with heavy tails both at left �losses� and right �gains�� see

Figure 	 So we end up with questions that concern �nding relevant classes of

Pro�t�Loss distributions� as well as statistical �tting and tail estimation	 It

is exactly for this type of problems that our book will provide the necessary

background material or indeed speci�c techniques	

A typical chapter will introduce the new methodology in a rather intuitive

�though always mathematically correct� way� stressing more the understand�

ing of new techniques rather than following the usual theorem�proof path	 We

do� however� usually state theorems in their most general form� provided that

this form is practically relevant	 Proofs are usually given either as a sketch

of the main ideas� or as a way of showing how new methods can be used in

technical calculations	 Sometimes we use them to highlight the instances in
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Figure � Pro
t�Loss �P�L� density function with related Value�at�Risk �V aR��

the argument where classical techniques break down �explaining why�� and

how arguments relating to extremal events have to be handled	 Each section

ends with Notes and Comments giving the reader further guidance towards

relevant literature on related topics	 Various examples� tables and graphs

have been included for illustrative purposes� but at the same time for reasons

of making the text �at least optically� easier to digest	 Few readers will want

to read the text from cover to cover� the ideal way would be to read those

sections that are necessary for the problems at hand	

Which basic models in insurance and nance do we consider�

Our main motivation comes from insurance� and consequently a bias towards

problems �and topics� from that �eld of applications is certainly to be found

in the text	 On the other hand� except for Chapters � and �� all chapters are

aimed at a much larger audience than workers in insurance	

Mathematical modelling in �nance and insurance can be traced back many

centuries	 For our purposes� however� history starts around the beginning of

the ��th century	 In ����� Louis Bachelier showed in his thesis ���� that

Brownian motion lies at the heart of any model for asset returns	 Around

the same time� Filip Lundberg introduced in his thesis ���� the collective

risk model for insurance claim data	 Lundberg showed that the homogeneous

Poisson process� after a suitable time transformation� is the key model for

insurance liability data	 Of course� both Brownian motion and the homoge�

neous Poisson process are the prime examples of the wider class of stochastic

processes with stationary and independent increments	 We shall treat both

examples more in detail and provide techniques concerning extremal events
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Figure � One realisation of the risk process �U�t���

useful in either case	 Embedded in these processes is the structure of a ran�

dom walk� i	e	 the sum of iid random variables	 So a more profound study of

extremal events in the iid case is called for	 This forms the basis for classical

statistical theory and classical extreme value theory	 More general models can

often be transformed to the iid case� this allows us for instance to analyse

general �linear� time series	

In Chapter � we study the classical model for insurance risk�

U�t�  u& ct� S�t� � S�t�  

N�t�X
i��

Xi � t � � � ���

where u stands for initial capital� c for loaded premium rate and the total

claim amount S�t� consists of a random sum of iid claimsXi	 HereN�t� stands

for the number of claims until time t	 It is common to simplify this model

further by assuming �as Lundberg did� that �N�t�� is a homogeneous Poisson

process� independent of �Xi�	 For a realisation of �U�t�� see Figure �	 The

process �S�t�� and its rami�cations have been recognised as a very tractable

�and reasonably realistic� model and a vast amount of literature in risk theory

has been devoted to it	 An important question concerns the in�uence of in�

dividual extremal events� i	e	 large claims� on the global behaviour of �U�t��	

In Chapter � the latter question will be answered via a detailed analysis

of ruin probabilities associated with the process �U�t��	 Under a condition

of �small claims
 �see for instance Theorem �	�	��� the traditional Cram�er�

Lundberg estimate for the ruin probability yields bounds which are exponen�

tial in the initial capital u	 However� in reality claims are mostly modelled by

heavy�tailed distributions like Pareto� loggamma� lognormal� or heavy�tailed

Weibull	 See for instance Figure �� where the left�hand picture shows those
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Figure � Fire insurance data and corresponding exponential QQ�plot� The claim
sizes are in � ��� SFr�

claim sizes of a portfolio of �re insurance that are larger than a given fran�

chise �� ��� SFr�	 In the right�hand picture one �nds a so�called QQ�plot of

the data� measuring the �t achieved by an exponential distribution function

�df�	 The curvature �i	e	 departure from a straight line� present in the QQ�

plot implies that the tails of the df of the �re data are much heavier than

exponential	 For a detailed discussion of these and related plotting techniques

see Section �	�	�	

Chapter � mainly deals with the mathematical analysis of ruin estimation

under precise heavy�tailed model assumptions	 Whereas Poisson processes

form the basic building block underlying insurance liability processes� within

�nance the basic models can be transformed back to simple random walks	

This is certainly true for the Cox�Ross�Rubinstein and the Black�Scholes

models� see for instance F�ollmer and Schweizer ���� for a nice account of the

economic whys and wherefores concerning these processes	

The skeleton model in �nance� corresponding to the homogeneous Poisson

process in insurance� is without doubt geometric Brownian motion� i	e	 the

stochastic process

exp
��

c� ����
�
t& �Bt

�
� t � � �

with �Bt� Brownian motion	 Here c stands for the mean rate of return and

� for the volatility �riskiness�	 It is the solution to an It'o stochastic di�er�

ential equation and provides the basis of the Black�Scholes option pricing

formula and many other parts of �nancial theory	 One of the attractions of

the above model is its simplicity� indeed� as a consequence it follows that log�

arithmic returns are iid� normally distributed	 At this point� as in insurance�
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one should ask the question �what do the data tell us"
 An answer to this

question would� and indeed does� �ll a book	 A summary answer� �t for this

introduction� is that� on the whole� geometric Brownian motion is a good �rst

model	 If however one looks more closely at data� one often �nds situations

as in Figure �	 In it we observe a clear change in volatility possibly trig�

gered by some extreme returns	 A multitude of models for such phenomena

has been introduced including 	�stable processes �as heavy�tailed alterna�

tives to Brownian motion�� and heavy�tailed time series models� for instance

ARCH and GARCH models	 The basic characteristics of such models will be

discussed in later chapters� for instance Chapter �� Sections �	 and �	�	

From a naive point of view both �elds� insurance and �nance� have in

common that we can observe certain �nancial or actuarial phenomena such

as prices� exchange rates� interest rates� insurance claims� claim arrival times

etc	 We will later classify these observations or data� but we �rst want to

consider them simply as a time series or a continuous�time stochastic process�

i	e	 we assign to each instant of time t a real random variable Xt	 One of

our usual requirements is that �Xt� itself or a transformed version of it �for

instance the �rst�order di�erences or the log�di�erences� forms a stationary

process �strictly stationary or stationary in the wide sense�	 In particular�

this includes the important case of iid observations which provides the basis

for classical �uctuation and extreme value theory� as well as for statistical

estimation	

In Chapter � we give a general asymptotic theory for sums of iid random

variables �random walk�� and in Sections �	�	� and �	�	� we especially empha�

size random sums like S�t� in ���	 This theory includes classical results such

as the central limit theorem� the law of large numbers� the law of the iterated
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logarithm� the functional central limit theorem and their rami�cations and

re�nements	 They are important building blocks for the asymptotic theory

which is a basic tool of this book	 We also introduce two important classes

of continuous�time stochastic processes� Brownian motion and 	�stable mo�

tion	 Both are continuous�time limits of appropriate partial sum processes	

As such� they can be understood as random walks in continuous time	

After having recalled the basic partial sum theory� in Chapters � and

 we turn to the analogous theory for partial maxima and order statistics	

These chapters are conceived in such a way that the reader can compare and

contrast results for maxima with similar ones for sums	 Special attention will

also be given to those questions where both theories complement one another	

As a start we �rst present extreme value theory for iid sequences� thereby

paving the way for similar results in the case of stationary sequences �Xt�	

In particular� we will describe and study maxima� minima� records� record

times� excesses over thresholds� the frequency of exceedances and many other

features of such sequences which are related to their extremal behaviour	

Though most of the material of this book can be found scattered over

various textbooks and!or research papers� some material is presented here

for the �rst time in textbook form	 One such example is the study of linear

processes

Xt  

�X
j���


j Zt�j � t � Z � ���

for iid innovations Zt with in�nite variance	 Over the past �� years meth�

ods have been developed to deal with these objects� and Chapter � contains

a survey of the relevant results	 The proofs are mostly very technical and

accessible only to the specialist	 This is the reason why we omitted them�

but we give a very detailed reference list where the interested reader will �nd

a wealth of extra reading material	 The extreme value theory for the process

��� is dealt with in Section �	� under di�erent assumptions on the innovations

which include the heavy�tailed case	 The extremes of more general stationary

sequences are treated in Sections 	 and �	�	�	

In summary� the stochastic processes of main interest can be roughly

classi�ed as follows�

	 Discrete time sequences �Xt�t�Z� in particular stationary and iid sequences

as models for log�returns of prices� for exchange rates� for individual claim

sizes� for inter�arrival times of claims	

	 Random walk models� i	e	 sums of the Xt or continuous�time models such

as Brownian motion �Bt�t�� and 	�stable motion� as models for the total

claim amount� aggregated returns or building blocks for price processes

etc	
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	 Random sum processes �S�t��t�� �see ���� as models for the total claim

amount in an insurance portfolio	

	 The risk process �U�t��t��� see ���	

	 Poisson processes and Poisson random measures as means to describe rare

events in space and time	 The homogeneous Poisson process also serves as

a basic model for claim arrival times	

After having introduced our basic models we may ask

Which distributions and stochastic processes

typically describe extremal events in these models�

When we are interested in the extremal behaviour of the models described

above we have to ask how extremal events occur	 This means we have to �nd

appropriate mathematical methods in order to explain events that occur with

relatively small probability but have a signi�cant in�uence on the behaviour

of the whole model	 For example� we may ask about the inter�relation be�

tween the iid individual claim sizesXi and the total claim amount S�t� in ���	

In particular� under what assumptions and how do the values of the largest

claims determine the value S�t�" A natural class of large claim distributions

is given by the subexponential distributions	 They are extensively treated in

Chapter � and Appendix A�	�	 Their de�ning property is�

lim
x��

P �X� & � � �&Xn � x�

P �max �X�� � � � � Xn� � x�
 �

for every n � �	 Thus the tails of the distribution of the sum and of the

maximum of the �rst n claims are asymptotically of the same order	 This

clearly indicates the strong in�uence of the largest claim on the total claim

amount	

Whereas in insurance heavy�tailed �i	e	 subexponential� distributions are

well recognised as standard models for individual claim sizes� the situation in

�nance is much more complicated	 The latter is partly due to the fact that

one often works with near continuous�time observed �so�called high�density�

data	 At the same time� marginal distributions are heavy�tailed and return

data exhibit clustering of extremes and long�range dependence	 There is no

universally accepted nor indeed easy model that explains all these phenom�

ena	 In Section �	� for instance� we introduce 	�stable motion �� � 	 � ��

as a limit of partial sum processes with in�nite variance	 For a realisation of

a �	��stable motion see Figure �� where also a plot of Brownian motion is

given	 The 	�stable processes form fundamental building blocks within more
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general model constructions and anyone interested in rare events ought to

know them	

Many distributions of interest in extreme value theory turn out to be

closely related to 	�stable distributions	 The 	�stable laws are the only pos�

sible limit distributions for properly normalised and centred sums of iid ran�

dom variables	 The case 	  � corresponds to the normal limit� we know that

a �nite second moment is su�cient for the application of the central limit the�

orem	 The case 	 � � arises for in�nite�variance iid summands	 The in�nite

variance property has not prevented practitioners in insurance from working

with such models	 A quick simulation of a scenario of the total claim amount

under these heavy�tailed assumptions is helpful for making a decision about

the insurability of such claims	 In that sense� 	�stable or other heavy�tailed

distributions often can be used as a worst�case scenario	

Extreme value theory is one of the main objectives of this book� and

so when talking about relevant distributions in that context� we have to

mention the extreme value distributions� the Gumbel law �� the Fr�echet

law �� and the Weibull law ��	 They are the only possible limit distributions

for maxima of properly normalised and centred iid random variables	 As such

they essentially play the same role as the 	�stable distributions for sums

of iid random variables	 Sections �	� and �	� are devoted to their study	

Furthermore� in Sections 	� and 	� the theory is extended from maxima to

upper order statistics	

There are of course many more distributions of interest which are some�

how related to extremes	 Above we have mentioned the essential ones and

the way they enter applied modelling in the presence of extremal events	 We
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will provide lists and examples of particular distributions� densities and tails

in the corresponding sections	

We have already encountered the Poisson distribution in the context of

risk theory	 Both the Poisson distribution as well as the Poisson process

are key tools in the analysis of extremal events� as we shall see on various

occasions	

In sum� the following classes of distributions are of main importance in

the context of extremal events�

	 the subexponential distributions as realistic models for heavy�tailed ran�

dom variables�

	 the 	�stable distributions for 	 � � as the limit laws for sums of in�nite�

variance iid random variables�

	 the Fr�echet� the Weibull� and the Gumbel distributions� as limit laws for

maxima of iid random variables�

	 the normal distribution as limit law for sums of iid� �nite�variance random

variables�

	 the Poisson distribution as limit law of binomial distributions which rep�

resent a counting measure of rare events	

As important stochastic processes we would like to mention�

	 Poisson processes�

	 	�stable processes �� � 	 � �� and Brownian motion�

	 more general processes using the above as input	

What are the main probabilistic tools�

Besides standard introductory probability theory and the theory of stochastic

processes� many results presented will be based upon a deeper understand�

ing of relevant asymptotic methods	 One of the main tools falling into the

latter category is the theory of weak convergence of probability distributions�

both on the real line and in certain function spaces	 A short summary of

the methodological background is given in Appendices A� and A�	 Abstract

weak�convergence techniques are needed in order to prove that suitable par�

tial sum processes converge towards Brownian motion or 	�stable processes	

The strength of this process convergence is illustrated by various examples

in Chapter �	 This theory allows us to characterise those distributions and

processes that may arise as useful stochastic models for certain insurance and

�nance data	

The analysis of extremes further requires the framework of point processes	

The general theory for the latter is rather involved� though the bene�t for
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applications� especially those towards extremal event modelling� is consider�

able once the whole machinery has been set up	 In Chapter � we give an

ample number of examples of this	 We have tried hard to avoid unnecessary

technical details	 Point process techniques are by now an unavoidable tool in

modern extreme value theory� and the results are convincing and give a deep

insight into the structure and occurrence of extremes	

The basic idea of weak convergence of point processes is analogous to

Poisson�s classical limit theorem	 Weak limits of the point processes under

consideration �as analogues of binomial random variables� are quite often

�general� Poisson processes or Poisson random measures �as analogues to

the Poisson distribution�	 These notions will be made precise in Sections �	�

and �	�	

Limit theory for sums� maxima or point processes is closely related to

the power law behaviour of tails� of normalising constants� of characteristic

functions in the neighbourhood of the origin etc	 Exact power laws mainly

occur in the very limit� but if� for instance� we discuss domains of attraction

of stable laws or of extreme value distributions� power laws do not appear

in �pure
 form� but slightly disturbed by slowly varying functions	 A power

law times a slowly varying function is called regularly varying	 The theory

of regularly varying functions and their generalisations and extensions are

important analytical tools throughout this book	 Their basic properties are

given in Appendix A�	�	

In Chapter � we provide an analysis of time series with heavy tails	 A lean

introduction to the relevant notions of time series analysis is given� but the

reader without the necessary background will certainly have to consult some

of the standard textbooks	 The main objects in Chapter � are linear processes

with heavy�tailed innovations	 That chapter and Section �	�� where extreme

value theory for linear processes is treated� give quite a complete picture

about this kind of process with heavy�tailed innovations	

To sum up� besides the basic classical techniques and facts from proba�

bility theory our main probabilistic tools are the following�

	 weak convergence of distributions of random variables such as sums� ran�

dom sums and maxima of random variables�

	 weak convergence of sum processes and maximum processes to their limits

in appropriate function spaces�

	 point processes for describing the random distribution of points in space

and time with applications to extreme value theory	

What are the appropriate statistical tools�
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Insurers and bankers are interested in assessing� pricing and hedging their

risks	 They calculate premiums and price �nancial instruments including cov�

erage against major risks	 The probable maximal loss of a risk or investment

portfolio is determined by extremal events	 The problem we want to solve

may therefore be described in its broadest terms as how to make statisti�

cal inference about the extreme values in a population or a random process	

Quantities like the following may serve as indicators�

	 the distribution of the annual extremes�

	 the distribution of the largest values in a portfolio�

	 the return period of some rare event�

	 the frequency of extremal events�

	 the mean excess over a given threshold�

	 the distribution of the excesses�

	 the time development of records	

Every piece of knowledge we can acquire about these quantities from our data

helps us to predict extremal events� and hence potentially protect ourselves

against adverse e�ects caused by them	 In Chapter � we present a collection

of methods for statistical inference based on extreme values in a sample	

Some simple exploratory data�analytical methods can be extremely useful

at a descriptive stage	 An example has been given in Figure � where a plot of

the records manifests a trend in the frequency of natural disasters	 Methods

based on probability plots� estimated return periods or empirical mean excess

functions provide �rst information about the extremes of a data set	

For iid data the classical extreme value distributions� the Gumbel �� the

Fr�echet �� and the Weibull distribution ��� are the obvious candidates to

model the largest values of a sample	 We review parameter estimation meth�

ods for extreme value distributions� investigate their asymptotic properties

and discuss their di�erent merits and weaknesses	 Extensions to upper order

statistics of a sample are also treated	

Our interest focusses on extremal events of the form fX � xg for some
random variable X and large x� i	e	 we want to estimate tails in their far

regions and� also� high quantiles	 We survey various tail and quantile estima�

tors which are only to be found rather scattered through the literature	 We

also describe a variety of statistical methods based on upper order statistics

and on so�called threshold methods	

Before you start�

We think it a bad idea for a methodological book like this one to distinguish

too strongly between those readers working in insurance and those working
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more in �nance	 It would be especially bad to do so at the present time� when

experts from both �elds are increasingly collaborating either on questions

of related interest �risk management say� or on new product development

involving both insurance and �nance features �for instance index�linked life

insurance� catastrophe futures and options� securitisation of insurance risk�	

It is important for both sides to learn more about each other�s basic models

and tools	 We therefore hope that a broad spectrum of readers will �nd

various interesting facts in this book	

We start with a somewhat specialised chapter on risk theory � however�

the basic model treated in it reappears in many �elds of applications as

for instance queueing theory� dam theory� inventory systems� shock models

etc	 Its main purpose is that it provides an ideal vehicle for the introduc�

tion of the important class of subexponential distributions	 At the same time�

the liability model that is fundamental to insurance is also discussed	 From

Chapter � onwards� standard theory is �rst of all reviewed �Chapter � on

sums� before the core material on probabilistic modelling of extremes together

with their statistical analysis are treated in Chapters ���	 A mathematically

more demanding� though with respect to applications rewarding� excursion

to point process methods is presented in Chapter �	 Typically you would

start with Chapters � and � and embark �rst on the statistical methods in

Chapter � before coming back for a more detailed analysis of some of the

techniques from Chapter �	 Chapter � treats the more specialised topic of

heavy�tailed time series models	 It �ts into the framework of extremes for

dependent data which earlier appears in Sections 	� �	� and �	�	 Together�

Chapters � through � give a sound introduction to one�dimensional extremal

event modelling	 Having this methodology at our �nger tips� we may start

using it for understanding and solving various related problems	 This is ex�

actly what is presented in Chapter � on special topics	 In it� we have brought

together various problems� all of which use the foregoing theory in some form

or another	 Take for instance Section �	� where a large claim index is dis�

cussed� describing mathematically the ����� rule of thumb used by actuaries

to specify the dangerousness of certain portfolios	 Chapter � is also used to

discuss brie�y those extensions of the theory which should come next� such

as for instance Sections �	� �on the extremal index�� �	 �on perpetuities and

ARCH processes� and �	� �on reinsurance treaties�	 This chapter could have

grown considerably� somewhere however we had to stop	 Therefore� most of

the sections presented re�ect somehow our own teaching� research and!or

consulting experience	 We have based an extreme value theory course for

mathematics students specialising in actuarial mathematics on most of the

material presented in Chapters � to �� together with some sections in Chap�
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ter �	 Naturally� the Appendix is there for reviewing those tools from math�

ematics used most often throughout the text and which may not belong to

everybody�s basic toolkit	

Epilogue

You are now ready to start� good luck�

P	E	� C	K	 and T	M	
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Risk Theory

For most of the problems treated in insurance mathematics� risk theory still

provides the quintessential mathematical basis	 The present chapter will serve

a similar purpose for the rest of this book	 The basic risk theory models

will be introduced� stressing the instances where a division between small

and large claims is relevant	 Nowadays� there is a multitude of textbooks

available treating risk theory at various mathematical levels	 Consequently�

our treatment will not be encyclopaedic� but will focus more on those aspects

of the theory where we feel that� for modelling extremal events� the existing

literature needs complementing	 Readers with a background in �nance rather

than insurance may use this chapter as a �rst introduction to the stochastic

modelling of claim processes	

After the introduction of the basic risk model in Section �	�� we derive in

Section �	� the classical Cram�er�Lundberg estimate for ruin probabilities in

the in�nite horizon case based on a small claim condition	 Using the Cram�er�

Lundberg approach� a �rst estimation of asymptotic ruin probabilities in the

case of regularly varying claim size distributions is obtained in Section �	�	�	

The natural generalisation to subexponentially distributed claim sizes is given

in Sections �	�	�� �	�	� and further discussed in Section �		 The latter section�

together with Appendix A�� contains the basic results on regular variation

and subexponentiality needed further in the text	
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��� The Ruin Problem

The basic insurance risk model goes back to the early work by Filip Lund�

berg ���� who in his famous Uppsala thesis of ���� laid the foundation of

actuarial risk theory	 Lundberg realised that Poisson processes lie at the heart

of non�life insurance models	 Via a suitable time transformation �so�called

operational time� he was able to restrict his analysis to the homogeneous

Poisson process	 This �discovery
 is similar to the recognition by Bachelier

in ���� that Brownian motion is the key building block for �nancial models	

It was then left to Harald Cram�er and his Stockholm School to incorporate

Lundberg�s ideas into the emerging theory of stochastic processes	 In doing

so� Cram�er contributed considerably to laying the foundation of both non�life

insurance mathematics as well as probability theory	 The basic model coming

out of these �rst contributions� referred to in the sequel as the Cram�er�Lund�

berg model� has the following structure�

Denition ����� �The Cram�er�Lundberg model� the renewal model�

The Cram�er�Lundberg model is given by conditions �a���e�	

�a� The claim size process�

the claim sizes �Xk�k�N are positive iid rvs having common non�lattice

df F � �nite mean   EX�� and variance ��  var�X�� � ��

�b� The claim times�

the claims occur at the random instants of time

� � T� � T� � � � � a	s	

�c� The claim arrival process�

the number of claims in the interval ��� t� is denoted by

N�t�  sup fn � � � Tn � tg � t � � �

where� by convention� sup �  ��
�d� The inter�arrival times

Y�  T� � Yk  Tk � Tk�� � k  �� �� � � � � ��	��

are iid exponentially distributed with �nite mean EY�  ����

�e� The sequences �Xk� and �Yk� are independent of each other�

The renewal model is given by �a���c�� �e� and

�d�� the inter�arrival times Yk given in ��	�� are iid with �nite mean EY�  

���� �



��� The Ruin Problem ��

Remarks� �� A consequence of the above de�nition is that �N�t�� is a ho�

mogeneous Poisson process with intensity � � � �for a de�nition we refer to

Example �	�	��	 Hence

P �N�t�  k�  e��t
��t�k

k�
� k  �� �� �� � � � �

�� The renewal model is a slight generalisation of the Cram�er�Lundberg

model which allows for renewal counting processes �see Section �	�	��	 The

latter are more general than the Poisson process for the claim arrivals	 �

The total claim amount process �S�t��t�� of the underlying portfolio is de�ned

as

S�t�  

� PN�t�
i�� Xi � N�t� � � �

� � N�t�  � �
��	��

The general theory of random sums will be discussed in Section �	�	 It is

clear that in the important case of the Cram�er�Lundbergmodel more detailed

information about �S�t�� can be obtained	 We shall henceforth treat this case

as a basic example on which newly introduced methodology can be tested	

An important quantity in this context is the total claim amount distribution

�or aggregate claim �size� distribution�

Gt�x�  P �S�t� � x�  

�X
n��

e��t
��t�n

n�
Fn��x� � x � � � t � � � ��	��

where Fn��x�  P �
Pn

i�� Xi � x� is the n�fold convolution of F 	 Throughout

the text� for a general df H on �������

H���x�  

�
� x � � �
� x � � �

The resulting risk process �U�t��t�� is now de�ned as

U�t�  u& ct� S�t� � t � � � ��	�

In ��	�� u � � denotes the initial capital and c � � stands for the premium

income rate	 The choice of c is discussed below� see ��	��	 For an explanation

on why in this case a deterministic �linear� income rate makes sense from an

actuarial point of view� see for instance B�uhlmann ����	 In Figure �	�	� some

realisations of �U�t�� are given in the case of exponentially distributed claim

sizes	

In the classical Cram�er�Lundberg set�up� the following quantities are

relevant for various insurance�related problems	
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�
� Some realisations of �U�t�� for exponential claim sizes�

Denition ����� �Ruin�

The ruin probability in �nite time �or with �nite horizon� �


�u� T �  P �U�t� � � for some t � T � � � � T �� � u � � �

The ruin probability in in�nite time �or with in�nite horizon� �


�u�  
�u��� � u � � �

The ruin times	

��T �  infft � � � t � T � U�t� � �g � � � T � � �

where� by convention� inf �  �� We usually write �  ���� for the ruin

time with in�nite horizon	 �

The following result is elementary	

Lemma ����� For the renewal model�

EU�t�  u& ct� EN�t� � ��	��

For the Cram�er�Lundberg model�

EU�t�  u& ct� �t � ��	��
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Proof� Since EU�t�  u& ct�ES�t�� and

ES�t�  
�X
k��

E�S�t� j N�t�  k� P �N�t�  k�

 

�X
k��

E

��N�t�X
i��

Xi

						N�t�  k


A P �N�t�  k�

 

�X
k��

E

�
kX
i��

Xi

�
P �N�t�  k�

 

�X
k��

k P �N�t�  k�

 EN�t� �

relation ��	�� follows	 Because EN�t�  �t for the homogeneous Poisson

process� ��	�� follows immediately	 �

This elementary lemma yields a �rst guess of the premium rate c in ��	��	

The latter is a major problem in insurance to which� at least for more general

models� a vast amount of literature has been devoted� see for instance Goo�

vaerts� De Vylder and Haezendonck �����	 We shall restrict our discussion to

the above models	 The determination of a suitable insurance premium rate

obviously depends on the criteria used in order to de�ne �suitable
	 It all

depends on the measure of solvency we want to optimise over a given time

period	 The obvious �but by no means the only� measures available to us

are the ruin probabilities 
�u� T � for T � �	 The premium rate c should

be chosen so that a small 
�u� T � results for given u and T 	 A �rst step

in this direction would be to require that 
�u� � �� for all u � �	 However�
since 
�u�  P �� ���� this is equivalent to P ��  �� � �� the company is
given a strictly positive probability of in�nitely long survival	 Clearly� adjust�

ments to this strategy have to be made before real premiums can be cashed	

Anyhow� to set the stage� the above criterion is a useful one	

It follows immediately from ��	�� and Proposition �	�	�� that in the re�

newal model� for t	��
EU�t�  u& �c� �� t �� & o����

 u&


c

�
� �

�
�t �� & o���� �

Therefore� EU�t��t	 c� �� and an obvious condition towards solvency is

c� � � �� implying that �U�t�� has a positive drift for large t	 This leads
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to the basic net pro�t condition in the renewal model�

�  
c

�
� � � � � ��	��

The constant � is called the safety loading� which can be interpreted as a risk

premium rate� indeed� the premium income over the period ��� t� equals ct  

�� & ���t	

By de�nition of the risk process� ruin can occur only at the claim times Ti�

hence for u � ��

�u�  P �u& ct� S�t� � � for some t � ��

 P �u& cTn � S �Tn� � � for some n � ��

 P

�
u&

nX
k��

�cYk �Xk� � � for some n � �
�

 P

�
sup
n��

nX
k��

�Xk � cYk� � u

�
�

Therefore� 
�u� � � is equivalent to the condition

�� 
�u�  P

�
sup
n��

nX
k��

�Xk � cYk� � u

�
� � � u � � � ��	��

From ��	�� it follows that� in the renewal model� the determination of the non�

ruin probability �� 
�u� is reduced to the study of the df of the ultimate

maximum of a random walk	 Indeed� consider the iid sequence

Zk  Xk � cYk � k � � �
and the corresponding random walk

R�  � � Rn  

nX
k��

Zk � n � � � ��	��

Notice that EZ�  � c�� � � is just the net pro�t condition ��	��	 Then

the non�ruin probability is given by

�� 
�u�  P


sup
n��

Rn � u

�
�

This probability can for instance be determined via Spitzer�s identity �cf	

Feller ������ p	 ����� which� for a general random walk� gives the distribution

of its ultimate supremum	 An application of the latter result allows us to

express the non�ruin probability as a compound geometric df� i	e	
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�� 
�u�  ��� 	�

�X
n��

	nHn��u� ��	���

for some constant 	 � ��� �� and a df H 	 As before� Hn� denotes the nth

convolution ofH 	 Both 	 andH can in general be determined via the classical

Wiener�Hopf theory� see again Feller ������ Sections XII	� and XVIII	�� and

Resnick �����	

Estimation of 
�u� can be worked out for a large category of models by

applying a variety of �mostly analytic� techniques to functional relationships

like ��	���	 It is beyond the scope of this text to review these methods in

detail	 Besides the Wiener�Hopf methodology for the calculation of 
�u��

renewal theory also yields relevant estimates� as we shall show in the next

section	 In doing so we shall concentrate on the Cram�er�Lundberg model�

�rst showing what typical estimates in a �small claim regime
 look like	 We

then discuss what theory may be used to yield estimates for �large claims
	

Notes and Comments

In recent years a multitude of textbooks on risk theory has been published	

The interested reader may consult for instance Bowers et al	 ����� B�uhlmann

����� Gerber ������ Grandell ������ Straub ������ or Beard� Pentik�ainen and

Pesonen ���	 The latter book has recently appeared in a much updated form

as Daykin� Pentik�ainen and Pesonen �����	 In the review paper Embrechts

and Kl�uppelberg ����� further references are to be found	 A summary of Cra�

m�er�s work on risk theory is presented in Cram�er ����� see also the recently

published collected works of Cram�er ���� ��� edited by Anders Martin�

L�of	 For more references on the historical background to this earlier work�

together with a discussion on �where risk theory is evolving to
 see Embrechts

�����	 A proof of Spitzer�s identity� which can be used in order to calculate

the probability in ��	��� can be found in any basic textbook on stochastic

processes� see for instance Chung ������ Karlin and Taylor ������ Prabhu ������

Resnick �����	 A classical source onWiener�Hopf techniques is Feller ������ see

also Asmussen ����	 An elementary proof of the Wiener�Hopf factorisation�

relating the so�called ladder�height distributions of a simple random walk to

the step distribution� is to be found in Kennedy �����	 A detailed discussion�

including the estimation of ruin probabilities as an application� is given in

Prabhu ������ see also Prabhu ����� ����	 A comment on the relationship

between the net pro�t condition and the asymptotic behaviour of the random

walk ��	�� is to be found in Rogozin ����	 For a summary of the Wiener�Hopf

theory relevant for risk theory see for instance Asmussen ����� B�uhlmann ����

or Embrechts and Veraverbeke �����	
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In Section �	� we come back to ruin probabilities	 There we describe 
�u�

via the distribution of the ultimate supremum of a random walk	 Moreover�

we characterise a sample path of the risk process leading to ruin	

��� The Cram�er�Lundberg Estimate

In the previous section we mentioned a general method for obtaining esti�

mates of the ruin probability 
�u� in the renewal model	 If we further restrict

ourselves to the Cram�er�Lundberg model we can obtain a formula for 
�u�

involving the claim size df F explicitly	 Indeed� for the Cram�er�Lundberg

model under the net pro�t condition �  c����� � � � one can show that

�� 
�u�  
�

� & �

�X
n��

�� & ���n Fn�
I �u� � ��	���

where

FI�x�  
�



Z x

�

F �y� dy � x � � � ��	���

denotes the integrated tail distribution and

F �x�  �� F �x� � x � � �

denotes the tail of the df F 	 Later we shall show that formula ��	��� is the key

tool for estimating ruin probabilities under the assumption of large claims	

Also a proof of ��	��� will be given in Theorem �	�	� below	

In the sequel� the notion of Laplace�Stieltjes transform plays a crucial

role	

Denition ����� �Laplace�Stieltjes transform�

Let H be a df concentrated on ������ then

bh�s�  Z �

�

e�sx dH�x� � s � R �

denotes the Laplace�Stieltjes transform of H� �

Remark� �� Depending on the behaviour of H�x� for x large� bh�s� may be
�nite for a larger set of s�values than s � �	 In general� bh�s� �� for s � ��
say� where � � � �� is the abscissa of convergence for bh�s�	 �

The following Cram�er�Lundberg estimates of the ruin probability 
�u� are

fundamental in risk theory	
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Theorem ����� �Cram�er�Lundberg theorem�

Consider the Cram�er�Lundberg model including the net pro�t condition

� � �� Assume that there exists a � � � such that

bfI����  

Z �

�

e�x dFI �x�  
c

�
 � & � � ��	���

Then the following relations hold�

�a� For all u � ��

�u� � e��u � ��	��

�b� If� moreover� Z �

�

x e�x F �x� dx �� � ��	���

then

lim
u��

e�u 
�u�  C �� � ��	���

where

C  

�
�

�

Z �

�

x e�x F �x� dx

���

� ��	���

�c� In the case of an exponential df F �x�  �� e�x��� ��	��� reduces to


�u�  
�

� & �
exp

�
� �

�� & ��
u

�
� u � � � ��	���

Remarks� �� The fundamental� so�called Cram�er�Lundberg condition ��	����

can also be written as Z �

�

e�xF �x� dx  
c

�
�

�� It follows immediately from the de�nition of Laplace�Stieltjes transform

that� whenever � in ��	��� exists� it is uniquely determined� see also Grandell

������ p	 ��	

� Although the above results can be found in any basic textbook on risk

theory� it is useful to discuss the proof of �b� in order to indicate how renewal�

theoretic arguments enter �we have summarised the necessary renewal theory

in Appendix A�	 More importantly� we want to explain why the condition

��	��� has to be imposed	 Very readable accounts of the relevant arguments

are Feller ������ Sections VI	�� XI	�a� and Grandell �����	 �

Proof of �b�� Denote ��u�  � � 
�u�	 Recall from ��	�� that ��u� can be

expressed via the random walk generated by �Xi � cYi�	 Then
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��u�

 P �S�t�� ct � u for all t � ��

 P

�
nX

k��

�Xk � cYk� � u for all n � �
�

 P

�
nX

k��

�Xk � cYk� � u& cY� �X� for all n � � � X� � cY� � u

�

 P �S��t�� ct � u& cY� �X� for all t � � � X� � cY� � u� �

where S� is an independent copy of S	 Hence

��u�

 E �P �S��t�� ct � u& cY� �X� for all t � � � X� � cY� � ujY� � X���

 

Z �

�

Z u�cs

�

P �S��t�� ct � u& cs� x for all t � �� dF �x��e��sds

 

Z �

�

�e��s
Z u�cs

�

��u& cs� x�dF �x�ds

 
�

c
eu��c

Z �

u

e��z�c
�Z z

�

��z � x� dF �x�

�
dz � ��	���

where we used the substitution u& cs  z	 The reader is urged to show ex�

plicitly where the various conditions in the Cram�er�Lundberg model were

used in the above calculations� This shows that � is absolutely continuous

with density

���u�  
�

c
��u�� �

c

Z u

�

��u� x� dF �x� � ��	���

From this equation for �� 
�u� the whole theory concerning ruin in the

classical Cram�er�Lundberg model can be developed	 A key point is that the

integral in ��	��� is of convolution type� this opens the door to renewal theory	

Integrate ��	��� from � to t with respect to Lebesgue measure to �nd

��t�  ���� &
�

c

Z t

�

��u� du� �

c

Z t

�

Z u

�

��u� x� dF �x� du

 ���� &
�

c

Z t

�

��t� u� du� �

c

Z t

�

��t� x�F �x� dx �

We �nally arrive at the solution�
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��t�  ���� &
�

c

Z t

�

��t� x�F �x� dx � ��	���

Note that ���� is still unknown	 However� letting t 
 � in ��	��� and using

the net pro�t condition �yielding ����  �� 
���  �� one �nds �  ����&

��c� hence ����  �� ��c  ���� & ��	 Consequently�

��t�  
�

� & �
&

�

� & �

Z t

�

��t� x� dFI �x� � ��	���

where the integrated tail distribution FI is de�ned in ��	���	 Note that from

��	���� using Laplace�Stieltjes transforms� formula ��	��� immediately fol�

lows	 The reader is advised to perform this easy calculation as an exercise

and also to derive at this point formula ��	���	 Equation ��	��� looks like

a renewal equation� there is however one crucial di�erence and this is exactly

the point in the proof where a small claim condition of the type ��	��� enters�

First� rewrite ��	��� as follows in terms of 
�u�  �� ��u�� setting 	  

���� & �� � ��


�u�  	F I�u� &

Z u

�


�u� x� d �	FI�x�� � ��	���

Because � � 	 � �� this is a so�called defective renewal equation �for instance

Feller ������ Section XI	��	 In order to cast it into the standard renewal set�

up of Appendix A� we de�ne the following exponentially tilted or Esscher

transformed df FI�� �

dFI���x�  e�xd �	FI �x�� �

where � is the exponent appearing in the condition ��	���	 Using this notation�

��	��� becomes

e�u
�u�  	 e�u F I�u� &

Z u

�

e��u�x�
�u� x� dFI���x�

which� by condition ��	���� is a standard renewal equation	 A straightforward

application of the key renewal theorem �Theorem A	��b�� yields

lim
u��

e�u
�u�  

�
�

�

Z �

�

x e�xF �x� dx

���

which is exactly ��	������	���	 The conditions needed for applying Theo�

rem A	� are easily checked	 By partial integration and using ��	����

	e�uF I�u�  

Z �

u

e�xd �	FI �x��� �

Z �

u

	F I�x�e
�xdx �
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Hence 	e�uF I�u� is the di�erence of two non�increasing Riemann integrable

functions� and therefore it is directly Riemann integrable	 Moreover�Z �

�

	 e�uF I�u� du  	
�� bfI����

��  
�

��� & ��
�� �

and Z �

�

x dFI���x�  
�

�� & ��

Z �

�

x e�xF �x� dx �� �

by ��	���	 �

Because of the considerable importance for insurance the solution � of ��	���

gained a special name�

Denition ����� �Lundberg exponent�

Given a claim size df F � the constant � � � satisfyingZ �

�

e�xF �x� dx  
c

�
�

is called the Lundberg exponent or adjustment coe�cient of the underlying

risk process� �

Returning to ��	���� clearly the existence of � implies that bfI�s� has to exist in
a non�empty neighbourhood of �� implying that the tail F I of the integrated

claim size df� and hence also the tail F � is exponentially bounded	 Indeed� it

follows from Markov�s inequality that

F �x� � e��x E e�X� � x � � �

This inequality means that large claims are very unlikely �exponentially small

probabilities�� to occur	 For this reason ��	��� is often called a small claim

condition	

The Cram�er�Lundberg condition can easily be discussed graphically	 The

existence of � in ��	��� crucially depends on the left abscissa of conver�

gence �� of bfI 	 Various situations can occur as indicated in Figure �	�		
The most common case� and indeed the one fully covered by Theorem �	�	��

corresponds to Figure �	�	���	 Typical claim size dfs and densities �denoted

by f� covered by this regime are given in Table �	�	�	 We shall not discuss in

detail the intermediate cases� unimportant for applications� of Figure �	�	���

and ���	

If one scans the literature with the following question in mind�

Which distributions do actually �t claim size data
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Figure �
�
� Special cases in the Cram�er�Lundberg condition�

then most often one will �nd one of the dfs listed in Table �	�	�	 All the dfs

in Table �	�	� allow for the construction of the Lundberg exponent	 For the

ones in Table �	�	� however� this exponent does not exist	 Indeed� the case

�� in Figure �	�	 applies	 For that reason we have labelled the two tables

with �small claims
� respectively �large claims
	 A more precise discussion of

these distributions follows in Section �		 A detailed study of the properties

of the distributions listed in Table �	�	� with special emphasis on insurance

is to be found in Hogg and Klugman �����	 A wealth of material on these and

related classes of dfs is presented in Johnson and Kotz ����� ���� ����	

For the sake of argument� assume that we have a portfolio following the

Cram�er�Lundberg model for which individual claim sizes can be modelled by

a Pareto df
F �x�  �� & x��� � x � � � 	 � � �

It then follows that EX�  
R�
� �� & x��� dx  �	� ���� and the net pro�t

condition amounts to �  c�	� ����� � � �	 Question�

Can we work out the exponential Cram�er�Lundberg estimate in this case�

for a given premium rate c satisfying the above condition


The answer to this question is no	 Indeed� in this case� for every � � �Z �

�

e�x�� & x��� dx  � �
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Name Tail F or density f Parameters

Exponential F �x� � e��x � � �

Gamma f�x� �
��

� ���
x��� e��x �� � � �

Weibull F �x� � e�cx
�

c � �� � � �

Truncated normal f�x� �
p

�
�
e�x

��� �

Any distribution with bounded support

Table �
�
� Claim size dfs� �small claims�� All dfs have support ��	���

i	e	 there is no exponential Cram�er�Lundberg estimate in this case	 We are

in the regime of Figure �	�	��� zero is an essential singularity of bfI � this
means that bfI����  � for every � � �	

However� it turns out that most individual claim size data are modelled

by such dfs� see for instance Hogg and Klugman ����� and Ramlau�Hansen

����� ���� for very convincing empirical evidence on this	 In Chapter � we

shall analyse insurance data and come to the conclusion that also in these

cases ��	��� is violated	 So clearly� classical risk theory has to be adjusted to

take this observation into account	 In the next section we discuss in detail

the class of subexponential distributions which will be the candidates for loss

distributions in the heavy�tailed case	 A detailed discussion of the theory of

subexponential distributions is rather technical� so we content ourselves with

an overview of that part of the theory which is most easily applicable within

risk theory in particular and insurance and �nance in general	 In Section �	�

we present the large�claims equivalent of the Cram�er�Lundberg estimate� see

for instance Theorem �	�	�	

Notes and Comments

The reader interested in the various mathematical approaches to calculating

ruin probabilities should consult any of the standard textbooks on risk the�

ory� see the Notes and Comments of Section �	�	 A short proof of ��	�� based

on martingale techniques is for instance discussed in Grandell ������ see also

Gerber ����� ����	 An excellent review on the subject is Grandell �����	 Theo�
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Name Tail F or density f Parameters

Lognormal f�x� �
�p
�
 �x

e��lnx���������� � � R� � � �

Pareto F �x� �
�



� x

��
�	  � �

Burr F �x� �
�



� x�

��
�	 	 � � �

Benktander� F �x� � �� � ������ lnx� �	 � � �

type�I e���lnx�
������� lnx

Benktander� F �x� � e���x������e�� x��� � � �
type�II � � � � �

Weibull F �x� � e�cx
�

c � �
� � � � �

Loggamma f�x� �
��

� ���
�lnx���� x���� �	 � � �

Truncated F �x� � P �jXj � x� � � � � �

��stable where X is an ��stable rv

�see De�nition ������

Table �
�
� Claim size dfs� �large claims�� All dfs have support ��	�� except for
the Benktander cases and the loggamma with ��	���

rem �	�	� can also be formulated for the renewal model� a detailed analysis of

the Wiener�Hopf technique together with relevant renewal�type arguments

can be worked out� see for instance Embrechts and Veraverbeke ����� for de�

tails and further references	 Useful textbooks containing a discussion on the

link between the asymptotic behaviour of the tail of a measure to properties

of its Laplace�Stieltjes transform in a neighbourhood of zero are Bingham�

Goldie and Teugels ���� �see for instance Section �	� in the latter�� Feller

������ Section XIII	�� and Widder ����	

Using Wiener�Hopf theory� a theorem similar to Theorem �	�	� can be

proved in the renewal model with F supported by ����&��	 For details see
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Embrechts and Veraverbeke ����� and Thorin �����	 An interesting survey

paper is Thorin ����	

Exponential�type ruin estimates hold for much wider classes of risk

processes� see for instance Embrechts� Grandell and Schmidli ������ Gran�

dell ����� and the references therein	 The latter references also concentrate in

detail on ruin estimation in �nite time	 For an approach based on di�usion

approximations see Example �	�	��	

A detailed discussion of ruin estimation under the various regimes given

in Figure �	�	 is to be found in Embrechts and Veraverbeke ������ see also

Embrechts ����� for an example based on the generalised inverse Gaussian

distribution	 A useful review of the various claim size models used in non�

life insurance is Hogg and Klugman �����	 The reader should be aware that

for most models there is no standard notation or indeed parametrisation	

We shall on some occasions say that �under the assumption of a Pareto

distribution
� meaning that the exact parametrisation is not important for

that particular discussion	 If however the speci�c parameter values are of

interest� we will always make this clear� in many cases by explicitly stating

which functional form of the density f or the df F is used	

��� Ruin Theory for Heavy�Tailed Distributions

Throughout this section� all rvs are positive with in�nite support� i	e	

F �x� � � for all x � �	 We have already seen that Pareto distributions vi�

olate the Cram�er�Lundberg condition ��	��� so that Theorem �	�	� is not

applicable for such claim size distributions	 What alternative methodology

can be used" The answer lies in the representation ��	���� together with

Lemma �	�	� below	 As from Section �	�	� onwards� we shall extensively use

the theory of regular variation	 The reader unfamiliar with the latter theory

is urged �rst to read Appendix A�	� before proceeding	 We denote by R�

the class of regularly varying functions with index 	 � R	 The case 	  �

corresponds to the so�called slowly varying functions	

From Section �	�	� onwards� the class of subexponential distributions will

play a fundamental role	 For the latter� no complete textbook treatment

exists	 Because of their importance for the modelling of large claims� we have

included a more detailed analysis of their properties	 The results immediately

needed for proving ruin estimates in the heavy�tailed case are presented in

this chapter	 For some of the more technical theorems� the reader is referred to

Appendix A�	�	 The main ideas underlying subexponentiality are presented

in Section �	�	�� Section �	 may be skipped upon �rst reading	
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����� Some Preliminary Results

We start our discussion with a convolution closure property for regularly

varying dfs	 From Appendix A�	�� recall that L belongs to R�� i	e	 L is slowly

varying� whenever for all t � �

lim
x��

L�tx�

L�x�
 � �

The following result is to be found in Feller ������ p	 ���	

Lemma ����� �Convolution closure of dfs with regularly varying tails�

If F�� F� are two dfs such that F i�x�  x��Li�x� for 	 � � and Li � R��

i  �� �� then the convolution G  F� � F� has a regularly varying tail such

that

G�x� � x�� �L��x� & L��x�� � x	� �

Proof� Let X�� X� be independent rvs with dfs F�� respectively F�	 Using

fX� &X� � xg  fX� � xg � fX� � xg one easily checks that

G�x� � �
F ��x� & F ��x�

�
��� o���� �

If � � � � ���� then from

fX� &X� � xg � fX� � ��� ��xg�fX� � ��� ��xg�fX� � �x�X� � �xg �

it follows that

G�x� � F ����� ��x� & F ����� ��x� & F ���x�F ���x�

 
�
F ����� ��x� & F ����� ��x�

�
�� & o���� �

Hence

� � lim inf
x��

G�x�

F ��x� & F ��x�
� lim sup

x��

G�x�

F ��x� & F ��x�
� ��� ���� �

which proves the result upon letting � � �	 �

An alternative proof of this result can be based upon Karamata�s Tauberian

theorem �Theorem A�	��	 An important corollary obtained via induction on n

is the following�

Corollary ����� If F �x�  x��L�x� for 	 � � and L � R�� then for all

n � ��
Fn��x� � nF �x� � x	� � �



�� �� Risk Theory

Suppose now that X�� � � � � Xn are iid with df F as in the above corollary	

Denote the partial sum of X�� � � � � Xn by Sn  X� & � � �&Xn and their max�

imum by Mn  max�X�� � � � � Xn�	 Then for all n � ��

P �Sn � x�  Fn��x� �

P �Mn � x�  Fn�x�

 F �x�

n��X
k��

F k�x�

� nF �x� � x	� � ��	��

Therefore� with the above notation� Corollary �	�	� can be reformulated as

F � R�� � 	 � ��
implies

P �Sn � x� � P �Mn � x� � x	�	

This implies that for dfs with regularly varying tails� the tail of the df of the

sum Sn is mainly determined by the tail of the df of the maximum Mn	 This

is exactly one of the intuitive notions of heavy�tailed distribution or large

claims	 Hence� stated in a somewhat vague way�

Under the assumption of regular variation� the tail

of the maximum determines the tail of the sum	

Recall that in the Cram�er�Lundberg model the following relation holds� see

��	����


�u�  
�

� & �

�X
n��

�� & ���n Fn�
I �u� � u � � �

where FI�x�  ��
R x
�
F �y� dy is the integrated tail distribution	 Under the

condition F I � R�� for some 	 � �� we might hope that the following as�

ymptotic estimate holds�


�u�

F I�u�
 

�

� & �

�X
n��

�� & ���n
Fn�
I �u�

F I�u�
��	���

	 �

� & �

�X
n��

�� & ���n n  ��� � u	� � ��	���
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The key problem left open in the above calculation is the step from ��	��� to

��	���	

Can one safely interchange limits and sums


The answer is yes� see Theorem �	�	�	 Consequently� ��	��� is the natural

ruin estimate whenever F I is regularly varying	 Below we shall show that

a similar estimate holds true for a much wider class of dfs	 In its turn� ��	���

can be reformulated as follows	

For claim size distributions with regularly varying tails� ultimate

ruin 
�u� for large initial capital u is essentially determined by

the tail F �y� of the claim size distribution for large values of y�

i	e	


�u� � �

�

Z �

u

F �y� dy � u	� �

From Table �	�	� we obtain the following typical claim size distributions

covered by the above result�

	 Pareto

	 Burr

	 loggamma

	 truncated stable distributions	

����� Cram�er	Lundberg Theory for Subexponential Distributions

As stated above� the crucial step in obtaining ��	��� was the property

Fn�
I �x� � nF I�x� for x	� and n � �	 This naturally leads us to a class
of dfs which allows for a very general theory of ruin estimation for large

claims	 The main result in this set�up is Theorem �	�	� below	

Denition ����� �Subexponential distribution function�

A df F with support ����� is subexponential� if for all n � ��

lim
x��

Fn��x�

F �x�
 n � ��	���

The class of subexponential dfs will be denoted by S� �

Remark� �� Relation ��	��� yields the following intuitive characterisation of

subexponentiality� see ��	��	
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For all n � �� P �Sn � x� � P �Mn � x� � x	� � ��	���

�

In order to check for subexponentiality� one does not need to show ��	��� for

all n � �	
Lemma ����� �A su�cient condition for subexponentiality�

If lim supx�� F ���x��F �x� � �� then F � S�
Proof� As F stands for the df of a positive rv� it follows immediately that

F ���x� � F ��x�� i	e	 F ���x� � F ��x� for all x � �	 Therefore ��	��� holds
with n  �	 The proof is then by induction on n	 For x � y � ��

F �n�����x�

F �x�
 � &

F �x�� F �n�����x�

F �x�
��	���

 � &

Z x

�

Fn��x� t�

F �x�
dF �t�

 � &

Z x�y

�

&

Z x

x�y

�
Fn��x� t�

F �x� t�

F �x� t�

F �x�

�
dF �t�

 � & I��x� & I��x� �

By inserting �n& n in I� and noting that �Fn��x� t��F �x� t�� n� can be

made arbitrarily small for � � t � x� y and y su�ciently large� it follows

that

I��x�  �n& o����

Z x�y

�

F �x� t�

F �x�
dF �t� �

Now Z x�y

�

F �x� t�

F �x�
dF �t�  

F �x�� F ���x�

F �x�
�

Z x

x�y

F �x� t�

F �x�
dF �t�

 
F �x�� F ���x�

F �x�
� J�x� y�

 �� & o����� J�x� y� �

where J�x� y� � �F �x�� F �x � y���F �x�	 � as x	� by Lemma �	�	� �a�

below	 Therefore limx�� I��x�  n	



��� Ruin Theory for Heavy�Tailed Distributions ��

Finally� since Fn��x � t��F �x � t� is bounded for x � y � t � x and

lim
x��

J�x� y�  �� lim
x��

I��x�  �� completing the proof	 �

Remarks� �� The condition in Lemma �	�	 is trivially necessary for F � S	
�� In the beginning of the above proof we used that for the df F of a pos�

itive rv� always lim infx�� F ���x��F �x� � �	 One easily shows in this case
that� for all n � ��

lim inf
x��

Fn��x��F �x� � n �

Indeed Sn �Mn� hence Fn��x�  P �Sn � x� � P �Mn � x�  Fn�x�	

Therefore

lim inf
x��

Fn��x�

F �x�
� lim

x��

Fn�x�

F �x�
 n � �

The following lemma is crucial if we want to derive ��	��� from ��	��� for

subexponential FI 	

Lemma ����� �Some basic properties of subexponential distributions�

�a� If F � S� then uniformly on compact y�sets of ������

lim
x��

F �x� y�

F �x�
 � � ��	���

�b� If ��	��� holds then� for all � � ��

e�xF �x�	� � x	� �

�c� If F � S then� given � � �� there exists a �nite constant K so that for

all n � ��
Fn��x�

F �x�
� K�� & ��n � x � � � ��	���

Proof� �a� For x � y � �� by ��	����

F ���x�

F �x�
 � &

Z y

�

F �x� t�

F �x�
dF �t� &

Z x

y

F �x � t�

F �x�
dF �t�

� � & F �y� &
F �x� y�

F �x�

�
F �x� � F �y�

�
�

Thus� for x large enough so that F �x�� F �y� � ��

� � F �x� y�

F �x�
�

�
F ���x�

F �x�
� �� F �y�

�
�F �x� � F �y���� �
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In the latter estimate� the rhs tends to � as x	�	 The property ��	��� can
be reformulated as F � ln � R� so that uniform convergence follows from the

uniform convergence theorem for slowly varying functions� see Theorem A�	�	

�b� By �a�� F � ln � R�	 But then the conclusion that x�F �lnx�	� as

x	� follows immediately from the representation theorem forR�� see The�

orem A�	�	

�c� Let 	n  supx�� F
n��x��F �x�	 Using ��	��� we obtain� for every T ���

	n�� � � & sup
��x�T

Z x

�

Fn��x � y�

F �x�
dF �y�

& sup
x�T

Z x

�

Fn��x� y�

F �x� y�

F �x� y�

F �x�
dF �y�

� � &AT & 	n sup
x�T

F �x�� F ���x�

F �x�
�

where AT  �F �T ��
�� ��	 Now since F � S we can� given any � � ��

choose T such that

	n�� � � & AT & 	n�� & �� �

Hence

	n � �� &AT � �
�� �� & ��n �

implying ��	���	 �

Remark� � Lemma �	�	��b� justi�es the name subexponential for F � S�
indeed F �x� decays to � slower than any exponential e��x for � � �	 Further�

more� since for any � � ��Z �

y

e�x dF �x� � e�y F �y� � y � � �

it follows from Lemma �	�	��b� that for F � S � bf����  � for all � � �	

Therefore the Laplace�Stieltjes transform of a subexponential df has an es�

sential singularity at �	 This result was �rst proved by Chistyakov ������

Theorem �	 As follows from the proof of Lemma �	�	��b� the latter property

holds true for the larger class of dfs satisfying ��	���	 For a further discussion

on these classes see Section �		 �

Recall that for a df F with �nite mean � FI �x�  ��
R x
�
F �y� dy	 An imme�

diate� important consequence from the above result is the following	
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Theorem ����� �The Cram�er�Lundberg theorem for large claims� I�

Consider the Cram�er�Lundberg model with net pro�t condition � � � and

FI � S� then

�u� � ��� F I�u� � u	� � ��	���

Proof� Since �� & ���� � �� there exists an � � � such that ��&������&�� �

�	 Hence because of ��	����

�� & ���n
Fn�
I �u�

F I�u�
� �� & ���nK�� & ��n � u � � �

which allows by dominated convergence the interchange of limit and sum in

��	���� yielding the desired result	 �

In Figure �	�	� realisations of the risk process �U�t�� are given in the case

of lognormal and Pareto claims	 These realisations should be compared with

the ones in Figure �	�	� �exponential claims�	

This essentially �nishes our task of �nding a Cram�er�Lundberg type es�

timate in the heavy�tailed case	

For claim size distributions with subexponential integrated tail

distribution� ultimate ruin 
�u� is given by ��	���	

In addition to dfs with regularly varying tails� the following examples from

Table �	�	� yield the estimate ��	���	 This will be shown in Section �		

	 lognormal

	 Benktander�type�I

	 Benktander�type�II

	 Weibull �� � � � ��	

From a mathematical point of view� the result in Theorem �	�	� can be sub�

stantially improved	 Indeed� Corollary A�	�� yields the following result	

Theorem ����
 �The Cram�er�Lundberg theorem for large claims� II�

Consider the Cram�er�Lundberg model with net pro�t condition � � �� Then

the following assertions are equivalent	

�a� FI � S�
�b� �� 
�u� � S�
�c� limu�� 
�u��F I�u�  ���� �

Consequently� the estimate ��	��� is only possible under the condition FI � S	
In the case of the Cram�er�Lundberg theory� S is therefore the natural class
when it comes to ruin estimates whenever the Cram�er�Lundberg condition
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Figure �
�
� Some realisations of the risk process �U�t�� for lognormal �top� and
Pareto �bottom� claim sizes�

��	��� is violated	 In Section �	 we shall come back to the condition FI � S�
relating it to conditions on F itself	

����� The Total Claim Amount in the Subexponential Case

In Section �	�	� we have stressed the importance of S for the estimation of
ruin probabilities for large claims	 From a mathematical point of view it is

important that in the Cram�er�Lundberg model� �� 
�u� can be expressed as

a compound geometric sum� see ��	���	 The same methods used for proving
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Theorem �	�	� yield an estimate of the total claim amount distribution for

large claims	 Indeed� in Section �	� we observed that� within the Cram�er�

Lundberg model� for all t � ��

Gt�x�  P �S�t� � x�  
�X
n��

e��t
��t�n

n�
Fn��x� � x � � � ��	���

where S�t�  
PN�t�

k�� Xk is the total �or aggregate� claim amount up to time t	

The claim arrival process �N�t��t�� in ��	��� is a homogeneous Poisson

process with intensity � � �� hence

P �N�t�  n�  e��t
��t�n

n�
� n � � � ��	��

The same calculation leading up to ��	��� would� for a general claim arrival

process �still assumed to be independent of the claim size process �Xk��� yield

the formula

Gt�x�  

�X
n��

pt�n�F
n��x� � x � � � ��	���

where
pt�n�  P �N�t�  n� � n � N� �

de�nes a probability measure on N� 	 In the case of a subexponential df F the

same argument as given for the proof of Theorem �	�	� yields the following

result	

Theorem ����� �The total claim amount in the subexponential case�

Consider ��	��� with F � S� �x t � �� and suppose that �pt�n�� satis�es

�X
n��

�� & ��n pt�n� �� ��	���

for some � � �� Then Gt � S and

Gt�x� � EN�t�F �x� � x	� � ��	���

�

Remarks� �� Condition ��	��� is equivalent to the fact that the probability

generating function
P�

n�� pt�n�s
n is analytic in a neighbourhood of s  �	

�� The most general formulation of Theorem �	�	� is to be found in Cline

����� Theorem �	��	 �

Example ������ �The total claim amount in the Cram�er�Lundberg model�

Suppose �N�t�� is a homogeneous Poisson process with individual probabili�

ties ��	�� so that trivially pt�n� satis�es ��	���	 Then� for F � S�
Gt�x� � �tF �x� � x	� � �
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Example ������ �The total claim amount in the negative binomial case�

The negative binomial process is a claim arrival process satisfying

pt�n�  


� & n� �

n

�
�

� & t

�� 
t

� & t

�n

� n � N� � �� � � � � ��	���

Seal ����� ���� stresses that� apart from the homogeneous Poisson process�

this process is the main realistic model for the claim number distribution in

insurance applications	 One easily veri�es that

EN�t�  �t�� � var�N�t��  �t�� & t����� �

Denoting q  ���� & t� and p  t��� & t�� one obtains from ��	���� by using

Stirling�s formula � �x& �� � p��x �x�e�x as x	�� that

pt�n� � pn n��� q��� ��� � n	� �

Therefore the condition ��	��� is ful�lled� so that for F � S �

Gt�x� � �t

�
F �x� � x	� �

Recall that in the homogeneous Poisson case� EN�t�  �t  var�N�t��	 For

the negative binomial process�

var�N�t��  


� &

t

�

�
EN�t� � EN�t� � t � � � ��	���

The condition ��	��� is referred to as over�dispersion of the process �N�t���

see for instance Cox and Isham ����� p	 ��	 As discussed in McCullagh and

Nelder ���� p	 ���� over�dispersion may arise in a number of di�erent ways�

for instance

�a� by observing a homogeneous Poisson process over an interval whose

length is random rather than �xed�

�b� when the data are produced by a clustered Poisson process� or

�c� in behavioural studies and in accident�proneness when there is inter�

subject variability	

It is mainly �c� which is often encountered in the analysis of insurance

data	 The features mentioned under �c� can be modelled by mixed Poisson

processes	 Their precise de�nition given below is motivated by the following

example	 Suppose � is a rv which is � ��� �� distributed with density

f	�x�  
��

� ���
x���e�
x � x � � �

Then
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Figure �
�
�� Realisations of the risk process �U�t�� with linear premium income

and total claim amount process S�t� �
PN�t�

i��
Xi� where �N�t�� is a negative bi�

nomial process� The claim size distribution is either exponential �top� or lognor�
mal �bottom�� Compared with Figure ����	� the top 
gure clearly shows the over�
dispersion e�ect� If we compare the bottom graph with the corresponding Figure �����
we notice the accumulation of many small claims�

Z �

�

e�xt
�xt�n

n�
f	�x� dx  

� �n& ��

n�� ���


�

� & t

�� 
t

� & t

�n

� n  �� �� �� � � � �

The latter formula equals pt�n� in ��	���	 Hence we have obtained the negative

binomial probabilities by randomising the Poisson parameter � over a gamma

distribution	 This is exactly an example of what is meant by a mixed Poisson

process	 �

Denition ������ �Mixed Poisson process�

Suppose � is a rv with P �� � ��  �� and suppose N  �N�t��t�� is a ho�
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mogeneous Poisson process with intensity �� independent of �� The process

�N��t��t�� is called mixed Poisson� �

The rv � in the de�nition above can be interpreted as a random time change	

Processes more general than mixed Poisson� for instance Cox processes� have

belonged to the toolkit of actuaries for a long time	 Mixed Poisson processes

are treated in every standard text on risk theory	 Recent textbook treat�

ments are Grandell ���� and Panjer and Willmot ����	 The homogeneous

Poisson process with intensity � � � is obtained for � degenerate at �� i	e	

P ��  ��  �	

Notes and Comments

The class of subexponential distributions was independently introduced by

Chistyakov ����� and Chover� Ney and Wainger ������ mainly in the context

of branching processes	 An early textbook treatment is given in Athreya and

Ney ���� from which the proof of Lemma �	�	� is taken	 Lemma �	�	��c� is

attributed to Kesten	 An independent introduction of S through questions
in queueing theory is to be found in Borovkov ���� ��� see also Pakes ����	

The importance of S as a useful class of heavy�tailed dfs in the context
of applied probability in general� and insurance mathematics in particular�

was realised early on by Teugels �����	 A recent survey paper is Goldie and

Kl�uppelberg ����	

In the next section we shall prove that the condition FI � S is also sat�
is�ed for F lognormal	 Whenever F is Pareto� it immediately follows that

FI � S 	 In these forms �i	e	 Pareto� lognormal F �� Theorem �	�	� has an in�
teresting history� kindly communicated to us by Olof Thorin	 In Thorin �����

the estimate


�u� � k

Z �

u

F �x� dx � u	� �

for some constant k was obtained for a wide class of distributions F assuming

certain regularity conditions�

F �y�  

Z �

�

�
�� e�yt

�
V ��t� dt � y � � �

with V � continuous� positive for t � �� and having

V ����  � and

Z �

�

V ��t� dt  � �

An interesting special case is obtained by choosing V ��t� as a gamma density

with shape parameter greater than �� giving the Pareto case	 It was pointed

out in Thorin and Wikstad ����� that the same method also works for the
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lognormal distribution	 The Pareto case was obtained independently by von

Bahr ����� and early versions of these results were previously discussed by

Thorin at the ��th International Congress of Actuaries in Oslo ������ and

at the Wisconsin Actuarial Conference in ����	 Thorin also deals with the

renewal case	 Embrechts and Veraverbeke ����� obtained the full answer as

presented in Theorem �	�	�	 In the latter paper these results were also for�

mulated in the most general form for the renewal model allowing for real�

valued� not necessarily positive claims	 It turns out that also in that case�

under the assumption FI � S� the estimate 
�u� � ���F I�u� holds	 In the

renewal model however� we do not have the full equivalence relationships as

in the Cram�er�Lundberg case	

A recent overview concerning approximation methods for Gt�x� is given

in Buchwalder� Chevallier and Kl�uppelberg ����	 The use of the fast Fou�

rier transform method with special emphasis on heavy tails is highlighted

in Embrechts� Gr�ubel and Pitts �����	 A particularly important methodology

for application is the so�called Panjer recursion method	 For a discussion and

further references on this topic� see Dickson ����� or Panjer andWillmot ����	

A light�tailed version of Example �	�	�� is to be found in Embrechts� Maeji�

ma and Teugels ����	 An especially useful method in the light�tailed case is

the so�called saddlepoint approximation� see Jensen ����� for an introduction

including applications to risk theory	 A very readable textbook treatment

on approximation methods is Hipp and Michel ������ see also Feilmeier and

Bertram �����	

There are much fewer papers on statistical estimation of Gt than there

are on asymptotic expansions	 Clearly� one could work out a parametric esti�

mation procedure or use non�parametric methods	 The latter approach looks

especially promising� as can be seen from Pitts ����� ���� and references

therein	

��� Cram�er�Lundberg Theory for Large Claims�

a Discussion

����� Some Related Classes of Heavy	Tailed Distributions

In order to get direct conditions on F so that the heavy�tailed Cram�er�Lund�

berg estimate in Theorem �	�	� holds� we �rst study some related classes of

heavy�tailed dfs	

The class of dominatedly varying distributions is de�ned as

D  
�
F df on ����� � lim sup

x��
F �x����F �x� ��

�
�
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Figure �
�
� Classes of heavy�tailed distributions�

We have already encountered members of the following three families�

L  
n
F df on ����� � lim

x��
F �x� y��F �x�  � for all y � �

o
�

R  
�
F df on ����� � F � R�� for some 	 � �� �

K  

�
F df on ����� � bf����  Z �

�

e�xdF �x�  � for all � � �

�
�

From the de�nition of slowly varying functions� it follows that F � L if and
only if F � ln � R�	 The following relations hold�

�a� R � S � L � K and R � D �

�b� L � D � S �

�c� D �� S and S �� D �

The situation is summarised in Figure �		�	 A detailed discussion of these

interrelationships is to be found in Embrechts and Omey ������ see also Kl�up�

pelberg �����	 Most of the implications are easy� and indeed some of them we

have already proved �R � S in Corollary �	�	�� L � K in Remark  after the
proof of Lemma �	�	��	 A mistake often encountered in the literature is the

claim that D � S� the following df provides a counterexample	
Example ����� �The Peter and Paul distribution�

Consider a game where the �rst player �Peter� tosses a fair coin until it falls
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head for the �rst time� receiving from the second player �Paul� �k Roubles�

if this happens at trial k	 The df of Peter�s gain is

F �x�  
X

k��k�x

��k � x � � �

The problem underlying this game is the famous St	 Petersburg paradox�

see for instance Feller ����� Section X		 It immediately follows that for all

k � N � F ��k � ���F ��k�  � so that F �� L and a fortiori F �� S 	 On the other
hand� one easily shows that F � D	 For a full analysis see Goldie �����	 �

The result S � L is non�trivial� relevant examples are to be found in Em�
brechts and Goldie ���� and Pitman �����	 Concerning the relationship be�

tween L and S� consider for x � ��
F ���x�

F �x�
 � &

Z x

�

F �x� y�

F �x�
dF �y� �

By de�nition� F � L implies that for every y �xed the integrand above con�

verges to �	 By the uniform convergence theorem for slowly varying func�

tions �Theorem A�	��� this convergence holds also uniformly on compact y�

intervals	 In order however to interchange limits and integrals one needs some

sort of uniform integrability condition �dominated convergence� monotonicity

in x� � � ��	 In general �i	e	 for F � L� these conditions fail	
Let us �rst look at S�membership in general	 We have already established

R � S and S � L �Lemma �	�	��a��� the latter implying that for all � � ��

expf�xgF �x�	� as x	�	 From this it immediately follows that the ex�
ponential df F �x�  �� expf��xg does not belong to S	 One could of course
easily verify this directly� or use the fact that S � L and immediately note
that F �� L	
So by now we know that the dfs with power law tail behaviour �i	e	 F � R�

belong to S	 On the other hand� exponential distributions �and indeed dfs F
with faster than exponential tail behaviour� do not belong to S	 What can
be said about classes �in between
� such as for example the important class

of Weibull type variables where F �x� � expf�x�g with � � � � �" Proposi�

tion A�	��� formulated in terms of the density f of F � the hazard rate q  f�F

and the hazard function Q�x�  
R x
� q�y�dy� immediately yields the following

examples in S	 Note that� using the above notation� F �x�  expf�Q�x�g	
Example ����� �Examples of subexponential distributions�

�a� Take F a Weibull distribution with parameters � � � � � and c � �� i	e	

F �x�  e�c x
�

� x � � �
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Then f�x�  c�x���e�cx
�

� Q�x�  cx� and q�x�  c�x��� which de�

creases to � if � � �	 We can immediately apply Proposition A�	���b�

since

x �	 ex q�x�f�x�  ec �����x� c � x���

is integrable on ����� for � � � � �	 Therefore F � S 	
�b� Using Proposition A�	��� one can also prove for

F �x� � e�x�lnx�
��

� x	� � � � � �

that F � S	 This example shows that one can come fairly close to expo�
nential tail behaviour while staying in S	

�c� At this point one could hope that for

F �x� � e�x
�L�x� � x	� � � � � � � � L � R� �

F would belong to S	 Again� in this generality the answer to this question
is no	 One can construct examples of L � R� so that the corresponding F

does not even belong to L � An example for �  � was communicated to
us by Charles Goldie� see also Cline ����� where counterexamples for

� � � � � are given	 �

A particularly useful result is the following	

Proposition ����� �Dominated variation and subexponentiality�

�a� If F � L � D� then F � S�
�b� If F has �nite mean  and F � D� then FI � L � D� Consequently� be�

cause of �a�� FI � S�
Proof� �a� Because of �A	���� for x � ��

F ���x�

F �x�
 �

Z x��

�

F �x� y�

F �x�
dF �y� &

�
F �x���

��
F �x�

 �

Z x��

�

F �x� y�

F �x�
dF �y� & o��� �

where the o��� is a consequence of F � D	 Now for all � � y � x���

F �x � y�

F �x�
� F �x���

F �x�
�

so that because F � D� we can apply dominated convergence� yielding for
F � L the convergence of the integral to �	 Hence F � S	
�b� For ease of notation� and without loss of generality� we put   �	 Since�

for all x � ��
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F I�x�  

Z �

x

F �y� dy �
Z �x

x

F �y� dy � xF ��x� � ��	��

it follows from F � D that

lim sup
x��

xF �x�

F I�x�
� lim sup

x��

F �x�

F ��x�
�� �

Moreover�

F I�x���

F I�x�
 

Z �

x��

F �y� dyZ �

x

F �y� dy

 � &

Z x

x��

F �y� dyZ �

x

F �y� dy

� � &
F �x���x��

F I �x�

 � & ���F �x���

F �x�

xF �x�

F I�x�
�

whence

lim sup
x��

F I�x���

F I�x�
�� �

i	e	 FI � D	 Take y � �� then for x � �

�  

Z x�y

x

F �u� du&

Z �

x�y

F �u� du

F I�x�
�

hence� by ��	���

� � yF �x�

F I �x�
&

F I�x& y�

F I�x�
� yF �x�

xF ��x�
&

F I�x& y�

F I�x�
�

The �rst term in the latter sum is o��� as x	�� since F � D	 Therefore�

� � lim inf
x��

F I�x & y�

F I�x�
� lim sup

x��

F I�x& y�

F I�x�
� � �

i	e	 F � L	 �

����� The Heavy	Tailed Cram�er	Lundberg Case Revisited

So far we have seen that� from an analytic point of view� the classes R and S
yield natural models of claim size distributions for which the Cram�er�Lund�

berg condition ��	��� is violated	

In Seal ������ for instance� the numerical calculation of 
�u� is discussed

for various classes of claim size dfs	 After stressing the fact that the mixed
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Poisson process in general� and the homogeeous Poisson process and the nega�

tive binomial process in particular� are the only claim arrival processes which

�t real insurance data� Seal continues by saying

Types of distributions of independent claim sizes are just as limited� for apart

from the Pareto and lognormal distributions� we are not aware that any has

been �tted successfully to actual claim sizes in actuarial history�

Although perhaps formulated in a rather extreme form� more than ten years

later the main point of this sentence still stands� see for instance Schnieper

������ Benabbou and Partrat ���� and Ramlau�Hansen ����� ���� for a more

recent account on this theme	 Some examples of insurance data will be dis�

cussed in Chapter �	

In this section we discuss S�membership with respect to standard classes
of dfs as given above	 We stick to the Cram�er�Lundberg model for purposes

of illustration on how the new methodology works	 Recall in the Cram�er�

Lundberg set�up the main result of Section �	�� i	e	 Theorem �	�	��

If FI � S then 
�u� � ��� F I�u�� u	� �

The exponential Cram�er�Lundberg estimates ��	��� ��	��� under the small

claim condition ��	��� yield surprisingly good estimates for 
�u�� even for

moderate to small u	 The large claim estimate 
�u� � ���F I�u� is however

mainly of theoretical value and can indeed be further improved� see the Notes

and Comments	 A �rst problem with respect to applicability concerns the

condition FI � S	 A natural question at this point is�
��� Does F � S imply that FI � S


And� though less important for our purposes�

��� Does FI � S imply that F � S

It will turn out that� in general� the answer to both questions �unfortunately�

is no	 This leads us immediately to the following task�

Give su�cient conditions for F such that FI � S�
Concerning the latter problem� there are numerous answers to be found in

the literature	 We shall discuss some of them	 The various classes of dfs

introduced in the previous section play an important role here	

An immediate consequence of Proposition �		 is the following result	

Corollary ����� �The Cram�er�Lundberg theorem for large claims� III�

Consider the Cram�er�Lundberg model with net pro�t condition � � � and

F � D� then

�u� � ���F I �u� � u	� � �
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The condition F � D is readily veri�ed for all relevant examples� this is in

contrast to the non�trivial task of checking FI � S 	 It is shown in Seneta ������
Appendix A�� that any F � D has the property that there exists a k � N so

that
R�
�

xk dF �x�  �� i	e	 there always exist divergent �higher� moments	 It
immediately follows from Karamata�s theorem �Theorem A�	�� that F � R
implies FI � R and hence FI � S	 For detailed estimates in the heavy�tailed
Cram�er�Lundberg model see Kl�uppelberg �����	 In the latter paper� also�

various su�cient conditions for FI � S are given in terms of the hazard rate

q�x�  f�x��F �x� for F with density f or the hazard function Q  � lnF �
see also Cline �����	

Lemma ����� �Su�cient conditions for FI � S�
If one of the following conditions holds� then FI � S�
�a� lim supx�� x q�x� ���

�b� limx�� q�x�  �� limx�� x q�x�  �� and one of the following condi�

tions holds�

��� lim supx�� x q�x��Q�x� � ��

��� q � R�� �� � � � ��

�� Q � R�� � � � � �� and q is eventually decreasing�

��� q is eventually decreasing to �� q � R� and Q�x�� x q�x� � R�� �

In Kl�uppelberg ������ Theorem �	�� a Pitman�type result �see Proposition

A�	��� is presented� characterising FI � S for certain absolutely continuous F
with hazard rate q decreasing to zero	

Example ����� �Examples of FI � S�
Using Lemma �		��b����� it is not di�cult to see that FI � S in the following
cases�

� Weibull with parameter � � ��� ��
� Benktander�type�I and �II

� lognormal	 �

Corollary ����
 �The Cram�er�Lundberg theorem for large claims� IV�

Consider the Cram�er�Lundberg model with net pro�t condition � � � and F

satisfying one of the conditions �a�� �b� of Lemma ������ then


�u� � ��� F I�u� � u	� � �

We still have left the questions ��� and ��� above unanswered	 Concerning

question ��� �does FI � S imply that F � S "�� on using Proposition �		�b�
we �nd that a straightforward modi�cation of the Peter and Paul distribution

yields an example of a df F with �nite mean such that FI � S but F �� S	
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For details see Kl�uppelberg �����	 The latter paper also contains a discussion

of question ��� �does F � S with �nite mean imply that FI � S "�	
At this point� the reader may have become rather bewildered concerning

the properties of S	 On the one hand� we have shown that it is the right class of
dfs to consider in risk theory under large claim conditions� see Theorem �	�	��

�c� implies �a�	 On the other hand� one has to be extremely careful in making

general statements concerning S and its relationship to other classes of dfs	
For our immediate purposes it su�ces to notice that for distributions F

with �nite mean belonging to the families� Pareto� Weibull �� � ��� lognor�

mal� Benktander�type�I and �II� Burr� loggamma�

F � S and FI � S �

For further discussions on the applied nature of classes of heavy�tailed

distributions� we also refer to Benabbou and Partrat ����� Conti ������ Hogg

and Klugman ����� and Schnieper �����	 In the latter paper the reader will

�nd some critical remarks on the existing gap between theoretical and ap�

plied usefulness of families of claim size distributions	 It also contains some

examples of relevant software for the actuary	

Notes and Comments

The results presented so far only give a �rst� though representative� account

of ruin estimation in the heavy�tailed case	 The reader should view them

also as examples of how the class S� and its various related classes� o�er an
appropriate tool towards a �heavy�tailed calculus
	

Nearly all of the results can be extended	 For instance Veraverbeke �����

considers the following model� �rst introduced by Gerber�

UB�t�  u& ct� S�t� &Bt � t � � �

where u� c and S�t� are de�ned within the Cram�er�Lundberg model� and B is

a Wiener process �see Section �	�� independent of the process S	 The process

B can be viewed as describing small perturbations �i	e	 Bt is distributed as

a normal rv with mean � and variance ��
Bt � around the risk process U in ��	�	

In ������ Theorem �� it is shown that an estimate similar to the one obtained

in the Cram�er�Lundberg model for subexponential claim size distributions

holds	 These results can also be generalised to the renewal model set�up� as

noted by Furrer and Schmidli ����	 Subexponentiality is also useful beyond

these models as for instance shown by Asmussen� Fl(e Henriksen and Kl�up�

pelberg ����	 In the latter paper� a risk process� evolving in an environment
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given by a Markov process with a �nite state space� is studied	 An appealing

example of this type of process with exponential claim sizes is given in Rein�

hard ����	

Asymptotic estimates for the ruin probability change when the company

receives interest on its reserves	 For F � R and a positive force of interest �

the corresponding ruin probability satis�es


��u� � k�F �u� � u	� �

i	e	 it is tail�equivalent to the claim size df itself	 This has been proved in

Kl�uppelberg and Stadtm�uller �����	 The case of subexponential claims has

been treated in Asmussen ����	

Concerning the de�nition of S� there is no a priori reason for assuming

that the limit of F ���x��F �x� equals �� an interesting class of distributions

results from allowing this limit to be any value greater than �	

Denition ����� A df F on ����� belongs to the class S���� � � �� if
�a� limx�� F ���x��F �x�  �d ���

�b� limx�� F �x� y��F �x�  e�y� y � R� �

One can show that d  
R�
� e�y dF �y�  bf����� so that S  S���	 These

classes of dfs turn out to cover exactly the situations illustrated in Fig�

ures �	�	��� and ���� in between the light�tailed Cram�er�Lundberg case

and the heavy�tailed �subexponential� case	 A nice illustration of this� us�

ing the class of generalised inverse Gaussian distributions� is to be found in

Embrechts ������ see also Kl�uppelberg ����� and references therein	

For a critical assessment of the approximation 
�u� � kF I�u� for some

constant k and u	� see De Vylder and Goovaerts �����	 Further improve�

ments can be obtained only if conditions beyond FI � S are imposed	 One
such set of conditions is higher�order subexponentiality� or indeed higher�

order regular variation	 In general G � S means that G���x� � �G�x� for
x	�� higher�order versions of S involve conditions on the asymptotic

behaviour of G���x�� �G�x� for x	�	 For details on these techniques
the reader is referred to Omey and Willekens ���� ���� and also Bing�

ham et al	 ����� p	 ���	 With respect to the heavy�tailed ruin estimate


�u� � ���F I�u�� second�order assumptions on F lead to asymptotic es�

timates for 
�u� � ���F I�u� for u 	 �	 A numerical comparison of such
results� together with a detailed simulation study of rare events in insurance�

is to be found in Asmussen and Binswanger ���� and Binswanger ���	
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�

Fluctuations of Sums

In this chapter we consider some basic theory for sums of independent rvs	

This includes classical results such as the strong law of large numbers �SLLN�

in Section �	� and the central limit theorem �CLT� in Section �	�� but also re�

�nements on these theorems	 In Section �	� re�nements on the CLT are given

�asymptotic expansions� large deviations� rates of convergence�	 Brownian

and 	�stable motion are introduced in Section �	 as weak limits of partial

sum processes	 They are fundamental stochastic processes which are used

throughout this book	 This is also the case for the homogeneous Poisson

process which occurs as a special renewal counting process in Section �	�	�	

In Sections �	�	� and �	�	� we study the �uctuations of renewal counting

processes and of random sums indexed by a renewal counting process	 As we

saw in Chapter �� random sums are of particular interest in insurance� for

example� the compound Poisson process is one of the fundamental notions in

the �eld	

The present chapter is the basis for many other results provided in this

book	 Poisson random measures occur as generalisations of the homogeneous

Poisson process in Chapter �	 Since most of the theory given below is classical

we only sketch the main ideas of the proofs and refer to some of the relevant

literature for details	 We also consider extensions and generalisations of the

theory for sums in Sections �	� and �	�	 There we look at the �ne structure of

a random walk� in particular at the longest success�run and large deviation
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results	 The latter will �nd some natural applications in reinsurance �Sec�

tion �	��	 An introduction to general stable processes is given in Section �	�	

��� The Laws of Large Numbers

Throughout this chapterX�X�� X�� � � � is a sequence of iid non�degenerate rvs

de�ned on a probability space ���F � P � with common df F 	 If we want to get

a rough idea about the �uctuations of the Xn we might ask for convergence

of the sequence �Xn�	 Unfortunately� for almost all � � � this sequence does

not converge	 However� we can obtain some information about how the Xn

�behave in the mean
	 This leads us to the consideration of the cumulative

sums

S�  � � Sn  X� & � � �&Xn� n � � �
and of the arithmetic �or sample� means

Xn  n��Sn � n � � �
Mean values accompany our daily life	 For instance� in the newspapers we

are often confronted with average values in articles on statistical� actuarial or

�nancial topics	 Sometimes they occur in hidden form such as the NIKKEI�

DAX� Dow Jones or other indices	

Intuitively� it is clear that an arithmetic mean should possess some sort

of �stability
 in n	 So we expect that for large n the individual values Xi

will have less in�uence on the order of Xn� i	e	 the sequence �Xn� stabilises

around a �xed value �converges� as n	�	 This well�known e�ect is called
a law of large numbers	

Suppose for the moment that ��  var�X� is �nite	 Write   EX 	 From

Chebyshev�s inequality we conclude that for � � ��

P
�		Xn � 

		 � �
� � ���var

�
Xn

�
 �n������� 	 � � n	� �

Hence

Xn
P	  � n	� �

This relation is called the weak law of large numbers �WLLN � or simply the

law of large numbers �LLN � for the sequence �Xn�	 If we interpret the index

of Xn as time n then Xn is an average over time	 On the other hand� the

expectation

EX  

Z


X��� dP ���

is a weighted average over the probability space �	 Hence the LLN tells us

that� over long periods of time� the time average Xn converges to the space
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average EX 	 This is the physical interpretation of the LLN which gained it

the special name ergodic theorem	

We saw that �Xn� obeys the WLLN if the variance �� is �nite	 This

condition can be weakened substantially�

Theorem ����� �Criterion for the WLLN�

The WLLN

Xn
P	 �

holds if and only if the following two conditions are satis�ed	

nP �jX j � n� 	 � �

EXIfjXj�ng 	 � � �

Here and throughout we use the notation

IA���  

�
� if � � A �

� otherwise �

for the indicator function of the event �of the set� A	

The assumptions of Theorem �	�	� are easily checked for the centred se�

quence �Xn��	 Thus we conclude that the WLLN Xn
P	  holds provided

the expectation of X is �nite	 But we also see that the existence of a �rst

moment is not necessary for the WLLN in the form Xn
P	 ��

Example ����� Let X be symmetric with tail

P �jX j � x� � c

x lnx
� x	� �

for some constant c � �	 The conditions of Theorem �	�	� are easily checked	

Hence Xn
P	 �	 However�

EjX j  
Z �

�

P �jX j � x� dx  � � �

Next we ask what conditions are needed to ensure that Xn does not only

converge in probability but also with probability � or almost surely �a�s���

Such a result is then called a strong law of large numbers �SLLN � for the

sequence �Xn�	 The existence of the �rst moment is a necessary condition for

the SLLN� given that Xn
a�s�	 a for some �nite constant a we have that

n��Xn  n�� �Sn � Sn���
a�s�	 a� a  � �

Hence� for � � ��

P
�
n�� jXnj � � i	o	

�
 � �
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This and the Borel�Cantelli lemma �see Section �	�� imply that for � � ��

�X
n��

P
�		n��Xn

		 � �
�
 

�X
n��

P �jX j � �n� �� �

which means that EjX j ��	 This condition is also su�cient for the SLLN�
Theorem ����� �Kolmogorov�s SLLN�

The SLLN

Xn
a�s�	 a

holds for the sequence �Xn� and some real constant a if and only if EjX j ���

Moreover� if �Xn� obeys the SLLN then a  � �

Formally� Kolmogorov�s SLLN remains valid for positive �negative� rvs with

in�nite mean� i	e	 in that case we have

Xn
a�s�	 EX  � � ��� �

Example ����� �Glivenko�Cantelli theorem�

Denote by

Fn�x�  
�

n

nX
i��

IfXi�xg � x � R �

the empirical df of the iid sample X�� � � � � Xn	 An application of the SLLN

yields that

Fn�x�
a�s�	 EIfX�xg  F �x�

for every x � R	 The latter can be strengthened �and is indeed equivalent� to

�n  sup
x�R

jFn�x�� F �x�j a�s�	 � � ��	��

The latter is known as the Glivenko�Cantelli theorem	 It is one of the funda�

mental results in non�parametric statistics	 In what follows we will frequently

make use of it	

We give a proof of ��	�� for a continuous df F 	 For general F see Theorem ��	�

in Billingsley ����	 Let

��  x� � x� � � � � � xk � xk��  �
be points such that F �xi��� � F �xi� � � for a given � � �� i  �� � � � � k	

F ���� are interpreted in the natural way as limits	 By the monotonicity of
F and Fn we obtain

�n  max
i�������k

sup
x��xi�xi��	

jFn�x� � F �x�j

� max
i�������k

�Fn�xi���� F �xi�� F �xi���� Fn�xi�� �
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An application of the SLLN to the rhs yields

lim sup
n��

�n � max
i�������k

�F �xi���� F �xi�� � � a�s�

This concludes the proof of ��	��	 The latter remains valid for stationary

ergodic sequences �Xn�	 This is a consequence of Birkho��s ergodic theorem

�for instance Billingsley ����� which implies that Fn�x�
a�s�	 F �x� for every

�xed x	 �

The SLLN yields an a	s	 �rst�order approximation of the rv Xn by the de�

terministic quantity �
Xn  & o��� a�s�

The natural question that arises is�

What is the quality of this approximation


Re�nements of the SLLN are the aim of some of our future considerations	

We pose a further question�

What can we conclude about the a�s� �uctuations of the sums Sn if we

choose another normalising sequence


A natural choice of normalising constants is given by the powers of n	

Theorem ����� �Marcinkiewicz�Zygmund SLLNs�

Suppose that p � ��� ��� The SLLN

n���p �Sn � an�
a�s�	 � ��	��

holds for some real constant a if and only if EjX jp ��� If �Xn� obeys the

SLLN ��	�� then we can choose

a  

�
� if p � � �

 if p � ��� �� �
Moreover� if EjX jp  � for some p � ��� �� then for every real a�

lim sup
n��

n���p jSn � a nj  � a�s� �

This theorem gives a complete characterisation of the SLLN with normalising

power functions of n	 Under the conditions of Theorem �	�	� we obtain the

following re�ned a	s	 �rst�order approximation of Xn�

Xn  & o�n��p��� a�s� � ��	��

which is valid if EjX jp �� for some p � ��� ��	
Theorem �	�	� allows us to derive an elementary relationship between the

large �uctuations of the sums Sn� the summands Xn and the maxima

M�  jX�j � Mn  max �jX�j� � � � � jXnj� � n � � �
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� Visualisation of the convergence in the SLLN� 
ve sample paths of
the process �Sn�n� for iid standard exponential Xn�
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�
� Failure of the SLLN� 
ve sample paths of the process �Sn�n� for iid
standard symmetric Cauchy rvs Xn with EjXj ��� hence the wild oscillations of
the sample paths�
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�
� Visualisation of the LIL� 
ve sample paths of the process
���n ln lnn������Sn � n�� for iid standard exponential rvs Xn�
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�� Failure of the LIL� 
ve sample paths of the process
���n ln lnn�����Sn� for iid standard symmetric Cauchy rvs Xn� Notice the di�er�
ence in the vertical scale�
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Corollary ������ Suppose that p � ��� ��� Then

EjX jp �� � �� ��	�

according as

lim sup
n��

n���p jXnj  � � �� a�s� ��	��

according as

lim sup
n��

n���pMn  � � �� a�s� ��	��

according as

lim sup
n��

n���p jSn � a nj  � � �� a�s� ��	��

Here a has to be chosen as in Theorem ������

Proof� It is not di�cult to see that ��	� holds if and only if

�X
n��

P
�
jX j � �n��p

�
�� � �� �� � � �

A Borel�Cantelli argument yields that this is equivalent to

P
�
jXnj � �n��p i	o	

�
 � � �� �� � � �

Combining this and Theorem �	�	� we see that ��	�� ��	�� and ��	�� are

equivalent	

The equivalence of ��	�� and ��	�� is a consequence of the elementary relation

n���p jXnj � n���pMn

� max

�
jX�j
n��p

� � � � �
jXn� j
n��p

�
jXn���j
�n� & ��

��p
�
jXn���j
�n� & ��

��p
� � � � �

jXnj
n��p

�
for every �xed n� � n	 �

This means that the asymptotic order of magnitude of the sums Sn� of the

summands Xn and of the maxima Mn is roughly the same	

Another question arises from Theorem �	�	��

Can we choose p  � or even p � � in ��	�� 
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The answer is unfortunately no	 More precisely� for all non�degenerate rvs X

and deterministic sequences �an��

lim sup
n��

n���� jSn � anj  � a�s�

This is somewhat surprising because we might have expected that the more

moments of X exist the smaller the �uctuations of the sums Sn	 This is

not the case by virtue of the central limit theorem �CLT� which we will

consider in more detail in Sections �	� and �	�	 Indeed� the CLT requires

the normalisation n��� which makes a result like ��	�� for p  � impossible	

However� a last a	s	 re�nement can still be done if the second moment of X

exists�

Theorem ������ �Hartman�Wintner law of the iterated logarithm�

If ��  var�X� �� then

lim sup
n��

��n ln lnn�
����

�Sn �  n�  � lim inf
n��

��n ln lnn�
����

�Sn �  n�

 � a�s�

If ��  � then for every real sequence �an�

lim sup
n��

��n ln lnn�
���� jSn � anj  � a�s� �

Hence the law of the iterated logarithm �LIL� as stated by Theorem �	�	��

gives us the a	s	 �rst�order approximation

Xn  &O
�
�ln lnn�n�����

�
a�s� �

which is the best possible a	s	 approximation of Xn by its expectation 	 We

will see in the next section that we have to change the mode of convergence

if we want to derive more information about the �uctuations of the sums Sn	

There we will commence with their distributional behaviour	

Notes and Comments

The WLLN for iid sequences �Theorem �	�	�� can be found in any stan�

dard textbook on probability theory� see for instance Breiman ����� Chow

and Teicher ������ Feller ������ Lo)eve ����	 The WLLN with other normali�

sations and for the non�iid case has been treated for instance in Feller ������

Petrov ���� ���� or in the martingale case in Hall and Heyde �����	

More insight into the weak limit behaviour of sums is given by so�called

rates of convergence in the LLN� i	e	 by statements about the order of the

probabilities
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P �jSn � anj � bn� � n	� �

for appropriate normalising and centring sequences �bn�� �an�	 We refer to

Petrov ���� ��� and the literature cited therein	

The classical Kolmogorov SLLN �Theorem �	�	�� is part of every standard

textbook on probability theory� and the Marcinkiewicz�Zygmund SLLNs can

be found for instance in Stout �����	 Necessary and su�cient conditions under

non�standard normalisations and for the non�iid case are given for instance

in Petrov ���� ��� or in Stout �����	 In R�ev�esz ����� and Stout ����� vari�

ous SLLNs are proved for sequences of dependent rvs	 Some remarks on the

convergence rate in the SLLN� i	e	 on the order of the probabilities

P


sup
k�n

jSk � akj � bn

�
� n	� �

can be found in Petrov ���� ���	

The ergodic theorem as mentioned above is a classical result which holds

for stationary ergodic �Xn�� see for instance Billingsley ���� or Stout �����	

The limit in the SLLN for a sequence �Xn� of independent rvs is necessar�

ily a constant	 This is due to the so�called ��� law� for di�erent versions see

for instance Stout �����	 The limit in the SLLN for a sequence of dependent

rvs can be a genuine rv	

The Marcinkiewicz�Zygmund SLLNs for an iid sequence exhibit another

kind of ��� behaviour	 either the SLLN holds with a constant limit for the

normalisation n��p or� with the same normalisation� the sums �uctuate wildly

with upper or lower limit equal to ��	 This behaviour is typical for a large
class of normalisations �cf	 Feller�s SLLN � see Feller ������ Petrov ���� ����

Stout ������	 Similar behaviour can be observed for a large class of rvs with

in�nite variance which includes the class of 	�stable rvs� 	 � �� and their

domains of attraction� see Section �	�	 To be precise� suppose that for some

constant c � ��

x��EX�IfjXj�xg � c P �jX j � x�� x � � � ��	��

Let �bn� be any real sequence such that bn 
 � and if EjX j � � suppose

that   �	 Then

lim sup
n��

b��
n jSnj  � � �� a�s�

according as
�X
n��

P �jX j � bn� �� � �� �
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The latter relation is a moment condition	 Moreover� the relations be�

tween Sn� Xn and Mn �with normalisation bn� corresponding to Corol�

lary �	�	�� hold	 This SLLN is basically due to Heyde ������ see Stout �����	

The SLLN can also be extended to sums Sn of independent but not iden�

tically distributed rvs	 There exist results under the condition of �niteness of

the second moments of the Xn	 The results are typically of the form

b��
n �Sn �ESn�

a�s�	 � �

where bn is the variance of Sn� see for instance Petrov ���� ���	 However� it

seems di�cult to use such a model for statistical inference as long as the class

of distributions of the Xn is not speci�ed	 A more sensitive study is possible

for sequences of iid rvs with given deterministic weights	 Weighted sums

Tn  
X
k

wn�k�Xk

are standard models in the statistical literature	 For example� in time se�

ries analysis the linear processes� including the important class of ARMA

processes� are weighted sums of iid rvs� see Chapter �	 The rvs Tn can be

considered as a mean which� in contrast to Xn� gives di�erent weight to the

observations Xk	 Examples are the discounted sums
P

k�� z
kXk whose as�

ymptotic behaviour �as z 
 �� is well studied �so�called Abel summation�	
There is quite a mass of literature on the a	s	 behaviour of the weighted

sums Tn	 Results of SLLN�type can be found for instance in Mikosch and

Norvai*sa ���� or in Stout �����	 Overviews of summability methods have been

given in Bingham and Maejima ����� Maejima ����� Mikosch and Norvai*sa

���� ���	

TheHartman�Wintner LIL �Theorem �	�	��� is included in standard text�

books� see for instance Feller �����	 Di�erent proofs and rami�cations for

non�identically distributed rvs and dependent observations can be found in

Cs�org+o and R�ev�esz ����� Hall and Heyde ������ Petrov ���� ���� Stout �����	

There exists a well developed theory about �uctuations of sums of iid rvs

with or without normalisation	 The latter is also called a random walk	 For

example� necessary and su�cient conditions have been derived for relations

of type

lim sup
n��

b��
n jSn � anj  c� � ����� a�s� �

lim sup
n��

b��
n �Sn � an�  c� � ������ a�s�

�generalised LIL� one�sided LIL� for given �an�� �bn� and constants c�� c�� and

also results about the existence of such normalising or centring constants� see

for instance Kesten ������ Klass ����� ����� Martikainen ��� ��� Pruitt
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����� ����	 These results give some insight into the complicated nature of the

�uctuations of sums	 However� they are very di�cult to apply� the sequence

�bn� is usually constructed in such a way that one has to know the whole

distribution tail of X 	 Thus these results are very sensitive to changes in the

distribution	

A further topic of research has been concentrated around cluster phe�

nomena of the sums Sn �normalised or non�normalised� and the general

properties of random walks	 We refer to Cohen ������ Erickson ����� �����

Kesten ������ R�ev�esz ����� Spitzer ����� Stout �����	 The set of a�s� limit

points of the sequence of normalised sums can be very complicated	 However�

in many situations the set of a	s	 limit points coincides with a closed interval

��nite or in�nite�	 The following basic idea from elementary calculus is help�

ful� let �an� be a sequence of real numbers such that an � an�� 	 �	 Then

every point in the interval �lim infn�� an� lim supn�� an� is a limit point

of �an�	 Applying this to the Hartman�Wintner LIL with EX� �� and

An  ��n ln lnn�
�����Sn�n� we see that An �An��

a�s�	 � and hence every

point in ���� �� is a limit point of �An� for almost every sample path	 This

remarkable property means that the points A�� A�� � � � �ll the interval ���� ��
densely for almost every sample path	 This is somehow counter�intuitive since

at the same time An
P	 �	

��� The Central Limit Problem

In the preceding section we saw that the sums Sn of the iid sequence �Xn�

diverge a	s	 when normalised with n���	 However� we can still get information

about the growth of n����Sn if we change to convergence in distribution �weak

convergence�	

We will approach the problem from a more general point of view	 We ask�

What are the possible �non�degenerate� limit laws for the sums Sn
when properly normalised and centred


This is a classical question in probability theory	 Many famous probabilists

of this century have contributed to its complete solution� Khinchin� L�evy�

Kolmogorov� Gnedenko� Feller�� � �	 It turns out that this question is closely

related to another one�

Which distributions satisfy the identity in law

c�X� & c�X�
d
 b�c�� c��X & a�c�� c�� ��	��

for all non�negative numbers c�� c� and appropriate real numbers

b�c�� c�� � � and a�c�� c��
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In other words� which classes of distributions are closed �up to changes of

location and scale� under convolution and multiplication with real numbers"

The possible limit laws for sums of iid rvs are just the distributions which

satisfy ��	�� for all non�negative c�� c�	 Many classes of distributions are

closed with respect to convolution but the requirement ��	�� is more strin�

gent	 For example� the convolution of two Poisson distributions is a Poisson

distribution	 However� the Poisson distributions do not satisfy ��	��	

Denition ����� �Stable distribution and rv�

A rv �a distribution� a df � is called stable if it satis�es ��	�� for iid X�

X�� X�� for all non�negative numbers c�� c� and appropriate real numbers

b�c�� c�� � � and a�c�� c��� �

Now consider the sum Sn of iid stable rvs	 By ��	�� we have for some real

constants an and bn � � and X  X��

Sn  X� & � � �&Xn
d
 bnX & an � n � � �

which we can rewrite as

b��
n �Sn � an�

d
 X �

We conclude that� if a distribution is stable� then it is a limit distribution for

sums of iid rvs	 Are there any other possible limit distributions" The answer

is NO�

Theorem ����� �Limit property of a stable law�

The class of the stable �non�degenerate� distributions coincides with the class

of all possible �non�degenerate� limit laws for �properly normalised and cen�

tred � sums of iid rvs� �

Because of the importance of the class of stable distributions it is necessary

to describe them analytically	 The most common way is to determine their

characteristic functions �chfs��

Theorem ����� �Spectral representation of a stable law�

A stable distribution has chf

�X�t�  E expfiXtg  exp fi�t� cjtj���� i� sign �t� z�t� 	��g � t � R �

��	���

where � is a real constant� c � �� 	 � ��� ��� � � ���� ��� and

z�t� 	�  

�����
tan

��	

�

�
if 	 � � �

� �
�
ln jtj if 	  � �

�
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Remarks� �� We note that we can formally include the case c  � which

corresponds to a degenerate distribution	 Every sequence �Sn� can be nor�

malised and centred in such a way that it converges to a constant �for instance

zero� in probability	 Thus this trivial limit belongs to the class of the possible

limit rvs	 However� it is not of interest in the context of weak convergence

and therefore excluded from our considerations	

�� The quantity � is just a location parameter	 For the rest of this section we

assume �  �	

�� The most important parameter in this representation is 		 It determines

the basic properties of this class of distributions �moments� tails� asymptotic

behaviour of sums� normalisation etc	�	 �

Denition ����� The number 	 in the chf ��	��� is called the characteristic

exponent� the corresponding distribution 	�stable� �

Remarks� � For 	  � we obtain the normal or Gaussian distributions	 In

this case� we derive from ��	��� the well known chf

�X�t�  exp
��ct��

of a Gaussian rv with mean zero and variance �c	 Thus one of the most

important distributions in probability theory and mathematical statistics is

a stable law	 We also see that the normal law is determined just by two

parameters �mean and variance� whereas the other 	�stable distributions

depend on four parameters	 This is due to the fact that a normal distribution

is always symmetric �around its expectation� whereas a stable law for 	 � �

can be asymmetric and even be concentrated on a half�axis �for 	 � ��	

�� Another well�known class of stable distributions corresponds to 	  ��

the Cauchy laws with chf

�X�t�  exp

�
�cjtj


� & i�

�

�
sign �t� ln jtj

��
�

�� For �xed 	� the parameters c and � determine the nature of the distrib�

ution	 The parameter c is a scaling constant which corresponds to c  ����

in the Gaussian case and has a similar function as the variance in the non�

Gaussian case �where the variance is in�nite�	 The parameter � describes the

skewness of the distribution	 We see that the chf �X �t� is real�valued if and

only if �  �	 The chf

�X�t�  exp f�cjtj�g ��	���

corresponds to a symmetric rv X 	 We will sometimes use the notation s	s

for symmetric 	�stable	 If �  � and 	 � � the rv X is positive� and for
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�  �� and 	 � � it is negative	 In the cases j�j � �� 	 � �� or 	 � ��� ��� the
rv X has the whole real axis as support	 However� if �  �� 	 � ��� �� then
P �X � �x�  o�P �X � x�� as x	�	 From the chf ��	��� we also deduce

that �X is 	�stable with parameters c and ��	 It can be shown that every
	�stable rv X with j�j � � is equal in law to X � �X �� & c� for independent

	�stable rvs X �� X �� both with parameter �  � and a certain constant c�	

�� We might ask why we used the inconvenient �from a practical point of view�

representation of 	�stable rvs via their chf	 The answer is simple� it is the

best analytic way of characterising all members of this class	 Although the 	�

stable laws are absolutely continuous� their densities can be expressed only by

complicated special functions� see Ho�mann�J(rgensen ����� and Zolotarev

����	 Only in a few cases which include the Gaussian �	  ��� the symmetric

Cauchy �	  �� �  �� and the stable inverse Gaussian �	  ���� �  ��� are

these densities expressible explicitly via elementary functions	 But there exist

asymptotic expansions of the 	�stable densities in a neighbourhood of the

origin or of in�nity� see Ibragimov and Linnik ����� and Zolotarev ����	

Therefore the 	�stable distributions �with a few exceptions� are not easy to

handle	 In particular� they are di�cult to simulate� see for instance Janicki

and Weron ����	 �

Next we ask�

Given an 	�stable distribution G�� what conditions imply that the

normalised and centred sums Sn converge weakly to G�


This question induces some further problems�

How must we choose constants an � R and bn � � such that

b��
n �Sn � an�

d	 G� " ��	���

Can it happen that di�erent normalising or centring constants imply

convergence to di�erent limit laws


The last question can be answered immediately� the convergence to types

theorem �Theorem A�	�� ensures that the limit law is uniquely determined

up to positive a�ne transformations	

Before we answer the other questions we introduce some further notions�

Denition ����� �Domain of attraction�

We say that the rv X �the df F of X� the distribution of X� belongs to the

domain of attraction of the 	�stable distribution G� if there exist constants

an � R� bn � � such that ��	��� holds� We write X � DA�G�� �F � DA�G���

and say that �Xn� satis�es the central limit theorem �CLT� with limit G�� �
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If we are interested only in the fact that X �or F � is attracted by some

	�stable law whose concrete form is not of interest we will simply write

X � DA�	� �or F � DA�	��	
The following result characterises the domain of attraction of a stable

law completely	 Here and in the remainder of this section we will need some

facts about slowly and regularly varying functions which are given in Ap�

pendix A�	�	 We recall that a �measurable� function L is slowly varying if

limx�� L�tx��L�x�  � for all t � �	

Theorem ����
 �Characterisation of domain of attraction�

�a� The df F belongs to the domain of attraction of a normal law if and only

if Z
jyj�x

y� dF �y�

is slowly varying�

�b� The df F belongs to the domain of attraction of an 	�stable law for some

	 � � if and only if

F ��x�  
c� & o���

x�
L�x� � �� F �x�  

c� & o���

x�
L�x� � x	� �

where L is slowly varying and c�� c� are non�negative constants such that

c� & c� � �� �

First we study the case 	  � more in detail	 If EX� �� thenZ
jyj�x

y� dF �y�	 EX� � x	� �

hence X � DA���	 Moreover� by Proposition A�	��f� we conclude that slow
variation of

R
jyj�x

y� dF �y� is equivalent to the tail condition

G�x�  P �jX j � x�  o

�
x��

Z
jyj�x

y� dF �y�

�
� x	� � ��	���

Thus we derived

Corollary ����� �Domain of attraction of a normal distribution�

A rv X is in the domain of attraction of a normal law if and only if one of

the following conditions holds	

�a� EX� ���

�b� EX�  � and ��	���� �
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The situation is completely di�erent for 	 � �� X � DA�	� implies that
G�x�  x��L�x� � x � � � ��	��

for a slowly varying function L and

x�G�x�
�Z

jyj�x

y� dF �y�	 �� 	

	
� x	� � ��	���

The latter follows from Proposition A�	��e�	 Hence the second moment of X

is in�nite	 Relation ��	�� and Corollary �	�	� show that the domain of at�

traction of the normal distribution is much more general than the domain

of attraction of an 	�stable law with exponent 	 � �	 We see that DA���

contains at least all distributions that have a second �nite moment	

From Corollary �	�	� and from ��	�� we conclude the following about the

moments of distributions in DA�	��

Corollary ������ �Moments of distributions in DA�	��

If X � DA�	� then
EjX j� � � for � � 	 �

EjX j�  � for � � 	 and 	 � � �

In particular�
var�X�  � for 	 � � �

EjX j � � for 	 � � �

EjX j  � for 	 � � �

�

Note that EjX j�  R�
� P �jX j� � x�dx �� is possible for certain X �

DA�	�� but EjX j�  � for an 	�stable X for 	 � �	 Recalling the results

of the preceding section we can apply the Marcinkiewicz�Zygmund SLLNs

�Theorem �	�	�� as well as Heyde�s SLLN ���	�� is satis�ed in view of ��	����

to 	�stable rvs with 	 � �� and these theorems show that the sample paths

of �Sn� �uctuate wildly because of the non�existence of the second moment	

Next we want to �nd appropriate normalising and centring constants for

the CLT ��	���	 Suppose for the moment that X is s	s with chf �X �t�  

expf�cjtj�g� cf	 ��	���	 We see that

E exp
n
itn����Sn

o
 

�
exp

n
�cjn����tj�

o�n
��	���

 exp f�cjtj�g

 E expfitXg �
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�
�� One sample path of the process �Xn� �top� and of the corresponding
path �Sn� �bottom� for X with a standard normal distribution�
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�� One sample path of the process �Xn� �top� and of the corresponding
path �Sn� �bottom� for X with a standard symmetric Cauchy distribution�
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Thus

n����Sn
d
 X

which gives us a rough impression of the order of the normalising constants	

For symmetric X � DA�	� one can show that the relation

E expfitXg  exp f�jtj�L����t�g

holds in a neighbourhood of the origin� with a slowly varying function L�

which is closely related to the slowly varying functions which occur in The�

orem �	�	�� see Theorem �	�	� in Ibragimov and Linnik �����	 Now we can

apply the same idea as in ��	��� although this time we will have to compen�

sate for the slowly varying function L�	 Thus it is not surprising that the

normalising constants in the CLT ��	��� are of the form

bn  n���L��n�

for a slowly varying function L�	 To be more precise� introduce the quantities

K�x�  x��

Z
jyj�x

y� dF �y� � x � � �

Q�x�  G�x� &K�x�  P �jX j � x� &K�x� � x � � �

Note that Q�x� is continuous and decreasing on �x���� where x� denotes the
in�mum of the support of jX j	
Proposition ������ �Normalising constants in the CLT�

The normalising constants in the CLT for F � DA�	� can be chosen as the

unique solution of the equation

Q �bn�  n�� � n � � � ��	���

In particular� if ��  var�X� �� and EX  � then

bn � n����� n	� �

If 	 � � we can alternatively choose �bn� such that

bn  inffy � G�y� � n��g � n � � � ��	���

We note that ��	��� implies that

G �bn� � n�� � n	� �

and that� in view of ��	���

bn  n���L
�n� � n � � �
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for an appropriate slowly varying function L
	

Sketch of the proof�We omit the calculations leading to ��	��� and restrict

ourselves to the particular cases	 For a proof we refer to Ibragimov and Linnik

������ Section II	�	

If EX� �� then

G�x�  o
�
x��

�
� K�x�  x�� EX��� & o���� � x	� �

Hence� if EX  ��
n��  Q �bn� � b��

n �� �

If 	 � � then� using ��	���� we see immediately that ��	��� and ��	��� yield

asymptotically equivalent sequences �bn� and �b
�
n�� say� which means that

bn � c b�n for a positive constant c	 �

Proposition ������ �Centring constants in the CLT�

The centring constants an in the CLT ��	��� can be chosen as

an  n

Z
jyj�bn

y dF �y� � ��	���

where bn is given in Proposition ������ In particular� we can take an  ean�
where

ea  
�������

 if 	 � ��� �� �
� if 	 � ��� �� �
� if 	  � and F is symmetric�

��	���

�

For a proof we refer to Ibragimov and Linnik ������ Section II	�	 Now we

formulate a general version of the CLT	

Theorem ������ �General CLT�

Suppose that F � DA�	� for some 	 � ��� ���
�a� If EX� �� then �

�n���
���

�Sn � n�
d	 �

for the standard normal distribution � with mean zero and variance ��

�b� If EX�  � and 	  � or if 	 � � then�
n���L��n�

���

�Sn � an�
d	 G�

for an 	�stable distribution G�� an appropriate slowly varying func�

tion L� and centring constants as in ��	����

In particular�
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�
n���L��n�

���

�Sn � ean� d	 G� �

where ea is de�ned in ��	���� �

We notice that it is possible for the normalising constants in the CLT to be of

the special form bn  c n��� for some constant c	 This happens for instance

if EX� �� or if X is 	�stable	 There is a special name for this situation�

Denition ������ �Domain of normal attraction�

We say that X �or F � belongs to the domain of normal attraction of an 	�

stable distribution G� �X � DNA�G�� or F � DNA�G��� if X � DA�G��

and if in the CLT we can choose the normalisation bn  c n��� for some

positive constant c� �

If we are interested only in the fact that X �or F � belongs to the DNA of some

	�stable distribution we write X � DNA�	� �or F � DNA�	��	 We recall the
characterisation of the domains of attraction via tails� see Theorem �	�	�	

Then ��	��� implies the following�

Corollary ������ �Characterisation of DNA�

�a� The relation F � DNA��� holds if and only if EX� ���

�b� For 	 � �� F � DNA�	� if and only if

F ��x� � c�x
�� and �� F �x� � c�x

�� � x	� �

for non�negative constants c�� c� such that c� & c� � ��

In particular� every 	�stable distribution is in its own DNA� �

So we see that F � DNA�	�� 	 � �� actually means that the corresponding

tail G�x� has power law or Pareto�like behaviour	 Note that a df F with

Pareto�like tail G�x� � cx�� for some 	 � � is in DA���� and if 	 � �� then

F � DNA���	

Notes and Comments

The theory above is classical and can be found in detail in Araujo and Gin�e

����� Bingham� Goldie and Teugels ����� Feller ������ Gnedenko and Kol�

mogorov ������ Ibragimov and Linnik ������ Lo)eve ���� and many other text�

books	 For applications of the CLT and related weak convergence results to

asymptotic inference in statistics we refer to Ferguson ����� or Ser�ing �����	

There exists some more specialised literature on stable distributions and

stable processes	 Mijnheer ���� is one of the �rst monographs on the topic	

Zolotarev ���� covers a wide range of interesting properties of stable distri�

butions� including asymptotic expansions of the stable densities and many
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useful representations and transformation formulae	 Some limit theory for

distributions in the domain of attraction of a stable law is given in Christoph

and Wolf �����	 An encyclopaedic treatment of stable laws� multivariate stable

distributions and stable processes can be found in Samorodnitsky and Taqqu

������ see also Kwapie�n and Woyczy�nski ���� and Janicki and Weron ����	

The latter book also deals with numerical aspects� in particular the simula�

tion of stable rvs and processes	 An introduction to stable random vectors

and processes will be provided in Section �	�	

Recently there have been some e�orts to obtain e�cient methods for the

numerical calculation of stable densities	 This has been a problem for many

years and was one of the reasons that practitioners expressed doubts about

the applicability of stable distributions for modelling purposes	 McCulloch

and Panton ���� and Nolan ���� ��� provided tables and software for cal�

culating stable densities for a large variety of parameters 	 and �	 Their

methods allow one to determine those densities for small and moderate ar�

guments with high accuracy� the determination of the densities in their tails

needs further investigation	 Figures �	�	� and �	�	� were obtained using soft�

ware kindly provided to us by John Nolan	

The central limit problem has also been solved for independent non�iid

rvs� see for instance Feller ������ Gnedenko and Kolmogorov ������ Ibragi�

mov and Linnik ������ Petrov ���� ���	 To be precise� let �Xnk�k�������n�

n  �� �� � � � be a triangular scheme of row�wise independent rvs satisfying

the condition of in�nitesimality�

max
k�������n

P �jXnkj � ��	 � � n	� � � � � �

The class of possible limit laws for the sums
Pn

k�� Xnk consists of the in��

nitely divisible distributions including most distributions of interest in statis�

tics	 For example� the stable distributions and the Poisson distribution belong

to this class	 A rv Y �and its distribution� is in�nitely divisible if and only if

we can decompose it in law�

Y
d
 Yn� & � � �& Ynn

for every n� where �Ynk�k�������n are iid rvs with possibly di�erent common

distribution for di�erent n	 There exist representations of the chf of an in��

nitely divisible law	 Theorem �	�	� is a particular case for stable laws	

As in the case of a	s	 convergence� see Section �	�� weighted sums are

particularly important for applications in statistics	 The general limit theory

for non�iid rvs can sometimes be applied to weighted sums	 However� there

exist quite a few results for special summability methods� for references see

the Notes and Comments of Section �	�	
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��� Re	nements of the CLT

In this section we consider some re�nements of the results of the previous

section	 We will basically restrict ourselves to the case when EX� �� and

brie�y comment on the other ones	 It is natural to ask�

How can we determine and improve the quality of the approximation

in the CLT


Berry	Ess�een Theorem

Let � denote the df of the standard normal distribution and write

Gn�x�  P


Sn � n

�
p
n

� x

�
� x � R �

From the previous section we know that

�n  sup
x�R

jGn�x� � ��x�j 	 � � ��	���

There we formulated only a weak convergence result� i	e	 convergence of Gn

at every continuity point of �	 However� � is continuous and therefore ��	���

holds� see Appendix A�	�	

One can show that the rate at which �n converges to zero can be arbitrar�

ily slow if we require no more than a �nite second moment of X 	 The typical

rate of convergence is ��
p
n provided the third moment of X exists	 We give

here a non�uniform version of the well�known Berry�Ess�een theorem�

Theorem ����� �Berry�Ess�een theorem�

Suppose that EjX j
 ��� Then

jGn�x� � ��x�j � cp
n�� & jxj�


EjX � j

�


��	���

for all x� where c is a universal constant� In particular�

�n � cp
n

EjX � j

�


� ��	���

�

From ��	��� we have learnt that the quality of the approximation can be

improved substantially for large x	 Moreover� the rate in ��	��� and ��	��� is

in�uenced by the order of magnitude of the ratio EjX � j
��
 and of the

constant c	 This is of crucial importance if n is small	

The rates in ��	��� and ��	��� are optimal in the sense that there exist se�

quences �Xn� such that�n � ���pn�	 For example� this is true for symmetric
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Bernoulli rvs assuming the values &� and �� with equal probability	 On the
other hand� the Berry�Ess�een estimate is rather pessimistic and can be im�

proved when special conditions on X are satis�ed� for instance the existence

of a smooth density� moment generating function etc	

Results of Berry�Ess�een type have been studied for X � DNA�	� and
X � DA�	� with 	 � � as well	 A unifying result such as Theorem �	�	� does

not exist and cannot be expected	 The results require very special knowledge

about the structure of the df in DNA and DA and are di�cult to apply	

Notes and Comments

References for the speed of convergence in the CLT are Petrov ���� ��� and

Rachev �����	

A proof of the classical Berry�Ess�een theorem and its non�uniform version

using Fourier methods can be found in Petrov ���� ���	 Also given there are

results of Berry�Ess�een type in the non�iid situation and for iid rvs under the

existence of the �� & ��th moment for some � � ��� ��	 The rate of convergence
is the slower� the less � is	 In the iid situation the speed is just n����	 The

rate can be improved under special conditions on the rv X � although� as

mentioned before� an increase of the power of the moments is not su�cient

for this	

Attempts have been made to calculate the best constants in the Berry�

Ess�een theorem� see Petrov ���� ���	 One can take �	���� in ��	��� and

������& ��� & e� in ��	���	

Studies of the rate of convergence in DA�	� for 	 � � can be found in

Christoph and Wolf ����� or in Rachev �����	 The former concentrates more

on classical methods whereas the latter proposes other techniques for esti�

mating the rate of convergence	 For example� appropriate metrics �Lp� L�evy

and L�evy�Prokhorov metrics� for weak convergence are introduced and then

applied to sums of iid rvs	 We also refer to results by de Haan and Peng �����

and Hall ����� who study rates of convergence under second�order regular

variation conditions on the tail F 	

The approximation of the df of the cumulative sum by a stable limit

distribution and its re�nements is not always optimal	 There exist powerful

direct estimates for these probabilities assuming conditions on the tails� the

moments or the bounds of the support of these rvs� see for instance Petrov

���� ���� Shorack and Wellner �����	

Asymptotic Expansions

As mentioned above� the Berry�Ess�een estimate ��	��� is optimal for certain

dfs F 	 However� in some cases one can approximate the df Gn by the standard
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normal df � and some additional terms	 The approximating function is then

not a df	 A common approximation method is called Edgeworth or asymptotic

expansion� formally we write

Gn�x�  ��x� &

�X
k��

n�k��Qk�x� � x � R � ��	��

where the Qk are expressions involving the Hermite polynomials� the precise

form of the expression depending on the moments of X 	 The expansion ��	��

is derived from a formal Taylor expansion of the logarithm of the correspond�

ing chf	 To the latter is then applied a Fourier inversion	 This approach does

not depend on the speci�c form of the df Gn and is applicable to much wider

classes of distributions� but here we restrict ourselves to Gn for illustrational

purposes	

In practice one can take only a �nite number of terms Qk into account	

To get an impression we consider the �rst two terms� let

��x�  �������� exp
��x���� � x � R �

denote the density function of the standard normal df �	 Then� for x � R�

Q��x�  ���x�
H��x�

�

E�X � �


�

�

��	���

Q��x�  ���x�

�
H��x�

��


E�X � �


�


��

&
H
�x�

�


E�X � ��

��
� �

��
�

where Hi denotes the Hermite polynomial of degree i�

H��x�  x� � � �

H
�x�  x
 � �x �

H��x�  x� � ��x
 & ��x �

Notice that the Qk in ��	��� vanish if X is Gaussian� and the quantities

E�X � �
��
 � E�X � �����

are the skewness and kurtosis of X � respectively	 They measure the �close�

ness
 of the df F to �	

If we want to expand Gn with an asymptotically negligible remainder

term special conditions on the df F must be satis�ed	 For example� F must

be absolutely continuous or distributed on a lattice	 We provide here just one

example to illustrate the power of the method	
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Theorem ����� �Asymptotic expansion in the absolutely continuous case�

Suppose that EjX jk �� for some integer k � �� If F is absolutely continuous

then

�� & jxj�k
					Gn�x�� ��x� �

k��X
i��

Qi�x�

ni��

					  o


�

n�k�����

�
�

uniformly in x� In particular�

Gn�x�  ��x� &

k��X
i��

Qi�x�

ni��
& o


�

n�k�����

�
�

uniformly in x� �

Asymptotic expansions can also be applied to the derivatives of Gn	 In partic�

ular� if F is absolutely continuous then one can obtain asymptotic expansions

for the density of Gn	

Notes and Comments

Results on asymptotic expansions for the iid and non�iid case can be found in

Hall ����� or in Petrov ���� ���	 Asymptotic expansions for an arbitrary df

have been treated in Field and Ronchetti ����� and Jensen �����	 In Christoph

and Wolf ������ Ibragimov and Linnik ����� and Zolotarev ���� one can �nd

some ideas about the construction of asymptotic expansions in the 	�stable

case	

Large Deviations

The CLT can be further re�ned if one starts looking at Gn for x taken from

certain regions �depending on n� or if x  xn 	� at a given rate	 This is the

objective of the so�called large deviation techniques	 Nowadays the theory

of large deviations has been developed quite rapidly in di�erent directions

with applications in mathematics� statistics� engineering and physics	 We

will restrict ourselves to large deviations in the classical framework of Cra�

m�er �����	

Theorem ����� �Cram�er�s theorem on large deviations�

Suppose that the moment generating function M�h�  E expfhXg exists in

a neighbourhood of the origin� Then

��Gn�x�

�� ��x�
 exp

�
x
p
n
�
�x

n

���
� &O


x& �p

n
��x�

��
�

Gn��x�

���x�
 exp

��x
p
n
�

�x
n

���
� & O


x& �p

n
��x�

��
�
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uniformly for positive x  o�
p
n�� Here ��z� is a power series which converges

in a certain neighbourhood of the origin and whose coe�cients depend only

on the moments of X� �

The power series ��z� is called Cram�er�s series	 Instead of determining the

general coe�cients of this series we consider a particular case of Theo�

rem �	�	�	

Corollary ����� Suppose that the conditions of Theorem ��� are satis�ed�

Then

��Gn�x�  ��� ��x�� exp

�
x


�
p
n

E�X � �


�


�
&O


�p
n
��x�

�
�

Gn��x�  ���x� exp

��x

�
p
n

E�X � �


�


�
&O


�p
n
��x�

�
�

for x � �� x  O�n���� In particular� if E�X � �
  � then

Gn�x�� ��x�  O


�p
n
��x�

�
� x � R � �

Large deviation results can be interpreted as re�nements of the convergence

rates in the CLT	 Indeed� let x  xn 	� in such a way that xn  o�n���	

Then we conclude from Corollary �	�	 that

P

				Sn � n

�
p
n

				 � xn

�
 � ���� � �xn�� &O


�p
n
exp

�
�x�n
�

��
�

Note that the xn are chosen such that

Sn � n

�
p
nxn

P	 � � ��	���

In an analogous way we can also consider large deviation results for

X � DA�	�� 	 � �	 These must be of a completely di�erent nature since the

moment generating function M�h� does not exist in any neighbourhood of

the origin	 However� one can get an impression of the order of decrease for

the tail probabilities of Sn	 For simplicity we restrict ourselves to symmetric

rvs	

Theorem ����� �Heyde�s theorem on large deviations�

Let X � DA�	� be symmetric and 	 � ��� ��� Let �bn� be any sequence such

that bn 
 � and P �X � bn� � ��n� and denote by

M�  X� � Mn  max�X�� � � � � Xn� � n � � �
the sample maxima� Then
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lim
n��

P �Sn � bn xn�

nP �X � bn xn�
 lim

n��

P �Sn � bn xn�

P �Mn � bn xn�
 �

for every sequence xn 	�� �

In view of Theorem �	�	��� the conditions of Theorem �	�	� ensure that

b��
n Sn

d	 G� for an 	�stable law G�	 Thus the relation

Sn
bn xn

P	 �

is directly comparable with ��	���	 Similar results can be established for rvs

with regularly varying tails �� F �x� � x��L�x�� where 	 � �� as x	�� see
Section �	�	 This kind of result is another example of the interplay between

sums and maxima of a sample X�� � � � � Xn as n	�	 Notice that Theo�
rem �	�	� can be understood as a supplementary result to the limit relation

lim
x��

P �Sn � x�

P �Mn � x�
 � � n  �� �� � � � �

which is a de�ning property of subexponentiality and is studied in detail in

Section �	�	� and Appendix A�	

Notes and Comments

Cram�er�s theorem and other versions of large deviation results �including the

non�iid case� can be found in Petrov ���� ���	 Theorem �	�	� is due to

Heyde ����� ����	

The general theory of large deviations has become an important part

of probability theory with applications in di�erent �elds� including insurance

and �nance	 By now it has become a theory which can be applied to sequences

of arbitrary rvs which do not necessarily have sum structure and which can

satisfy very general dependence conditions� see for instance the monographs

by Bucklew ����� Dembo and Zeitouni ������ Deuschel and Strook ������ or

Ellis �����	 We also mention that large deviation results are closely related to

saddlepoint approximations in statistics� for instance Barndor��Nielsen and

Cox ���� Field and Ronchetti ������ Jensen �����	 The latter contains vari�

ous applications to insurance risk theory	 It should also be mentioned that�

whereas Edgeworth expansions yield good approximations around the mean�

they become unreliable in the tails	 Saddlepoint approximations remedy this

problem	

We give some more speci�c results on large deviations in Section �	�	 They

�nd immediate applications for the valuation of certain quantities which are

closely related to reinsurance problems� see Section �	�	
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��� The Functional CLT� Brownian Motion Appears

Let �Xn� be an iid sequence with � � �� ��	 In this section we embed the
sequence of partial sums �Sn� in a process on ��� �� and consider the limit

process which turns out to be Brownian motion	 First consider the process

Sn��� on ��� �� such that

Sn
�
n��k

�
 

�

�
p
n
�Sk �  k� � k  �� � � � � n �

and de�ne the graph of the process Sn��� at every point of ��� �� by linear
interpolation between the points �k�n � Sn�k�n��	 This graph is just a �broken

line
 and the sample paths are continuous �polygonal� functions	 Suppose for

the moment that �Xn� is a sequence of iid standard normal rvs	 Then the

increments Sn�k�n�� Sn�l�n� for l � k are Gaussian with mean zero and

variance �k � l��n	 Moreover� the process has independent increments when

restricted to the points �k�n�k�������n	 These properties remind us of one of

the most important processes which is used in probability theory� Brownian

motion� the de�nition of which follows�

Denition ����� �Brownian motion�

Let �Bt�t�����	 be a stochastic process which satis�es the following conditions	

�a� It starts at zero	 B�  � a�s�

�b� It has independent increments	 for any partition � � t� � t� � � � � �
tm � � and any m the rvs Bt� �Bt� � � � � � Btm �Btm�� are independent�

�c� For every t � ��� ��� Bt has a Gaussian distribution with mean zero and

variance t�

�d� The sample paths are continuous with probability ��

This process is called �standard� Brownian motion orWiener process on ��� ��	

�

A consequence of this de�nition is that the increments Bt �Bs� t � s� have

a N��� t� s� distribution	 Brownian motion on ��� T � and on ����� is de�ned
in a straightforward way by suitably modifying De�nition �		�	 We mention

that one can give a �minimal
 de�nition of Brownian motion as a process

with stationary� independent increments and a	s	 continuous sample paths	 It

can be shown that from these properties alone it follows that the increments

must be normally distributed	

We write C ��� �� for the vector space of continuous functions which is

equipped with the supremum norm� see Appendix A�	�� for x � C ��� ��

kxk  sup
��t��

jx�t�j �
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� Visualisation of Brownian motion� 
ve sample paths of standard
Brownian motion on ��	 ���

Notice that the processes Sn��� and B	 assume values in C ��� ��	

We introduce still another process on ��� �� which coincides with Sn��� at
the points k�n� k  �� �� � � � � n	 It is easier to construct but more di�cult to

deal with theoretically�

eSn�t�  �

�
p
n

�
S�nt	 �  �nt�

�
� � � t � � �

where �y� denotes the integer part of the real number y	 This process has

independent increments which are Gaussian �possibly degenerate� if X is

Gaussian	 Its sample paths are not continuous but have possible jumps at

the points k�n	 At each point of ��� �� they are continuous from the right and

at each point of ��� �� the limit from the left exists	 Thus the process eSn��� has
cadlag sample paths� see Appendix A�	�� i	e	 they belong to the space D ��� ��	

The space D ��� �� of cadlag functions can be equipped with di�erent metrics

in order to de�ne weak convergence on it	 However� our limit process will be

Brownian motion which assumes values in C ��� �� so that we are allowed to

take the sup�norm as an appropriate metric in D ��� ��� see Theorem A�	�	

The following result is known as the Donsker invariance principle or func�

tional CLT �FCLT �� In this context it is worthwhile to recall the continuous

mapping theorem �Theorem A�	�� and the notion of weak convergence in the
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Figure �
�
� Visualisation of the Donsker invariance principle� sample paths of
the process Sn��� for the same realisation of �Xn� for n � �	 ��	 ��	 ���

function spaces C ��� �� and in D ��� �� from Appendix A�		 To those of you

not familiar with this abstract terminology we simply recommend a glance at

Figure �		� which explains how a sample path of Brownian motion is built

up from sums of iid rvs	

Theorem ����� �FCLT� Donsker invariance principle�

Suppose that EX� ��� Then

�a� Sn��� d	 B	 in C ��� �� �equipped with the sup�norm and the ��algebra

generated by the open subsets��

�b� eSn��� d	 B	 in D ��� �� �equipped with the sup�norm and the ��algebra

generated by the open balls��

In particular� if f� �f�� is continuous except possibly on a subset A � C ��� ��

�A � D ��� ��� for which P �B	 � A�  �� then f��Sn���� d	 f��B	� and

f��eSn���� d	 f��B	�� �

Remarks� �� The Donsker invariance principle is a very powerful result	 It

explains why Brownian motion can be taken as a reasonable approximation

to many real processes which are in some way related to sums of independent

rvs	 In �nance� the celebrated Black�Scholes model is based on geometric
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Brownian motion Xt  expfct & �Btg for constants c and � � �	 The ra�

tionale of such an approach is that the logarithmic price lnXt of a risky

asset can be understood as the result of actions and interactions caused by

a large number of di�erent independent activities in economy and politics�

or indeed individual traders� i	e	 it can be understood as a sum process	 And

indeed� geometric Brownian motion can be viewed as a weak limit of the

binomial pricing model of Cox�Ross�Rubinstein� see for instance Lamberton

and Lapeyre ����	 In physics a sample path of Brownian motion is often

interpreted as the movement of a small particle which is pushed by small

independent forces from di�erent directions	 Here again the interpretation

as a sum process is applicable	 As a limit process of normalised and centred

random walks� we can consider Brownian motion as a random walk in con�

tinuous time	

�� The Donsker invariance principle suggests an easy way of simulating

Brownian sample paths by the approximating processes Sn��� or eSn���	 They
can easily be simulated� for example� if �Xn� is iid Gaussian noise or if �Xn� is

a sequence of iid Bernoulli rvs assuming the two values &� and �� with equal
probability	 Again� back to the �nance world� Donsker explains how to gen�

erate from one fair coin the basic process underlying modern mathematical

�nance	 �

The power of a functional limit theorem is considerably increased by the

continuous mapping theorem �Theorem A�	���

Example ����� �Donsker and continuous mapping theorem�

We may conclude from Theorem �		 that the �nite�dimensional distribu�

tions of the processes Sn��� and eSn��� converge	 Indeed� consider the mapping
f � D ��� ��	 Rm de�ned by

f�x�  �xt� � � � � � xtm�

for any � � t� � � � � � tm � �	 It is continuous at elements x � C ��� ��	 Then

f �Sn����  �Sn�t��� � � � � Sn�tm��
d	 f �B	�  �Bt� � � � � � Btm� �

f�eSn����  �eSn�t��� � � � � eSn�tm�� d	 f�B	�  �Bt� � � � � � Btm� �

Hence weak convergence of the processes Sn��� and eSn��� implies convergence
of the �nite�dimensional distributions	

Moreover� the following functionals are continuous on both spaces C ��� �� and

D ��� �� when endowed with the sup�norm�

f��x�  x��� � f��x�  sup
��t��

x�t� � f
�x�  inf
��t��

x�t� �
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In particular�

f��Sn����  f��eSn����  
�

�
p
n
�Sn � n� �

f��Sn����  f��eSn����  
�

�
p
n
max
��k�n

�Sk � k � �

f
�Sn����  f
�eSn����  
�

�
p
n

min
��k�n

�Sk � k � �

Moreover� the multivariate function �f�� f�� f
� is continuous on both spaces

C ��� �� and D ��� ��	 From Theorem �		 and the continuous mapping theorem

we immediately obtain

�

�
p
n


Sn � n � max

��k�n
�Sk � k � � min

��k�n
�Sk � k �

�
d	


B� � max

��t��
Bt � min

��t��
Bt

�
�

The joint distribution of B�� the minimum and maximum of Brownian motion

on ��� �� is well known	 A derivation is given in Billingsley ����� Chapter �	��	

At this point it is still worth stressing that� whereas Donsker in conjunction

with the continuous mapping theorem o�ers indeed a very powerful tool� in

many applications actually proving that certain functionals on either C or D

are continuous may be the hard part	 Also� once we have a weak convergence

result� we may want to use it in two ways	 First� in some cases we may derive

distributional properties of the limit process through known properties of the

approximating process� the latter can for instance be taken to be based on iid

Bernoulli rvs	 For several examples see Billingsley ����	 However� we may also

use the limit process as a useful approximation of a less tangible underlying

process� a typical example will be discussed in the di�usion approximation

for risk processes� see Example �	�	��	 �

As already stated� Brownian motion is a particular process with independent�

stationary increments�

Denition ����� �Process with independent� stationary increments�

Let �  ��t���t�� be a stochastic process� Then � has independent increments

if for any � � t� � � � � � tm � � and any m � � the rvs
�t� � �t� � � � � � �tm � �tm�� �

are independent� This process is said to have stationary increments if for any

� � s � t � � the rvs �t � �s and �t�s have the same distribution�

A process with independent� stationary increments and sample paths in D ��� ��

is also called a L�evy process� �
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By a straightforward modi�cation of this de�nition we can also de�ne

processes with independent� stationary increments on ��� T � or on �����	
We introduce another class of stochastic processes which contains Brown�

ian motion as a special case	 Recall from Section �	� the de�nition of an

	�stable rv	

Denition ����� �	�stable motion�

A stochastic process ��t���t�� with sample paths in D ��� �� is said to be 	�

stable motion if the following properties hold	

�a� It starts at zero	 ��  � a�s�

�b� It has independent� stationary increments�

�c� For every t � ��� ��� �t has an 	�stable distribution with �xed parameters

� � ���� �� and �  � in the spectral representation ��	���� �

It is straightforward that we can extend this de�nition to processes on ��� T � or

on �����	 We see that Brownian motion �cf	 De�nition �		�� is just a ��stable
motion	 For simplicity� 	�stable motions are often called stable processes al�

though this might be confusing since in the specialised literature more general

stable processes �with dependent or non�stationary stable increments� occur	

In Section �	� we give an introduction to the world of multivariate stable ran�

dom vectors and of stable processes	

We need the following elementary relation�

Lemma ����
 For an 	�stable motion ��t���t�� we have

�t � �s
d
 �t� s������ � � � s � t � � �

Proof� Using the spectral representation ��	��� and the stationary� indepen�

dent 	�stable increments we conclude that

E exp fi��tg  exp f�ctj�j� ��� i� sign���z��� 	��g

 E exp fi��sgE exp fi� ��t � �s�g

 E exp fi��sgE exp fi��t�sg

 exp f� �cs & ct�s� j�j� ��� i� sign���z��� 	��g �

for � � R and positive constants cs� ct and ct�s which satisfy the relation

cs & ct�s  ct � c�  � � � � s � t � � �
The well known measurable solution to this Cauchy functional equation

is cs  cs for a constant c �see Bingham� Goldie and Teugels ����� Theo�

rem �	�	��� and c must be positive because of the properties of chfs	 This

proves the lemma	 �
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Figure �
�
� Visualisation of symmetric ����� �� and ����stable motion �top� mid�
dle and bottom�� three sample paths of ��t� on ��	 ��� The lower two graphs suggest
that the sample paths are piecewise constant� This is by no means the case� the set
of jumps of almost every sample path is a dense set in ��	 ��� However� the jump
heights are in general so tiny that we cannot see them� we only see the large ones�
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From Lemma �		� we can easily derive the �nite�dimensional distributions

of an 	�stable motion�

��t� � �t� � � � � � �tm�

 
�
�t� � �t� & ��t� � �t�� � � � � � �t� & ��t� � �t�� & � � �&

�
�tm � �tm��

��
d
 

�
t
���
� Y� � t

���
� Y� & �t� � t��

���
Y� � � � � �

t
���
� Y� & �t� � t��

���
Y� & � � �& �tm � tm���

���
Ym

�
for any real numbers � � t� � � � � � tm � � and iid 	�stable rvs Y�� � � � � Ym

such that Y�
d
 ��	

Analogously to the Donsker invariance principle we might ask�

Can every 	�stable motion be derived as the weak limit of an appropriate

sum process


The answer is YES as the following theorem shows	 We refer to Section �	� for

the de�nition of domains of attraction and to Appendix A�	 for the notion

of weak convergence of processes	

Theorem ������ �Stable FCLT�

Let �Xn� be iid rvs in the domain of attraction of an 	�stable rv Z� with

parameter �  � in ��	���� Suppose that�
n���L�n�

���

�Sn � an�
d	 Z� � n	� �

for an appropriate slowly varying function L� Then the process�
n���L�n�

��� �
S�nt	 � a�nt	

�
� � � t � � �

converges weakly to an 	�stable motion ��t���t��� and ��
d
 Z�� Here con�

vergence is understood as weak convergence in D ��� �� equipped with the J��

metric and the ��algebra generated by the open sets� �

We know that Brownian motion has a	s	 continuous sample paths	 This is not

the case for 	�stable motions with 	 � �	 Apart from a drift� their sample

paths are pure jump processes� and all jumps occur at random instants of

time	 If we restrict the sample paths of � to the interval ��� �� then � is a sto�

chastic process which assumes values in D ��� ��� i	e	 these sample paths are

cadlag	 Again we can apply the continuous mapping theorem	 For example�

the results of Example �		� remain valid with Brownian motion replaced by

a general 	�stable motion as limit process	
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Notes and Comments

Proofs of the Donsker invariance principle �Theorem �		� can be found

in Billingsley ���� and Pollard ����	 Generalisations to martingales are

given in Hall and Heyde ����� and to more general processes in Jacod and

Shiryaev �����	

Monographs on Brownian motion and its properties are Hida ������ Kara�

tzas and Shreve ������ Revuz and Yor ����	 An encyclopaedic compendium

of facts and formulae for Brownian motion is Borodin and Salminen ����	

FCLTs are applied in insurance mathematics for determining the prob�

ability of ruin via the so�called di�usion approximation� see Grandell �����	

The idea is due to Iglehart �����	 We explain this method in Example �	�	��	

Methods for simulating Brownian motion are given for instance in Janicki

and Weron ����� Kloeden and Platen ����� and the companion book by

Kloeden� Platen and Schurz �����	

De�nitions of 	�stable motion and more general 	�stable processes can

be found in the literature cited below	 A proof of the FCLT in the form

of Theorem �		�� follows from the general theory of processes with inde�

pendent increments� see for instance Gikhman and Skorokhod ������ Jacod

and Shiryaev ������ Chapter VII� see also Resnick �����	 Stable motions and

processes are treated in various books� Mijnheer ���� concentrates on a	s	

properties of the sample paths of 	�stable motions	 Janicki and Weron ����

discuss various methods for simulating 	�stable processes and consider ap�

plications	 Samorodnitsky and Taqqu ����� give a general theory for 	�stable

processes including several representations of stable rvs� stable processes and

stable integrals	 They also develop a theory of stochastic integration with re�

spect to 	�stable processes	 Kwapie�n and Woyczy�nski ���� consider the case

of single and multiple stochastic integrals with respect to 	�stable processes	

L�evy processes are considered in Bertoin ����� Jacod and Shiryaev ����� and

Sato �����	

In Section �	� we give an introduction to stable processes more general

than stable motion	

��
 Random Sums

����� General Randomly Indexed Sequences

Random �i	e	 randomly indexed� sums are the bread and butter of insurance

mathematics	 The total claim amount of an insurance portfolio is classically

modelled by random sums
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�
� Visualisation of a Poisson process with intensity �� 
ve sample paths
of �N�t���

S�t�  SN�t�  

�
� if N�t�  � �

X� & � � �&XN�t� if N�t� � � �
t � � �

where �N�t��t�� is a stochastic process on ����� such that the rvs N�t� are
non�negative integer�valued	 Usually� �N�t�� is assumed to be generated by

a sequence �Tn�n�� of non�negative rvs such that

� � T� � T� � � � � a�s�

and

N�t�  sup fn � � � Tn � tg � t � � � ��	���

As usual� supA  � if A  �	 This is then called a counting process	 The rvXn

can be interpreted as an individual claim which arrives at the random time Tn�

N�t� counts the total number of individual claims and S�t� is the total claim

amount in the portfolio up to time t	 In the context of �nance� N�t� could

for instance represent the �random� number of position changes in a foreign

exchange portfolio based on tick�by�tick �high frequency� observations	 The

quantity S�t� then represents the total return over ��� t�	

Example ����� �Homogeneous Poisson process and compound Poisson pro�

cess�

In the Cram�er�Lundbergmodel �De�nition �	�	�� it is assumed that �Xn� and

�N�t�� are independent and that �N�t�� is a homogeneous Poisson process

with intensity parameter � � �� i	e	 it is a counting process ��	��� with
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Tn  Y� & � � �& Yn � n � � �

and �Yn� �the inter�arrival times of the claims� are iid exponential rvs with

expectation ���	 Any counting process which is generated by an iid sum

process �Tn� is also called a renewal counting process	

Alternatively� a �homogeneous� Poisson process is de�ned by the following

three properties�

�a� It starts at zero� N���  �	

�b� It has independent� stationary increments	

�c� For every t � �� N�t� is a Poisson rv with parameter � t�

P �N�t�  n�  
��t�n

n�
e�� t � n  �� �� �� � � � �

The Poisson process �N�t�� is a pure jump process with sample paths in

D ����� which increase to � as t	� and have jumps of height � at the

random times Tn	 It is also a L�evy process� see De�nition �		�	 A homo�

geneous Poisson process can be interpreted as a special point process� see

Section �	�	�	

If �N�t�� and �Xn� are independent then the process �S�t��t�� is called a com�

pound Poisson process	

The Poisson process and Brownian motion and their modi�cations and gen�

eralisations are the most important stochastic processes in probability theory

and mathematical statistics	 �

The �uctuations of the random sums S�t� for large t can again be described

via limit theorems	 In what follows we provide some basic tools which show

that the asymptotic behaviour of �Sn� and �S�t�� is closely linked	

In this section� �Zn�n�� is a general sequence of rvs and �N�t��t�� is

a process of non�negative integer�valued rvs N�t�	

Lemma ����� Suppose that Zn
a�s�	 Z as n	� and N�t�

a�s�	 � �N�t�
P	

�� as t	�� Then

ZN�t�
a�s�	 Z �

�
ZN�t�

P	 Z
�
� t	� �

Proof� Suppose N�t�
a�s�	 �	 Set

A�  f� � N�t����	� � t	�g � A�  f� � Zn���	 Z��� � n	�g �

and note that P �A��  P �A��  �	 Then

P
��

� � ZN�t�������	 Z��� � t	��� � P �A� �A��  � �
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Figure �
�
� One sample path of �Sn� and one sample path of the compound Pois�
son process �S�t�� �� � �� for the same realisation of iid standard exponential Xn�

i	e	 ZN�t�
a�s�	 Z	

Now suppose that N�t�
P	� as t 	 �	 For every sequence tk 	��

N�tk�
P	� as k 	�� and there exists a subsequence tkj 
 � such that

N�tkj �
a�s�	 � as j 	�� see Appendix A�	�	 From the �rst part of the proof�

ZN�tkj �
a�s�	 Z� hence ZN�tkj �

P	 Z	 Thus every sequence �ZN�tk�� contains

a subsequence which converges in probability to Z	 Since convergence in

probability is metrizable �see Appendix A�	�� this means that ZN�t�
P	 Z	

�

Combining Theorem �	�	� and Lemma �	�	� we immediately obtain

Theorem ����� �Marcinkiewicz�Zygmund SLLNs for random sums�

Suppose that EjX jp �� for some p � ��� �� and N�t�
a�s�	 �� Then

�N�t��
���p

�S�t�� aN�t��
a�s�	 � � ��	���

where

a  

�
� if p � � �

  EX if p � ��� �� �
�

We will see in Section �	�	� that� if we restrict ourselves to renewal count�

ing processes �N�t��� we can replace the random normalising and centring
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processes in ��	��� by deterministic functions	 Moreover� ��	��� can be ex�

tended to a LIL	

Now we turn to the case of weak convergence	 In particular� we wish to

derive the CLT for random sums	 The following lemma covers many cases of

practical interest� for example� the compound Poisson case as considered in

Example �	�	�	

Lemma ����� Suppose that �Zn� and �N�t�� are independent and N�t�
P	�

as t	�� If Zn
d	 Z as n	� then ZN�t�

d	 Z as t	��

Proof�Write �A�s�  E expfisAg for the chf of any rv A and fn�s�  �Zn�s�

for real s	 By independence�

E
�
exp

�
isZN�t�

�		N�t��  fN�t��s� a�s�

Note that fn�s�	 �Z�s� as n	� and N�t�
P	�	 By Lemma �	�	��

fN�t��s�
P	 �Z�s� � t	� �

and since �fN�t�� is uniformly integrable�

E exp
�
isZN�t�

�
 EN�t�

�
fN�t��s�

�	 E ��Z�s��  �Z�s� � s � R �

This proves that ZN�t�
d	 Z	 �

As an immediate consequence we derive an analogue of Theorem �	�	�� for

random sums�

Theorem ����� �CLT for random sums�

Suppose that �Xn� and �N�t�� are independent and that N�t�
P	�� Assume

that F � DA�	� for some 	 � ��� ��� Then Theorem ������ remains valid if

n is everywhere replaced by N�t�� i�e� there exist appropriate centring con�

stants an and a slowly varying function L such that�
�N�t�����L�N�t��

��� �
S�t�� aN�t�

� d	 G� � t	� � ��	���

for an 	�stable distribution G�� �

In Section �	�	� we will specify conditions which ensure that the random

normalising and centring processes in ��	��� can be replaced by deterministic

functions	

The condition that the processes �Zn� and �N�t�� are independent can be

relaxed substantially�
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Lemma ����
 �Anscombe�s theorem�

Suppose that there exists a function b�t� 
 � such that

N�t�

b�t�

P	 � � t	� � ��	���

and that the following� so�called Anscombe condition holds	

�� � ��� � � �� � � �n� such that

P


max

m�jm�nj�n�
jZm � Znj � �

�
� � � n � n� � ��	���

If Zn
d	 Z as n	� then ZN�t�

d	 Z as t	�� �

Roughly speaking� condition ��	��� ensures that the random index N�t� can

be replaced by the deterministic function b�t�� and if we do so with ZN�t�� i	e	 if

we replace ZN�t� by Zb�t�� then ��	��� guarantees that the error jZN�t��Zb�t�j
is negligible	 In other words� Anscombe�s condition is a speci�c stochastic

continuity property of the sequence �Zn�	

We note that ��	��� is satis�ed for wide classes of renewal counting

processes �see Section �	�	��� including the homogeneous Poisson process	

Moreover� ��	��� holds for the �properly normalised and centred� sums Sn	

This is the content of the following result which is analogous to Theo�

rems �	�	�� and �	�	�	 The use of the Anscombe condition in the proof below

is not obvious� it is hidden by Kolmogorov�s inequality	

Theorem ����� �Anscombe�type CLT for random sums�

Suppose that
N�t�

t

P	 � � t	� � ��	���

for some positive � and that F � DA�	� for some 	 � ��� �� with�
n���L�n�

���

�Sn � ean� d	 G� � ��	���

for an 	�stable distribution G� and a slowly varying function L� Here

ea  �
� if 	 � � �
 if 	 � ��� �� �

Then �
�N�t�����L�N�t��

���

�S�t�� eaN�t�� d	 G� � ��	��

�
��t����L�t�

���

�S�t�� eaN�t�� d	 G� � ��	���
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In particular� if �� �� then�
���t

�����
�S�t�� N�t��

d	 � �

where � is the standard normal distribution�

In view of Theorem �	�	��� ��	��� is only a restriction on the distribution of X

in the case 	  �	 It is satis�ed for instance for symmetric F 	 In Section �	�	�

we will �nd conditions which ensure that the random centring process in

Theorem �	�	� can be replaced by a deterministic function	

Sketch of the proof� We restrict ourselves to the case 	  � and ��  

var�X� ��	 Without loss of generality we may and do assume that ��  �

and   �	 We write

S�t�

�N�t�����
 


S��t	

��t����
&

SN�t� � S��t	

��t����

�
�t

N�t�

����

�

By ��	���� the term ��t�N�t����� converges to � in probability and the clas�

sical CLT yields that
S��t	

��t����
d	 � �

By virtue of the continuous mapping theorem �Theorem A�	�� it su�ces to

show that
SN�t� � S��t	

��t����
P	 � �

For every � � � and � � � we have that

C�  

�		SN�t� � S��t	

		
��t����

� �

�

�
�				N�t�t

� �

				 � �

���				N�t�t
� �

				 � � �

		SN�t� � S��t	

		
��t����

� �

�
 A� � A� �

By ��	���� P �A��	 � as t	�	 By Kolmogorov�s inequality�

P �A�� � P


max

jn�t��j��

		Sn � S��t	

		 � ���t����
�

� �

���t
var

�
S������t	 � S��t	

�
� c

�

��
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for a positive constant c	 Thus letting �rst t tend to � and then � to � we

see that P �C��	 � for every �xed � � �	 This proves ��	�� for 	  �	

For 	 � � the proof is analogous	 Instead of Kolmogorov�s inequality one can

apply Skorokhod�Ottaviani�type inequalities� see for instance Petrov �����

Theorem �	�	 The details are technical in nature and therefore omitted	

The equivalence of ��	�� and ��	��� is a consequence of ��	��� and of the

slow variation of L	 �

����� Renewal Counting Processes

We consider a renewal counting process �N�t��t��� i	e	

N�t�  sup fn � � � Tn � tg � t � � � ��	���

and
Tn  Y� & � � �& Yn � n � � �

for iid non�negative �non�zero� rvs Y� Y�� Y�� � � �	 For applications of this kind

of processes to risk theory see Chapter �	 The homogeneous Poisson process

�see Example �	�	�� is such a renewal counting process where Y is exponential

with expectation ���	

In this section we answer the question�

What is the order of magnitude of N�t� as t	�


Observe that
fTn � tg  fN�t� � ng �

Kolmogorov�s SLLN implies that Tn
a�s�	 � and therefore N�t�

a�s�	 �	 How�
ever� we can derive much more precise information�

Theorem ������ �Marcinkiewicz�Zygmund SLLNs!LIL for renewal count�

ing processes�

Suppose that EY  ��� � � �if EY  � set �  ��� Then

t��N�t�
a�s�	 � � ��	���

If EY p �� for some p � ��� �� then
t���p �N�t�� � t�

a�s�	 � � ��	���

If ��
Y  var�Y � �� then

lim sup
t��

��t ln ln t�
����

�N�t�� � t�

 � lim inf
t��

��t ln ln t����� �N�t�� � t�

 �Y �

�� a�s�
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Figure �
�
�� Visualisation of the SLLN �left� and of the LIL �right� for the
homogeneous Poisson process with intensity �� 
ve sample paths�

Sketch of the proof� We restrict ourselves to show the SLLNs ��	��� and

��	���	 Kolmogorov�s SLLN for random sums yields that

TN�t�

N�t�

a�s�	 �

�
�

By this and a sandwich argument applied to

TN�t�

N�t�
� t

N�t�
� TN�t���

N�t� & �

N�t� & �

N�t�
�

we prove ��	���	

Now suppose that EY p �� for some p � ��� ��	 Notice that
n���p�Tn�� � Tn�  n���pYn��

a�s�	 � �

This� the Marcinkiewicz�Zygmund SLLNs of Theorem �	�	�� and ��	��� imply

that

t���p
�
TN�t��� � TN�t�

�
 t���pYN�t���

a�s�	 � �

This� Theorem �	�	� and a sandwich argument applied to

�t�N�t�

t��p
� �TN�t��� �N�t�

t��p
� �t�N�t�

t��p
&

�YN�t���

t��p
��	���

gives us ��	���	 �

Theorem �	�	�� suggests that EN�t� � �t and var�N�t�� � ��
Y �


t	 In the case

of the Poisson process we even have that EN�t�  �t and var�N�t��  ��
Y �


t

since EY  ��� and ��
Y  ���

�	 For the following results see Gut ������ The�

orems �	� and �	�	
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Proposition ������ �Moments of renewal counting process�

The following relations hold	

�a� EN�t�  ��& o����t as t	��

�b� Suppose that ��
Y  var�Y � ��� Then

EN�t�  �t&O��� � t	� �

var�N�t��  ��
Y �


t& o�t� � t	� �

�

From Theorem �	�	�� and Proposition �	�	�� we have gained a �rst impres�

sion on the growth of a renewal counting process	 Next we study the weak

convergence of �N�t��	

Theorem ������ �CLT for renewal counting process�

Suppose that ��
Y ��� Then�

��
Y �


t
�����

�N�t�� � t�
d	 � � ��	��

where � is the standard normal distribution�

Recall from Proposition �	�	�� that EN�t� � � t and var�N�t�� � ��
Y �


t	

Thus Theorem �	�	�� is similar to the classical CLT for iid sums	 We note

that one can prove an analogous result for �N�t�� with an 	�stable limit	

Proof� We proceed as in ��	����

�t�N�t�

���
Y �


t�
���

� �TN�t��� �N�t�

���
Y �


t�
���

� �t�N�t�

���
Y �


t�
���

&
�YN�t���

���
Y �


t�
���

�

We have� by independence�

P
�
YN�t��� � �t���

�
 E

�
P

�
YN�t��� � �t���

			N�t���
 P

�
Y � �t���

�
� �� � � �

Hence
�t�N�t�

���
Y �


t�
���

 
�TN�t� �N�t�

���
Y �


t�
���

& oP ��� � ��	��

In view of Theorem �	�	� and by the continuous mapping theorem the rhs

converges weakly to �	 This proves the theorem	 �
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����� Random Sums Driven by Renewal Counting Processes

In this section we consider one of the most important models in insurance

mathematics	 Throughout� we assume that the random sums S�t�  SN�t� are

driven by a renewal counting process as de�ned in ��	���	 The process �S�t�� is

a model for the total claim amount of an insurance portfolio	 The renewal and

the Cram�er�Lundberg models �De�nition �	�	�� are included in this setting as

particular cases when �N�t�� and �Xn� are independent	 In general� we do not

require this assumption	 In what follows we are interested in the asymptotic

properties of the process �S�t��	

Recall from Section �	�	� that N�t�
a�s�	 �	 Hence we may apply the

Marcinkiewicz�Zygmund SLLNs for random sums �Theorem �	�	���

�N�t�����p �S�t�� aN�t��
a�s�	 � � ��	��

provided EjX jp �� for some p � ��� �� and

a  

�
� if p � � �

  EX if p � ��� �� �
��	��

The following question arises naturally�

May we replace N�t� in ��	�� by a deterministic function� for instance �t


The answer is

In general	 NO�

However� by Theorem �	�	��� N�t��t
a�s�	 � provided EY ��	 Hence we may

replace the normalising process �N�t����p by ��t���p	 The centring process

causes some problems	 To proceed� suppose EjX jp �� for some p � ��� ��	
We write

t���p �S�t�� �t�  t���p �S�t�� N�t�� & t���p �N�t�� � t� �

In view of ��	��� the �rst term on the rhs converges to zero a	s	 provided the

�rst moment of Y is �nite	 On the other hand�

t���p �N�t�� � t�
a�s�	 � ��	�

does not hold in general	 But if EY p �� we conclude from Theorem �	�	��

that ��	� is satis�ed	 In summary we obtain�

Theorem ������ �Marcinkiewicz�Zygmund SLLNs for random sums�

Suppose that EjX jp �� for some p � ��� ���
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�a� If EY �� then

t���p �S�t�� aN�t��
a�s�	 � �

where a is de�ned by ��	���

�b� If p � � and EY p �� then

t���p �S�t�� � t�
a�s�	 � � �

In the weak convergence case we can proceed analogously	 Since N�t�	�
a	s	 for a renewal counting process� the CLT for random sums applies under

mild conditions�

Theorem ������ �Anscombe�type CLT for random sums�

Assume that F � DA�	� for some 	 � ��� �� and that�
n���L�n�

���

�Sn � ean� d	 G� �

for some 	�stable distribution G� and a slowly varying function L� Here

ea  �
� if 	 � � �
 if 	 � ��� �� �

�a� If EY �� then�
��t����L�t�

���

�S�t�� eaN�t�� d	 G� � ��	��

In particular� if ��  var�X� �� then�
���t

�����
�S�t�� N�t��

d	 � � ��	��

where � is the standard normal distribution�

�b� If 	 � ��� �� and EY p �� for some p � 	 then�
��t����L�t�

���

�S�t�� � t�
d	 G� � ��	��

Proof� If EY �� then� by Theorem �	�	���N�t��t
a�s�	 �� and Theorem �	�	�

applies immediately	 This yields ��	�� and ��	��	

If EY p �� and p � ��� �� then� by Theorem �	�	���

t���p �N�t�� �t�
a�s�	 � � ��	��

Hence
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�
��t����L�t�

���

�S�t�� � t�

 
�
��t����L�t�

���

��S�t�� N�t�� &  �N�t�� � t��

 
�
��t����L�t�

���

�S�t�� N�t�� & o��� a�s� ��	��

Here we used ��	�� and the fact that� for p � 	�

lim
t��

t���L�t�

t��p
 �

which is a consequence of the slow variation of L	 Relation ��	�� is now

immediate from ��	�� and ��	�� by the continuous mapping theorem �The�

orem A�	��	 �

Note that we excluded the case 	  � from ��	��	 In that case the method

of proof fails	 Indeed� ��	�� is no longer applicable if �� ��	 This follows
from the CLT in Theorem �	�	��	

Now we try to combine the CLT for �S�t�� and for �N�t��	 Assume that

�� �� and ��
Y ��	 Using ��	��� we obtain

t���� �S�t�� � t�  t���� ��S�t�� N�t�� & �N�t�� � t��

 t����
�
�S�t�� N�t�� & 

�
N�t�� �TN�t�

��
& oP ���

 t����

N�t�X
i��

�Xi � �Yi� & oP ��� � ��	���

Notice that the rvs X �
i  Xi � �Yi have mean zero	 Moreover� the sequence

�X �
i� is iid if ��Xn� Yn�� is iid	 Under the latter condition� Theorem �	�	�

applies immediately to ��	��� and yields the following result�

Theorem ������ Suppose that ��Xn� Yn�� is a sequence of iid random vec�

tors and that �� �� and ��
Y ��� Then

�var�X � �Y ��t�
����

�S�t�� �t�
d	 � �

where � denotes the standard normal distribution�

In particular� if �Xn� and �Yn� are independent then��
�� & ���Y �

�
�
�t

�����

�S�t�� � t�
d	 � � �
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Following the idea of proof of Theorem �	�	��� one can derive results if ��  �
or ��

Y  � with appropriate stable limit distributions� see for instance Ko�

tulski ����	

It is also possible to derive di�erent versions of FCLTs with Gaussian

or 	�stable limit processes for �S�t��	 We state here one standard result�

versions of which can be found in Billingsley ����� Section ��� and in Gut ������

Theorem �	� in Chapter V	 In our presentation we follow Grandell ������ p	 �	

Recall the notion of weak convergence from Appendix A�	 and compare the

following result with the Donsker invariance principle �Theorem �		�	

Theorem ������ �FCLT for random sum process�

Let �Xn� be a sequence of iid rvs such that �� ��� Assume that the renewal

counting process �N�t�� and �Xn� are independent and that EY  ��� and

��
Y ��� Let B	 be standard Brownian motion on ������ Then��

�� & ���Y �
�
�
�n

����� �
SN�n	� � �n�� d	 B	

in D ����� equipped with the J��metric and the corresponding ��algebra of

the open sets� �

This theorem has quite an interesting application in insurance mathematics�

Example �����
 �Di�usion approximation of the risk process�

Consider the Cram�er�Lundberg model �De�nition �	�	��� i	e	 �S�t�� is com�

pound Poisson with positive iid claims �Xn� independent of the homogeneous

Poisson process �N�t�� with intensity � � �	 The corresponding risk process

with initial capital u and premium income rate c  ��&��� � � �with safety

loading � � �� is given in ��	� as

U�t�  u& ct� S�t� � t � � �
In Chapter � we mainly studied the ruin probability in in�nite time	 One

method to obtain approximations to the ruin probability 
�u� T � in �nite

time T � i	e	


�u� T �  P �U�t� � � for some t � T �

 P


inf

��t�T
�ct� S�t�� � �u

�
�

is the so�called di�usion approximation which was introduced in insurance

mathematics by Iglehart ������ see also Grandell ������ Appendix A	� for an

extensive discussion of the method	 De�ne

e��  
�
�� & ���Y �

�
�
�  

�
�� & �

�
� �
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Then


�u� T �

 P


inf

��t�T
��� & ���t� S�t�� � �u

�

 P


inf

��t�T�n
��� & ���tn� S�tn�� � �u

�

 P


inf

��t�T�n

�e��n
�����

��� & ���tn� S�tn�� � �u
�e��n

�����
�

�

Now assume that T�  T�n� ��  ��e���
p
n and u�  u �e��n����� are con�

stants� i	e	 we increase T and u with n� and decrease at the same time the

safety loading � with n	 This means that a small safety loading is compen�

sated by a large initial capital	 Then we obtain


�u� T �  P


inf

��t�T�

��e��n
�����

��tn� S�tn�� & ��t
�
� �u�

�
�

The functional x�f�  inf��t�T� f�t� is continuous on D ��� T��	 Thus we may

conclude from Theorem �	�	�� by the continuous mapping theorem �note

that u� � and T depend on n� that


�u� T � 	 P


inf

��t�T�
���t�Bt� � �u�

�

 P


sup

��t�T�

�Bt � ��t� � u�

�
� ��	���

The latter approach is called a di�usion approximation since Brownian mo�

tion is a special di�usion process	 The distribution of the supremum func�

tional of Brownian motion with linear drift is well known� see for instance

Lerche ����� Example � on p	 ���

P


sup

��t�T�

�Bt � ��t� � u�

�
 �


��T� & u�p

T�

�
& e��u����


��T� � u�p

T�

�
�

The di�usion approximation has many disadvantages� but also some good

aspects	 We refer to Grandell ������ Appendix A	� and Asmussen ���� for

a discussion and some recent literature� see also Schmidli ����� and Furrer�

Michna and Weron ����	 The latter look at weak approximations of the risk

process by 	�stable processes	 Among the positive aspects of the di�usion

approximation is that it is applicable to a wide range of risk processes which

deviate from the Cram�er�Lundberg model	 In that case� the classical methods

from renewal theory as developed in Chapter � will usually break down� and
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the di�usion approach is then one of the few tools which work	 In such more

general models it is usually not possible to choose the premiums as a linear

function in time� see for example Kl�uppelberg and Mikosch ����� ���� for a

shot noise risk model	 As a contra one might mention that the choice of T��

�� and u� is perhaps not the most natural one	 On the other hand� �large


values of T and u and small values of � are relative and down to individual

judgement	 Notice that in Chapter � the probability of ruin in in�nite time

was approximated for �large
 initial capital u	 Nevertheless� if one wants to

use the di�usion approximation for practical purposes a study of the values

of T � � and u for which the method yields reasonable results is unavoidable	

For example� Grandell ������ Appendix A	� gives a simulation study	 �

Notes and Comments

There are several texts on random sums� renewal counting processes and

related questions	 They are mainly motivated by renewal theory	 A more ad�

vanced limit theory� but also the proofs of the standard results above can

be found in Gut �����	 The classical theory of random sums relevant for

risk theory was reviewed in Panjer and Willmot ����	 Other relevant liter�

ature is Asmussen ���� and Grandell �����	 The latter deals with the total

claim amount process and related questions of risk and ruin for very general

processes	 Grandell ���� gives an overview of the corresponding theory for

mixed Poisson processes and related risk models	 A recent textbook treat�

ment of random sums is Gnedenko and Korolev �����	
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�

Fluctuations of Maxima

This chapter is concerned with classical extreme value theory and conse�

quently it is fundamental for many results in this book	 The central result is

the Fisher�Tippett theorem which speci�es the form of the limit distribution

for centred and normalised maxima	 The three families of possible limit laws

are known as extreme value distributions	 In Section �	� we describe their

maximum domains of attraction and derive centring and normalising con�

stants	 A short summary is provided in Tables �		���		 where numerous

examples are to be found	

The basic tool for studying rare events related to the extremes of a sample

is the Poisson approximation� a �rst glimpse is given in Section �	�	 Poisson

approximation is also the key to the weak limit theory of upper order sta�

tistics �see Section 	�� and for the weak convergence of point processes �see

Chapter ��	

The asymptotic theories for maxima and sums complement and contrast

each other	 Corresponding results exist for a�nely transformed sums and

maxima� stable distributions correspond to max�stable distributions� do�

mains of attraction to maximum domains of attraction� see Chapter �	 Limit

theorems for maxima and sums require appropriate normalising and centring

constants	 For maxima the latter are chosen as some quantile �or a closely

related quantity� of the underlying marginal distribution	 Empirical quan�

tiles open the way for tail estimation	 Chapter � is devoted to this important

statistical problem	 In Section �	 the mean excess function is introduced	
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It will prove to be a useful tool for distinguishing dfs in their right tail and

plays an important role in tail estimation� see Chapter �	

As in Chapters � and �� regular variation continues to play a fundamental

role	 The maximum domain of attraction of an extreme value distribution can

be characterised via regular variation and its extensions� see Section �	�	 We

also study the relationship between subexponentiality and maximum domains

of attraction	 This will have consequences in Section �	�� where the path of

a risk process leading to ruin is characterised	

The theory of Section �	 allows us to present various results of the pre�

vious sections in a compact way	 The key is the generalised extreme value

distribution which also leads to the generalised Pareto distribution	 These

are two crucial notions which turn out to be very important for the statistics

of rare events treated in Chapter �	

The almost sure behaviour of maxima is considered in Section �	�	 These

results �nd applications in Section �	�� where we study the longest success�

run in a random walk	

��� Limit Probabilities for Maxima

Throughout this chapter X�X�� X�� � � � is a sequence of iid non�degenerate

rvs with common df F 	 Whereas in Chapter � we focussed on cumulative

sums� in this chapter we investigate the �uctuations of the sample maxima

M�  X� � Mn  max �X�� � � � � Xn� � n � � �

Corresponding results for minima can easily be obtained from those for max�

ima by using the identity

min �X�� � � � � Xn�  �max ��X�� � � � ��Xn� �

In Chapter  we continue with the analysis of the upper order statistics of

the sample X�� � � � � Xn	

There is of course no di�culty in writing down the exact df of the maxi�

mum Mn�

P �Mn � x�  P �X� � x� � � � � Xn � x�  Fn�x� � x � R � n � N �

Extremes happen �near
 the upper end of the support of the distribution�

hence intuitively the asymptotic behaviour ofMn must be related to the df F

in its right tail near the right endpoint	 We denote by

xF  supfx � R � F �x� � �g
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the right endpoint of F 	 We immediately obtain� for all x � xF �

P �Mn � x�  Fn�x�	 � � n	� �

and� in the case xF ��� we have for x � xF that

P �Mn � x�  Fn�x�  � �

Thus Mn
P	 xF as n	�� where xF � �	 Since the sequence �Mn� is non�

decreasing in n� it converges a	s	� and hence we conclude that

Mn
a�s�	 xF � n	� � ��	��

This fact does not provide a lot of information	 More insight into the order

of magnitude of maxima is given by weak convergence results for centred

and normalised maxima	 This is one of the main topics in classical extreme

value theory	 For instance� the fundamental Fisher�Tippett theorem �The�

orem �	�	�� has the following content� if there exist constants cn � � and

dn � R such that

c��
n �Mn � dn�

d	 H � n	� � ��	��

for some non�degenerate distribution H � then H must be of the type of one

of the three so�called standard extreme value distributions	 This is similar to

the CLT� where the stable distributions are the only possible non�degenerate

limit laws	 Consequently� one has to consider probabilities of the form

P
�
c��
n �Mn � dn� � x

�
�

which can be rewritten as

P �Mn � un� � ��	��

where un  un�x�  cnx& dn	 We �rst investigate ��	�� for general sequences

�un�� and afterwards come back to a�ne transformations as in ��	��	 We ask�

Which conditions on F ensure that the limit of P �Mn � un� for n	�
exists for appropriate constants un


It turns out that one needs certain continuity conditions on F at its right

endpoint	 This rules out many important distributions	 For instance� if F has

a Poisson distribution� then P �Mn � un� never has a limit in ��� ��� whatever

the sequence �un�	 This implies that the normalised maxima of iid Poisson

distributed rvs do not have a non�degenerate limit distribution	 This remark

might be slightly disappointing� but it shows the crucial di�erence between

sums and maxima	 In the former case� the CLT yields the normal distribution

as limit under the very general moment condition EX� ��	 If EX�  �
the relatively small class of 	�stable limit distributions enters	 Only in that
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very heavy�tailed case do conditions on the tail F  �� F guarantee the

existence of a limit distribution	 In contrast to sums� we always need rather

delicate conditions on the tail F to ensure that P �Mn � un� converges to

a non�trivial limit� i	e	 a number in ��� ��	

In what follows we answer the question above	 We commence with an

elementary result which is crucial for the understanding of the weak limit

theory of sample maxima	 It will become a standard tool throughout this

book	

Proposition ����� �Poisson approximation�

For given � � ����� and a sequence �un� of real numbers the following are

equivalent

nF �un� 	 � � ��	�

P �Mn � un� 	 e�� � ��	��

Proof� Consider �rst � � � ��	 If ��	� holds� then

P �Mn � un�  Fn �un�  
�
�� F �un�

�n
 


�� �

n
& o


�

n

��n

�

which implies ��	��	 Conversely� if ��	�� holds� then F �un�	 �	 �Otherwise�

F �unk � would be bounded away from � for some subsequence �nk�	 Then

P �Mnk � unk�  �� � F �unk��
nk would imply P �Mnk � unk�	 �	� Taking

logarithms in ��	�� we have

�n ln
�
�� F �un�

�	 � �

Since � ln��� x� � x for x	 � this implies that nF �un�  � & o���� giving

��	�	

If �  � and ��	� holds� but ��	�� does not� there must be a subsequence

�nk� such that P �Mnk � unk�	 expf�� �g as k 	� for some � � ��	 But
then ��	�� implies ��	�� so that nkF �unk�	 � � ��� contradicting ��	� with
�  �	 Similarly� ��	�� implies ��	� for �  �	 �

Remarks� �� Clearly� Poisson�s limit theorem is the key behind the

above proof	 Indeed� assume for simplicity � � � �� and de�ne

Bn  
Pn

i�� IfXi�ung	 This quantity has a binomial distribution with

parameters �n� F �un��	 An application of Poisson�s limit theorem yields

Bn
d	 Poi��� if and only if EBn  nF �un� 	 � which is nothing but ��	�	

Also notice that P �Mn � un�  P �Bn  �� 	 expf��g	 This explains why
��	�� is sometimes referred to as Poisson approximation to the probability

P �Mn � un�	
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�� Evidently� if there exists a sequence �u
���
n � satisfying ��	� for some �xed

� � �� then we can �nd such a sequence for any � � �	 For instance� if �u
���
n �

satis�es ��	� with �  �� u
���
n  u

���
�n�� 	 obeys ��	� for an arbitrary � � �	 �

By ��	��� �Mn� converges a	s	 to the right endpoint xF of the df F � hence

P �Mn � x�	
�
� if x � xF �

� if x � xF �

The following result extends this kind of ��� behaviour	

Corollary ����� Suppose that xF �� and

F �xF��  F �xF �� F �xF�� � � �

Then for every sequence �un� such that

P �Mn � un�	 � �

either �  � or �  ��

Proof� Since � � � � �� we may write �  expf��g with � � � ��	 By
Proposition �	�	� we have nF �un�	 � as n	�	 If un � xF for in�nitely

many n we have F �un� � F �xF�� � � for those n and hence �  �	 The
other possibility is that un � xF for all su�ciently large n� giving nF �un�  ��

and hence �  �	 Thus �  � or �� giving �  � or �	 �

This result shows in particular that for a df with a jump at its �nite right

endpoint no non�degenerate limit distribution for Mn exists� whatever the

normalisation	

A similar result is true for certain distributions with in�nite right endpoint

as we see from the following characterisation� given in Leadbetter� Lindgren

and Rootz�en ����� Theorem �	�	��	

Theorem ����� Let F be a df with right endpoint xF � � and let

� � ������ There exists a sequence �un� satisfying nF �un�	 � if and

only if

lim
x
xF

F �x�

F �x��  � � ��	��

�

The result applies in particular to discrete distributions with in�nite right

endpoint	 If the jump heights of the df do not decay su�ciently fast� then

a non�degenerate limit distribution for maxima does not exist	 For instance� if

X is integer�valued and xF  �� then ��	�� translates into F �n��F �n���	
� as n	�	
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These considerations show that some intricate asymptotic behaviour of

�Mn� exists	 The discreteness of a distribution can prevent the maxima from

converging and instead forces �oscillatory
 behaviour	 Nonetheless� in this

situation it is often possible to �nd a sequence �cn� of integers such that

�Mn � cn� is tight� i	e	 every subsequence of �Mn � cn� contains a weakly

convergent subsequence	 This is true for the examples to follow� see Aldous

���� Section C�� Leadbetter et al	 ����� Section �	�	

Example ����� �Poisson distribution�

P �X  k�  e�� �k�k� � k � N� � � � � �

Then

F �k�

F �k � ��  �� F �k�� F �k � ��
F �k � ��

 �� �k

k�

�
�X
r�k

�r

r�

���

 ��
�
� &

�X
r�k��

k�

r�
�r�k

���

�

The latter sum can be estimated as
�X
s��

�s

�k & ���k & �� � � � �k & s�
�

�X
s��


�

k

�s

 
��k

�� ��k
� k � � �

which tends to � as k 	�� so that F �k��F �k � ��	 �	 Theorem �	�	� shows

that no non�degenerate limit distribution for maxima exists and� further�

more� that no limit of the form P �Mn � un�	 � � ��� �� exists� whatever
the sequence of constants �un�	 �

Example ����� �Geometric distribution�

P �X  k�  p��� p�k�� � k � N � � � p � � �

In this case we have

F �k�

F �k � ��  �� ��� p�k��

�
�X
r�k

��� p�r��

���

 �� p � ��� �� �

Hence again no limit P �Mn � un�	 � exists except for �  � or �	

Maxima of iid geometrically distributed rvs play a prominent role in the

study of the length of the longest success�run in a random walk	 We refer to

Section �	�� in particular to Theorem �	�	��	 �
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Example ����� �Negative binomial distribution�

P �X  k�  


v & k � �
k � �

�
pv ��� p�k�� � k � N� � � � p � � � v � � �

For v � N the negative binomial distribution generalises the geometric distri�

bution in the following sense� the geometric distribution models the waiting

time for the �rst success in a sequence of independent trials� whereas the

negative binomial distribution models the waiting time for the vth success	

Using properties of the binomial coe�cients we obtain

F �k�

F �k � �� � �� p � ��� �� �

i	e	 no limit P �Mn � un�	 � exists except for �  � or �	 �

Notes and Comments

Extreme value theory is a classical topic in probability theory and mathemati�

cal statistics	 Its origins go back to Fisher and Tippett ����	 Since then a large

number of books and articles on extreme value theory has appeared	 The in�

terested reader may� for instance� consult the following textbooks� Adler ���

Aldous ���� Beirlant� Teugels and Vynckier ����� Berman ����� Falk� H�usler

and Reiss ������ Galambos ����� Gumbel ������ Leadbetter� Lindgren and

Rootz�en ����� Pfeifer ����� Reiss ����� and Resnick �����	

Some historical notes concerning the development of extreme value theory

starting with Nicolas Bernoulli ������ can be found in Reiss �����	

Our presentation is close in spirit to Leadbetter� Lindgren and Rootz�en

���� and Resnick �����	 The latter book is primarily concerned with extreme

value theory of iid observations	 Two subjects are central� the main analytic

tool of extreme value theory is the theory of regularly varying functions �see

Appendix A�	��� and the basic probabilistic tool is point process theory �see

Chapter ��	 After a brief summary of results for iid observations� Leadbet�

ter et al	 ���� focus on extremes of stationary sequences and processes� see

Sections 	� �	� and �	�	 Galambos ���� studies the weak and strong limit

theory for extremes of iid observations	 Moreover� Galambos ���� and also

Resnick ����� include results on multivariate extremes	 Beirlant et al	 �����

Gumbel ������ Pfeifer ���� and Reiss ����� concentrate more on the statisti�

cal aspects� see Chapter � for more detailed information concerning statistical

methods based on extreme value theory	

Extreme value theory for discrete distributions is treated� for instance�

in Anderson ���� ���� Arnold� Balakrishnan and Nagaraja ���� and Gordon�

Schilling and Waterman �����	
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Adler ��� Berman ���� and Leadbetter et al	 ���� study extremes of

continuous�time �in particular Gaussian� processes	

��� Weak Convergence of Maxima Under A�ne

Transformations

We come back to the main topic of this chapter� namely to the characterisa�

tion of the possible limit laws for the maxima Mn of the iid sequence �Xn�

under positive a�ne transformations� see ��	��	 This extreme value problem

can be considered as an analogue to the central limit problem	 Consequently�

the main parts of Sections �	� and �	� bear some resemblance to Section �	�

and it is instructive to compare and contrast the corresponding results	

In this section we answer the question�

What are the possible �non�degenerate� limit laws for the maxima Mn

when properly normalised and centred 


This question turns out to be closely related to the following�

Which distributions satisfy for all n � � the identity in law

max �X�� � � � � Xn�
d
 cnX & dn ��	��

for appropriate constants cn � � and dn � R 


The question is� in other words� which classes of distributions F are closed

�up to a�ne transformations� for maxima	 Relation ��	�� reminds us of the

de�ning properties of a stable distribution� see ��	�� in Chapter �	 Those

distributions are the only possible limit laws for sums of normalised and

centred iid rvs	 A similar notion exists for maxima	

Denition ����� �Max�stable distribution�

A non�degenerate rv X �the corresponding distribution or df � is called max�

stable if it satis�es ��	�� for iid X�X�� � � � � Xn� appropriate constants cn � ��

dn � R and every n � �� �

Remark� �� From now on we refer to the centring constants dn and the

normalising constants cn jointly as norming constants� �

Assume for the moment that �Xn� is a sequence of iid max�stable rvs	 Then

��	�� may be rewritten as follows

c��
n �Mn � dn�

d
 X � ��	��

We conclude that every max�stable distribution is a limit distribution for

maxima of iid rvs	 Moreover� max�stable distributions are the only limit

laws for normalised maxima	
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Theorem ����� �Limit property of max�stable laws�

The class of max�stable distributions coincides with the class of all possible

�non�degenerate� limit laws for �properly normalised � maxima of iid rvs�

Proof� It remains to prove that the limit distribution of a�nely transformed

maxima is max�stable	 Assume that for appropriate norming constants�

lim
n��

Fn �cnx& dn�  H�x� � x � R �

for some non�degenerate df H 	 We anticipate here �and indeed state precisely

in Theorem �	�	�� that the possible limit dfs H are continuous functions on

the whole of R	

Then for every k � N

lim
n��

Fnk �cnx& dn�  
�
lim
n��

Fn �cnx& dn�
�k
 Hk�x� � x � R �

Furthermore�

lim
n��

Fnk �cnkx& dnk�  H�x� � x � R �

By the convergence to types theorem �Theorem A�	�� there exist constantseck � � and edk � R such that

lim
n��

cnk
cn

 eck and lim
n��

dnk � dn
cn

 edk �
and for iid rvs Y�� � � � � Yk with df H �

max �Y�� � � � � Yk�
d
 eck Y� & edk � �

The following result is the basis of classical extreme value theory	

Theorem ����� �Fisher�Tippett theorem� limit laws for maxima�

Let �Xn� be a sequence of iid rvs� If there exist norming constants cn � ��

dn � R and some non�degenerate df H such that

c��
n �Mn � dn�

d	 H � ��	��

then H belongs to the type of one of the following three dfs	

Fr�echet	 ���x�  

�
� � x � �

	 � ��
exp f�x��g � x � �

Weibull	 ���x�  

�
exp f���x��g � x � �

	 � ��
� � x � �

Gumbel	 ��x�  exp f�e�xg � x � R �
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Figure �
�
� Densities of the standard extreme value distributions� We chose
� � � for the Fr�echet and the Weibull distribution�

Sketch of the proof� Though a full proof is rather technical� we would like

to show how the three limit�types appear� the main ingredient is again the

convergence to types theorem� Theorem A�	�	 Indeed� ��	�� implies that for

all t � ��
F �nt	

�
c�nt	x& d�nt	

�	 H�x� � x � R �

where ��� denotes the integer part	 However�
F �nt	 �cnx& dn�  �F

n �cnx& dn��
�nt	�n 	 Ht�x� �

so that by Theorem A�	� there exist functions ��t� � �� ��t� � R satisfying

lim
n��

cn
c�nt	

 ��t� � lim
n��

dn � d�nt	

c�nt	
 ��t� � t � � �

and
Ht�x�  H���t�x& ��t�� � ��	���

It is not di�cult to deduce from ��	��� that for s� t � �

��st�  ��s� ��t� � ��st�  ��t� ��s� & ��t� � ��	���

The solution of the functional equations ��	��� and ��	��� leads to the three

types �� ��� ��	 Details of the proof are for instance to be found in Resnick

������ Proposition �	�	 �
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Remarks� �� The limit law in ��	�� is unique only up to a�ne transforma�

tions	 If the limit appears as H�cx& d�� i	e	

lim
n��

P
�
c��
n �Mn � dn� � x

�
 H�cx& d� �

then H�x� is also a limit under a simple change of norming constants�

lim
n��

P
�
,c��
n

�
Mn � ,dn

�
� x

�
 H�x�

with ,cn  cn�c and ,dn  dn � dcn�c	 The convergence to types theorem

shows precisely how a�ne transformations� weak convergence and types are

related	

�� In Tables �	�	� and �	�	� we de�ned a Weibull df for c� 	 � �	 For c  � it

is given by

F��x�  �� e�x
�

� x � � �
which is the df of a positive rv	 The Weibull distribution ��� as a limit

distribution for maxima� is concentrated on ���� ���

���x�  �� F���x� � x � � �

In the context of extreme value theory we follow the convention and refer to

�� as the Weibull distribution	 We hope to avoid any confusion by a clear

distinction between the two distributions whose extremal behaviour is com�

pletely di�erent	 Example �	�	�� and Proposition �	�	�� below show that F�
belongs to the maximum domain of attraction of the Gumbel distribution �	

� The proof of Theorem �	�	� uses similar techniques as the proof of The�

orems �	�	� and �	�	�	 Indeed� in the case Sn  X� & � � �&Xn we use the

characteristic function �Sn�t�  ��X �t��
n� whereas for partial maxima we di�

rectly work with the df FMn�x�  �FX �x��
n	 So not suprisingly do we obtain

functions like exp f�cjtj�g as possible limit chfs in the partial sum case�

whereas such functions appear as limits for the dfs of normalised maxima	

�� Though� for modelling purposes� the types of �� �� and �� are very di�er�

ent� from a mathematical point of view they are closely linked	 Indeed� one

immediately veri�es the following properties	 Suppose X � �� then

X has df �� �� lnX� has df � �� �X�� has df �� �

These relationships will appear again and again in various disguises through�

out the book	 �
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Figure �
�
� Evolution of the maxima Mn of standard exponential �top� and
Cauchy �bottom� samples� A sample path of �Mn� has a jump whenever Xn � Mn��

�we say that Mn is a record �� The graph seems to suggest that there occur more
records for the exponential than for the Cauchy rvs� However� the distribution of
the number of record times is approximately the same in both cases� see Theo�
rem ������ The qualitative di�erences in the two graphs are due to a few large
jumps for Cauchy distributed variables� Compared with those the smaller jumps are
so tiny that they �disappear� from the computer graph� notice the di�erence between
the vertical scales�

Denition ����� �Extreme value distribution and extremal rv�

The dfs ��� �� and � as presented in Theorem �	�	� are called standard ex�

treme value distributions� the corresponding rvs standard extremal rvs� Dfs of

the types of ��� �� and � are extreme value distributions� the corresponding

rvs extremal rvs� �

By Theorem �	�	�� the extreme value distributions are precisely the max�

stable distributions	 Hence if X is an extremal rv it satis�es ��	��	 In partic�

ular� the three cases in Theorem �	�	� correspond to

Fr�echet� Mn
d
 n���X

Weibull� Mn
d
 n����X

Gumbel� Mn
d
 X & lnn 	
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Example ����� �Maxima of exponential rvs�

See also Figures �	�	� and �	�	�	 Let �Xi� be a sequence of iid standard

exponential rvs	 Then

P �Mn � lnn � x�  �P �X � x& lnn��n

 
�
�� n�� e�x

�n
	 exp

��e�x�  ��x� � x � R �

For comparison recall that for iid Gumbel rvs Xi�

P �Mn � lnn � x�  ��x� � x � R � �

Example ����
 �Maxima of Cauchy rvs�

See also Figures �	�	� and �	�	��	 Let �Xi� be a sequence of iid standard

Cauchy rvs	 The standard Cauchy distribution is absolutely continuous with

density

f�x�  
�
�
�
� & x�

����
� x � R �

By l�Hospital�s rule we obtain

lim
x��

F �x�

��x���
 lim

x��

f�x�

���x��
 lim

x��

�x�

� �� & x��
 � �

giving F �x� � ��x���	 This implies

P
�
Mn � nx

�

�
 

�
�� F

�nx

�

��n
 


�� �

nx
& o���

�n

	 exp
��x��

�
 ���x� � x � � � �

Notes and Comments

Theorem �	�	� marked the beginning of extreme value theory as one of the

central topics in probability theory and statistics	 The limit laws for maxima

were derived by Fisher and Tippett ����	 A �rst rigorous proof is due to

Gnedenko �����	 De Haan ����� subsequently applied regular variation as an

analytical tool	 His work has been of great importance for the development

of modern extreme value theory	 Weissman ����� provided a simpler version

of de Haan�s proof� variations of which are now given in most textbooks on

extreme value theory	
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��� Maximum Domains of Attraction and Norming

Constants

In the preceding section we identi�ed the extreme value distributions as the

limit laws for normalised maxima of iid rvs� see Theorem �	�	�	 This section

is devoted to the question�

Given an extreme value distribution H� what conditions on the df F imply

that the normalised maxima Mn converge weakly to H


Closely related to this question is the following�

How may we choose the norming constants cn � � and dn � R such that

c��
n �Mn � dn�

d	 H " ��	���

Can it happen that di�erent norming constants imply convergence to

di�erent limit laws


The last question can be answered immediately� the convergence to types

theorem �Theorem A�	�� ensures that the limit law is uniquely determined

up to a�ne transformations	

Before we answer the other questions recall from Section �	� how we

proceeded with the sums Sn  X� & � � �&Xn of iid rvs� we collected all those

dfs F in a common class for which the normalised sums Sn had the same

stable limit distribution	 Such a class is then called a domain of attraction

�De�nition �	�	��	 For maxima we proceed analogously	

Denition ����� �Maximum domain of attraction�

We say that the rv X �the df F of X� the distribution of X � belongs to the

maximum domain of attraction of the extreme value distribution H if there

exist constants cn � �� dn � R such that ��	��� holds� We write X � MDA�H�
�F � MDA�H��� �

Remark� Notice that the extreme value dfs are continuous on R� hence

c��
n �Mn � dn�

d	 H is equivalent to

lim
n��

P �Mn � cnx& dn�  lim
n��

Fn �cnx& dn�  H�x� � x � R � �

The following result is an immediate consequence of Proposition �	�	� and

will be used throughout the following sections	

Proposition ����� �Characterisation of MDA�H��

The df F belongs to the maximum domain of attraction of the extreme value

distribution H with norming constants cn � �� dn � R if and only if

lim
n��

nF �cnx& dn�  � lnH�x� � x � R �

When H�x�  � the limit is interpreted as �� �
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For every standard extreme value distribution we characterise its maximum

domain of attraction	 Using the concept of regular variation this is not too

di�cult for the Fr�echet distribution �� and the Weibull distribution ��� see

Sections �	�	� and �	�	�	 Recall that a distribution tail F is regularly varying

with index �	 for some 	 � �� we write F � R��� if

lim
x��

F �xt�

F �x�
 t�� � t � � �

The de�nition of regularly varying functions and those of their properties

most important for our purposes can be found in Appendix A�	�	 The inter�

ested reader may consult the monograph by Bingham� Goldie and Teugels ����

for an encyclopaedic treatment of regular variation	 The maximum domain of

attraction of the Gumbel distribution � is not so easily characterised� it con�

sists of dfs whose right tail decreases to zero faster than any power function	

This will be made precise in Section �	�	�	 If F has a density� simple su�cient

conditions for F to be in the maximum domain of attraction of some extreme

value distribution are due to von Mises	 We present them below for practical

�and historical� reasons	

The following concept de�nes an equivalence relation on the set of all dfs	

Denition ����� �Tail�equivalence�

Two dfs F and G are called tail�equivalent if they have the same right end�

point� i�e� if xF  xG� and

lim
x
xF

F �x��G�x�  c

for some constant � � c ��� �

We show that every maximum domain of attraction is closed with respect to

tail�equivalence� i	e	 for tail�equivalent F and G� F � MDA�H� if and only
if G � MDA�H�	 Moreover� for any two tail�equivalent distributions one can
take the same norming constants	 This will prove to be of great help for

calculating norming constants which� in general� can become a rather tedious

procedure	

Theorem �	�	� identi�es the max�stable distributions as limit laws for

a�nely transformed maxima of iid rvs	 The corresponding Theorem �	�	�

for sums identi�es the stable distributions as limit laws for centred and nor�

malised sums	 Sums are centred by their medians or by truncated means�

see Proposition �	�	�	 The sample maximum Mn is the empirical version

of the ��� n����quantile of the underlying df F 	 Therefore the latter is an

appropriate centring constant	 Quantiles correspond to the �inverse
 of a df�

which is not always well�de�ned �dfs are not necessarily strictly increasing�	

In the following de�nition we �x upon a left�continuous version	
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Denition ����� �Generalised inverse of a monotone function�

Suppose h is a non�decreasing function on R� The generalised inverse of h is

de�ned as

h��t�  inffx � R � h�x� � tg �
�We use the convention that the in�mum of an empty set is ��� �

Denition ����� �Quantile function�

The generalised inverse of the df F

F��t�  inffx � R � F �x� � tg � � � t � � �

is called the quantile function of the df F � The quantity xt  F��t� de�nes

the t�quantile of F � �

We have summarised some properties of generalised inverse functions in Ap�

pendix A�	�	
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�
� An �interesting� df F � its quantile function F� �left� and the cor�
responding function F���� x��� �right��

����� The Maximum Domain of Attraction of the Fr�echet

Distribution ���x� � exp
�
�x��

�
In this section we characterise the maximum domain of attraction of �� for

	 � �	 By Taylor expansion�
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�� ���x�  �� exp
��x��� � x�� � x	� �

hence the tail of �� decreases like a power law	 We ask�

How far away can we move from a power tail

and still remain in MDA����


We show that the maximum domain of attraction of �� consists of dfs F

whose right tail is regularly varying with index �		 For F � MDA���� the
constants dn can be chosen as � �centring is not necessary� and the cn by

means of the quantile function� more precisely by

cn  F���� n���  inf
�
x � R � F �x� � �� n��

�
 inf

�
x � R �

�
��F

�
�x� � n

�
��	���

 
�
��F

��
�n� �

Theorem ����� �Maximum domain of attraction of ���

The df F belongs to the maximum domain of attraction of ��� 	 � �� if and

only if F �x�  x��L�x� for some slowly varying function L�

If F � MDA����� then
c��
n Mn

d	 �� � ��	��

where the norming constants cn can be chosen according to �������

Notice that this result implies in particular that every F � MDA���� has an
in�nite right endpoint xF  �	 Furthermore� the norming constants cn form
a regularly varying sequence� more precisely� cn  n���L��n� for some slowly

varying function L�	

Proof� Let F � R�� for 	 � �	 By the choice of cn and regular variation�

F �cn� � n�� � n	� � ��	���

and hence F �cn�	 � giving cn 	�	 For x � ��

nF �cnx� � F �cnx�

F �cn�
	 x�� � n	� �

For x � �� immediately Fn�cnx� � Fn���	 �� since regular variation re�

quires F ��� � �	 By Proposition �	�	�� F � MDA����	
Conversely� assume that limn�� Fn�cnx & dn�  ���x� for all x � � and

appropriate cn � �� dn � R	 This leads to

lim
n��

Fn�c�ns	x& d�ns	�  ���s
� �x�  ���s

���x� � s � � � x � � �
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By the convergence to types theorem �Theorem A�	��

c�ns	�cn 	 s��� and
�
d�ns	 � dn

�
�cn 	 � �

Hence �cn� is a regularly varying sequence in the sense of De�nition A�	��� in

particular cn 	�	 Assume �rst that dn  �� then nF �cnx�	 x�� so that

F � R�� because of Proposition A�	��a�	 The case dn � � is more involved�
indeed one has to show that dn�cn 	 �	 If the latter holds one can repeat

the above argument by replacing dn by �	 For details on this� see Bingham

et al	 ����� Theorem �	��	�� or de Haan ������ Theorem �	�	�	 Resnick ������

Proposition �	�� contains an alternative argument	 �

We have found the answer to the above question�

F � MDA���� �� F � R��

Thus we have a simple characterisation of MDA����	 Notice that this class of

dfs contains �very heavy�tailed distributions
 in the sense that E�X���  �
for � � 		 Thus they may be appropriate distributions for modelling large

insurance claims and large �uctuations of prices� log�returns etc	

Von Mises found some easily veri�able conditions on the density of a

distribution for it to belong to some maximum domain of attraction	 The

following is a consequence of Proposition A�	��b�	

Corollary ����
 �Von Mises condition�

Let F be an absolutely continuous df with density f satisfying

lim
x��

x f�x�

F �x�
 	 � � � ��	���

then F � MDA����� �

The class of dfs F with regularly varying tail F is obviously closed with

respect to tail�equivalence �De�nition �	�	��	 The following result gives us

some insight into the structure of MDA����	 Besides this theoretical aspect�

it will turn out to be a useful tool for calculating norming constants	

Proposition ����� �Closure property of MDA�����

Let F and G be dfs and assume that F � MDA���� with norming constants

cn � �� i�e�
lim
n��

Fn �cnx�  ���x� � x � � � ��	���

Then
lim
n��

Gn �cnx�  ���cx� � x � � �

for some c � � if and only if F and G are tail�equivalent with

lim
x��

F �x��G�x�  c� �
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Proof of the su�ciency� For the necessity part see Resnick ������ Proposi�

tion �	��	 Suppose that F �x� � q G�x� as x	� for some q � �	 By Propo�

sition �	�	� the limit relation ��	��� is equivalent to

lim
n��

nF �cnx�  x��

for all x � �	 For such x� cnx	� as n	� and hence� by tail�equivalence�

nG �cnx� � nq�� F �cnx�	 q�� x�� �

i	e	 again by Proposition �	�	� �

lim
n��

Gn �cnx�  exp

�
�

�
q���x

����
 ��

�
q���x

�
�

Now set c  q���	 �

By Theorem �	�	�� F � MDA���� if and only if F � R��	 The representation

theorem for regularly varying functions �Theorem A�	�� implies that every

F � MDA���� is tail�equivalent to an absolutely continuous df satisfying
��	���	 We can summarize this as follows�

MDA ���� consists of dfs satisfying the von Mises

condition ��	��� and their tail�equivalent dfs	

We conclude this section with some examples	

Example ������ �Pareto�like distributions�

� Pareto

� Cauchy

� Burr

� Stable with exponent 	 � � 	

The respective densities or dfs are given in Table �	�	�� for stable distributions

see De�nition �	�	�	 All these distributions are Pareto�like in the sense that

their right tails are of the form

F �x� � Kx�� � x	� �

for some K� 	 � �	 Obviously F � R�� which implies that F � MDA����
and as norming constants we can choose cn  �Kn����� see Theorem �	�	�	

Then

�Kn�����Mn
d	 �� �

The Cauchy distribution was treated in detail in Example �	�	�	 �
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Example ������ �Loggamma distribution�

The loggamma distribution has tail

F �x� � 	
��

� ���
�lnx�
��x�� � x	� � 	� � � � � ��	���

Hence F � R�� which is equivalent to F � MDA����	 According to Propo�
sition �	�	� we choose cn by means of the tail�equivalent right�hand side of

��	���	 On applying ��	��� and taking logarithms we �nd we have to solve

	 ln cn � �� � �� ln ln cn � ln�	
���� ����  lnn � ��	���

The solution satis�es

ln cn  	�� �lnn& ln rn� �

where ln rn  o�lnn� as n	�	 We substitute this into equation ��	��� and
obtain

ln rn  �� � �� ln�	�� lnn�� & o����� & ln
�
	
���� ���

�
�

This gives the norming constants

cn �
�
�� �������lnn�
��n

����
�

Hence �
�� �������lnn�
��n

�����
Mn

d	 �� � �

����� The Maximum Domain of Attraction of the Weibull

Distribution ���x� � exp f���x��g

In this section we characterise the maximum domain of attraction of �� for

	 � �	 An important� though not at all obvious fact is that all dfs F in

MDA���� have �nite right endpoint xF 	 As was already indicated in Re�

mark � of Section �	�� �� and �� are closely related� indeed

��
��x��

�
 ���x� � x � � �

Therefore we may expect that also MDA���� and MDA���� will be closely

related	 The following theorem con�rms this	
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Theorem ������ �Maximum domain of attraction of ���

The df F belongs to the maximum domain of attraction of ��� 	 � �� if

and only if xF �� and F �xF � x���  x��L�x� for some slowly varying

function L�

If F � MDA����� then

c��
n �Mn � xF �

d	 �� � ��	���

where the norming constants cn can be chosen as cn  xF � F���� n���

and dn  xF �

Sketch of the proof� The necessity part is di�cult� see Resnick ������

Proposition �	��	 Su�ciency can be shown easily by exploiting the link be�

tween �� and ��� see Remark � in Section �	�	 So suppose xF � � and

F �xF � x���  x��L�x� and de�ne

F��x�  F
�
xF � x��

�
� x � � � ��	���

then F � � R�� so that by Theorem �	�	�� F� � MDA���� with norming con�
stants c�n  F�

� ��� n��� and d�n  �	 The remaining part of the proof of

su�ciency is now straightforward	 Indeed� F� � MDA���� implies that for
x � ��

Fn
� �c

�
nx�	 ���x� �

i	e	

Fn �xF � �c�nx���
�	 exp

��x��
�
�

Substitute x  �y��� then

Fn �xF & y�c�n�	 exp f���y��g � y � � � ��	���

Finally�

c�n  F�
�

�
�� n��

�
 inf

�
x � R � F �xF � x��� � �� n��

�
 inf

n
�xF � u�

��
� F �u� � �� n��

o
 

�
xF � inf

�
u � F �u� � �� n��

����

 
�
xF � F���� n���

���
�

completing the proof because of ��	���	 �
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Consequently�

F � MDA ���� �� xF �� � F
�
xF � x��

� � R�� �

Thus MDA���� consists of dfs F with support bounded to the right	 They

may not be the best choice for modelling extremal events in insurance and

�nance� precisely because xF ��	 Though clearly in all circumstances in
practice there is a �perhaps ridiculously high� upper limit� we may not want

to incorporate this extra parameter xF in our model	 Often distributions with

xF  � should be preferred since they allow for arbitrarily large values in

a sample	 Such distributions typically belong to MDA���� or MDA���	 In

Chapter � we shall discuss various such examples	

In the previous section we found it convenient to characterise membership

in MDA���� via the density of a df� see Corollary �	�	�	 Having in mind the

transformation ��	���� Corollary �	�	� can be translated for F � MDA����	
Corollary ������ �Von Mises condition�

Let F be an absolutely continuous df with density f which is positive on some

�nite interval �z� xF �� If

lim
x
xF

�xF � x� f�x�

F �x�
 	 � � � ��	���

then F � MDA����� �

Applying the transformation ��	���� Proposition �	�	� can be reformulated as

follows	

Proposition ������ �Closure property of MDA �����

Let F and G be dfs with right endpoints xF  xG �� and assume that F �
MDA���� with norming constants cn � �� i�e�

lim
n��

Fn �cnx& xF �  ���x� � x � � �

Then

lim
n��

Gn �cnx& xF �  ���cx� � x � � �

for some c � � if and only if F and G are tail�equivalent with

lim
x
xF

F �x��G�x�  c�� � �

Notice that the representation theorem for regularly varying functions �Theo�

rem A�	�� implies that every F � MDA���� is tail�equivalent to an absolutely
continuous df satisfying ��	���	 We summarize this as follows�
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MDA���� consists of dfs satisfying the von Mises

condition ��	��� and their tail�equivalent dfs	

We conclude this section with some examples of prominent MDA�����

members	

Example ������ �Uniform distribution on ��� ���

Obviously� xF  � and F ��� x���  x�� � R��	 Then by Theorem �	�	��

we obtain F � MDA����	 Since F ��� n���  n��� we choose cn  n��	 This

implies in particular

n �Mn � �� d	 �� � �

Example ������ �Power law behaviour at the �nite right endpoint�

Let F be a df with �nite right endpoint xF and distribution tail

F �x�  K �xF � x�� � xF �K���� � x � xF � K� 	 � � �

By Theorem �	�	�� this ensures that F � MDA����	 The norming constants
cn can be chosen such that F �xF � cn�  n��� i	e	 cn  �nK�

���� and� in

particular�

�nK���� �Mn � xF �
d	 �� � �

Example ������ �Beta distribution�

The beta distribution is absolutely continuous with density

f�x�  
� �a& b�

� �a�� �b�
xa����� x�b�� � � � x � � � a � b � � �

Notice that f��� x��� is regularly varying with index ��b� �� and hence�
by Karamata�s theorem �Theorem A�	���

F ��� x���  

Z �

��x��

f�y� dy  

Z �

x

f��� y���y�� dy � x��f��� x��� �

Hence F ��� x��� is regularly varying with index �b and

F �x� � � �a& b�

� �a�� �b& ��
��� x�b � x 
 � �

Thus the beta df is tail�equivalent to a df with power law behaviour at

xF  �	 By Proposition �	�	� the norming constants can be determined by

this power law tail which �ts into the framework of Example �	�	�� above	 �
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����� The Maximum Domain of Attraction of the Gumbel

Distribution ��x� � exp f� expf�xgg

Von Mises Functions

The maximum domain of attraction of the Gumbel distribution � covers

a wide range of dfs F 	 Although there is no direct link with regular variation

as in the maximum domains of attraction of the Fr�echet and Weibull distrib�

ution� we will �nd extensions of regular variation which allow for a complete

characterisation of MDA���	

A Taylor expansion argument yields

�� ��x� � e�x � x	� �

hence ��x� decreases to zero at an exponential rate	 Again the following

question naturally arises�

How far away can we move from an exponential tail

and still remain in MDA���


We will see in the present and the next section that MDA��� contains dfs with

very di�erent tails� ranging from moderately heavy �such as the lognormal dis�

tribution� to light �such as the normal distribution�	 Also both cases xF ��
and xF  � are possible	 Before we give a general answer to the above ques�

tion� we restrict ourselves to some absolutely continuous F � MDA��� which
have a simple representation� proposed by von Mises	 These distributions

provide an important building block of this maximum domain of attraction�

and therefore we study them in detail	 We will see later �Theorem �	�	�� and

Remark � that one only has to consider a slight modi�cation of the von

Mises functions in order to characterise MDA��� completely	

Denition �����
 �Von Mises function�

Let F be a df with right endpoint xF � �� Suppose there exists some z � xF
such that F has representation

F �x�  c exp

�
�

Z x

z

�

a�t�
dt

�
� z � x � xF � ��	��

where c is some positive constant� a��� is a positive and absolutely con�

tinuous function �with respect to Lebesgue measure� with density a� and

limx
xF a��x�  ��

Then F is called a von Mises function� the function a��� the auxiliary function
of F � �



��� Maximum Domains of Attraction and Norming Constants ��


Remark� �� Relation ��	�� should be compared with the Karamata rep�

resentation of a regularly varying function� see Theorem A�	�	 Substituting

into ��	�� the function a�x�  x���x� such that ��x�	 	 � ����� as x	��
��	�� becomes a regularly varying tail with index �		 We will see later �see
Remark � below� that the auxiliary function of a von Mises function with

xF  � satis�es a�x��x	 �	 It immediately follows that F �x� decreases to

zero much faster than any power law x��	 �

We give some examples of von Mises functions	

Example ������ �Exponential distribution�

F �x�  e��x � x � � � � � � �

F is a von Mises function with auxiliary function a�x�  ���	 �

Example ������ �Weibull distribution�

F �x�  exp f�c x�g � x � � � c � � � � �

F is a von Mises function with auxiliary function

a�x�  c�����x��� � x � � � �

Example ������ �Erlang distribution�

F �x�  e��x
n��X
k��

��x�k

k�
� x � � � � � � � n � N �

F is a von Mises function with auxiliary function

a�x�  

n��X
k��

�n� ���
�n� k � ��� �

��k��� x�k � x � � �

Notice that F is the � �n� �� df	 �

Example ������ �Exponential behaviour at the �nite right endpoint�

Let F be a df with �nite right endpoint xF and distribution tail

F �x�  K exp

�
� 	

xF � x

�
� x � xF � 	 �K � � �

F is a von Mises function with auxiliary function

a�x�  
�xF � x�

�

	
� x � xF �

For xF  �� 	  � and K  e we obtain for example

F �x�  exp

�
� x

�� x

�
� � � x � � � �
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Example ������ �Di�erentiability at the right endpoint�

Let F be a df with right endpoint xF � � and assume there exists some

z � xF such that F is twice di�erentiable on �z� xF � with positive density

f  F � and F ���x� � � for z � x � xF 	 Then it is not di�cult to see that F

is a von Mises function with auxiliary function a  F�f if and only if

lim
x
xF

F �x�F ���x��f��x�  �� � ��	���

Indeed� let z � x � xF and set Q�x�  � lnF �x� and a�x�  ��Q��x�  

F �x��f�x� � �	 Hence F has representation ��	��	 Furthermore�

a��x�  �F �x�F ���x�

f��x�
� �

and ��	��� is equivalent to a��x�	 � as x 
 xF 	
Condition ��	��� applies to many distributions of interest� including the nor�

mal distribution� see Example �	�	��	 �

In Remark � above we gained some indication that regular variation does not

seem to be the right tool for describing von Mises functions	 Recall the notion

of rapidly varying function from De�nition A�	��	 In particular� F � R��

means that

lim
x��

F �xt�

F �x�
 

�
� if t � � �

� if � � t � � �

It is mentioned in Appendix A� that some of the important results for regu�

larly varying functions can be extended to R�� in a natural way� see Theo�

rem A�	��	

Proposition ������ �Properties of von Mises functions�

Every von Mises function F is absolutely continuous on �z� xF � with posi�

tive densitiy f � The auxiliary function can be chosen as a�x�  F �x��f�x��

Moreover� the following properties hold�

�a� If xF  �� then F � R�� and

lim
x��

xf�x�

F �x�
 � � ��	���

�b� If xF ��� then F �xF � x��� � R�� and

lim
x
xF

�xF � x�f�x�

F �x�
 � � ��	���
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Remarks� �� It follows from ��	��� that limx�� x��a�x�  �� and from

��	��� that a�x�  o�xF � x�  o��� as x 
 xF 	

�� Note that a���x�  f�x��F �x� is the hazard rate of F 	 �

Proof� From representation ��	�� we obtain

d

dx

�� lnF �x��  f�x�

F �x�
 

�

a�x�
� z � x � xF �

�a� Since a��x�	 � as x	� the Ces)aro mean of a� also converges�

lim
x��

a�x�

x
 lim

x��

�

x

Z x

z

a��t� dt  � � ��	���

This implies ��	���	 F � R�� follows from an application of Theorem

A�	���b�	

�b� We have

lim
x
xF

a�x�

xF � x
 lim

x
xF
�

Z xF

x

a��t�

xF � x
dt

 lim
s��

�

s

Z s

�

a� �xF � t� dt

by change of variables	 Since a��xF � t�	 � as t � �� the last limit tends to �	
This implies ��	���	 F �xF � x��� � R�� follows as above	 �

Now we can show that von Mises functions belong to the maximum domain

of attraction of the Gumbel distribution	 Moreover� the speci�c form of F

allows to calculate the norming constants cn from the auxiliary function	

Proposition ������ �Von Mises functions and MDA����

Suppose the df F is a von Mises function� Then F � MDA���� A possible

choice of norming constants is

dn  F���� n��� and cn  a�dn� � ��	���

where a is the auxiliary function of F �

Proof� Representation ��	�� implies for t � R and x su�ciently close to xF
that

F �x& t a�x��

F �x�
 exp

�
�

Z x�t a�x�

x

�

a�u�
du

�
�

We set v  �u� x��a�x� and obtain

F �x& t a�x��

F �x�
 exp

�
�

Z t

�

a�x�

a�x& v a�x��
dv

�
� ��	���
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We show that the integrand converges locally uniformly to �	 For given � � �

and x � x�����

ja�x& va�x�� � a�x�j  
					
Z x�va�x�

x

a��s� ds

					 � �jvja�x� � �jtja�x� �

where we used a��x�	 � as x 
 xF 	 This implies for x � x���� that				a�x& va�x��

a�x�
� �

				 � �jtj �

The right�hand side can be made arbitrarily small� hence

lim
x
xF

a�x�

a�x& v a�x��
 � � ��	���

uniformly on bounded v�intervals	 This together with ��	��� yields

lim
x
xF

F �x& t a�x��

F �x�
 e�t ��	���

uniformly on bounded t�intervals	 Now choose the norming constants dn  

���F ���n� and cn  a�dn�	 Then ��	��� implies

lim
n��

nF �dn & tcn�  e�t  � ln��t� � t � R �

An application of Proposition �	�	� shows that F � MDA���	 �

This result �nishes our study of von Mises functions	

Characterisations of MDA���

Von Mises functions do not completely characterise the maximum domain of

attraction of �	 However� a slight modi�cation of the de�ning relation ��	��

of a von Mises function yields a complete characterisation of MDA���	

For a proof of the following result we refer to Resnick ������ Corollary �	�

and Proposition �	�	

Theorem ������ �Characterisation I of MDA����

The df F with right endpoint xF � � belongs to the maximum domain of

attraction of � if and only if there exists some z � xF such that F has rep�

resentation

F �x�  c�x� exp

�
�

Z x

z

g�t�

a�t�
dt

�
� z � x � xF � ��	���

where c and g are measurable functions satisfying c�x�	 c � �� g�x�	 � as

x 
 xF � and a�x� is a positive� absolutely continuous function �with respect to
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Lebesgue measure� with density a��x� having limx
xF a��x�  ��

For F with representation ��	��� we can choose

dn  F���� n��� and cn  a�dn�

as norming constants�

A possible choice for the function a is

a�x�  

Z xF

x

F �t�

F �x�
dt � x � xF � ��	��

�

Motivated by von Mises functions� we call the function a in ��	��� an auxiliary

function for F 	

Remarks� � Representation ��	��� is not unique� there being some trade�o�

possible between the functions c and g	 The following representation can be

employed alternatively� see Resnick ������ Proposition �	�

F �x�  c�x� exp

�
�

Z x

z

�

a�t�
dt

�
� z � x � xF � ��	���

for functions c and a with properties as in Theorem �	�	��	

�� For a rv X the function a�x� as de�ned in ��	�� is nothing but the mean

excess function

a�x�  E�X � x j X � x� � x � xF �

see also Section �	 for a discussion on the use of this function	 In Chapter �

the mean excess function will turn out to be an important tool for statistical

�tting of extremal event data	 �

Another characterisation of MDA��� was suggested in the proof of Proposi�

tion �	�	��	 There it was shown that every von Mises function satis�es ��	����

i	e	 there exists a positive function ea such that
lim
x
xF

F �x & tea�x��
F �x�

 e�t � t � R � ��	���

Theorem ������ �Characterisation II of MDA����

The df F belongs to the maximum domain of attraction of � if and only if

there exists some positive function ea such that ��	��� holds� A possible choice

is ea  a as given in ��	��� �
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The proof of this result is for instance to be found in de Haan ������ Theo�

rem �	�	�	

Now recall the notion of tail�equivalence �De�nition �	�	��	 Similarly to

the maximum domains of attraction of the Weibull and Fr�echet distribution�

tail�equivalence is an auxiliary tool to decide whether a particular distrib�

ution belongs to the maximum domain of attraction of � and to calculate

the norming constants	 In MDA��� it is even more important because of the

large variety of tails F 	

Proposition �����
 �Closure property of MDA��� under tail�equivalence�

Let F and G be dfs with the same right endpoint xF  xG and assume that

F � MDA��� with norming constants cn � � and dn � R� i�e�

lim
n��

Fn �cnx& dn�  ��x� � x � R � ��	���

Then

lim
n��

Gn �cnx& dn�  ��x& b� � x � R �

if and only if F and G are tail�equivalent with

lim
x
xF

F �x��G�x�  eb �

Proof of the su�ciency� For a proof of the necessity see Resnick ������

Proposition �	��	 Suppose that F �x� � cG�x� as x 
 xF for some c � �	 By

Proposition �	�	� the limit relation ��	��� is equivalent to

lim
n��

nF �cnx& dn�  e�x � x � R �

For such x� cnx& dn 	 xF and hence� by tail�equivalence�

nG �cnx& dn� � nc��F �cnx& dn�	 c��e�x � x � R �

Therefore by Proposition �	�	��

lim
n��

Gn �cnx& dn�  exp
n
�e��x�ln c�

o
 ��x& ln c� � x � R �

Now set ln c  b	 �

The results of this section yield a further complete characterisation of

MDA���	

MDA��� consists of von Mises functions

and their tail�equivalent dfs	
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This statement and the examples discussed throughout this section show

that MDA��� consists of a large variety of distributions whose tails can be

very di�erent	 Tails may range from moderately heavy �lognormal� heavy�

tailed Weibull� to very light �exponential� dfs with support bounded to the

right�	 Because of this� MDA��� is perhaps the most interesting among all

maximum domains of attraction	 As a natural consequence of the variety of

tails in MDA���� the norming constants also vary considerably	 Whereas in

MDA���� and MDA���� the norming constants are calculated by straight�

forward application of regular variation theory� more advanced results are

needed for MDA���	 A complete theory has been developed by de Haan in�

volving certain subclasses of R�� and R�� see de Haan ����� or Bingham

et al	 ����� Chapter �	 Various examples below will illustrate the usefulness

of results like Proposition �	�	��	

Example ������ �Normal distribution�

See also Figure �	�	��	 Denote by � the df and by � the density of the standard

normal distribution	 We �rst show that � is a von Mises function and check

condition ��	���	 An application of l�Hospital�s rule to ��x���x����x�� yields

Mill�s ratio� ��x� � ��x��x	 Furthermore ���x�  �x��x� � � and

lim
x��

��x� ���x�

���x�
 �� �

Thus � � MDA��� by Example �	�	�� and Proposition �	�	��	 We now cal�
culate the norming constants	 Use Mill�s ratio again�

��x� � ��x�

x
 

�p
�� x

e�x
��� � x	� � ��	���

and interpret the right�hand side as the tail of some df G	 Then by Proposi�

tion �	�	��� � and G have the same norming constants cn and dn	 According

to ��	���� dn  G���� n���	 Hence look for a solution of � lnG�dn�  lnn�
i	e	

�

�
d�n & ln dn &

�

�
ln ��  lnn � ��	���

Then a Taylor expansion in ��	��� yields

dn  �� lnn�
��� � ln lnn& ln �

��� lnn����
& o

�
�lnn�����

�
as a possible choice for dn	 Since we can take a�x�  ��x����x� we have that

a�x� � x�� and therefore

cn  a �dn� � �� lnn����� �

As the cn are unique up to asymptotic equivalence� we choose
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�
�� Dfs of the normalised maxima of n standard normal rvs and the
Gumbel df �top�� In the bottom 
gure the relative error of this approximation for
the tail is illustrated� The rate of convergence appears to be very slow�
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cn  �� lnn�
���� �

We conclude that
p
� lnn


Mn �

p
� lnn&

ln lnn& ln �

��� lnn����

�
d	 � � ��	��

Note that cn 	 �� i	e	 the distribution of Mn becomes less spread around dn
as n increases	 �

Similarly� it can be proved that the gamma distribution also belongs to

MDA���	 The norming constants are given in Table �			

Another useful trick to calculate the norming constants is via monotone

transformations	 If g is an increasing function and ex  g�x�� then obviouslyfMn  max
� eX�� � � � � eXn

�
 g �Mn� �

If X � MDA��� with
lim
n��

P �Mn � cnx& dn�  ��x� � x � R �

then
lim
n��

P
�fMn � g �cnx& dn�

�
 ��x� � x � R �

In some cases� g may be expanded in a Taylor series about dn and just

linear terms su�ce to give the limit law for fMn� with changed constants

,cn  cng
��dn� and ,dn  g�dn�	 We apply this method to the lognormal dis�

tribution	

Example ������ �Lognormal distribution�

Let X be a standard normal rv and g�x�  e���x�  � R� � � �	 TheneX  g�X�  e���X

de�nes a lognormal rv	 Since X � MDA��� we obtain
lim
n��

P
�fMn � e����cnx�dn�

�
 ��x� � x � R �

where cn� dn are the norming constants of the standard normal distribution

as calculated in Example �	�	��	 This implies

lim
n��

P
�
e����dn fMn � � & �cnx& o �cn�

�
 ��x� � x � R �

Since cn 	 � it follows that

e����dn

�cn

�fMn � e���dn
�

d	 � �

so that eX � MDA��� with norming constantsecn  �cne
���dn � edn  e���dn �

Explicit expressions for the norming constants of the lognormal distribution

can be found in Table �			 �
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Further Properties of Distributions in MDA���

In the remainder of this section we collect some further useful facts about

distributions in MDA���	

Corollary ������ �Existence of moments�

Assume that the rv X has df F � MDA��� with in�nite right endpoint�

Then F � R��� In particular� E�X��� �� for every 	 � �� where X�  

max��� X��

Proof� Every F � MDA��� is tail�equivalent to a von Mises function	 If
xF  �� the latter have rapidly varying tails� see Proposition �	�	��a��
which also implies the statement about the moments� see Theorem A�	���a�	

�

In Section �	�	� we showed that the maximum domains of attraction of ��
and �� are linked in a natural way	 Now we show that MDA���� can be

embedded in MDA���	

Example ������ �Embedding MDA���� in MDA����

Let X have df F � MDA���� with norming constants cn	 De�ne

X�  ln�� �X�

with df F �	 By Proposition �	�	� and Theorem �	�	�� F � MDA���� if and
only if

lim
n��

nF �cnx�  lim
n��

F �cnx�

F �cn�
 x�� � x � � �

This implies that

lim
n��

F �
�
	��x& ln cn

�
F � �ln cn�

 lim
n��

F
�
cn exp

�
	��x

��
F �cn�

 e�x � x � R �

Hence F � � MDA��� with norming constants c�n  	�� and d�n  ln cn	 As

auxiliary function one can take

a��x�  

Z �

x

F ��y�

F ��x�
dy �

Example ������ �Closure of MDA��� under logarithmic transformations�

Let X have df F � MDA��� with xF  � and norming constants cn� dn�

chosen according to Theorem �	�	��	 De�neX� and F � as above	 We intend to

show that F � � MDA��� with norming constants d�n  ln dn and c�n  cn�dn	

Since a��x� 	 �� ��	��� holds� and since dn  F���� n��� 	 �� it follows
that
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cn
dn

 
a�dn�

dn
	 � �

Moreover�

F � �c�nx& d�n�  F


exp

�
cn
dn

x

�
dn

�

 F


dn


� &

cn
dn

x& o


cn
dn

���
 F �cnx& dn & o �cn��

� F �cnx& dn� � n��e�x � n	� �

where we applied the uniformity of weak convergence to a continuous limit	

The result follows from Proposition �	�	�	 �

Example ������ �Subexponential distributions and MDA����

Goldie and Resnick ����� characterise the dfs F that are both subexponen�

tial �we write F � S� see De�nition �	�	�� and in MDA���	 Starting from the
representation ��	��� for F � MDA���� they give necessary and su�cient con�
ditions for F � S	 In particular� limx�� a�x�  � is necessary but not su��

cient for F � MDA����S	 A simple su�cient condition for F � MDA��� � S
is that a is eventually non�decreasing and that there exists some t � � such

that

lim inf
x��

a�tx�

a�x�
� � � ��	��

This condition is easily checked for the following distributions which are all

von Mises functions and hence in MDA����

� Benktander�type�I

F �x�  ��&����	� lnx� expf����lnx��&�	&�� lnx�g � x � � � 	 � � � � �

Here one can choose

a�x�  
x

	& �� lnx
� x � � �

� Benktander�type�II

F �x�  e��
 x����
� exp

�
�	

�
x


�
� x � � � 	 � � � � � � � � �

with auxiliary function

a�x�  
x��


	
� x � � �
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� Weibull

F �x�  e�c x
�

� x � � � � � � � � � c � � �

with auxiliary function

a�x�  c�����x��� � x � � �

� Lognormal

with auxiliary function

a�x�  
������lnx� ���x

������lnx� ��
� ��x

lnx� 
� x	� �

The critical cases occur when F is in the tail close to an exponential distrib�

ution	 For example� let

F �x� � exp f�x�lnx��g � x	� �

For 	 � � we have F � MDA��� � S in view of Theorem �	� in Goldie and

Resnick ������ whereas for 	 � �� F � MDA��� but F �� S� see Example �		�	
�

Notes and Comments

There exist many results on the quality of convergence in extreme value limit

theory	 Topics include the convergence of moments� local limit theory and the

convergence of densities� large deviations and uniform rates of convergence	

We refer to Chapter � of Resnick ����� for a collection of such results	

Statistical methods based on extreme value theory are discussed in detail

in Chapter �	 Various estimation methods will depend on an application of

the Fisher�Tippett theorem and related results	 The quality of those approx�

imations will be crucial	

Figure �	�	� suggests a fast rate of convergence in the case of the exponen�

tial distribution� already for n  � the distribution of the normalised maxi�

mum is quite close to �� while for n  �� they are almost indistinguishable	

Indeed� it has been shown by Hall and Wellner ����� that for F �x�  �� e�x�

x � ��

sup
x�R

		P �Mn � lnn � x�� exp��e�x
�		 � n��

�
� & n��

�
e�� �

In contrast to this rapid rate of convergence� the distribution of the nor�

malised maximum of a sample of normal rvs converges extremely slowly to

its limit distribution �� see Figure �	�	��	 This slow rate of convergence also
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depends on the particular choice of cn and dn	 Hall ����� obtained an optimal

rate by choosing cn and dn as solutions to

ncn��c
��
n �  � and dn  c��

n �

where � denotes the standard normal density	 Then there exist constants

� � c � C � � such that
c

lnn
� sup

x�R

		P �Mn � cnx& dn�� expf�e�xg		 � C

lnn
� n � � �

Leadbetter� Lindgren and Rootz�en ���� and Resnick ����� derive various

rates for F � MDA���� and F � MDA���	 They also give numerical values
for some explicit examples	 See also Balkema and de Haan ����� Beirlant and

Willekens ����� de Haan and Resnick ������ Goldie and Smith ������ Smith

����� and references therein	

In order to discuss the next point� we introduce a parametric family

�H����R of dfs containing the standard extreme value distributions� namely

H�  

�������
���� if � � ��

� if �  ��

����� if � � �	

The df H� above is referred to as the generalised extreme value distribution

with parameter �� a detailed discussion is given in Section �		 The condition

F � MDA�H�� then yields the so�called ultimate approximation

Fn �cnx& dn� � H��x�

for appropriate norming constants cn � � and dn � R	 One method for

improving the rate of convergence in the latter limit relation was already

discussed in the classical Fisher�Tippett paper ����	 The basic idea is the

following� the parameter � can be obtained as a limit	 For instance in the

Gumbel case �  �� F has representation ��	��� with a��x�	 � as x 	 �	
The penultimate approximation now consists of replacing � by �n  a��dn�

leading to the relation

Fn �cnx& dn� � H�n�x� �

Typically �n � � so that in the Gumbel case� the penultimate approximation
is based on a suitable Weibull ��n � �� or Fr�echet ��n � �� approximation	

The optimal rate of convergence O
�
�lnn���

�
for maxima of iid normal rvs in

the ultimate approximation is improved to O
�
�lnn���

�
in the penultimate

case� as shown in Cohen �����	 In special cases� further improvements can
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be given	 For instance� using expansions of the df of normal maxima� Cohen

����� suggests

�n


x

bn
& bn � �

bn

�
� ��x�


� & e�x

x�

 lnn

�
�

where b�n � lnn	 Further information is to be found in Joe ����� and Reiss
�����	

��� The Generalised Extreme Value Distribution and

the Generalised Pareto Distribution

In Section �	� we have shown that the standard extreme value distributions�

together with their types� provide the only non�degenerate limit laws for

a�nely transformed maxima of iid rvs	 As already mentioned in the Notes

and Comments of the previous section� a one�parameter representation of

the three standard cases in one family of dfs will turn out to be useful	 They

can be represented by introducing a parameter � so that

�  	�� � � corresponds to the Fr�echet distribution �� �

�  � corresponds to the Gumbel distribution � �

�  �	�� � � corresponds to the Weibull distribution �� �

The following choice is by now widely accepted as the standard representation	

Denition ����� �Jenkinson�von Mises representation of the extreme value

distributions� the generalised extreme value distribution �GEV��

De�ne the df H� by

H��x�  

��� exp
n
� �� & � x�

����
o

if � � � �

exp f� expf�xgg if �  � �

where � & � x � � �
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Hence the support of H� corresponds to

x � ���� for � � � �

x � ���� for � � � �

x � R for �  � �

H� is called a standard generalised extreme value distribution �GEV�	 One

can introduce the related location�scale family H����� by replacing the argu�

ment x above by �x� ��
 for  � R � 
 � �� The support has to be adjusted

accordingly� We also refer to H����� as GEV� �

We consider the df H� as the limit of H� for � 	 �	 With this interpretation

H��x�  exp
n
� �� & � x�

����
o

� � & � x � � �

serves as a representation for all � � R	 The densities of the standard GEV

for �  ��� �� � are shown in Figure �	�		
The GEV provides a convenient unifying representation of the three ex�

treme value types Gumbel� Fr�echet and Weibull	 Its introduction is mainly

motivated by statistical applications� we refer to Chapter � where this will

become transparent	 There GEV �tting will turn out to be one of the funda�

mental concepts	

The following theorem is one of the basic results in extreme value theory	

In a concise analytical way� it gives the essential information collected in the

previous section on maximum domains of attraction	 Moreover� it constitutes

the basis for numerous statistical techniques to be discussed in Chapter �	

First recall the notion of the quantile function F� of a df F and de�ne

U�t�  F���� t��� � t � � �

Theorem ����� �Characterisation of MDA�H���

For � � R the following assertions are equivalent	

�a� F � MDA�H���

�b� There exists a positive� measurable function a��� such that for �&�x � ��

lim
u
xF

F �u& xa�u��

F �u�
 

�
�� & �x����� if � � � �

e�x if �  � �
��	��

�c� For x� y � �� y � ��

lim
s��

U�sx�� U�s�

U�sy�� U�s�
 

���������
x� � �
y� � � if � � � �

lnx

ln y
if �  � �

��	��
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Sketch of the proof� Below we give only the main ideas in order to show

that the various conditions enter very naturally	 Further details are to be

found in the literature� for instance in de Haan �����	

�a���b� For �  � this is Theorem �	�	��	
For � � � we have H��x�  ���	

���x & 	�� for 	  ���	 By Theorem �	�	��

�a� is then equivalent to F � R��	 By the representation theorem for regu�

larly varying functions �Theorem A�	��� for some z � ��

F �x�  c�x� exp

�
�

Z x

z

�

a�t�
dt

�
� z � x �� �

where c�x�	 c � � and a�x��x	 	�� as x	� locally uniformly	 Hence

lim
u��

F �u& xa�u��

F �u�
 

�
� &

x

	

���
�

which is ��	��	 If �b� holds� choose dn  ���F �
��n�  U�n�� then

��F �dn� � n �

and with u  dn in ��	����
� &

x

	

���
 lim

n��

F �dn & xa �dn��

F �dn�
 lim

n��
nF �dn & x a�dn�� �

whence by Proposition �	�	�� F � MDA�H�� for �  	��	

The case � � � can be treated similarly	

�b���c� We restrict ourselves to the case � � �� the proof for �  � being

analogous	 For simplicity� we assume that F is continuous and increasing on

���� xF �	 Set s  ��F �u�� then ��	�� translates into

As�x�  
�
sF �U�s� & xa�U�s��

��� 	 �� & �x���� � s	� �

Now for every s � �� As�x� is decreasing and for s	� converges to a con�

tinuous function	 Then because of Proposition A�	�� also A�s �t� converges

pointwise to the inverse of the corresponding limit function� i	e	

lim
s��

U�st�� U�s�

a�U�s��
 

t� � �
�

� ��	�

Now ��	�� is obtained by using ��	� for t  x and t  y and taking the

quotient	 The proof of the converse can be given along the same lines	 �

Remarks� �� Condition ��	�� has an interesting probabilistic interpretation	

Indeed� let X be a rv with df F � MDA�H��� then ��	�� reformulates as



��� �� Fluctuations of Maxima

lim
u
xF

P


X � u

a�u�
� x

				X � u

�
 

�
�� & �x����� if � � � �

e�x if �  � �
��	��

Hence ��	�� gives a distributional approximation for the scaled excesses over

the �high� threshold u	 The appropriate scaling factor is a�u�	 This inter�

pretation will turn out to be crucial in many applications� see for instance

Section �	�	

�� In Section �		 we show how a reformulation of relation ��	�� immedi�

ately leads to an estimation procedure for quantiles outside the range of the

data	 A special case of ��	�� is also used to motivate the Pickands estimator

of �� see Section �		�	

�� In the proof of Theorem �		� there is implicitly given the result that

F � MDA�H�� for some � � R if and only if there exists some positive

function a���� such that

lim
s��

U�st�� U�s�

a��s�
 

t� � �
�

� t � � � ��	��

If �  �� the rhs of ��	�� has to be interpreted as ln t	 Moreover� for � � ��

��	�� is equivalent to

lim
s��

U�st�

U�s�
 t� � t � � �

i	e	 U � R� and hence a��s� � �U�s�� s 	 �	 For � � �� F has �nite right

endpoint xF � hence U���  xF ��� and ��	�� is equivalent to
U���� U � R� �

In this case� a��s� � ���U���� U�s��� s	�	 The above formulations are
for instance to be found as Lemmas �	� and �	� in Dekkers and de Haan �����

see de Haan ����� for proofs	 The case �  � in ��	�� gives rise to the so�

called class of ��varying functions� a strict subclass of R�	 The recognition

of the importance of ��variation for the description of MDA�H�� was one of

the fundamental contributions to extreme value theory by de Haan �����	 �

In Remark � above we used the notion of excess	 The following de�nition

makes this precise	

Denition ����� �Excess distribution function� mean excess function�

Let X be a rv with df F and right endpoint xF � For a �xed u � xF �

Fu�x�  P �X � u � x j X � u� � x � �� ��	��

is the excess df of the rv X �of the df F � over the threshold u� The function
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Pareto
� u

�� � 	 � � �

Burr
u

�� � � �� � o���� 	 �� � �

Loggamma
u

�� � �� � o���� 	 � � �

Lognormal
��u

lnu� �
�� � o����

Benktander�type�I
u

�� �� lnu

Benktander�type�II
u���

�

Weibull
u���

c�
�� � o����

Exponential ���

Gamma ���


� �

� � �
�u

� o
�
�

u

��
Truncated normal u�� �� � o����

Table �
�
� Mean excess functions for some standard distributions� The para�
metrisation is taken from Tables ��	�� and ��	�� The asymptotic relations are to
be understood for u���

e�u�  E�X � u j X � u�

is called the mean excess function of X 	 �

Excesses over thresholds play a fundamental role in many �elds	 Di�erent

names arise from speci�c applications	 For instance� Fu is known as the

excess�life or residual lifetime df in reliability theory and medical statistics	

In an insurance context� Fu is usually referred to as the excess�of�loss df	 For

a detailed discusssion of some basic properties and statistical applications of

the mean excess function and the excess df� we refer to Sections �	�	� and �	�	

Example ����
 �Calculation of the mean excess function�

Using the de�nition of e�u� and partial integration� the following formulae
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are easily checked	 They are useful for calculating the mean excess function

in special cases	 Suppose for ease of representation that X is a positive rv

with df F and �nite expectation� trivial changes allow for support �x����
for some x� � �	 Then

e�u�  

Z xF

u

�x� u�dF �x��F �u�

 
�

F �u�

Z xF

u

F �x� dx � � � u � xF � ��	��

Whenever F is continuous�

F �x�  
e���

e�x�
exp

�
�

Z x

�

�

e�u�
du

�
� x � � � ��	��

It immediately follows from ��	�� that a continuous df is uniquely determined

by its mean excess function	 If� as in many cases of practical interest� F �
R�� for some 	 � �� then an immediate application of Karamata�s theorem

�Theorem A�	�� yields e�u� � u��	� �� as u	�	 In Table �		� the mean
excess functions of some standard distributions are summarised	 �

The appearance of the rhs limit in ��	�� motivates the following de�nition	

Denition ����� �The generalised Pareto distribution �GPD��

De�ne the df G� by

G��x�  

�
�� �� & �x�

����
if � � � �

�� e�x if �  � �
��	���

where
x � � if � � � �

� � x � ���� if � � � �

G� is called a standard generalised Pareto distribution �GPD�� One can in�

troduce the related location�scale family G����
 by replacing the argument x

above by �x� ���� for � � R� � � �� The support has to be adjusted accord�

ingly� We also refer to G����
 as GPD� �

As in the case of H�� G� can also be interpreted as the limit of G� as � 	 �	

The df G����
 plays an important role in Section �	�	 To economise on nota�

tion� we will denote

G��
�x�  ��

� & �

x

�

�����

� x � D��� �� � ��	���

where
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x � D��� ��  

�
����� if � � � �
�������� if � � � �

Whenever we say thatX has a GPD with parameters � and �� it is understood

that X has df G��
 	

Time to summarise�

The GEV

H� � � � R �

describes the limit distributions of normalised maxima	

The GPD

G��
 � � � R � � � � �

appears as the limit distribution of scaled excesses over

high thresholds	

GPD �tting is one of the most useful concepts in the statistics of extremal

events� see Section �	�	 Here we collect some basic probabilistic properties of

the GPD	
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Theorem ������ �Properties of GPD�

�a� Suppose X has a GPD with parameters � and �� Then EX � � if and

only if � � �� In the latter case

E


� &

�

�
X

��r
 

�

� & �r
� r � ���� �

E


ln


� &

�

�
X

��k

 �k k� � k � N �

EX
�
G��
�X�

�r
 

�

�r & �� ���r & ��
� �r & ���j�j � � �

If � � ��r with r � N� then

EXr  
�r

�r��

� ���� � r�

� �� & ����
r� �

�b� For every � � R� F � MDA�H�� if and only if

lim
u
xF

sup
��x�xF�u

jFu�x� �G��
�u��x�j  � ��	���

for some positive function ��

�c� Suppose xi � D��� ��� i  �� �� then

G��
�x� & x��

G��
�x��
 G��
��x��x�� � ��	���

�d� Assume that N is Poi���� independent of the iid sequence �Xn� with a

GPD with parameters � and �� Write MN  max�X�� � � � � XN�� Then

P �MN � x�  exp

�
��


� & �

x

�

�����
�
 H������x� �

where   ������� � �� and 
  ����

�e� Suppose X has GPD with parameters � � � and �� Then for u � xF �

e�u�  E�X � u jX � u�  
� & �u

�� �
� � & u� � � �

Proof� �a� and �c� follow by direct veri�cation	

�b� In Theorem �		� �see Remark �� we have already proved that F �
MDA�H�� if and only if

lim
u
xF

jFu�x� �G��
�u��x�j  �
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where ��u�  a�u�	 Because the GPD is continuous� the uniformity of the

convergence follows� see Appendix A�	�	

�d� One immediately obtains

P �MN � x�  

�X
n��

e��
�n

n�
Gn
��
�x�

 expf��G��
�x�g

 exp

�
��


� & �

x

�

�����
�

 exp

�
�


� & �

x� ������� � ��
���

�����
�

� � � � �

The case �  � reduces to

P �MN � x�  exp
n
�e��x�
 ln���


o
�

�e� This result immediately follows from the representation ��	��	 �

Remarks� � Theorem �		�� summarises various properties which are es�

sential for the special role of the GPD in the statistical analysis of extremes	

This will be made clear in Section �	�	

�� The property �c� above is often reformulated as follows� the class of GPDs

is closed with respect to changes of the threshold	 Indeed the lhs in ��	��� is

the conditional probability that� given our underlying rv exceeds x�� it also

exceeds the threshold x� & x�	 The rhs states that this probability is again

of the generalised Pareto type	 This closure property is important in reinsur�

ance� where the GPDs are basic when treating excess�of�loss contracts� see

for instance Conti �����	 In combination with property �d� it is also crucial for

stop�loss treaties	 For a discussion on di�erent types of reinsurance treaties�

see Section �	�	

�� Property �b� above suggests a GPD as appropriate approximation of the

excess df Fu for large u	 This result goes back to Pickands ���� and is often

formulated as follows	 For some function � to be estimated from the data�

F u�x�  P �X � u � x j X � u� � G��
�u��x� � x � � �

Alternatively one considers for x � u�

P �X � x j X � u� � G��u�
�u��x� �
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In both cases u has to be taken su�ciently large	 See Section �	� for more

details	 Together �b� and �e� give us a nice graphical technique for choosing

the threshold u so high that an approximation of the excess df Fu by a GPD

is justi�ed� given an iid sample X�� � � � � Xn� construct the empirical mean

excess function en�u� as sample version of the mean excess function e�u�	

From �e� we have that the mean excess function of a GPD is linear� hence

check for a u�region where the graph of en�u� becomes roughly linear	 For

such u an approximation of Fu by a GPD seems reasonable	 In Section �	�

we will use this approach for �tting excesses over high thresholds	

�� From Proposition �	�	� �see also the succeeding Remark �� we have learnt

that the number of the exceedances of a high threshold is roughly Poisson	

From Remark � we conclude that an approximation of the excess df Fu by

a GPD may be justi�ed	 Moreover� it can be shown that the number of

exceedances and the excesses are independent in an asymptotic sense� see

Leadbetter ����	

�� Property �d� now says that in a model� where the number of exceedances

is exactly Poisson and the excess df is an exact GDP� the maximum of these

excesses has an exact GEV	 �

The above remarks suggest the following approximate model for the ex�

ceedance times and the excesses of an iid sample�

	 The number of exceedances of a high threshold follows a Poisson

process	

	 Excesses over high thresholds can be modelled by a GPD	

	 An appropriate value of the high threshold can be found by

plotting the empirical mean excess function	

	 The distribution of the maximum of a Poisson number of iid

excesses over a high threshold is a GEV	

In interpreting the above summary� do look at the precise formulation of

the underlying theorems	 If at this point you want to see some of the above

in action� see for instance Smith ������ p	 ��	 Alternatively� consult the

examples in Section �	�

Notes and Comments

In this section we summarised some of the probabilistic properties of the GEV

and the GPD	 They are crucial for the statistical analysis of extremal events

as provided in Chapter �	 The GEV will be used for statistical inference of
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data which occur as iid maxima of certain time series� for instance annual

maxima of rainfall� windspeed etc	 Theorem �		� opens the way to tail and

high quantile estimation	 Part �b� of this theorem leads immediately to the

de�nition of the GPD� which goes back to Pickands ����	 An approximation

of the excess df by the GPD has been suggested by hydrologists under the

name peaks over threshold method� see Section �	� for a detailed discussion	

Weak limit theory for excess dfs originates from Balkema and de Haan����	

Richard Smith and his collaborators have further developed the theory and

applications of the GPD in various �elds	 Basic properties of the GPD can

for instance be found in Smith �����	 Detailed discussions on the use of the

mean excess function in insurance are to be found in Beirlant et al	 ���� and

Hogg and Klugman �����	

��
 Almost Sure Behaviour of Maxima

In this section we study the a	s	 behaviour of the maxima

M�  X� � Mn  max �X�� � � � � Xn� � n � � �

for an iid sequence X�X�� X�� � � � with common non�degenerate df F 	

At the beginning we might ask�

What kind of results can we expect


Is there� for example� a general theorem like the SLLN for iid sums


The answer to the latter question is� unfortunately� negative	 We have already

found in the previous sections that the weak limit theory for �Mn� is very

sensitive with respect to the tails F �x�  P �X � x�	 The same applies to the

a	s	 behaviour	

We �rst study the probabilities �i	o	 stands for �in�nitely often
�

P �Mn � un i	o	� and P �Mn � un i	o	�

for a non�decreasing sequence �un� of real numbers	 We will fully characterise

these probabilities in terms of the tails F �un�	

We start with P �Mn � un i	o	� which is not di�cult to handle with the

classical Borel�Cantelli lemmas	 Recall from any textbook on probability

theory that� for a sequence of events �An�� fAn i	o	g stands for

lim sup
n��

An  

��
k��

�
n�k

An �

The standard Borel�Cantelli lemma states that
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�X
n��

P �An� �� implies P �An i	o	�  � �

Its partial converse for independent An tells us that

�X
n��

P �An�  � implies P �An i	o	�  � �

A version of the following result for general independent rvs can be found in

Galambos ����� Theorem 	�	�	

Theorem ����� �Characterisation of the maximal a	s	 growth of partial

maxima�

Suppose that �un� is non�decreasing� Then

P �Mn � un i	o	�  P �Xn � un i	o	� � ��	��

In particular�

P �Mn � un i	o	�  � or  �

according as
�X
n��

P �X � un� �� or  � � ��	���

Notice that the second statement of the theorem is an immediate consequence

of ��	��	 Indeed� by the Borel�Cantelli lemma and its partial converse for

independent events� P �Xn � un i	o	�  � or  � according as ��	��� holds	

Proof� It su�ces to show that ��	�� holds	 SinceMn � Xn for all n we need

only to show that

P �Mn � un i	o	� � P �Xn � un i	o	� � ��	���

Let xF denote the right endpoint of the distribution F and suppose that

un � xF for some n	 Then

P �Mn � un�  P �Xn � un�  �

for all large n� hence ��	��� is satis�ed	 Therefore assume that un � xF for

all n	 Then

F �un� � � for all n �

If un 
 xF and Mn � un for in�nitely many n then it is not di�cult to see

that there exist in�nitely many n with the property Xn � un	

Now suppose that un 
 b � xF 	 But then

F �un� � F �b� � � �
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By the converse Borel�Cantelli lemma� �  P �Xn � un i	o	�� and then ��	��

necessarily holds	 �

The determination of the probabilities P �Mn � un i	o	� is quite tricky	 The

following is a �nal improvement� due to Klass ����� ���� of a result of Barn�

dor��Nielsen �� ��	 For the history of this problem see Galambos ���� and

Klass �����	

Theorem ����� �Characterisation of the minimal a	s	 growth of partial max�

ima�

Suppose that �un� is non�decreasing and that the following conditions hold	

F �un� 	 � � ��	���

nF �un� 	 � � ��	���

Then

P �Mn � un i	o	�  � or  �

according as

�X
n��

F �un� exp
��nF �un�

�
�� or  � � ��	���

Moreover� if

F �un�	 c � � � then P �Mn � un i	o	�  � �

while if

lim inf
n��

nF �un� �� � then P �Mn � un i	o	�  � �

Remarks� �� Conditions ��	��� and ��	��� are natural� ��	��� just means

that one of the following conditions holds� un 
 � or un 
 xF for a df F

continuous at its right endpoint xF or un 
 b � xF 	 From Proposition �	�	�

we know that ��	��� is equivalent to P �Mn � un�	 �	

�� Condition ��	��� is� at a �rst glance� a little bit mysterious� but from the

proof below its meaning becomes more transparent	 But already notice that

F �un� expf�nF �un�g is close to the probability

P �Mn � un� Xn�� � un�  P �Mn � un�Mn�� � un� � �

Sketch of the proof�We �rst deal with the case that F �un�	 c � �	 Then
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P �Mn � un i	o	�  P

�� ��
i��

�
n�i

fMn � ung

A

 lim
i��

P

���
n�i

fMn � ung

A

� lim
i��

X
n�i

P �Mn � un�

 lim
i��

X
n�i

Fn �un�

 � �

since F �un� � �� c& � � � for a small � and su�ciently large n 	

Next suppose that lim infn�� nF �un� ��	 Then

P �Mn � un i	o	�  lim
i��

P

���
n�i

fMn � ung

A

� lim sup
i��

P �Mi � ui�

 lim sup
i��

exp
�
i ln

�
�� F �ui�

��
 lim sup

i��
exp

��iF �ui� �� & o����
�

 exp
n
� lim inf

i��
iF �ui�

o
� � �

This and an application of the Hewitt�Savage ��� law prove that P �Mn �
un i	o	�  �	

Now we come to the main part of the theorem	 We restrict ourselves to

showing that the condition

�X
n��

F �un� exp
��nF �un�� �� ��	���

implies that

P �Mn � un i	o	�  � �
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Suppose that ��	���� ��	��� and ��	��� hold	 We use a standard blocking

technique for proving a	s	 convergence results	 De�ne the subsequence �nk�

as follows

n�  � � nk��  min
�
j � nk � �j � nk�F �unk� � �

�
�

This implies in particular that

�nk�� � nk�F �unk�	 � � ��	���

Moreover� by ��	���� nk���nk 	 �	 Hence there exists k� such that

njF �unj��� � � for j � k� �

Note also that the function f�y�  y expf�jyg decreases for y � j��	 Hence�

for all k � k�� X
nk�j�nk��

F �uj� exp
��jF �uj�

�
�

X
nk�j�nk��

F �unk� exp
��jF �unk��

� e�� �nk�� � nk�F �unk� exp
��nkF �unk��

� e�� exp
��nkF �unk�

�
�

Thus ��	��� implies that

�X
k��

exp
��nkF �unk�

�
�� � ��	���

�It can as it happens be shown that ��	��� is equivalent to ��	���	� Notice

that

P �Mn � un i	o	�  P

�� ��
k��

�
n�k

fMn � ung

A

 lim
k��

P

�� �
n�k

fMn � ung

A

 lim
l��

P

���
k�l

�
nk�j�nk��

fMj � ujg

A
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� lim
l��

X
k�l

P

�� �
nk�j�nk��

fMj � ujg

A

� lim
l��

X
k�l

P
�
Mnk � unk��

�

� lim
l��

X
k�l

P
�
Mnk��

� unk��

�
P

�
Mnk���nk � unk��

� � ��	���

By construction of the nk and by property ��	����

P
�
Mnk���nk � unk��

�
 exp

���nk�� � nk�F
�
unk��

�
�� & o����

�
� exp

���nk�� � nk�F �unk� �� & o����
�

	 e�� �

This together with ��	��� and ��	��� yields P �Mn � un i	o	�  �	

The proof of the remaining part of the theorem is very technical	 We refer to

Klass ����� ��� for details	 �

Recall �e	g	 from Petrov ���� ���� that the relation

lim sup
n��

c��
n �Mn � dn�  � a�s�

for cn � � and dn � R just means that

P �Mn � cn�� & �� & dn i	o	�  � or  �

according as � � � or � � � for small j�j	 Similarly�
lim inf
n��

c��
n �Mn � dn�  � a�s�

holds if and only if

P �Mn � cn�� & �� & dn i	o	�  � or  �

according as � � � or � � � for small j�j	 Then the following is immediate
from Theorems �	�	� and �	�	�	

Corollary ����� �Characterisation of the upper and lower limits of maxima�

�a� Assume that the sequences un���  cn�� & �� & dn � n � N � are non��

decreasing for every � � ����� ���� Then the relation

�X
n��

F �un���� �� or  �
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according as � � ��� ��� or � � ����� �� implies that

lim sup
n��

c��
n �Mn � dn�  � a�s�

�b� Assume that the sequences un���  cn�� & �� & dn �n � N � are non�de�

creasing and satisfy ��	���� ��	��� for every � � ����� ���� Then the rela�

tion
�X
n��

F �un���� exp
��nF �un����� �� or  �

according as � � ����� �� or � � ��� ��� implies that
lim inf
n��

c��
n �Mn � dn�  � a�s� �

We continue with several examples in order to illustrate the di�erent options

for the a	s	 behaviour of the maximaMn	 Throughout we will use the following

notation

ln� x  x � ln� x  max��� lnx� � lnk x  max ��� lnk�� x� � k � � �
i	e	 lnk x is the kth iterated logarithm of x	

Example ����� �Normal distribution� continuation of Example �	�	���

Assume that F  � is the standard normal distribution	 Then

��x� � �p
��x

expf�x���g � ��	��

n
0 20000 40000 60000 80000 100000

0.6
0.8

1.0
1.2

1.4

Figure �
�
� Five sample paths of �Mn�
p
� lnn� for ��� ��� realisations of iid

standard normal rvs� The rate of a�s� convergence to � appears to be very slow�
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From ��	�� we conclude

Mnp
� lnn

P	 � � n	� � ��	���

We are interested in a	s	 re�nements of this result	

Choose

un���  

s
� ln


�ln� n � � � lnr n� ln�r np

lnn

�
� r � � �

An application of Theorem �	�	� together with ��	�� yields

P �Mn � un��� i	o	�  � or  �

according as � � � or � � � for small j�j and hence� by Corollary �	�	��

lim sup
n��

Mnp
� lnn

 � a�s� ��	���

This result can further be re�ned	 For example� notice that

P

��Mn �

s
� ln


n ln��� np
lnn

�
i�o�


A
 P

�
Mn �

s
� ln


np
lnn

�

�

s
� ln


n ln��� np
lnn

�
�

s
� ln


np
lnn

�
i�o�


A
 � or  �

according as � � � or � � �	 By the mean value theorem� for small j�j and
certain  n � ��� ���

P

�
Mn �

s
� ln


np
lnn

�
�
�

�

��� & �� ln� n�
� ln�n�

p
lnn� &  n��� & �� ln� n

����
i�o�


CA
 � or  �

according as � � � or � � �	 In view of Corollary �	�	� this just means that

lim sup
n��

p
� lnn

ln� n

�
Mn �

s
� ln


np
lnn

��
 � a�s�
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By the same arguments�

lim sup
n��

p
� lnn

lnr�� n

�
Mn �

s
� ln


ln� n � � � lnr�� np

lnn

��
 � a�s� � r � � �

Now choose

u�n���  

s
� ln


np

� lnn ln��ln� n � � � lnr n� ln�r n�

�
� r � � �

An application of Theorem �	�	� yields that

P �Mn � u�n��� i	o	 �  � or  �

according as � � � or � � � for small j�j	 In particular� we may conclude that

lim inf
n��

Mnp
� lnn

 � a�s� ��	���

which� together with ��	���� yields the a	s	 analogue to ��	����

lim
n��

Mnp
� lnn

 � a�s�

Re�nements of relation ��	��� are possible in the same way as for lim sup	 �

Example ����� �Exponential tails�

Let X be a rv with tail

F �x� � Ke�ax � x	� �

for some a �K � �	 From Example �	�	� we conclude that

Mn

lnn

P	 �

a
� n	� � ��	���

We are interested in a	s	 re�nements of this result	

Choose

un���  
�

a
ln �K �ln� n ln� n � � � lnr n� ln�r� � r � � �

Then� for large n and small j�j�

F �un���� � �

�ln� n � � � lnr n� ln�r n
�

An application of Theorem �	�	� yields that

P �Mn � un��� i	o	�  � or  �

according as � � � or � � � for small j�j and hence
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lim sup
n��

Mn

lnn
 
�

a
a�s� ��	���

Now choose

u�n���  
�

a
ln


nK

ln �ln� n �ln� n � � � lnr n� ln�r n�
�

� r � � �

Then� by Theorem �	�	��

P �Mn � u�n��� i	o	�  � or  � ��	���

according as � � � or � � � for small j�j	 In particular� we may conclude that

lim inf
n��

Mn

lnn
 
�

a
a�s� ��	���

which� together with ��	���� yields an a	s	 analogue of ��	���	

lim
n��

Mn

ln n
 
�

a
a�s�

Re�nements of ��	��� are possible	 For example� for �xed r � ��

P �Mn � u�n��� i	o	�

 P


Mn � �

a


ln�nK�� ln�ln
 n& �ln� n& ln
 n& � � �

n
0 20000 40000 60000 80000 100000

0.
0

0.
5

1.
0

1.
5

2.
0

Figure �
�
� Five sample paths of �Mn� lnn� for ��� ��� realisations of iid stan�
dard exponential rvs� The rate of a�s� convergence to � appears to be very slow�
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& lnr�� n& �� & �� lnr�� n��

�
i�o�

�

 P


Mn � �

a


ln�nK�� ln�ln
 n& �ln� n& � � �& lnr�� n��

�

� ��
a
ln


ln
 n& �ln� n& � � �& lnr�� n& �� & �� lnr�� n�

ln
 n& �ln� n& � � �& lnr�� n�

�
i�o�

�

 P


Mn � �

a


ln�nK�� ln �ln
 n& �ln� n& � � �& lnr�� n��

�

� ��
a
ln


� & �� & ��

lnr�� n

ln
 n& �ln� n& � � �& lnr�� n�

�
i�o�

�
�

This together with ��	���� a mean value theorem argument and Corol�

lary �	�	� imply that� for r � ��

lim inf
n��

ln� n

lnr�� n


Mn � �

a


ln�nK�� ln �ln
 n& �ln� n& � � �& lnr�� n��

��
 ��

a
a�s� �

Example ����
 �Uniform distribution� continuation of Example �	�	���

Let F be uniform on ��� ��	 From Example �	�	�� we know that

Mn
a�s�	 � �

n
0 100 200 300 400

0.8
5

0.9
0

0.9
5

1.0
0

1.0
5

1.1
0

1.1
5

Figure �
�
� Five sample paths of Mn for ��� realisations of iid U��	 �� rvs� The
rate of a�s� convergence to � is very fast�
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We derive some a	s	 re�nements of this limit result	

Choose

un���  �� �

�ln� n ln� n � � � lnr n� ln�r n
� r � � �

Then� by Theorem �	�	��

P �Mn � un��� i	o	�  � or  �

according as � � � or � � � for small j�j	
Now choose

u�n���  ��
�

n
ln �ln� n �ln� n � � � lnr n� ln�r n� � r � � �

Then� by Theorem �	�	��

P �Mn � u�n��� i	o	�  � or  �

according as � � � or � � � for small j�j	 �

Notes and Comments

There does not exist very much literature on the a	s	 behaviour of maxima of

iid rvs	 An extensive account can be found in Galambos ����	 The treatment

of results about the normalised lim inf of maxima started with work by Barn�

dor��Nielsen �� �� who proved necessary and su�cient conditions under

certain restrictions	 A result in the same spirit was obtained by Robbins and

Siegmund ���	 Klass ����� ��� �nally proved the criterion of Theorem �	�	�

under minimal restrictions on the df F and on the behaviour of �un�	 Goldie

and Maller ����� use point process techniques to derive a	s	 convergence re�

sults for order statistics and records	
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Fluctuations of Upper Order Statistics

After having investigated in Chapter � the behaviour of the maximum� i	e	

the largest value of a sample� we now consider the joint behaviour of several

upper order statistics	 They provide information on the right tail of a df	

In Section 	�� after some basic results on the ordered sample� we present

various examples in connection with uniform and exponential order statis�

tics and spacings	 Just to mention two items� we touch on the subject of

simulation of general upper order statistics �working from uniform random

numbers� and prove the order statistics property of a homogeneous Pois�

son process	 Here also Hill�s estimator appears for the �rst time� we prove

that it is a consistent estimator for the index of a regularly varying tail	 Its

importance will be made clear in Chapter �	

In Section 	� we exploit the Poisson approximation� already used to

derive limit laws of normalised maxima� in a more advanced way	 This leads

to the multivariate limit distribution of several upper order statistics	 Such

results provide the theoretical background when deriving limit properties for

tail estimators� as we shall see in Chapter �	 Extensions to randomly indexed

samples will be given in Section 	�	

In Section 	 we show under what conditions the previous results can be

extended to stationary sequences	
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��� Order Statistics

Let X�X�� X�� � � � denote a sequence of iid non�degenerate rvs with common

df F 	 In this section we summarise some important properties of the upper

order statistics of a �nite sampleX�� � � � � Xn	 To this end we de�ne the ordered

sample

Xn�n � � � � � X��n �

Hence Xn�n  min�X�� � � � � Xn� and X��n  Mn  max�X�� � � � � Xn�	 The rv

Xk�n is called the kth upper order statistic	 The notation for order statistics

varies� some authors denote by X��n the minimum and by Xn�n the maximum

of a sample	 This leads to di�erent representations of quantities involving

order statistics	

The relationship between the order statistics and the empirical df of a

sample is immediate� for x � R we introduce the empirical df or sample df

Fn�x�  
�

n
card fi � � � i � n�Xi � xg  �

n

nX
i��

IfXi�xg � x � R �

where IA denotes the indicator function of the set A	 Now
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Figure �
�
� Empirical df Fn �top� and empirical quantile function F�
n �bottom�

of a sample of �� standard exponential rvs�
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Xk�n � x if and only if

nX
i��

IfXi�xg � k � �	��

which implies that

P �Xk�n � x�  P


Fn�x� � �� k

n

�
�

Upper order statistics estimate tails and quantiles� and also excess probabil�

ities over certain thresholds	 Recall the de�nition of the quantile function of

the df F

F��t�  inffx � R � F �x� � tg � � � t � � �

For a sample X�� � � � � Xn we denote the empirical quantile function by F�
n 	

If F is a continuous function� then ties in the sample occur only with probabil�

ity � and may thus be neglected� i	e	 we may assume that Xn�n � � � � � X��n	

In this case F�
n is a simple function of the order statistics� namely

F�
n �t�  Xk�n for �� k

n
� t � �� k � �

n
� �	��

for k  �� � � � � n	

Next we calculate the df Fk�n of the kth upper order statistic explicitly	

Proposition ����� �Distribution function of the kth upper order statistic�

For k  �� � � � � n let Fk�n denote the df of Xk�n � Then

�a� Fk�n�x�  

k��X
r��


n

r

�
F
r
�x�Fn�r�x��

�b� If F is continuous� then

Fk�n�x�  

Z x

��

fk�n�z� dF �z� �

where

fk�n�x�  
n�

�k � ��� �n� k��
Fn�k�x� F

k��
�x� �

i�e� fk�n is a density of Fk�n with respect to F �

Proof� �a� For n � N de�ne

Bn  
nX
i��

IfXi�xg �

Then Bn is a sum of n iid Bernoulli variables with success probability

EIfX�xg  P �X � x�  F �x� �
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Hence Bn is a binomial rv with parameters n and F �x�	 An application of

�	�� gives for x � R

Fk�n�x�  P �Bn � k�

 

k��X
r��

P �Bn  r�

 
k��X
r��


n

r

�
F
r
�x� Fn�r�x� �

�b� Using the continuity of F � we calculate

n�

�k � ��� �n� k��

Z x

��

Fn�k�z� F
k��
�z� dF �z�

 
n�

�k � ��� �n� k��

Z �

F �x�

��� t�n�k tk�� dt

 

k��X
r��


n

r

�
F
r
�x� Fn�r�x�  Fk�n�x� �

The latter follows from a representation of the incomplete beta function�

it can be proved by multiple partial integration	 See also Abramowitz and

Stegun ���� formula �	�		 �

Similar arguments lead to the joint distribution of a �nite number of di�erent

order statistics	 If for instance F is absolutely continuous with density f � then

the joint density of �X�� � � � � Xn� is

fX������Xn �x�� � � � � xn�  

nY
i��

f �xi� � �x�� � � � � xn� � R
n �

Since the n values of �X�� � � � � Xn� can be rearranged in n� ways �by ab�

solute continuity there are a	s	 no ties�� every speci�c ordered collection

�Xk�n�k�������n could have come from n� di�erent samples	 This heuristic ar�

gument can be made precise� see for instance Reiss ������ Theorem �		�� or

alternatively use the transformation theorem for densities	 The joint density

of the ordered sample becomes�

fX��n�����Xn�n �x�� � � � � xn�  n�

nY
i��

f �xi� � xn � � � � � x� � �	��

The following result on marginal densities is an immediate consequence of

equation �	��	
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Theorem ����� �Joint density of k upper order statistics�

If F is absolutely continuous with density f � then

fX��n�����Xk�n
�x�� � � � � xk�  

n�

�n� k��
Fn�k �xk�

kY
i��

f �xi� � xk � � � � � x� �

�

Further quantities which arise in a natural way are the spacings� i	e	 the di�er�

ences between successive order statistics	 They are for instance the building

blocks of Hill�s estimator� see Example 	�	�� and Section �		�	

Denition ����� �Spacings of a sample�

For a sample X�� � � � � Xn the spacings are de�ned by

Xk�n �Xk���n � k  �� � � � � n� � �
For rvs with �nite left �right� endpoint exF �xF � we de�ne the nth ��th� spacing
as Xn�n �Xn���n  Xn�n � exF �X��n �X��n  xF �X��n�� �

Example ����� �Order statistics and spacings of exponential rvs�

Let �En� denote a sequence of iid standard exponential rvs	 An immediate

consequence of �	�� is the joint density of an ordered exponential sample

�E��n� � � � � En�n��

fE��n�����En�n �x�� � � � � xn�  n� exp

�
�

nX
i��

xi

�
� � � xn � � � � � x� �

From this we derive the joint distribution of exponential spacings by an appli�

cation of the transformation theorem for densities	 De�ne the transformation

T �x�� � � � � xn�  �x� � x�� ��x� � x
�� � � � � nxn� � � � xn � � � � � x� �

Then det�!T �x��!x�  n� and

T�� �x�� � � � � xn�  

�� nX
j��

xj
j
�

nX
j��

xj
j
� � � � �

xn
n


A � x�� x�� � � � � xn � � �

Then the density g of �E��n �E��n� ��E��n �E
�n�� � � � � nEn�n� is of the form

g �x�� � � � � xn�  
�

n�
fE��n�����En�n

�� nX
j��

xj
j
�

nX
j��

xj
j
� � � � �

xn
n


A
 exp

n
�

nX
i��

nX
j�i

xj
j

o

 exp
n
�

nX
i��

xi

o
�
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This gives for i  �� � � � � n that the rvs i�Ei�n �Ei���n� have joint density

g �x�� � � � � xn�  exp

�
�

nX
i��

xi

�
� x�� � � � � xn � � �

This implies that the spacings

E��n �E��n � E��n � E
�n � � � � � En�n

are independent and exponentially distributed� and Ek�n �Ek���n has mean

��k for k  �� � � � � n� where we recall that En���n  �	 �

Example ����� �Markov property of order statistics�

When working with spacings from absolutely continuous dfs one can often

make use of the fact that their order statistics form a Markov process� i	e	

P �Xk�n � y jXn�n  xn� � � � � Xk���n  xk���

 P �Xk�n � y jXk���n  xk����

To be precise� �Xn�n� � � � � X��n� is a non�homogeneous� discrete�time Markov

process whose initial df is

P �Xn�n � x�  �� F
n
�x� �

and whose transition df P �Xk�n � y jXk���n  xk��� is the df of the

minimum of k iid observations from the df F truncated at xk��	 For

k  �� � � � � n� ��

P �Xk�n � y jXk���n  xk���  


F �y�

F �xk���

�k

� y � xk�� �

A proof of the Markov property is straightforward� see for instance Arnold�

Balakrishnan and Nagaraja ����� Theorem �		�	 They also provide an exam�

ple showing that the Markov property does not hold for general F � see their

Section �		 �

Example ����� �Order statistics property of the Poisson process�

Let N  �N�t��t�� be a homogeneous Poisson process with intensity � � ��

for a de�nition see Example �	�	�	 Then the arrival times Ti of N in ��� t��

conditionally on fN�t�  ng� have the same distribution as the order statistics
of a uniform sample on ��� t� of size n� i	e	

P
�
�T�� T�� � � � � TN�t�� � AjN�t�  n

�
 P

�
�Un�n� � � � � U��n� � A

�
for all Borel sets A in R� 	 This property is called the order statistics property

of the Poisson process	 It gives an intuitive description of the distribution of



��� Order Statistics ��
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Figure �
�
	 Five realisations of the arrival�times of a Poisson process N with
intensity �� conditionally on fN���� � ��g� They illustrate the order statistics
property �Example �������

the arrival times of a Poisson process	

For a proof we assume that � � t� � � � � � tn � t and h�� � � � � hn are all pos�

itive� but small enough such that the intervals Ji  �ti� ti & hi� � i  �� � � � � n �

are disjoint	 Then

P �T� � J�� � � � � Tn � Jn jN�t�  n�

 P �T� � J�� � � � � Tn � Jn� N�t�  n� �P �N�t�  n� �

Writing N�Ji�  N�ti&hi��N�ti� � i  �� � � � � n� and using the independence

and stationarity of the increments of the Poisson process we obtain for the

numerator that

P �N�t��  �� N�J��  �� N�t���N�t� & h��  ��

� � � � N�tn��N�tn�� & hn���  �� N�Jn�  �� N�t��N�tn & hn�  ��

 P �N�t��  ��P �N�J��  ��P �N�t���N�t� & h��  ���

� � � � P �N�Jn�  ��P �N�t��N�tn & hn�  ��
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 P �N�t��  ��P �N�h��  ��P �N�t� � t� � h��  ���

� � � � P �N�hn�  ��P �N�t� �tn & hn��  ��

 e��t� � e��h��h� � e���t���t��h��	 �

� � � � e���tn��tn���hn���	 � e��hn�hn � e���t��tn�hn��

 �ne��t
nY
i��

hi �

This implies

P �T� � J�� � � � � Tn � Jn j N�t�  n�  
n�

tn

nY
i��

hi �

The conditional densities are obtained by dividing both sides by
Qn
i�� hi and

taking the limit for max��i�n hi 	 �� yielding

fT������TnjN�t��t�� � � � � tnjn�  
n�

tn
� � � t� � � � � � tn � t � �	�

It follows from �	�� that �	� is the density of the order statistics of n iid

uniform rvs on ��� t�	 �

The following concept is called quantile transformation	 It is extremely useful

since it often reduces a problem concerning order statistics to one concerning

the corresponding order statistics from a uniform sample	 The proof follows

immediately from the de�nition of the uniform distribution	

Lemma ����� �Quantile transformation�

Let X�� � � � � Xn be iid with df F � Furthermore� let U�� � � � � Un be iid rvs uni�

formly distributed on ��� �� and denote by Un�n � � � � � U��n the corresponding

order statistics� Then the following results hold	

�a� F��U��
d
 X��

�b� For every n � N �

�X��n� � � � � Xn�n�
d
 �F� �U��n� � � � � � F

� �Un�n�� �

�c� The rv F �X�� has a uniform distribution on ��� �� if and only if F is

a continuous function� �



��� Order Statistics ��


Example ������ �Simulation of upper order statistics�

The quantile transformation above links the uniform distribution to some gen�

eral distribution F 	 An immediate application of this result is random number

generation	 For instance� exponential random numbers can be obtained from

uniform random numbers by the transformation E�  � ln��� U��	 Simula�

tion studies are widely used in an increasing number of applications	 A simple

algorithm for simulating order statistics of exponentials can be based on Ex�

ample 	�	�� which says that

�Ei�n �Ei���n�i�������n
d
 �i��Ei�i�������n �

with En���n  �	 This implies for the order statistics of an exponential sample

that

�Ei�n�i�������n

d
 

�� nX
j�i

j��Ej


A
i�������n

�

Order statistics and spacings of iid rvs Ui uniformly distributed on ��� �� and

standard exponential rvs Ei are linked by the following representations� see

e	g	 Reiss ������ Theorem �	�	� and Corollary �	�	�	 We write �n  E�& � � �&
En� then

�U��n� U��n� � � � � Un�n�
d
 


�n

�n��
�
�n��

�n��
� � � � �

��

�n��

�
�

and

��� U��n � U��n � U��n � � � � � Un�n�
d
 


En��

�n��
� � � � �

E�

�n��

�
�

The four distributional identities above provide simple methods for generat�

ing upper order statistics or spacings of the exponential or uniform distrib�

ution	 A statement for general F is given in �	�� below	 For more sophisti�

cated methods based on related ideas we refer to Gerontidis and Smith �����

or Ripley ����� Section 	�� and references therein	 �

Example ������ �The limit of the ratio of two successive order statistics�

Consider F � MDA����� equivalently F � R��� for some 	 � �	 We want to

show that

Xk�n

Xk���n

P	 � � k  k�n�	� � k�n	 � � �	��

The latter fact will frequently be used in Chapter �	

For the proof we conclude from Lemma 	�	��b� and Example 	�	�� that

�X��n� � � � � Xn�n�
d
 

�
F��U��n�� � � � � F

��Un�n�
�

d
 

�
F���n��n���� � � � � F

������n���
�
� �	��
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where �n  E�& � � �&En and the Ei are iid standard exponential rvs	 Notice

that �	�� holds only for every �xed n	 However� we are interested in the weak

convergence result �	��� and therefore it su�ces to show �	�� for one special

version of

��Xk�n�k�������n�n�� �

In particular� we may choose this sequence by identifying the lhs and the rhs

in �	�� not only in distribution� but pathwise	 Hence we get

Xk�n

Xk���n
 

F���n�k����n���

F���n�k��n���
� �	��

Since F � R�� �

F���� t���  t���L�t� � t � � � �	��

for some L � R�� see Bingham� Goldie and Teugels ����� Corollary �	�		 By

the SLLN and since k�n	 �� �n�k��n��
a�s�	 �	 Hence� by �	�� and �	�� for

su�ciently large n�

Xk�n

Xk���n
 


�n�� � �n�k

�n�� � �n�k��

����
L��n�����n�� � �n�k����

L��n�����n�� � �n�k��
� �	��

Again using the SLLN� k 	� and k�n	 ��

�n�� � �n�k
�n�� � �n�k��

d
 

�k��

�k

a�s�	 � � �	���

�n�� � �n�k��

�n��
 

�n�� � �n�k
�n��

�� & o����
a�s�	 � �	���

Relations �	����	��� and the uniform convergence theorem for L � R� �see

Theorem A�	�� prove �	��	 �

Example ������ �Asymptotic properties of the Hill estimator�

Assume X is a positive rv with regularly varying tail F �x�  x��L��x� for

some 	 � � and L� � R�	 For applications it is important to know 		 In Sec�

tion �		� several estimators of 	 are derived and their statistical properties

are studied	 The most popular estimator of 	 was proposed by Hill �����	 It

is based on the k upper order statistics of an iid sample�

b	��
n  

�

k � �
k��X
i��

ln


Xi�n

Xk�n

�
 

�

k � �
k��X
i��

lnXi�n � lnXk�n � �	���

for k � �	 We suppress the dependence on k in the notation	

There exist many variations on the theme �Hill
 with k � � replaced by k
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�and vice versa� at di�erent places in �	���	 By �	�� all these estimators have

the same asymptotic properties provided k  k�n� 	 � and k�n 	 �	 We

are interested in the asymptotic properties of b	��
n �consistency� asymptotic

normality�	

By Lemma 	�	��b� we may and do assume that b	��
n has representation

b	��
n  

�

k � �
k��X
i��

lnF��Ui�n�� lnF��Uk�n� �	���

for an ordered sample Un�n � � � � � Ui�n from a uniform distribution on

��� ��	 We are interested only in asymptotic distributional properties of b	��
n 	

For this it su�ces to study the distribution of b	��
n at every �xed n	 If one

wants to study a	s	 convergence results one has to consider the distribution of

the whole sequence �b	n�	 Then representation �	��� is not useful	 �Lemma
	�	��b� is applicable only for a �nite vector of order statistics	� Regular

variation of F implies that

F��y�  ��� y�����L
�
��� y���

�
� y � ��� �� �

for some L � R�� see Bingham et al	 ����� Corollary �	�		 Combining �	���

with the representation of �Uk�n� via iid standard exponential rvs Ei �see

Example 	�	��� and writing

�n  E� & � � �&En � n � � �
we obtain the representation

b	��
n  

�

k � �
k��X
i��

ln

�
�� �n�i��

�n��

�����

L

�
�� �n�i��

�n��

���
��

� ln
�
�� �n�k��

�n��

�����

L

�
�� �n�k��

�n��

���
��

 
�

	

�

k � �
k��X
i��

ln
�n�� � �n�k��

�n�� � �n�i��

&
�

k � �
k��X
i��

ln
L��n�����n�� � �n�i����

L��n�����n�� � �n�k����

 ����
n & ����

n � �	��

The leading term in this decomposition is �
���
n 	 It determines the asymptotic

properties of the estimator b	��
n 	 Thus we �rst study �

���
n 	 Again applying

Example 	�	�� we see that for every k � ��



�
� �� Fluctuations of Upper Order Statistics


�n�� � �n�i��

�n�� � �n�k��

�
i�������k��

d
 


�i
�k

�
i�������k��

d
 �Uk�i�k���i�������k�� �

Hence� for iid �Ui� uniform on ��� ���

����
n

d
 � �

	

�

k � �
k��X
i��

lnUi
d
 
�

	

�

k � �
k��X
i��

Ei �

We immediately conclude from the SLLN and the CLT for iid rvs that

����
n

P	 �

	
�

	
p
k


����
n � �

	

�
d	 � �

where � is the standard normal distribution� provided that k  k�n� 	 �	
Notice that �

���
n vanishes if the relation F �x�  cx�� holds for large x and

constant c � �� and then the limit theory for �
���
n and for b	��

n is the same	

However� for real data one can never assume that the tail F has exact power

law behaviour	 Therefore one also has to understand the limit behaviour of the

second term �
���
n in the decomposition �	��	 Recall from the representation

theorem �Theorem A�	�� that the slowly varying function L can be written

in the form

L�x�  c�x� exp

�Z x

z

��u�

u
du

�
� x � z � �	���

for some z � �� functions c�x� 	 c� � � and ��x� 	 � as x	 �	 With this
representation we obtain

����
n  

�

k � �
k��X
i��

�
ln

c
�
�n�����n�� � �n�i���

�
c
�
�n�����n�� � �n�k���

�
&

Z ����n�i����n���
��

����n�k����n���
��

��u�

u
du

�

 ��
�
n & ����

n �

If we assume that k  k�n�	� and k�n	 � then� by the SLLN� uniformly

for i � k�
�n�i��

�n��
 

n���n�i��

n���n��

a�s�	 � �

This immediately implies that �
�
�
n

a�s�	 �	 Set

Cn  sup
n
j��u�j � u � ��� �n�k����n���

��
o
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and notice that� by the remark above� Cn
a�s�	 �	 Thus

����
n � Cn

�

k � �
k��X
i��

Z ����n�i����n���
��

����n�k����n���
��

�

u
du

 Cn 	 ����
n �

This shows that �
���
n

P	 � provided k  k�n� 	 � and k�n 	 �	 This�

together with �
���
n

P	 	��� proves the consistency of Hill�s estimator b	��
n

whatever the slowly varying function L� in the tail F �x�  x��L��x�	 Under

conditions on the growth of k�n� �e	g	 k�n�  �n� � for some � � ��� ��� it can
even be shown that b	��

n
a�s�	 		 We refer to Mason ���� whose arguments

we followed closely in the discussion above� and to Deheuvels� H�ausler and

Mason �����	

From the course of the proof it is clear that� in order to show a CLT forb	��
n � one has to prove

p
k�

���
n

P	 �	 This means one has to impose some

condition on the decay to zero of the function ���� in the representation �	���	
Alternatively� one needs some regular variation condition with remainder

term which has to be speci�ed	 We do not intend to go into detail here� but

we refer to the discussion in Section �		� on the Hill estimator and related

topics where su�cient conditions for the asymptotic normality �also under

dependence of the Xn� are given	

Finally� we want to illustrate that the Hill estimator can perform very poorly

if the slowly varying function in the tail is far away from a constant	 For the

sake of argument� assume that

F��y�  ��� y������� ln��� y�� � y � ��� �� � �	���

Observe that
�n�� � �n�i��

�n��

�
i�������k��

d
 


�i

�n��

�
i�������k��

�

Then

����
n  

�

k � �
k��X
i��

ln
ln ��� �n�i����n���

ln ��� �n�k����n���

d
 

�

k � �
k��X
i��

ln
ln��i��n���

ln��k��n���

 
�

k � �
k��X
i��

ln
�� ln�i� ln�n��

�� ln�k� ln�n��
�
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Figure �
�
�� A �Hill horror plot�� the Hill estimator b���
n from n iid realisations

with distribution tail F ��x� � ��x �top line� and F ��x� � ���x lnx� �bottom line��
The solid line corresponds to � � �� The performance of the Hill estimate for
F� is very poor� The value k is the number of upper order statistics used for the
construction of the Hill estimator �������

The SLLN and a Taylor�expansion argument applied to the last relation show

that� with probability �� the rhs can be estimated as follows

 ��� & o����
�

ln�n��

�

k � �
k��X
i��

ln
�i
�k

d
 ��� & o����

�

lnn

�

k � �
k��X
i��

lnUi

d
 �� & o�����ln n����k � �����k��  O��ln n���� �

This means that �
���
n

P	 � at a logarithmic rate	 Moreover� if we wanted

to construct asymptotic con�dence bands via a CLT for the Hill estimator�

we would have to compensate for the �essentially ��� lnn��term� �
���
n in the

centring constants	 Thus the centring constants in the CLT would depend on
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the �usually unknown� slowly varying function L	 In other words� there is no

standard CLT for b	��
n in the class of regularly varying tails� These two facts

concerning the quality of the Hill estimator should be a warning to everybody

applying tail estimates	 We also include a �Hill horror plot
 �Figure 	�	���

for the situation as in �	���	 For a further discussion of the Hill estimator

we refer to Section �		�	 �

The asymptotic properties of the upper order statistic Xk�n naturally enter

when one studies tail and quantile estimators� see Chapter �	

Proposition ������ �Almost sure convergence of order statistics�

Let F be a df with right �left� endpoint xF � � �exF � ��� and �k�n�� a
non�decreasing integer sequence such that

lim
n��

n��k�n�  c � ��� �� �

�a� Then Xk�n��n
a�s�	 xF �exF � according as c  � �c  ���

�b� Assume that c � ��� �� is such that there is a unique solution x�c� of the

equation F �x�  c� Then

Xk�n��n
a�s�	 x�c��

Proof� We restrict ourselves to showing �b�� the proof for �a� goes along the

same lines	 By �	�� and the SLLN�

P �Xk�n��n � x i�o��  P

�
n

k�n�

�

n

nX
i��

IfXi�xg � � i�o�

�

 P
�
F �x��� & o���� � c i�o�

�
�

The latter probability is � or � according as x � x�c� or x � x�c�	 Hence

lim infn��Xk�n��n  x�c� a	s	 In an analogous way one can show that the

relation lim supn��Xk�n��n  x�c� a	s	 holds	 This proves the proposition	�

Notes and Comments

A standard book on order statistics is David ������ while a more recent

one is Arnold� Balakrishnan and Nagaraja ����	 Empirical distributions and

processes are basic to all this material	 Hence books such as Pollard �����

Shorack and Wellner ������ and van der Vaart and Wellner ����� provide the

fundamentals for this section as well as others� and indeed go far beyond	 Reiss

����� investigates in particular the link with statistical procedures based on
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extreme value theory in much greater detail	 The latter reference also con�

tains a wealth of interesting bibliographical notes	 Two seminal papers on

spacings were written by Pyke ����� ����	 They had a great impact on the

�eld and are still worth reading	

��� The Limit Distribution of Upper Order Statistics

Let X�� � � � � Xn be iid with df F 	 Recall from Proposition �	�	� that for a

sequence �un� of thresholds and � � � � ��

lim
n��

P �X��n � un�  e�� � lim
n��

nF �un�  � � �	���

In this section we ask�

Can we extend relation �	��� to any upper order statistic Xk�n

for a �xed k � N


Or even

Can we obtain joint limit probabilities for a �xed number k

of upper order statistics Xk�n� � � � � X��n


Consider for n � N the number of exceedances of the threshold un by

X�� � � � � Xn�

Bn  

nX
i��

IfXi�ung �

Then Bn is a binomial rv with parameters n and F �un�	 In Proposition 	�	�

we used this quantity for �nite n to calculate the df of the kth upper order

statistic	 Basic to the following result is the fact that exceedances fXi � ung
tend to become rarer when we raise the threshold	 On the other hand� we

raise the sample size	 We balance two e�ects so that EBn  nF �un�	 �

as n	�� and hence immediately the classical theorem of Poisson applies�

Bn
d	 Poi���	 The thresholds un are chosen such that the expected number

of exceedances converges	 The following result shows that nF �un�	 � is also

necessary for the Poisson approximation to hold	

Theorem ����� �Limit law for the number of exceedances�

Suppose �un� is a sequence in R such that nF �un�	 � for some � � �����
as n	�� Then

lim
n��

P �Bn � k�  e��
kX

r��

�r

r�
� k � N� � �	���
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Figure �
�
� Visualisation of the Poisson approximation for extremes of
iid standard exponential rvs� The threshold increases with the sample size
n � ���	 ���	 � ���� Notice that the 
rst sample also appears at the beginning of
the second and the second at the beginning of the third�

For �  � we interpret the rhs as �� for �  � as ��

If �	��� holds for some k � N� � then nF �un�	 � as n	�� and thus �	���

holds for all k � N� �

Proof� For � � ������ su�ciency is simply the Poisson limit theorem as

indicated above	 For �  �� we have

P �Bn � k� � P �Bn  ��  
�
�� F �un�

�n
 


� & o


�

n

��n

	 � �

For �  � we have for arbitrary  � � that nF �un� �  for large n	 Since

the binomial df is decreasing in  � we obtain

P �Bn � k� �
kX

r��


n

r

�
 

n

�r 
��  

n

�n�r

�
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Thus for k �xed�

lim sup
n��

P �Bn � k� � e��
kX

r��

 r

r�
	 � �  	� �

Hence P �Bn � k�	 � as n	�	
For the converse assume that �	��� holds for some k � N� � but nF �un� �	 � 	

Then there exists some � � � � in ����� and a subsequence �nk� such that
nkF �unk�	 � � as k 	�� and thus Bnk converges weakly to a Poisson rv

with parameter � �� contradicting �	���	 �

The Poisson approximation �	��� allows us to derive asymptotics for the

kth order statistic	 The de�nition of Bn and �	�� imply

P �Bn � k�  P �Xk�n � un� � � � k � n � �	���

which by �	��� gives immediately the following result	

Theorem ����� �Limit probabilities for an upper order statistic�

Suppose �un� is a sequence in R such that nF �un�	 � � ����� as n	��

Then

lim
n��

P �Xk�n � un�  e��
k��X
r��

�r

r�
� k � N� �	���

For �  � we interpret the rhs as � and for �  � as ��

If �	��� holds for some k � N � then nF �un�	 � as n	�� and thus �	���

holds for all k � N � �

For un  cnx& dn and �  ��x�  � lnH�x� as in Proposition �	�	� we
obtain the following corollary�

Corollary ����� �Limit distribution of an upper order statistic�

Suppose F � MDA�H� with norming constants cn � � and dn � R�

De�ne

H�k��x�  H�x�

k��X
r��

�� lnH�x��r
r�

� x � R �

For x such that H�x�  � we interpret H�k��x�  �� Then for each k � N �

lim
n��

P
�
c��
n �Xk�n � dn� � x

�
 H�k��x� � �	���

On the other hand� if for some k � N

lim
n��

P
�
c��
n �Xk�n � dn� � x

�
 G�x�� x � R�

for a non�degenerate df G� then G  H�k� for some extreme value distribu�

tion H and �	��� holds for all k � N � �



��� The Limit Distribution of Upper Order Statistics �



Example ����� �Upper order statistics of the Gumbel distribution�

By partial integration�

H�k��x�  
�

�k � ���
Z �

� lnH�x�

e�t tk�� dt  �k �� lnH�x�� � x � R �

where �k denotes the incomplete gamma function	 In particular� if H is the

Gumbel distribution �� then

��k��x�  
�

�k � ���
Z �

e�x
e�t tk�� dt  P

�
kX
i��

Ei � e�x

�

for E�� � � � � Ek iid standard exponential rvs� where we used the well�known

fact that
Pk

i�� Ei is � �k� ���distributed	 Hence� if Y �k� has df ��k�� then

Y �k� d
 � lnPk

i�� Ei	 �

The limit distribution of the kth upper order statistic was obtained by con�

sidering the number of exceedances of a level un by X�� � � � � Xn	 Similar argu�

ments can be adapted to prove convergence of the joint distribution of several

upper order statistics	

To this end let for k � N the levels u
�k�
n � � � � � u

���
n satisfy

lim
n��

nF �u�i�n �  �i� i  �� � � � � k � �	���

where � � �� � �� � � � � � �k ��� and de�ne

B�j�
n  

nX
i��

I�
Xi�u

�j�
n

� � j  �� � � � � k �

i	e	 B
�j�
n is the number of exceedances of u

�j�
n by X�� � � � � Xn	

Theorem ����� �Multivariate limit law for the number of exceedances�

Suppose that the sequences �u
�j�
n � satisfy �	��� for j  �� � � � � k� Then for

l�� � � � � lk � N� �

lim
n��

P
�
B���
n  l�� B

���
n  l� & l�� � � � � B

�k�
n  l� & � � �& lk

�
 

� l��
l��

��� � ���
l�

l��
� � � ��k � �k���

lk

lk�
e��k �

�	���

The rhs is interpreted as � if �k  ��
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Proof�We write pn�j  F �u
�j�
n �	 Using the de�ning properties of the multino�

mial distribution� we �nd that the lhs probability of �	��� equals
n

l�

�
pl�n��


n� l�
l�

�
�pn�� � pn���

l� � � �

� � �


n� l� � � � � � lk��

lk

�
�pn�k � pn�k���

lk ��� pn�k�
n�l��			�lk �

If �k �� then we obtain from �	��� that
n

l�

�
pl�n�� � �n pn���

l�

l��
	 � l��

l��
�


n� l� � � � � � li��

li

�
�pn�� � pn�i���

li � �npn�i � npn�i���
li

li�

	 ��i � �i���
l�

li�
� for � � i � k �

��� pn�k�
n�l��			�lk �

�
�� npn�k

n

�n
	 e��k �

giving �	���	

If �k  � � the probability in �	��� does not exceed P �B
�k�
n  

Pk
i�� li�	 By

Theorem 	�	�� the latter converges to �	 �

Clearly� as in �	����

P
�
X��n � u���n � � � � � Xk�n � u�k�n

�
 P

�
B���
n  �� B���

n � �� � � � � B�k�
n � k � �

�
� �	��

and thus the joint asymptotic distribution of the k upper order statistics

can be obtained directly from Theorem 	�	�	 In particular� if c��
n �X��n � dn�

converges weakly� then so does the vector�
c��
n �X��n � dn� � � � � � c

��
n �Xk�n � dn�

�
�

Although for small k the joint limit distribution of the k upper order statistics

can easily be derived from �	�� and Theorem 	�	�� the general case is rather

complicated	 If the df F is absolutely continuous with density f satisfying

certain regularity conditions the following heuristic argument can be made

precise �for details see Reiss ������ Theorem �	�	�� suppose F � MDA�H�
with density f � then the df of the maximum Fn�cnx & dn�  P �c��

n �X��n �
dn� � x� has also a density such that for almost all x � R�
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ncnf �cnx& dn�F
n�� �cnx& dn� � ncnf �cnx& dn�H�x�	 h�x� �

where h is the density of the extreme value distribution H 	 Furthermore� for

k � N the weak limit of the random vector �c��
n �Xj�n � dn��j�������k has� by

Theorem 	�	�� the density

lim
n��

Fn�k �cnxk & dn�
kY
j��

�
�n� j & �� cn f �cnxj & dn�

�

 H �xk�

kY
j��

h �xj�

H �xj�
� xk � � � � � x� � �	���

Denition ����� �k�dimensional H�extremal variate�

For any extreme value distribution H with density h de�ne for xk � � � � � x�
in the support of H

h�k� �x�� � � � � xk�  H �xk�

kY
j��

h �xj�

H �xj�
�

A vector
�
Y ���� � � � � Y �k�

�
of rvs with joint density h�k� is called a k�dimensi�

onal H�extremal variate� �

The heuristic argument �	��� can be made precise and formulated as follows�

Theorem ����
 �Joint limit distribution of k upper order statistics�

Assume that F � MDA�H� with norming constants cn � � and dn � R� Then�

for every �xed k � N ��
c��
n �Xi�n � dn�

�
i�������k

d	 �Y �i��i�������k � n	� �

where �Y ���� � � � � Y �k�� is a k�dimensional H�extremal variate� �

Example ����� �Density of a k�dimensional H�extremal variate�

H  �� � ���x�� � � � � xk�  	k exp
n
� x��k � �	& ��

kX
j��

lnxj

o
�

� � xk � � � � � x� �

H  �� � 
��x�� � � � � xk�  	k exp
n
� ��xk�

� & �	� ��
kX
j��

ln��xj�
o
�

xk � � � � � x� � � �

H  � � ��x�� � � � � xk�  exp
n
� e�xk �

kX
j��

xj

o
� xk � � � � � x� �

�
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In Example 	�	� we investigated the spacings of an exponential sample	 Now

we may ask

What is the joint limit df of the spacings of a sample of extremal rvs


Example ������ �Spacings of Gumbel variables�

The exponential distribution is in MDA��� �see Example �	�	�� and hence

for iid standard exponential rvs E�� � � � � En we obtain

�Ei�n � lnn�i�������k��
d	 �Y �i� �i�������k�� � n	� �

where �Y ���� � � � � Y �k���� is the �k &���dimensional ��extremal variate with

density

h�k��� �x�� � � � � xk���  exp

�
�e�xk�� �

k��X
i��

xi

�
� xk�� � � � � � x� �

�	���

The continuous mapping theorem �Theorem A�	�� implies for exponential

spacings that

�Ei�n �Ei���n�i�������k  ��Ei�n � lnn�� �Ei���n � lnn��i�������k

d	
�
Y �i� � Y �i���

�
i�������k

� n	� �

By Example 	�	� we obtain the representation�
Y �i� � Y �i���

�
i�������k

d
 

�
i�� Ei

�
i�������k

�	���

for iid standard exponential rvs E�� � � � � Ek	 �

Corollary ������ �Joint limit distribution of upper spacings in MDA����

Suppose F � MDA��� with norming constants cn � �� then

�a�
�
c��
n �Xi�n �Xi���n�

�
i�������k

d	 �
i�� Ei

�
i�������k

for k � � �

�b� c��
n

�
kX
i��

Xi�n � k Xk���n

�
d	

kX
i��

Ei for k � � �

where E�� � � � � Ek are iid standard exponential rvs�

Proof� �a� This follows by the same argument as for the exponential rvs in

Example 	�	��	

�b� We apply the continuous mapping theorem �Theorem A�	���
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c��
n

�
kX
i��

Xi�n � k Xk���n

�
 c��

n

kX
i��

�Xi�n �Xk���n�

 c��
n

kX
i��

kX
j�i

�Xj�n �Xj���n�  

kX
i��

c��
n i �Xi�n �Xi���n�

d	
kX
i��

i
�
Y �i� � Y �i���

�
d
 

kX
i��

Ei �

�

Example ������ �Spacings of Fr�echet variables�

The joint density of the spacings of the �k & ���dimensional Fr�echet variate

�Y ���� � � � � Y �k���� can also be calculated	 We start with the joint density of

Y ��� � Y ���� � � � � Y �k� � Y �k���� Y �k��� 	 De�ne the transformation

T �x�� � � � � xk���  �x� � x�� x� � x
� � � � � xk � xk��� xk��� �

for xk�� � � � � � x� � Then det�!T �x��!x�  � and for x�� x�� � � � � xk�� � R

we obtain

T�� �x�� � � � � xk���  

��k��X
j��

xj �
k��X
j��

xj � � � � � xk & xk��� xk��


A �

For the spacings of the �k & ���dimensional Fr�echet variate �Y ���� � � � � Y �k����

this yields the density

gY ����Y ��������Y �k��Y �k���� Y �k��� �x�� � � � � xk���

 	k�� exp
��x��k��

�
x����
k�� �xk�� & xk�

���� � � � �xk�� & � � �& x��
����

for x�� � � � � xk�� � �	

From this density it is obvious that the spacings of the �k & ���dimensional

Fr�echet variate are dependent	 Hence such an elegant result as �	��� cannot

be expected for F � MDA����	 �

By analogous calculations as above we �nd the joint limit density of the

spacings of the upper order statistics of a sample from a df F � MDA����	
Corollary ������ �Joint limit distribution of upper spacings in MDA�����

Suppose F � MDA���� with norming constants cn � �� Let �Y ���� � � � � Y �k����

be the �k & ���dimensional Fr�echet variate� Then
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�a�
�
c��
n �Xi�n �Xi���n�

�
i�������k

d	 �
Y �i� � Y �i���

�
i�������k

� k � � �

�b� c��
n

�
kX
i��

Xi�n � k Xk���n

�
d	

kX
i��

i
�
Y �i� � Y �i���

�
� k � � �

The limit variables in �a� and �b� are de�ned by the spacings Y ����Y ���� � � � �

Y �k� � Y �k��� which have joint density

gY ����Y ��������Y �k��Y �k����x�� � � � � xk�

 	k��

Z �

�

exp
��y��

� �
y �y & xk� � � �

�
y & xk & � � �& x�

� �����
dy

for x�� � � � � xk � � � �

Notes and Comments

The Poisson approximation which we applied in this section in order to prove

weak limit laws for upper order statistics is a very powerful tool	 Its impor�

tance in this �eld� particularly for the investigation of extremes of depen�

dent sequences and stochastic processes� is uncontested	 More generally� ex�

ceedances of a threshold can be modelled by a point process in the plane	 This

yields limit laws for maxima of stochastic sequences� allowing us to explain

cluster e�ects in extremes of certain processes	 The principle tool is weak con�

vergence of point processes	 In Chapter � an introduction to this important

subject can be found	 There also the extremal behaviour of special processes

is treated	

There are many other applications of the Poisson approximation in various

�elds	 Recent books are Aldous ��� and Barbour� Holst and Janson ���� see

also the review paper by Arratia� Goldstein and Gordon ����	

��� The Limit Distribution of Randomly Indexed Upper

Order Statistics

In this section we compare the weak limit behaviour of a �nite number of up�

per order statistics and of randomly indexed maxima for an iid sequence �Xn�

of rvs with common df F 	 As usual� �N�t��t�� is a process of integer�valued

rvs which we also suppose to be independent of �Xn�	 We write

Xn�n � � � � � X��n and XN�t��N�t� � � � � � X��N�t�
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for the order statistics of the samples X�� � � � � Xn and X�� � � � � XN�t�� respec�

tively� and we also use

Mn  X��n and MN�t�  X��N�t�

for the corresponding sample maxima	

If F belongs to the maximum domain of attraction of the extreme value

distribution H �F � MDA�H��� there exist constants cn � � and dn � R such

that

c��
n �Mn � dn�

d	 H � �	���

It is a natural question to ask�

Does relation �	��� remain valid along the random index set �N�t��


From Lemma �	�	� we already know that �	��� implies

c��
N�t�

�
MN�t� � dN�t�

� d	 H

provided N�t�
P	�� but we want to keep the old norming sequences �cn��

�dn� instead of the random processes �cN�t��� �dN�t��	 This can be done under

quite general conditions as we will soon see	 However� the limit distribution

will also then change	

We proceed as in Section 	�	 We introduce the variables

B
�i�
t  

N�t�X
j��

I
fXj�u

�i�
t g

� i  �� � � � � k �

which count the number of exceedances of the �non�random� thresholds

u
�k�
t � � � � � u

���
t � t � � � �	���

by X�� � � � � XN�t�	 We also suppose that there exist numbers

� � �� � � � � � �k � �

such that for i  �� � � � � k�

t pt�i  t F �u
�i�
t � 	 �i � t	� � �	���

The following result is analogous to Theorem 	�	��
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Theorem ����� �Multivariate limit law for the number of exceedances�

Suppose that �u
�i�
t �t��� i  �� � � � � k� satisfy �	��� and �	���� Assume there

exists a non�negative rv Z such that

N�t�

t

P	 Z � t	� � �	���

Then� for all integers li � �� i  �� � � � � k�
lim
t��

P
�
B

���
t  l�� B

���
t  l� & l�� � � � � B

�k�
t  l� & � � �& lk

�
 E

�
�Z���

l�

l��

�Z ��� � ����
l�

l��
� � � �Z ��k � �k����

lk

lk�
e�Z�k

�
�

The rhs is interpreted as � if �k  ��

Proof� We proceed in a similar way as for the proof of Theorem 	�	�	 For

the sake of simplicity we restrict ourselves to the case k  �	 We condition

on N�t�� use the independence of �N�t�� and �Xn� and apply �	��� and

�	����

P
�
B

���
t  l�� B

���
t  l� & l�

			N�t�� �	���

 


N�t�

l�

�
pl�t��


N�t�� l�

l�

�
�pt�� � pt���

l� ��� pt���
N�t��l��l�

 �� & oP ����
�N�t�pt���

l�

l��

�N�t� �pt�� � pt����
l�

l��
��� pt���

N�t�

 �� & oP ����

�
N�t�
t �tpt���

�l�
l��

�
N�t�
t �t �pt�� � pt����

�l�
l��

�

� exp
�
N�t�

t

�
t ln ��� pt���

��
P	 �Z���

l�

l��

�Z ��� � ����
l�

l��
e�Z�� � t	� � �	���

Notice that the expressions in �	��� are uniformly integrable and that �	���

is integrable	 Hence we may conclude �see for instance Karr ������ Theo�

rem �	��� that

P
�
B

���
t  l�� B

���
t  l� & l�

�
 E

h
P

�
B

���
t  l�� B

���
t  l� & l�

			 N�t��i
	 E

�
�Z���

l�

l��

�Z ��� � ����
l�

l��
e�Z��

�
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as t	�� which concludes the proof	 �

Now one could use the identity

P
�
X��N�t� � u

���
t � � � � � Xk�N�t� � u

�k�
t

�
 P

�
B

���
t  �� B

���
t � �� � � � � B�k�

t � k � �
�

and Theorem 	�	� to derive the limit distribution of the vector of upper order

statistics �X��N�t�� � � � � Xk�N�t��	 This� however� leads to quite complicated

formulae� and so we restrict ourselves to some particular cases	

First we study the limit distribution of a single order statistic Xk�N�t�

for �xed k � N	 For this reason we suppose that F � MDA�H�� i	e	 �	��� is
satis�ed for appropriate constants cn � � and dn � R	 From Proposition �	�	�

we know that �	��� is equivalent to

lim
n��

nF �cnx& dn�  � lnH�x� � x � R � �	��

Under �	�� it follows for every k � N that the relation

lim
n��

P
�
c��
n �Xk�n � dn� � x

�
 �k�� lnH�x�� � x � R �

holds� where �k denotes the incomplete gamma function� see Corollary 	�	

and Example 	�	�	 A similar statement is true for randomly indexed upper

order statistics	

Theorem ����� �Limit distribution of the kth upper order statistic in a ran�

domly indexed sample�

Suppose that N�t��t
P	 Z holds for a non�negative rv Z with df FZ and that

�	�� is satis�ed� Then

lim
n��

P
�
c��
n

�
Xk�N�n� � dn

� � x
�

 

Z �

�

�k��z lnH�x�� dFZ �z� �	���

 E
�
�k

�� lnHZ�x�
� 

� x � R �

Proof� We use the same ideas as in the proof of Theorem 	�	�	 Write

Bn  

N�n�X
j��

IfXj�cnx�dng �

Conditioning on N�n�� we �nd that
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P
�
c��
n

�
Xk�N�n� � dn

� � x j N�n��
 P �Bn � k � � j N�n��

 

k��X
i��


N�n�

i

�
�F �cnx& dn��

N�n��i �
F �cnx& dn�

�i

 �� & oP ����
k��X
i��

�

i�


N�n�

n

�
nF �cnx& dn�

��i

�

� exp
�
N�n�

n

�
n ln

�
�� F �cnx& dn�

���
P	

k��X
i��

�

i�
��Z lnH�x��ieZ lnH�x�

 HZ�x�
k��X
i��

�� lnHZ�x�
�i

i�
�

Taking expectations in the limit relation above� we arrive at �	���	 �

Example ����� Let ,N  � ,N�t��t�� be a homogeneous Poisson process with

intensity � and let Z be a positive rv independent of ,N 	 Then

N�t�  ,N�Zt� � t � ��
de�nes a so�called mixed Poisson process	 The latter class of processes has

been recognized as important in insurance� see Section �	�	� and Grandell

����	 Notice that� conditionally upon Z� N is a homogenous Poisson process

with intensity Z	 Hence� by the SLLN for renewal counting processes �The�

orem �	�	����

P


N�t�

t
	 Z

				Z�
 � a�s�

Thus taking expectations on both sides�

P


N�t�

t
	 Z

�
 ��

This shows that Theorems 	�	� and 	�	� are applicable to the order statistics

of a sample indexed by a mixed Poisson process	 �

For practical purposes� it often su�ces to consider processes �N�t�� satisfying

N�t�

t

P	 � �	���
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for some constant � � �	 For example� the renewal counting processes� includ�

ing the important homogeneous Poisson process� satisfy �	��� under general

conditions� see Section �	�	�	 Analogous arguments to those in Section 	�

combined with the ones in the proof of Theorem 	�	� lead to the following�

Theorem ����� �Limit distribution of a vector of randomly indexed upper

order statistics�

Assume that �	��� holds for a positive constant � and that F � MDA�H� for
an extreme value distribution H such that �	��� is satis�ed� Then�

c��
n

�
Xi�N�n� � dn

��
i�������k

d	 �Y
�i�
� �i�������k �

where �Y
���
� � � � � � Y

�k�
� � denotes the k�dimensional extremal variate corre�

sponding to the extreme value distribution H�� In particular�

lim
n��

P
�
c��
n �Xk�n � dn� � x

�
 �k

�� lnH��x�
�
� x � R � �

Notes and Comments

The limit distribution of randomly indexed maxima and order statistics under

general dependence assumptions between �N�t�� and �Xn� has been studied

in Galambos ���� and in Barakat and El�Shandidy ���	 General randomly

indexed sequences of rvs have been considered in Korolev ���� see also the

list of references therein	

Randomly indexed maxima and order statistics occur in a natural way

when one is interested in the extreme value theory of the individual claims in

an insurance portfolio up to time t	 Randomly indexed order statistics are of

particular interest for reinsurance where they occur explicitly as quantities in

reinsurance treaties� as for instance when a reinsurer will cover the k largest

claims of a company over a given period of time	 This issue is discussed in

more detail in Section �	�	

��� Some Extreme Value Theory for Stationary

Sequences

One of the natural generalisations of an iid sequence is a strictly stationary

process� we say that the sequence of rvs �Xn� is strictly stationary if its

�nite�dimensional distributions are invariant under shifts of time� i	e	

�Xt� � � � � � Xtm�
d
 �Xt��h� � � � � Xtm�h�
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for any choice of indices t� � � � � � tm and integers h� see also Appendix A�	�	

It is common to de�ne �Xn� with index set Z	 We can think of �Xn� as

a time series of observations at discrete equidistant instants of time where

the distribution of a block �Xt� Xt��� � � � � Xt�h� of length h is the same for

all integers t	

For simplicity we use throughout the notion of a �stationary
 sequence

for a �strictly stationary
 one	 A strictly stationary sequence is naturally also

stationary in the wide sense or second order stationary provided the second

moment of X  X� is �nite� i	e	 EXn  EX for all n and cov�Xn� Xm�  

cov�X�� Xjn�mj� for all n and m	

It is impossible to build up a general extreme value theory for the class

of all stationary sequences	 Indeed� one has to specify the dependence struc�

ture of �Xn�	 For example� assume Xn  X for all n	 This relation de�nes

a stationary sequence and

P �Mn � x�  P �X � x�  F �x� � x � R �

Thus the distribution of the sample maxima can be any distribution F 	 This

is not a reasonable basis for a general theory	

The other extreme of a stationary sequence occurs when the Xn are mu�

tually independent� i	e	 �Xn� is an iid sequence	 In that case we studied the

weak limit behaviour of the upper order statistics in Section 	�	 In partic�

ular� we know that there exist only three types of di�erent limit laws� the

Fr�echet distribution ��� the Weibull distribution �� and the Gumbel distri�

bution � �Fisher�Tippett Theorem �	�	��	 The dfs of the type of ��� ��� �

are called extreme value distributions	 In this section we give conditions on

the stationary sequence �Xn� which ensure that its sample maxima �Mn�

and the corresponding maxima �fMn� of an iid sequence � eXn� with common

df F �x�  P � eX � x� exhibit a similar limit behaviour	 We call � eXn� an

iid sequence associated with �Xn� or simply an associated iid sequence	 As

before we write F � MDA�H� for any of the extreme value distributions H
if there exist constants cn � � and dn � R such that c��

n �
fMn � dn�

d	 H 	

For the derivation of the limit probability of P �fMn � un� for a sequence of

thresholds �un� we made heavy use of the following factorisation property�

P
�fMn � un

�
 Pn

� eX � un

�
�	���

 exp
n
n ln

�
�� P

� eX � un

��o
� exp

��nF �un�� �

In particular� we concluded in Proposition �	�	� that� for any � � ������
P �fMn � un�	 expf��g if and only if nF �un�	 � � �����	 It is clear that
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we cannot directly apply �	��� to maxima of a dependent stationary se�

quence	 However� to overcome this problem we assume that there is a speci�c

type of asymptotic independence�

Condition D�un�� For any integers p� q and n

� � i� � � � � � ip � j� � � � � � jq � n

such that j� � ip � l we have				P 
max

i�A�A�

Xi � un

�
� P


max
i�A�

Xi � un

�
P


max
i�A�

Xi � un

�				 � 	n�l �

where A�  fi�� � � � � ipg� A�  fj�� � � � � jqg and 	n�l 	 � as n	� for some

sequence l  ln  o�n��

This condition as well as D��un� below and their modi�cations have been

intensively applied to stationary sequences in the monograph by Leadbetter�

Lindgren and Rootz�en ����	 Condition D�un� is a distributional mixing con�

dition� weaker than most of the classical forms of dependence restrictions	 A

discussion of the role of D�un� as a speci�c mixing condition can be found

in Leadbetter et al	 ����� Sections �	� and �	�	 Condition D�un� implies� for

example� that

P �Mn � un�  P k
�
M�n�k	 � un

�
& o��� �	���

for constant or slowly increasing k	 This relation already indicates that the

limit behaviour of �Mn� and its associated sequence �fMn� must be closely

related	 The following result �Theorem �	�	� in Leadbetter et al	 ����� even

shows that the classes of possible limit laws for the normalised and centred

sequences �Mn� and �fMn� coincide	

Theorem ����� �Limit laws for maxima of a stationary sequence�

Suppose c��
n �Mn � dn�

d	 G for some distribution G and appropriate con�

stants cn � �� dn � R� If the condition D�cnx& dn� holds for all real x� then

G is an extreme value distribution�

Proof� Recall from Theorems �	�	�� �	�	� and from De�nition �	�	� that G

is an extreme value distribution if and only if G is max�stable	 By �	����

P �Mnk � cnx& dn�  P k �Mn � cnx& dn� & o��� 	 Gk�x�

for every integer k � �� and every continuity point x of G	 On the other hand�

P �Mnk � cnkx& dnk� 	 G�x� �
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Now we may proceed as in the proof of Theorem �	�	� to conclude that G is

max�stable	 �

Remark� �� Theorem 		� does notmean that the relations c��
n �Mn�dn�

d	
G and c��

n �fMn � dn�
d	 H hold with G  H	 We will see later that G is

often of the form H� for some  � ��� �� �see for instance Example 		� and
Section �	���  is then called extremal index	 �

Thus max�stability of the limit distribution is necessary under the conditions

D�cnx&dn�� x � R	 Next we want to �nd su�cient conditions for convergence

of the probabilities P �Mn � un� for a given threshold sequence �un� satisfying

nF �un�	 � �	���

for some � � �����	 From Proposition �	�	� we know that �	��� and P �fMn �
un� 	 expf��g are equivalent	 But may we replace �fMn� by �Mn� un�

der D�un�" The answer is� unfortunately� NO	 All one can derive is

lim inf
n��

P �Mn � un� � e�� �

see the proof of Proposition 		� below	

Example ����� �See also Figure 		�	� Assume that �Yn� is a sequence of

iid rvs with df
p
F for some df F 	 De�ne the sequence �Xn� by

Xn  max �Yn� Yn��� � n � N �

Then �Xn� is a stationary sequence and Xn has df F for all n � �	 From this
construction it is clear that maxima of �Xn� appear as pairs at consecutive

indices	

Now assume that for � � ����� the sequence un satis�es un 
 xF �xF is the
right endpoint of F � and �	���	 Then F �un�	 � and

nP �Y� � un�  n
�
��

p
F �un�

�
 

nF �un�

� &
p

F �un�
	 �

�
�

Hence� by Proposition �	�	��

P �Mn � un�  P �max �Y�� � � � � Yn� Yn��� � un�

 P �max �Y�� � � � � Yn� � un�F �un�

	 e���� �

Condition D�un� is naturally satis�ed� if A� and A� are chosen as in D�un�

and l � �� then we can take 	n�l  �	 �
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This example supports the introduction of a second technical condition	

Condition D��un�� The relation

lim
k��

lim sup
n��

n

�n�k	X
j��

P �X� � un� Xj � un�  � �

Remark� �� D��un� is an �anti�clustering condition
 on the stationary se�

quence �Xn�	 Indeed� notice that D
��un� implies

E
X

��i�j��n�k	

IfXi�un�Xj�ung � �n�k�
�n�k	X
j��

EIfX��un�Xj�ung 	 � �

so that� in the mean� joint exceedances of un by pairs �Xi� Xj� become very

unlikely for large n	 �

Now we have introduced the conditions which are needed to formulate the

following analogue of Proposition �	�	�� see Theorem �		� in Leadbetter et

al	 �����

Proposition ����� �Limit probabilities for sample maxima�

Assume that the stationary sequence �Xn� and the threshold sequence �un�

satisfy D�un�� D
��un�� Suppose � � ������ Then condition �	��� holds if and

only if
lim
n��

P �Mn � un�  e�� � �	��

Proof� We restrict ourselves to the su�ciency part in order to illustrate the

use of the conditions D�un� and D��un�	 The necessity follows by similar

arguments	

We have� for any l � ��
lX

i��

P �Xi � un��
X

��i�j�l

P �Xi � un� Xj � un�

�	��

� P �Ml � un� �
lX

i��

P �Xi � un� �

Exploiting the stationarity of �Xn� we see that

lX
i��

P �Xi � un�  l F �un� �

X
��i�j�l

P �Xi � un� Xj � un� � l

lX
j��

P �X� � un� Xj � un� �
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Combining this and �	�� for l  �n�k� ��x� denotes the integer part of x�

and for a �xed k� we derive upper and lower estimates for P �M�n�k	 � un��

�� �n�k�F �un� � P
�
M�n�k	 � un

�
� �� �n�k�F �un� & �n�k�

�n�k	X
j��

P �X� � un� Xj � un� �

From �	��� we immediately have

�n�k�F �un�	 ��k � n	� �

and� by condition D��un��

lim sup
n��

�n�k�

�n�k	X
j��

P �X� � un� Xj � un�  o���k� � k 	� �

Thus we get the bounds

�� �

k
� lim inf

n��
P

�
M�n�k	 � un

� � lim sup
n��

P
�
M�n�k	 � un

� � �� �

k
&o���k� �

This and relation �	��� imply that�
�� �

k

�k
� lim inf

n��
P �Mn � un�

� lim sup
n��

P �Mn � un� �
�
�� �

k
& o���k�

�k
�

Letting k 	� we see that

lim
n��

P �Mn � un�  e�� �

This concludes the proof	 �

Example ����� �Continuation of Example 		��

We observed in Example 		� that condition �	��� implies P �Mn � un�	
expf����g	 We have already checked that D�un� is satis�ed	 Thus D��un�

must go wrong	 This can be easily seen� since X� and Xj are independent for

j � � we conclude that

n

�n�k	X
j��

P �X� � un� Xj � un�

 nP �X� � un� X� � un� & n��n�k�� ��P � �X� � un�

 nP �max �Y�� Y�� Y
� � un� & ���k & o���

 n
�
�� F 
 �un�

�
& ���k & o��� � n	� �
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Figure �
�
� A realisation of the sequences �Yn� �top� and �Xn� �bottom� with F
standard exponential as discussed in Examples ����	 and ������ Extremes appear in
clusters of size ��

We have

n
�
�� F 
 �un�

�
 nF �un�

�
� & F � �un� & F �un�

�	 �� �

Thus conditionD��un� cannot be satis�ed	 The reason for this is that maxima

in �Xn� appear in clusters of size �	 Notice that

E

�
nX
i��

IfXi�un�Xi���ung

�
 nP �X� � un� X� � un�	 �� � � �

so that in the long run the expected number of joint exceedances of un by

the pairs �Xi� Xi��� stabilises around a positive number	 �

Proceeding precisely as in Section �	� we can now derive the limit distribution

for the maxima Mn�

Theorem ����� �Limit distribution of maxima of a stationary sequence�

Let �Xn� be a stationary sequence with common df F � MDA�H� for some

extreme value distribution H� i�e� there exist constants cn � �� dn � R such

that
lim
n��

nF �cnx& dn�  � lnH�x� � x � R � �	��
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Assume that for x � R the sequences �un�  �cnx& dn� satisfy the condi�

tions D�un� and D��un�� Then �	�� is equivalent to each of the following

relations	

c��
n �Mn � dn�

d	 H � �	��

c��
n �fMn � dn�

d	 H � �	�

Proof� The equivalence of �	�� and �	� is immediate from Proposi�

tion �	�	�	 The equivalence of �	�� and �	�� follows from Proposition 		�	

�

From the discussion above we are not surprised about the same limit behav�

iour of the maxima of a stationary sequence and its associated iid sequence�

the conditions D�cnx & dn� and D��cnx & dn� force the sequence �Mn� to

behave very much like the maxima of an iid sequence	 Notice that Theo�

rem 		� also ensures that we can choose the sequences �cn� and �dn� in the

same way as proposed in Section �	�	

Thus the problem about the maxima of a stationary sequence has been

reduced to a question about the extremes of iid rvs	 However� now one has

to verify the conditions D�cnx & dn� and D��cnx & dn� which� in general�

is tedious	 Conditions D�un� and D��un� have been discussed in detail in

the monograph by Leadbetter et al	 ����	 The case of a Gaussian station�

ary sequence is particularly nice� one can check D�un� and D��un� via the

asymptotic behaviour of the autocovariances

��h�  cov �X�� Xh� � h � � �
The basic idea is that the distributions of two Gaussian vectors are �close


to each other if their covariance matrices are �close
	 Leadbetter et al	 ����

make this concept precise by a so�called normal comparison lemma �their

Theorem 	�	��� a particular consequence of which is the estimate		P �Xi� � un� � � � � Xik � un�� �k �un�
		

� const n

nX
h��

j��h�j exp
� �u�n
� & j��h�j

�
for � � i� � � � � � ik � n	 Here �Xn� is stationary with marginal df the stan�

dard normal �� and it is assumed that suph�� j��h�j � �	 In particular�

jP �Mn � un�� �n �un�j � const n
nX

h��

j��h�j exp
� �u�n
� & j��h�j

�
� �	��

Now it is not di�cult to check conditions D�un� and D��un�	 For details see

Lemma 		� in Leadbetter et al	 �����
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Lemma ����� �Conditions for D�un� and D��un� for a Gaussian stationary

sequence�

Assume �Xn� is stationary Gaussian and let �un� be a sequence of real num�

bers�

�a� Suppose the rhs in �	�� tends to zero as n	� and suph�� j��h�j � ��
Then D�un� holds�

�b� If in addition lim supn�� n��un� �� then D��un� holds�

�c� If ��n� lnn	 � and lim supn�� n��un� �� then both conditions D�un�

and D��un� are satis�ed� �

Now recall that the normal distribution � is in the maximum domain of

attraction of the Gumbel law �� see Example �	�	��	 Then the following is

a consequence of Lemma 		� and of Theorem 		�	 The constants cn and

dn are chosen as in Example �	�	��	

Theorem ����
 �Limit distribution of the maxima of a Gaussian stationary

sequence�

Let �Xn� be a stationary sequence with common standard normal df �� Sup�

pose that

lim
n��

��n� lnn  � �

Then p
� lnn


Mn �

p
� lnn&

ln lnn& ln �

��� lnn����

�
d	 � �

�

The assumption ��n� lnn	 � is called Berman�s condition and is very weak	

Thus Theorem 		� states that Gaussian stationary sequences have very

much the same extremal behaviour as Gaussian iid sequences	

Example ����� �Gaussian linear processes�

An important class of stationary sequences is that of the linear processes �see

Section �	� and Chapter ��� which have an in�nite moving average represen�

tation

Xn  
�X

j���


jZn�j � n � Z � �	��

where �Zn�n�Z is an iid sequence and
P

j 

�
j � �	 We also suppose that

EZ�  � and ��
Z  var�Z�� ��	 If �Zn� is Gaussian� so is �Xn�	 Conversely�

most interesting Gaussian stationary processes have representation �	��� see

Brockwell and Davis ����� Theorem �	�	�� in particular� the popular �causal�

ARMA processes� see Example �	�	�	 In that case the coe�cients 
j decrease

to zero at an exponential rate	 Hence the autocovariances of �Xn�� i	e	
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��h�  E�X�Xh�  ��
Z

�X
j���


j
j�h � h � � �

decrease to zero exponentially as h	�	 Thus Theorem 		� is applicable

to Gaussian ARMA processes	

Gaussian fractional ARIMA�p� d� q� processes with p� q � �� d � ��� ��� enjoy
a �causal� representation �	�� with 
j  jd��L�j� for a slowly varying

function L� see Brockwell and Davis ����� Section ��	�	 It is not di�cult to

see that the assumptions of Theorem 		� also hold in this case	 Fractional

ARIMA processes with d � ��� ���� are a standard example of long memory
processes where the sequence ��h� is not supposed to be absolutely summable	

This shows that the restriction ��n� lnn 	 � is indeed very weak in the

Gaussian case	

In Section �	� we will study the extreme value behaviour of linear processes

with subexponential noise �Zn� in MDA��� or MDA����	 We will learn that

the limit distributions of �Mn� are of the form H� for some  � ��� �� and
an extreme value distribution H 	 This indicates the various forms of limit

behaviour of maxima of linear processes� depending on their tail behaviour	

�

Notes and Comments

Extreme value theory for stationary sequences has been treated in detail in

Leadbetter et al	 ����	 There one can also �nd some remarks on the history

of the use of conditions D�un� and D��un�	 A very recommendable review

article is Leadbetter and Rootz�en ����	

In summary� the conditions D�un� and D��un� ensure that the extremes

of the stationary sequence �Xn� have the same qualitative behaviour as

the extremes of an associated iid sequence	 The main problem is to verify

conditions D�un� and D��un�	 For Gaussian �Xn� this reduces to showing

Berman�s condition� namely that ��n�  cov�X�� Xn�  o��� lnn�	 It cov�

ers wide classes of Gaussian sequences� in particular ARMA and fractional

ARIMA processes	 We mention that Leadbetter et al	 ���� also treated the

cases ��n� lnn	 c � �����	
In Section �	�	� we will come back to stationary sequences satisfying the

conditions D�un� and D��un�	 There we will also study the behaviour of the

upper order statistics	



�

An Approach to Extremes via Point Processes

Point process techniques give insight into the structure of limit variables and

limit processes which occur in the theory of summation �see Chapter ��� in

extreme value theory �see Chapters � and � and in time series analysis �see

Chapter ��	

One can think of a point process N simply as a random distribution of

points Xi in space	 For a given con�guration �Xi� and a set A� N�A� counts

the number of Xi � A	 It is convenient to imagine the distribution of N as

the probabilities

P �N�A��  k�� � � � � N�Am�  km�

for all possible choices of nice sets A�� � � � � Am and all non�negative integers

k�� � � � � km	

The most important point processes are those for which N�A� is Poisson

distributed	 This leads to the notion of a Poisson random measure N �see

De�nition �	�	�� as a generalisation of the classical �homogeneous� Poisson

process on �����	 Poisson random measures are basic for the understanding
of links between extreme value theory and point processes� they occur in

a natural way as weak limits of sample point processes Nn� say	 This means�

to over�simplify a little� that the relations

�Nn�A��� � � � � Nn�Am��
d	 �N �A��� � � � � N�Am��

hold for any choice of sets Ai	 Kallenberg�s Theorem �	�	� gives surprisingly

simple conditions for this convergence to hold	
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These are the fundamental notions which we need throughout	 They are

made precise in Sections �	� and �	�	 The interrelationship between extremes�

point processes and weak convergence is perhaps best illustrated by the point

process of exceedances of a given threshold by a sequence of rvs� see Exam�

ple �	�	� and Section �	�	 Then the reader is urged to go through the beautiful

results on exceedances� limits of upper order statistics� joint convergence of

maxima and minima� records etc	 in order to get a general impression about

the method� see Sections �	 and �	�	 Point process methods yield a uni�ed

and relatively easy approach to extreme value theory	 In contrast to the clas�

sical techniques as used in Chapter � and � they do allow for the treatment

of extremes of sequences more general than iid in a straightforward way	

In this chapter we need some tools from functional analysis and from

measure theory as well as certain arguments from weak convergence in met�

ric spaces� see Appendix A�	 In our presentation we try to reduce these

technicalities to a minimum� but we cannot avoid them completely	

Our discussion below closely follows Resnick �����	


�� Basic Facts about Point Processes

����� Denition and Examples

In this section we are concerned with the question

What is a point process� how can we describe its distribution�

and what are simple examples


For the moment� consider a sequence �Xn� of random vectors in the so�called

state space E and de�ne for A � E

N�A�  cardfi � Xi � Ag �
i	e	 N�A� counts the number of Xi falling into A	 Naturally� N�A�  N�A���

is random for a given set A and� under general conditions� N��� �� de�nes a
random counting measure with atomsXn on a suitable ��algebra E of subsets
of E	 This is the intuitive meaning of the point process N 	

For our purposes� the state space E� where the points live� is a subset

of a �nite�dimensional Euclidean space possibly including points with an

in�nite coordinate� and E is equipped with the ��algebra E of the Borel sets
generated by the open sets	 It is convenient to write a point process using

Dirac measure �x for x � E�

�x�A�  

�
� if x � A �

� if x �� A �
A � E �
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Figure �
�
� A con
guration of random points Xi in R� � R�� The number of
points that fall into the set A constitute the counting variable N�A�� in this case
N�A	�� � 
�

For a given sequence �xi�i�� in E�

m�A�  

�X
i��

�xi�A�  
X

i�xi�A

�  card fi � xi � Ag � A � E �

de�nes a counting measure on E which is called a point measure if m�K� ��
for all compact sets K � E	 Let Mp�E� be the space of all point measures

on E equipped with an appropriate ��algebraMp�E�	

Denition ����� �De�nition of a point process�

A point process on E is a measurable map

N � ���F � P �	 �Mp�E��Mp�E�� � �

Remarks� �� The ��algebra Mp�E� contains all sets of the form fm �
Mp�E� � m�A� � Bg for A � E and any Borel set B � ������ i	e	 it is the
smallest ��algebra making the maps m	 m�A� measurable for all A � E 	
�� A point process is a random element or a random function which assumes

point measures as values	 It is convenient to think of a point process as a

collection �N�A��A�E of the extended rvs N�A�	 �An extended rv can assume

the value � with positive probability	�	 Point processes are special random

measures� see for instance Kallenberg �����	
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�� The point processes we are interested in can often be written in the form

N  

�X
i��

�Xi

for a sequence �Xn� of d�dimensional random vectors	 Then� for each � � ��

N�A���  
�X
i��

�Xi����A� � A � E �

de�nes a point measure on E 	
� Assume that m  

P�
i�� �xi is a point measure on E	 Let �yi� be a sub�

sequence of �xi� containing all mutually distinct values �xi� with no repeats	

De�ne the multiplicity of yi as

ni  cardfj � j � � � yi  xjg �

Then we may write

m  

�X
i��

ni�yi �

If ni  � for all i� then m is called a simple point measure� and a multiple

one� otherwise	 Analogously� if the realisations of the point process N are

only simple point measures� then N is a simple point process� and a multiple

one� otherwise	 Alternatively� a point process N is simple if

P �N�fxg� � � � x � E�  � � �

Example ����� �Point process of exceedances�

One of the point processes closely related to extreme value theory is the point

process of exceedances� let u be a real number and �Xn� a sequence of rvs	

Then the point process of exceedances

Nn���  
nX
i��

�n��i���IfXi�ug � n  �� �� � � � � ��	��

with state space E  ��� �� counts the number of exceedances of the threshold

u by the sequence X�� � � � � Xn	 For example� take the whole interval ��� ��	

Then

Nn��� ��  card
�
i � � � n��i � � and Xi � u

�
 card fi � n � Xi � ug �

Here and in the sequel we write for a measure 
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�a� b�  ��a� b�� � �a� b�  ��a� b�� etc	

We also see immediately the close link with extreme value theory	 For exam�

ple� let Xk�n denote the kth largest order statistic of the sample X�� � � � � Xn	

Then

fNn��� ��  �g  fcard fi � n � Xi � ug  �g

 fNone of the Xi� i � n� exceeds ug

 fmax �X�� � � � � Xn� � ug

fNn��� �� � kg  fcard fi � n � Xi � ug � kg

 fFewer than k among the Xi� i � n� exceed ug

 fThe order statistic Xk�n does not exceed ug

 fXk�n � ug �

We notice that the point process of exceedances can be written in the �perhaps

more intuitively appealing� form

Nn���  
nX
i��

�n��i�Xi
��� � n  �� �� � � � � ��	��

with two�dimensional state space E  ��� ��� �u���	 In our presentation we
prefer version ��	�� on E  ��� ��� with the exception of Section �	�	�	 The

advantage of this approach is that weak convergence of ��	�� can be dealt with

by simpler means than for ��	��� compare for instance the di�culty of the

proofs in Sections �	� and �	�	�	 In Section �	� our interest will focus on the

point process of exceedances for a sequence of non�decreasing thresholds u  

un which we will choose in such a way that �Nn� converges weakly� in the

sense of Section �	�� to a Poisson random measure� see De�nition �	�	� below	

�

Example ����� �Renewal counting process�

Let �Yi� be a sequence of iid positive rvs� Tn  Y� & � � � & Yn� n � �	 Recall
from Section �	�	� the renewal counting process generated by �Yi��

N�t�  cardfi � Ti � tg � t � � �
To this process we can relate the point process

N�A�  

�X
i��

�Ti�A� � A � E �



��� �� An Approach to Extremes via Point processes

r

r

r

r

r

r

r

r

r

r

�

��

u

T�T� T
 T� T�T T� T� T� T��

X�

X�

X
 X�

X

X�

X� X�

X�

X��

Figure �
�
� Visualisation of the point process of exceedances corresponding to the
random sums from Example �����

with state space E  �����	 Notice that for A  ��� t� we obtain

N�t�  N ��� t� � t � � �

In this sense� every renewal counting process corresponds to a point process	

The point process de�ned in this way is simple since � � T� � T� � � � � with
probability �	 Recall that a homogeneous Poisson process �see Example �	�	��

is a particular renewal counting process with exponential rvs Yi	 Hence a

Poisson process de�nes a �Poisson point process
	 �

Example ����� �Random sums driven by a renewal counting process�

In Chapter � and Section �	�	� we considered random sums driven by a

renewal counting process�

S�t�  

N�t�X
i��

Xi � t � � �

Here �N�t�� is a renewal counting process as de�ned in Example �	�	 and

�Xi� is an iid sequence independent of �N�t��	 Recall from Chapter � that

random sums are closely related to the renewal risk model in which we can

interpret the rv Xi as claim size arriving at time Ti	 A point process related

to �S�t�� is given by
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eN�A�  �X
i��

��Ti�Xi��A� � A � E �

with state space E  ������ R	 For example� in the insurance contexteN ��a� b�� �u����  cardfi � a � Ti � b� Xi � ug
counts the number of claims arriving in the time interval �a� b� and exceeding

the threshold value u	 Notice that eN is very close in spirit to the point process

of exceedances from Example �	�	�	 �

����� Distribution and Laplace Functional

The realisations of a point process N are point measures	 Therefore the dis�

tribution or the probability law of N is de�ned on subsets of point measures�

PN �A�  P �N � A� � A � Mp�E� �

This distribution is not easy to imagine	 Fortunately� the distribution of N

is uniquely determined by the family of the distributions of the �nite�

dimensional random vectors

�N�A��� � � � � N�Am�� ��	��

for any choice of A�� � � � � Am � E and m � �� see Daley and Vere�Jones ������
Proposition �	�	III	 The collection of all these distributions is called the �nite�

dimensional distributions of the point process	 We can imagine the �nite�

dimensional distributions much more easily than the distribution PN itself	

Indeed� ��	�� is a random vector of integer�valued rvs which is completely

given by the probabilities

P �N �A��  k�� � � � � N �Am�  km� � ki � � � i  �� � � � �m �

From a course on probability theory we know that it is often convenient to

describe the distribution of a rv or of a random vector by some analytical

means	 For example� one uses a whole class of transforms� chfs� Laplace�

Stieltjes transforms� generating functions etc	 A similar tool exists for point

processes�

Denition ����� �Laplace functional�

The Laplace functional of the point process N is given by

�N �g�  E exp

�
�

Z
E

g dN

�
��	�

 

Z
Mp�E�

exp

�
�

Z
E

g�x� dm�x�

�
dPN �m� �

It is de�ned for non�negative measurable functions g on the state space E��
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Remarks� �� The Laplace functional �N determines the distribution of a

point process completely� see Example �	�	� below	

�� Laplace functionals are an important tool for discovering the properties

of point processes� they are particularly useful for studying the weak conver�

gence of point processes� see Section �	�	

�� The integral
R
E
gdN in ��	� is well de�ned as a Lebesgue�Stieltjes integral	

Write N  
P�

i�� �Xi for random vectors with values in E� thenZ
E

gdN  

�X
i��

g�Xi��

In particular�
R
A
dN  

R
E
IA dN  N�A�	 �

Example ����
 �Laplace functional and Laplace transform�

To get an impression of the use of Laplace functionals we consider the special

functions

g  z IA � z � � � A � E �

Then

�N �g�  E exp

�
�

Z
E

g dN

�
 E exp f�z N�A�g �

so that the notion of the ordinary Laplace transform of the rv N�A� is em�

bedded in the Laplace functional	 Now suppose that A�� � � � � Am � E 	 If we
choose the functions

g  z� IA� & � � �& zm IAm � z� � � � � � � � zm � � �

then we obtain the joint Laplace transform of the �nite�dimensional distri�

butions� i	e	 of the random vectors ��	��	 From the remarks above we learnt

that the �nite�dimensional distributions determine the distribution of N 	 On

the other hand� the �nite�dimensional distributions are uniquely determined

by their Laplace transforms� and hence the Laplace functional uniquely de�

termines the distribution of N 	 �

����� Poisson Random Measures

Point processes are collections of counting variables	 The simplest and per�

haps most useful example of a counting variable is binomially distributed�

Bn  
Pn

i�� IfXi�Ang for iid Xi counts the number of �successes
 fXi � Ang
among X�� � � � � Xn� and pn  P �X� � An� is the �success probability
	 Then

Poisson�s theorem tells us that Bn
d	 Poi��� provided pn � ��n	 This simple
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limit result also suggests the following de�nition of a Poisson random mea�

sure which occurs as natural limit of many point processes� see for instance

Section �	�	

Let  be a Radon measure on E � i	e	 �A� �� for compact sets A � E	

Denition ����� �Poisson random measure �PRM��

A point process N is called a Poisson process or a Poisson random measure

with mean measure  �we write PRM��� if the following two conditions are

satis�ed	

�a� For A � E�

P �N�A�  k�  

��� e���A� ��A��
k

k�
if �A� �� �

� if �A�  � �

k � � �

�b� For any m � �� if A�� � � � � Am are mutually disjoint sets in E then

N�A��� � � � � N�Am� are independent rvs� �

Remark� The name mean measure is justi�ed by the fact that EN�A�  

�A�	 Since a Poisson distribution is determined by its mean value� it follows

from the above de�nition that PRM�� is determined by its mean measure 	

�

Example ������ �Homogeneous PRM�

Recall the notion of a homogeneous Poisson process �N�t��t�� with inten�

sity � � � from Example �	�	�	 It is a process with stationary� independent

increments such that N�t� is Poi��t� distributed	 Hence

P �N�t�  k�  e��t
��t�k

k�
� k  �� �� � � � �

Since �N�t��t�� is a non�decreasing process the construction

N�s� t�  N�t��N�s� � � � s � t �� �

and the extension theorem for measures de�ne a point process N on the

Borel sets of E  �����	 The stationary� independent increments of �N�t��t��

imply that

P �N �A��  k�� � � � � N �Am�  km�

 e��jA�j ��jA�j�k�
k��

� � � e��jAmj ��jAmj�km
km�

for any mutually disjoint Ai and integers ki � �	 Here j � j denotes Lebesgue
measure on �����	 This relation is immediate for disjoint intervals Ai� and
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in the general case one has to approximate the disjoint Borel sets Ai by in�

tervals	

Alternatively� we saw from Example �	�	 that a homogeneous Poisson

process with intensity � can be de�ned as a simple point process N  P�
i�� �Ti � where Ti  Y� & � � � & Yi for iid exponential rvs Yi with mean

value ���	

Notice that N has mean measure

�A�  �jAj  �

Z
A

dx � A � E � �

Now suppose that N is PRM��j � j� with state space E � R
d
�R  

R � f����g�� where � � � and j � j denotes Lebesgue measure on E	 As

a generalisation of the homogenous Poisson process on ����� we call N a ho�

mogeneous PRM or homogeneous Poisson process with intensity �	 Moreover�

if the mean measure  of a PRM is absolutely continuous with respect to

Lebesgue measure� i	e	 there exists a non�negative function f such that

�A�  

Z
A

f�x� dx � A � E �

then f is the intensity or the rate of the PRM	

Alternatively� we can de�ne a PRM�� by its Laplace functional�

Example ������ �Laplace functional of PRM���

�N�g�  exp

�
�

Z
E

�
�� e�g�x�

�
d�x�

�
��	��

for any measurable g � �	 Formula ��	�� is a consequence of the more general
Lemma �	�	�� below	 �

Lemma ������ Let N be PRM�� on E � R
d
� Assume that the Lebesgue

integral
R
E
�expff�x�g���d�x� exists and is �nite� Then R

E
jf jdN �� a�s�

and

IN �f�  E exp

�Z
E

fdN

�
 exp

�
�

Z
E

�
�� ef�x�

�
d�x�

�
�

Proof� For A � E with �A� �� write f  IA	 Then

IN �f�  E exp

�Z
E

f dN

�
 E expfN�A�g

 
�X
k��

ek
��A��k

k�
e���A�  e���A����e�

 exp

�
�

Z
E

�
�� ef�x�

�
d�x�

�
�
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For

f  

mX
i��

zi IAi � zi � � � i  �� � � � �m � ��	��

and disjoint A�� � � � � Am we can use the independence of N�A��� � � � � N�Am��

IN �f�  E exp

�
mX
i��

ziN �Ai�

�

 

mY
i��

exp

�
�

Z
E

�
�� ezi IAi

�
d�x�

�

 exp

�
�

Z
E

�
�� ef�x�

�
d�x�

�
�

General non�negative f are the monotone limit of step functions �fn� as in

��	��	 Thus� applying the monotone convergence theorem� we obtain

IN �f�  lim
n��

E exp

�Z
E

fn dN

�

 lim
n��

exp

�
�

Z
E

�
�� efn�x�

�
d�x�

�

 exp

�
�

Z
E

�
�� ef�x�

�
d�x�

�
�

Since the right�hand side is supposed to be �nite� E expfRE fdNg � ��
hence

R
E fdN �� a	s	

For negative f one can proceed similarly	 For general f � write f  f� � f�	

Notice that
R
E
f�dN and

R
E
f�dN are independent since E�  fx � E �

f�x� � �g and E�  fx � E � f�x� � �g are disjoint	 Hence

IN �f�  IN �f
��IN ��f��

 exp

�
�

Z
E�

�
�� ef

�
�
d

�
exp

�
�

Z
E�

�
�� e�f

�
�
d

�

 exp

�
�

Z
E

�
�� ef

�
d

�
�

This proves the lemma	 �

PRM have an appealing property� they remain PRM under transformations

of their points	



��� �� An Approach to Extremes via Point processes

Proposition ������ �Transformed PRM are PRM�

Suppose N is PRM�� with state space E � R
d
� Assume that the points of

N are transformed by a measurable map eT � E 	 E�� where E� � R
m

for

some m � �� Then the resulting transformed point process is PRM�� eT����

on E�� i�e� this PRM has mean measure � eT������  fx � E � eT �x� � �g�
Proof� Assume that N has representation N  

P�
i�� �Xi 	 Then the trans�

formed point process can be written as

eN  

�X
i��

�eT �Xi�
�

We calculate the Laplace functional of eN �
�eN �g�  E exp

�
�

Z
E�

gd eN�

 E exp

�
�

�X
i��

g� eT �Xi��

�

 E exp

�
�

Z
E

g� eT �dN�

 exp

�
�

Z
E

�
�� e�g�eT �x��� d�x�

�

 exp

�
�

Z
E�

�
�� e�g�y�

�
d� eT���y��

�
�

This is the Laplace functional of PRM�� eT���� on E�� see Example �	�	��	

�

Example ������ Let �k be the points of a homogeneous Poisson process on

����� with intensity � and eT �x�  expfxg	 Then eN  
P�

i�� �expf�ig is PRM

on ����� with mean measure given by

e�a� b�  Z b

a

d� eT���y��  �

Z ln b

lna

dx  � ln�b�a� � � � a � b �� � ��	��

It is interesting to observe that the mean measure of the PRM eN depends

only on the fraction b�a� so that the mean measure is the same for all intervals

�ca� cb� for any c � �	

Now assume that the PRM eN is de�ned on the state space R� where its

mean measure is given by ��	�� for all � � a � b ��	 Since the distribution
of a PRM is determined via its mean measure it follows that the PRM eN���
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and eN�c�� on R� have the same distribution in Mp�R� � for every positive

constant c	 �

Example ������ �Compound Poisson process�

Let ��i� be the points of a homogeneous Poisson process N on ����� with
intensity � � � and ��i� be a sequence of iid non�negative integer�valued rvs�

independent of N 	 Consider the multiple point process

eN  

�X
i��

�i��i

and notice that

eN��� t�  �X
i��

�i��i��� t�  

N�t�X
i��

�i � t � � �

This is nothing but a particular �i	e	 integer�valued� compound Poisson

process as used for instance in Chapter � for the Cram�er�Lundberg model	

Therefore we call the point process eN a compound Poisson process with in�

tensity � and cluster sizes �i� The probabilities �k  P ���  k�� k � �� are
the cluster probabilities of eN�

The point process notion compound Poisson process as introduced above is

perhaps not the most natural generalisation of the corresponding random sum

process	 One would like a random measure with property eN��� t�  PN�t�
i�� �i

for iid �i with any distribution	 Since eN��� t� could then assume any real
value this calls for the introduction of a signed random measure	 For details

we refer to Kallenberg �����	

Compound Poisson processes frequently occur as limits of the point processes

of exceedences of a strictly stationary sequence� see for instance Sections �	�

and �		 �

Notes and Comments

Point processes are special random measures� see Kallenberg �����	 Standard

monographs on point processes and random measures are Cox and Isham

����� Daley and Vere�Jones ������ Kallenberg ������ Karr ������ Matthes�

Kerstan and Mecke ���� Reiss �����	 Point processes are also treated in

books on stochastic processes� see for instance Jacod and Shiryaev ������

Resnick ����� ����	

In our presentation we leave out certain details	 This does not always

leave the su�cient mathematical rigour	 We are quite cavalier concerning

measurability �for instance for point processes� and existence results �for
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instance for PRM�� and we are not precise about compact sets in E � R
d
	 The

disappointed reader is invited to read through Chapters � and  in Resnick

����� or to consult the �rst few chapters in Daley and Vere�Jones �����	


�� Weak Convergence of Point Processes

Weak convergence of point processes is a basic tool for dealing with the

asymptotic theory of extreme values� linear time series and related �elds	 We

give here a short introduction to the topic	 First of all we have to clarify�

What does weak convergence of point processes actually mean


This question cannot be answered at a completely elementary level	 Consider

point processesN�N�� N�� � � � on the same state space E � R
d
	 Then we know

from Section �	�	� that the distribution of these point processes in Mp�E��

the space of all point measures on E� is determined by their �nite�dimensio�

nal distributions	 Thus a natural requirement for weak convergence of �Nn�

towards N would be that� for any choice of �good
 Borel sets A�� � � � � Am � E
and for any integer m � ��

P �Nn�A��� � � � � Nn�Am��	 P �N�A��� � � � � N�Am�� � ��	��

On the other hand� every point process N can be considered as a stochastic

process� i	e	 as a collection of rvs N�A� indexed by the sets A � E 	 Thus N is

an in�nite�dimensional object which must be treated in an appropriate way	

A glance at Appendix A� should convince us that we need something more

than convergence of the �nite�dimensional distributions� namely a condition

which is called �tightness
 meaning that the probability mass of the point

processes Nn should not disappear from �good
 �compact� sets in Mp�E�	

This may sound �ne� but such a condition is not easily veri�ed	 For example�

we would have to make clear in what sense we understand compactness	 This

has been done in Appendix A�	� by introducing an appropriate �so�called

vague� metric in Mp�E�	

Perhaps unexpectedly� point processes are user�friendly in the sense that

tightness follows from the convergence of their �nite�dimensional distributi�

ons� see for instance Daley and Vere�Jones ������ Theorem �	�	VI	 Hence we

obtain quite an intuitive notion of weak convergence�

Denition ����� �Weak convergence of point processes�

Let N�N�� N�� � � � be point processes on the state space E � R
d
equipped with

the ��algebra E of the Borel sets� We say that �Nn� converges weakly to N

in Mp�E� �we write Nn
d	 N� if ��	�� is satis�ed for all possible choices of
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sets Ai � E satisfying P �N�!Ai�  ��  �� i  �� � � � �m� m � �� �!A denotes

the boundary of A�� �

Assume for the moment that the state space E is an interval �a� b� � R	 Con�

vergence of the �nite�dimensional distributions can be checked by surpris�

ingly simple means as the following result shows	 Recall the notion of a simple

point process from Remark  after De�nition �	�	�� i	e	 it is a process whose

points have multiplicity � or � with probability one	

Theorem ����� �Kallenberg�s theorem for weak convergence to a simple

point process on an interval�

Let �Nn� and N be point processes on E  �a� b� � R and let N be simple�

Suppose the following two conditions hold	

ENn�A�	 EN�A� ��	��

for all intervals A  �c� d� with a � c � d � b and

P �Nn�B�  ��	 P �N�B�  �� ��	���

for all unions B  �ki���ci� di� of mutually disjoint intervals �ci� di� such that

a � c� � d� � � � � � ck � dk � b

and for every k � �� Then Nn
d	 N in Mp�E�� �

Remarks� �� A result in the same spirit can also be formulated for point

processes on intervals in Rd 	

�� In Section �	� we apply Kallenberg�s theorem to point processes of ex�

ceedances �see also Example �	�	�� which are closely related to extreme value

theory	 �

The Laplace functional �see De�nition �	�	�� is a useful theoretical tool for

verifying the weak convergence of point processes	 In much the same way

as the weak convergence of a sequence of rvs is equivalent to the pointwise

convergence of their chfs or Laplace�Stieltjes transforms� so the weak con�

vergence of a sequence of point processes is equivalent to the convergence of

their Laplace functionals over a suitable family of functions g	 Speci�cally�

recall that the real�valued function g has compact support if there exists a

compact set K � E such that g�x�  � on Kc� the complement of K	 Then

we de�ne

C�
K�E�  fg � g is a continuous� non�negative function on E

with compact supportg �
Now we can formulate the following fundamental theorem� see Daley and

Vere�Jones ������ Proposition �	�	VII�
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Theorem ����� �Criterion for weak convergence of point processes via con�

vergence of Laplace functionals�

The point processes �Nn� converge weakly to the point process N in Mp�E�

if and only if the corresponding Laplace functionals converge for every

g � C�
K�E� as n	�� i�e�

�Nn�g�  E exp

�
�

Z
E

g dNn

�
	 �N�g�  E exp

�
�

Z
E

g dN

�
� ��	���

�

Remark� �� We mention that ��	��� for every g � C�
K�E� is equivalent

to
R
E gdNn

d	 R
E gdN for every g � C�

K�E�	 Indeed� if g � C�
K�E� then

zg � C�
K�E�� z � �	 Thus ��	��� implies the convergence of the Laplace

transforms of the rvs
R
E gdNn and vice versa	 But convergence of the Laplace

transforms of non�negative rvs is equivalent to their convergence in distrib�

ution	 �

We consider another class of point processes which is important for applica�

tions	 Assume

Nn  

�X
i��

��n��i��n�i� � n  �� �� � � � � ��	���

where the random vectors �n�i are iid for every n	 It is convenient to interpret

n��i as a scaled �deterministic� time coordinate and �n�i as a scaled �random�

space coordinate	

Theorem ����� �Weak convergence to a PRM�

Suppose �Nn� is a sequence of point processes ��	��� with state space R� �E

and N is PRM�j � j � �� where j � j is Lebesgue measure on R� � Then

Nn
d	 N � n	� �

in Mp�R� �E� if and only if the relation

nP ��n�� � �� v	 ��� � n	� � ��	���

holds on E�
Remark� � In ��	���� the relation n

v	  denotes vague convergence of the

measures n to the measure  on E	 For our purposes� E is a subset of R
d
	

Typically� E  ����� or E  ������nf�g or E  ������	 In this case�
n

v	  amounts to showing that n�a� b� 	 �a� b� for all a � b �b  �
is possible�	 In the case E  ������nf�g the origin must not be included
in �a� b�	 A brief introduction to vague convergence and weak convergence

is given in Appendix A�	�	 For a general treatment we refer to Daley and
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Vere�Jones ������ Chapter �� or Resnick ������ Chapter �	 �

Sketch of the proof� We restrict ourselves to the su�ciency part and give

only the basic idea	 For a full proof we refer to Resnick ������ Proposition �	��	

Let g � C�
K�R� �E� and consider the Laplace functional

�Nn�g�  E exp

�
�

Z
E

g dNn

�

 E exp

�
�

�X
i��

g
�
n��i� �n�i

��

 

�Y
i��


��

Z
E

�
�� e�g�n

��i� x�
�
dP ��n�� � x�

�
�

Passing to logarithms� making use of a Taylor expansion for ln�� � x� and

utilising the vague convergence in ��	��� one can show that

� ln�Nn�g�  �
X
i

ln


��

Z
E

�
�� e�g�n

��i�x�
�
dP ��n�� � x�

�

 n��
X
i

Z
E

�
�� e�g�n

��i�x�
�
d �nP ��n�� � x�� & o���

	
Z
R�

Z
E

�
�� e�g�s�x�

�
ds d�x� � n	� �

A glance at formula ��	�� convinces us that the last line in the above display

is just � ln�N�g� where N is PRM�j � j � �	 Now an application of Theo�

rem �	�	� yields the result	 �

Notes and Comments

Weak convergence of point processes and random measures has been treated

in all standard texts on the topic	 We again refer here to Daley and Vere�

Jones ������ Kallenberg ������ Matthes� Kerstan and Mecke ���� and Resnick

����� ����	 Resnick ����� gives an account of point process techniques particu�

larly suited to extreme value theory	 Leadbetter� Lindgren and Rootz�en ����

use point process techniques for extremes of stationary sequences� and they

provide the necessary background from point process theory in their Appen�

dix	

As mentioned above� a rigorous treatment of weak convergence of point

processes requires us to consider them as random elements in an appropriate

metric space	 A brief introduction to this topic is given in Appendix A��
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the general theory can be found for instance in Billingsley ���� or Pollard

����	 One way to metrize weak convergence of point processes is via vague

convergence of measures� see Appendix A�	�	 A rigorous treatment is given

in Daley and Vere�Jones ������ Chapter �� or Resnick ������ Chapter �	

Weak convergence of point processes and vague convergence are closely

related to regular variation in Rd� � see for instance de Haan and Resnick

����� ���� and Stam ������ also Bingham� Goldie and Teugels ����	

Theorems �	�	� and �	�	 are the basic tools in Sections �	���	�	 Theo�

rem �	�	� is slightly more general in the sense that no vague convergence �or

regular variation� assumption on the tails of the underlying dfs is required	

Theorem �	�	� has been utilised in the monograph by Leadbetter et al	 ����

on extremes of stationary sequences� see also Section �	�	�	 Theorem �	�	

will prove very e�ective in the case that the underlying sequence of random

points has a special structure which can in some way be relaxed to an iid

sequence� as is the case of linear processes �see Section �	�� which are special

stationary processes	

Resnick ������ pp	 ������� gives a short resum�e of advantages and dis�

advantages of point process techniques which we cite here in part�

Some Advantages�

�a� The methods are by and large dimensionless	 Proofs work just as well

in Rd as in R	

�b� Computations are kept to a minimum and are often replaced by con�

tinuity or structural arguments	 This makes proofs simpler and more

instructive	

�c� The methods lend themselves naturally to proving weak convergence in

a function�space setting	 Functional limit theorems are more powerful

and informative than the one�dimensional variety	 Furthermore� they are

often �despite common prejudices� simpler	

Some Disadvantages�

�a� The methods are not so e�ective for showing that regular variation is

a necessary condition	

�b� The methods sail smoothly only when all random variables are non�

negative	

�c� The methods rely heavily on continuity	 Sometimes this can be seen as an

advantage� as discussed above	 But heavy reliance on continuity is also

a limitation in that many questions which deal with quality of conver�

gence �local limit theorems� rates of convergence� large deviations� are

beyond the capabilities of continuity arguments	
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�d� The point process technique cannot handle problems involving normality

or Brownian motion	

�e� Those who prefer analytical methods may not �nd the approaches de�

scribed here �in ������ attractive	

�f� E�ective use of weak convergence techniques depends on a detailed

knowledge of the properties of the limit processes	 Thus it is necessary

to know something about stochastic processes	

Since the second list appears longer than the �rst� I am compelled to make

some remarks about the disadvantages	 Most serious in my view are �a� and

�d�	 As for �a�� there are notable exceptions to the remark that the methods

are not suited to proving necessity	 Regarding �d�� it is sad that the point

process technique fails miserably in the presence of normality� but other weak

convergence methods often succeed admirably in this case	 Disadvantage �d�

is a nuisance� but one can usually avoid the obstacles created by two signs

by using pruning techniques or random indices	 As for �f� a method can�

not handle problems for which it is inherently unsuited	 The problem raised

in �e� is simply one of taste	 As for disadvantage �f�� these weak convergence

techniques frequently suggest interesting problems in stochastic processes	 So

if �f� were rephrased suitably� it could be moved to the plus column in the

ledger	


�� Point Processes of Exceedances

In Example �	�	� we introduced the point process of exceedances of a thresh�

old un by the rvs X�� � � � � Xn�

Nn���  
nX
i��

�n��i���IfXi�ung � n  �� �� � � � � ��	��

We also indicated the close link with extreme value theory� let Xn�n � � � � �
X��n denote the order statistics of the sample X�� � � � � Xn and Mn  X��n	

Then

fNn��� ��  �g  fMn � ung �

fNn��� �� � kg  fXk�n � ug � ��	���

In this section we show the weak convergence of a sequence �Nn� of such point

processes to a homogeneous Poisson process N on the state space E  ��� ��	

The sequence �Xn� is supposed to be iid or strictly stationary satisfying the

assumptions D and D� from Section 		 As a byproduct and for illustrative

purposes we give alternative proofs of the limit results for maxima and upper

order statistics provided in Chapters � and 	
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Figure �
�
� Visualisation of the point processes of exceedances of insurance claim
data caused by water� n � ��� observations� For the threshold u� � � ��� we
chose n�� data points� correspondingly u� � ���� and n��� u� � �� ��� and �n���
u� � �� ��� and n�

����� The IID Case

Assume that the Xn are iid rvs and let �un� be a sequence of real thresholds	

Recall from Proposition �	�	� that� for any � � ������ the relation P �Mn �
un�	 expf��g holds if and only if

nF �un�  E
nX
i��

IfXi�ung 	 � � ��	���

The latter condition ensures that there are on average roughly � exceedances

of the threshold un byX�� � � � � Xn	 The Poisson approximation for extremes is

visualised in Figure 	�	�� see also Figure �	�	�	 Condition ��	��� also implies

weak convergence of the point processes Nn�

Theorem ����� �Weak convergence of point processes of exceedances� iid

case�

Suppose that �Xn� is a sequence of iid rvs with common df F � Let �un�

be threshold values such that ��	��� holds for some � � ������ Then the

point processes of exceedances Nn� see ��	��� converge weakly in Mp�E� to
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a homogeneous Poisson process N on E  ��� �� with intensity � � i�e� N is

PRM�� j � j�� where j � j denotes Lebesgue measure on E�

Proof�We may and do assume that the limit process N is embedded in a ho�

mogenous Poisson process on �����	 In that case we argued that N must be

simple� see Example �	�	��	 Hence we can apply Kallenberg�s Theorem �	�	�	

Notice that for A  �a� b� � ��� �� the rv

Nn�A�  

nX
i��

�n��i�A� IfXi�ung

 
X

a�n��i�b

IfXi�ung

 

�nb	X
i��na	��

IfXi�ung

is binomial with parameters ��nb�� �na�� F �un��	 Here �x� denotes the integer
part of x	 Thus� by assumption ��	����

ENn�A�  ��nb�� �na��F �un� � �n�b� a��
�
n���

�
 ��b� a�  EN�A� �

which proves ��	��	

Thus it remains to show ��	���	 Since Nn�A� is binomial and in view of ��	���

we have

P �N�A�  ��  F �nb	��na	 �un�

 exp
�
��nb�� �na�� ln �

�� F �un�
��

	 exp f���b� a�g � ��	���

Recalling the de�nition of the set B from ��	��� and taking the independence

of the Xi into account we conclude from ��	��� that

P �Nn�B�  ��  P �Nn�ci� di�  � � i  �� � � � � k�

 P


max

�nci	�j��ndi	
Xj � un � i  �� � � � � k

�

 

kY
i��

P


max

�nci	�j��ndi	
Xj � un

�

 

kY
i��

P �Nn�ci� di�  ��
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kY
i��

exp f���di � ci�g �

On the other hand� by the Poisson property of N �

P �N�B�  ��  exp f�� jBj�g  exp
�
��

kX
i��

�di � ci�

�
�

This proves the theorem by virtue of Kallenberg�s Theorem �	�	�	 �

The following example shows the close link between extreme value theory

and the point processes of exceedances	

Example ����� �Continuation of Example �	�	��

An application of Theorem �	�	� together with ��	��� yields

P �Xk�n � un�  P �Nn��� �� � k�	 P �N��� �� � k�  e��
k��X
i��

� i

i�
�

This was the content of Theorem 	�	�	 Similar arguments as for Corol�

lary 	�	 also allow us to derive the limit distribution of the kth order sta�

tistic for dfs F in the maximum domain of attraction of an extreme value

distribution	 �

In Example �	�	� we considered iid sum processes indexed by a renewal count�

ing process and a corresponding point process� let �Xi� and �Yi� be two inde�

pendent sequences of iid rvs� suppose Y� is positive with probability � and set

Ti  Y� & � � �& Yi	 Then N ��t�  cardfi � Ti � tg de�nes a renewal counting
process and S�t�  

PN ��t�
i�� Xi for t � � is the sum process	 Here we consider

the corresponding point process of exceedances

eNn���  
N ��n�X
i��

�n��Ti���IfXi�ung ��	���

on the state space E  ��� ��	 As before� �un� is a real�valued threshold

sequence	 The strong law of large numbers implies n��T�nx	
a�s�	 xEY�  x���

for x � ��� ��� and so we may hope that a result similar to Theorem �	�	� holds
in this situation	 That is indeed the case�

Theorem ����� �Weak convergence of point processes of exceedances� iid

case and random index�

Let � eNn� be the point processes of exceedances ��	��� of the threshold sequence

�un�� Assume that �un� satis�es ��	��� for some � � ������ Moreover� let

Tn  Y�& � � �&Yn be the points of a renewal counting process on ����� with
EY�  ��� � R� � Then the relation eNn

d	 N holds in Mp�E�� where N is a

homogeneous Poisson process on E  ��� �� with intensity ���
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Proof� For an application of Kallenberg�s Theorem �	�	� it remains to show

the following two relations�

E eNn�a� b� 	 EN�a� b�  ���b � a� � � � a � b � � � ��	���

P � eNn�B�  �� 	 P �N�B�  �� ��	���

for all sets B  �mi���ci� di� with � � c� � d� � � � � � ck � dk � �� k � �	 As
above� we write �N ��t�� for the renewal counting process generated by �Ti�	

Then� by homogeneity of N � and in view of ��	����

E eNn�a� b�  E
X

i�a�n��Ti�b

IfXi�ung

 E

N ��nb�X
i�N ��na���

IfXi�ung

 E

N ��n�b�a��X
i��

IfXi�ung

 

�X
k��

P �N ��n�b� a��  k�E

kX
i��

IfXi�ung

 

�X
k��

P �N ��n�b� a��  k�
�
kF �un�

�
 

�
nF �un�

��
n��EN ��n�b� a��

�
	 ���b� a�  EN�b� a� �

Here we also used that n��EN ��n�b� a�� � ��b� a�� see Proposition �	�	��	

This proves ��	���	 Next we turn to the proof of ��	���	 For simplicity we

restrict ourselves to the set B  �c�� d�� � �c�� d��	 Conditioning on N � and

using the independence of �Ti� and �Xi� as well as the homogeneity of N
��

we obtain

P
� eNn�B�  �

�
 P


max

i�c��n��Ti�d�
Xi � un � max

i�c��n��Ti�d�
Xi � un

�

 P


max

N ��nc���i�N ��nd��
Xi � un � max

N ��nc���i�N ��nd��
Xi � un

�
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 E
�
�F �un��

�N ��nd���N
��nc�����N ��nd���N

��nc���
�

 E


�F �un��

N �
�
n��d��c����d��c���

��

 E exp

�
N �

�
n��d� � c�� & �d� � c���

�
n

n ln��� F �un��

�

	 exp
n
���

�
�d� � c�� & �d� � c��

�o
 P �N�B�  �� �

In the last step we also used the SLLN for renewal counting processes �The�

orem �	�	��� and Lebesgue dominated convergence	 This proves ��	��� and�

by Kallenberg�s theorem� also the assertion	 �

Example ����� �Limit distribution for iid sequence with random index�

Let �Xi� be iid and independent of the renewal counting process �N
��t�� on

����� with EY�  ���	 Denote by XN ��t��N ��t� � � � � � X��N ��t� the order

statistics of the random sample X�� � � � � XN ��t�	 Then we may conclude from

Theorem �	�	 that

P
�
Xk�N ��n� � un

�
 P �Nn��� �� � k�

	 e���
k��X
i��

����i

i�
� k  �� �� � � � �

provided nF �un� 	 � � �����	 In particular� if un  un�x�  cnx& dn and

nF �un�x��	 � lnH�x�� x � R� for some extreme value distribution H � then

P
�
Xk�N ��n� � cnx& dn

� 	 H��x�

k��X
i��

�� lnH��x�
�i

i�
� k  �� �� � � � �

This result was given in Theorem 	�	� in a more general set�up	 �

����� The Stationary Case

In this section we approach the problem of �nding the limit distribution of

the maxima Mn and of the upper order statistics of a sample from a strictly

stationary sequence �Xn� via the point process of exceedances as introduced

in ��	��	 We assume that the conditions D�un� and D��un� from Section 	

hold for a threshold sequence �un�� and we cite them here for convenience�

Condition D�un�� For any integers p� q and n
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� � i� � � � � � ip � j� � � � � � jq � n

such that j� � ip � l we have				P 
max

i�A�A�

Xi � un

�
� P


max
i�A�

Xi � un

�
P


max
i�A�

Xi � un

�				 � 	n�l �

where A�  fi�� � � � � ipg� A�  fj�� � � � � jqg and 	n�l 	 � as n	� for some

sequence l  ln  o�n��

Condition D��un�� The relation

lim sup
n��

n

�n�k	X
j��

P �X� � un� Xj � un�	 �

holds as k 	��

Remark� For an interpretation of these conditions we refer to Section 		

We mention here that condition D��un� has an intuitive interpretation in the

language of point processes� if �un� is chosen to satisfy nF �un�	 � � �����
then there are on average approximately � exceedances of un by X�� � � � � Xn�

and hence ��k among X�� � � � � X�n�k		 Condition D��un� bounds the probabil�

ity of more than one exceedance among X�� � � � � X�n�k		 This will eventually

ensure that there are no multiple points in the limiting Poisson process� i	e	

this condition prevents clustering in the limit	 In this context� Example 		

is quite instructive� condition D��un� is violated since maxima typically occur

as pairs	 �

Having in mind the results of Section 	 it is certainly not surprising that

Theorem �	�	� remains valid for certain strictly stationary sequences�

Theorem ����� �Weak convergence of point processes of exceedances� sta�

tionary case�

Suppose �Xn� is strictly stationary and �un� is a sequence of threshold values

such that ��	���� D�un� and D��un� hold� Let �Nn� be the processes ��	���

Then Nn
d	 N in Mp�E�� where N is a homogeneous PRM on E  ��� ��

with intensity � �

Proof�We proceed as in the proof of Theorem �	�	� or �	�	�� applying Kallen�

berg�s Theorem �	�	�	 The proof of ��	�� is the same as in the iid case	 Thus it

remains to show ��	��� making use ofD�un� and D��un�	 For simplicity we re�

strict ourselves to sets B  �c�� d��� �c�� d�� with � � c� � d� � c� � d� � �	
The general case can be dealt with analogously	

Take �a� b� � ��� ��� Using the stationarity of �Xn� and Proposition 		� we

obtain
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P �Nn�a� b�  ��  P


max

i��nb	��na	
Xi � un

�
	 exp f���b� a�g  P �N�a� b�  �� � ��	���

From condition D�un� we conclude that

P �Nn�B�  ��

 P �Nn�c�� d��  � � Nn�c�� d��  ��

 P


max

c��n��i�d�
Xi � un � max

c��n��i�d�
Xi � un

�

 P


max

c��n��i�d�
Xi � un

�
P


max

c��n��i�d�
Xi � un

�
& o��� �

Indeed� the distance between the two index sets

A�  f�nc�� & �� � � � � �nd��g and A�  f�nc�� & �� � � � � �nd��g

exceeds �c� � d��n � ln  o�n� which implies that 	n�ln 	 �	 Hence� by

��	����

P �Nn�B�  ��	 exp
n
��

�
�d� � c�� & �d� � c��

�o
 P �N�B�  �� �

which concludes the proof of ��	��� and� by Kallenberg�s theorem� proves the

assertion	 �

The following is analogous to Example �	�	��

Example ����� �Limit probabilities of upper order statistics�

As usual� let

Xn�n � � � � � X��n

denote the order statistics of the sample X�� � � � � Xn	 Suppose that the as�

sumptions of Theorem �	�	� hold	 Then

P �Xk�n � un�  P �Nn��� �� � k�	 P �N��� �� � k�  e��
k��X
i��

� i

i�
�

This extends Proposition 		� to the upper order statistics of a strictly sta�

tionary sequence	 �

Now it is immediate that we can derive the limit distribution of an upper order

statistic Xk�n by the usual folklore	 Let � eXn� be an associated iid sequence

such that X
d
 eX� and denote its order statistics in the natural way by eXk�n	
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Theorem ����
 �Limit distribution of upper order statistics�

Let �Xn� be strictly stationary with common df F � MDA�H� for an extreme

value distribution H� i�e� there exist constants cn � �� dn � R such that

lim
n��

nF �cnx& dn�  � lnH�x� � x � R �

Assume that the sequences �un�  �cnx & dn�� x � R� satisfy the condi�

tions D�un� and D��un�� Then the relations

P
�
c��
n �Xk�n � dn� � x

� 	 H�x�

k��X
i��

�� lnH�x��i
i�

� x � R �

P �c��
n �

eXk�n � dn� � x� 	 H�x�

k��X
i��

�� lnH�x��i
i�

� x � R �

hold for every k � �� �

Theorem �	�	� shows the similarity between the asymptotic behaviour of

the extremes of the stationary sequence �Xn� and of an associated iid se�

quence � eXn�	 This is again due to the conditions D�un� and D��un�	

In the following paragraphs we intend to generalise these results to a �nite

vector of order statistics	 This means that we are interested in probabilities

of the form

P
�
X��n � u���n � � � � � Xk�n � u�k�n

�
for k sequences of real numbers

u�k�n � � � � � u���n � ��	���

Since we are dealing with k di�erent sequences of thresholds �u
�i�
n �� i  

�� � � � � k� it seems appropriate to introduce a vector of k point processes of ex�

ceedances� one for each threshold sequence	 However� the exceedances of the

levels u
�i�
n are very much related to each other	 For example� an exceedance

of u
�r�
n is automatically an exceedance of u

�r���
n � and so it is possible by a

geometric argument to reduce the problem of k exceedances to weak con�

vergence of a point process on ��� ��� R	 We refer to Leadbetter� Lindgren

and Rootz�en ����� Sections �	� and �	�� for a complete description of their

�thinning
 procedure and omit details	 We also omit the de�nition of the

corresponding point processes and simply state the �nal result for the vector

of exceedances	 Before we can do this we have to introduce a k�dimensional

analogue of condition D�un� above	 We suppose that the k sequences ��	���

are given	
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Condition Dk�un�� For any �xed p� q and for any integers

� � i� � � � � � ip � j� � � � � � jq � n

such that j� � ip � l we have			P �
Xim � u�sm�

n � m  �� � � � � p� Xjr � u
�s�r�
n � r  �� � � � � q

�
� P

�
Xim � u�sm�

n � m  �� � � � � p
�
P

�
Xjr � u

�s�r�
n � r  �� � � � � q

�			 � 	n�l �

for any integers � � sl� s
�
r � k� and 	n�l 	 � as n	� for some sequence

l  ln  o�n��

It will not be necessary to de�ne an extended D��un� condition� since we shall

simply need to assume that D��u
�i�
n � holds separately for each i  �� � � � � k	

As in Section 	� we write

B�i�
n  

nX
i��

I�
Xi�u

�i�
n

� � n � � � i  �� � � � � k �

for the number of exceedances of u
�i�
n by X�� � � � � Xn	

Theorem ����� �Joint weak convergence of the number of exceedances�

stationary case�

Let �Xn� be a strictly stationary sequence and suppose that the se�

quences �u
�i�
n � satisfy ��	��� and that nF �u

�i�
n �	 �i for non�negative �i�

i  �� � � � � k� Assume Dk�un� and D��u
�i�
n � for i  �� � � � � k� Then� for

"�� � � � � "k � ��
P

�
B���
n  "�� B

���
n  "� & "�� � � � � B

�k�
n  "� & � � �& "k

�
	 � ���

"��

��� � ���
��

"��
� � � ��k � �k���

�k

"k�
e��k � n	� � �

This theorem is completely analogous to the iid case� see Theorem 	�	�	

Moreover� as in the iid case� cf	 Theorem 	�	�� we obtain the joint limit law

of the vector of upper order statistics�

Corollary ������ �Joint limit law of upper order statistics� stationary case�

Assume that F � MDA�H� with normalising constants cn � � and centring

constants dn � R� Moreover� suppose that Dk�un� and D��un� are satis�ed

for all sequences un  cnx& dn� x � R� Then the limit relation

�c��
n �Xi�n � dn��i�������k

d	 �Y �i��i�������k � k � � � n	� �

holds� where �Y ���� � � � � Y �k�� is the k�dimensional extremal variate corre�

sponding to the extreme value distribution H� �



��� Applications of Point Process Methods to IID Sequences ��

Finally� we mention that all results for a vector of k upper order statistics

which were given in Section 	� for the iid case remain valid for the strictly

stationary case as well� provided that D and D� are satis�ed	

Notes and Comments

The point process of exceeedances has been used extensively in the mono�

graph by Leadbetter et al	 ���� to build up an extreme value theory for iid

and stationary sequences	 There the theory presented above can be found in

detail	 In particular� they discuss the conditions D�un� and D��un�� see also

Section 		 Further convergence results for the point process of exceedances

are provided in Sections �	� and �	� where we consider linear and ARCH

processes	 In contrast to the present section the limiting point processes are

not homogeneous Poisson but compound Poisson processes	

The point process techniques of this section could have been replaced by

classical methods of extreme value theory	 The latter were implicitly used

for checking the assumptions of Kallenberg�s theorem	 Therefore the present

section can be understood as an alternative approach to extreme value theory

which is quite elegant in the case of stationary sequences	 The real power of

point process methods will become more transparent in Sections �	 and �	�	


�� Applications of Point Process Methods to IID

Sequences

In this section we apply point process techniques to the extremes of iid se�

quences �for some basic facts we refer to Chapters � and �	 We are mainly

interested in records and record times	 In Section �		� we give a short intro�

duction to this topic	 It is followed by some technical results �Section �		��

which are used to embed the maxima of an iid sequence in an appropriate

continuous�time process which in turn is a function of a PRM	 This �cou�

pling
 construction is applied in Section �		� to derive limit results about

the growth and the frequency of record times	 In Section �		 we consider

the weak convergence of maxima in a function space setting	

Throughout this section X�X�� X�� � � � is a sequence of iid rvs with com�

mon continuous df F 	 We also write

xlF  inffx � F �x� � �g and xrF  supfx � F �x� � �g

for the left and right endpoint of the distribution F 	 As usual� we denote the

maximum of the �rst n rvs by
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M�  X� � Mn  max
i�������n

�X�� � � � � Xn� � n � � �

Later on we will sometimes �nd it convenient to use �� � for min� max�
respectively	 The rvs �i are always the points of a homogeneous Poisson

process on ����� with intensity �	 We can write them as
�i  E� & � � �&Ei � i � � �

for an iid sequence of standard exponential rvs Ei	

����� Records and Record Times

In daily life we hear quite often about records� they are indeed omnipresent

in sports� science� economy� environment etc	 We hear about records of pollu�

tion� records of governmental debts� records in sports events� record insurance

claims or record gains!losses in �nance	 Some clever people collect informa�

tion about all sorts of records and write books about them	

What is a record in the context of extreme value theory


If we consider observations Xn a record would be a temporary maximum �or

minimum� in this sequence which will certainly change when time goes by	

This is precisely the notion record which we intend to use in this chapter�

a record Xn occurs if Xn � Mn��	 Clearly� the new maximum Mn coincides

then with Xn	 Notice that a record happens when there is a jump in the

sequence �Mn�	 The times L� � L� � � � � when these jumps occur are random	
For obvious reasons� they are called the record times of �Xn�	 In the insurance

and �nancial context it is de�nitely an important issue to study both records

and record times of sequences of rvs� dependent or independent	 They give

us some sort of prediction of the good or bad things which can happen in the

future� in frequency and magnitude� big jumps in prices can lead to crashes

of �nancial institutions� big claim sizes in an insurance portfolio can cause

insolvency problems	

The following result describes the sequence of records �XLn� in terms of

a PRM�

Theorem ����� �Point process description of records�

Let F be a continuous df with left endpoint xlF and right endpoint xrF � Then

the records �XLn� of the iid sequence �Xn� are the points of a PRM�� on

�xlF � x
r
F � with mean measure  given by

�a� b�  R�b��R�a� � xlF � a � b � xrF � where R�x�  � lnF �x� �

In particular� if F is standard exponential then R�t�  t and �XLn�
d
 ��n�

are the points of a homogeneous Poisson process on R� with intensity ��
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Figure �
�
� Records �solid top line� of 
�� daily log�returns of the Japanese stock
index NIKKEI �February 		� ���� � October �� ����� compared with four sample
paths of records from 
�� iid rvs� The rvs in the latter sequence are Gaussian with
mean zero and the same variance as the NIKKEI data�

Proof� Since F is continuous the function R� is monotone increasing	 Direct

calculation yields

X�
d
 R��E�� �

Indeed�

P �R��E�� � x�  P �E� � R�x��

 �� e�R�x�  F �x� �

Hence the sequences �Mn� and�
n!
i��

R��Ei�

�
 

�
R�

�
n!
i��

Ei

��

have the same distribution	 Moreover� denoting by �eLn�� d �Ln�� the record
times of the sequence �R��Ei��� we have for the sequences of records that

�XLn�
d
 

�
R�

�
EeLn�� �

If F is standard exponential then the records �R��EeLn��  �EeLn� are the
points of a homogeneous Poisson process on R� with intensity �	 This fol�

lows from the observation that �EeLn� is Markov with transition probabilities
��x� �y����  expf��y � x�g� see Resnick ������ Proposition 	�	 In view
of Proposition �	�	��� �R��EeLn�� are then the points of a PRM with mean

measure of �a� b� given by
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			�R��
��
�a� b�

			  jfs � a � R��s� � bgj  R�b��R�a� �

where j � j denotes Lebesgue measure	 This concludes the proof	 �

����� Embedding Maxima in Extremal Processes

The sequence �Mn�n�� de�nes a discrete�time stochastic process on the in�

tegers	 We consider the �nite�dimensional distributions of this process	 We

start with two dimensions� let x� � x� be real numbers and t� � t� be positive

integers	 Then

P �Mt� � x��Mt� � x��  P

�
Mt� � x��

t�!
i�t���

Xi � x�

�

 P �Mt� � x��P �Mt��t� � x��

 F t��x��F
t��t��x�� �

Moreover� if x� � x��

P �Mt� � x��Mt� � x��  F t��x�� �

Hence

P �Mt� � x��Mt� � x��  F t� �x� � x�� F t��t� �x�� �

By induction we obtain

P �Mt� � x��Mt� � x�� � � � �Mtm � xm�

 F t�

�
m"
i��

xi

�
F t��t�

�
m"
i��

xi

�
� � �F tm�tm�� �xm� ��	���

for all positive integers t� � t� � � � � � tm� every m � � and real numbers
xi	 From this representation it is not di�cult to see that �Mn� is a Markov

process� see Resnick ������ Section 	� or Breiman ����� Chapter ��	

We take ��	��� as the starting point for the de�nition of an F�extremal

process� if we do not restrict ourselves to the non�negative integers� but if we

allow for general real numbers � � t� � t� � � � � � tm then ��	��� de�nes

a consistent family of distributions which� in view of Kolmogorov�s consis�

tency theorem� determines the distribution of a continuous�time process Y

on R� 	

Denition ����� �F�extremal process�

The process Y  �Y �t��t�� with �nite�dimensional distributions ��	��� is

called an extremal process generated by the df F or an F�extremal process�

�
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Thus the discrete�time process of the sample maxima �Mn� can be embedded

in the continuous�time extremal process Y in the sense that

�Mn�n��
d
 �Y �n��n�� �

The latter relation is checked by a glance at the �nite�dimensional distri�

butions of �Mn� and Y at integer instants of time	 The continuous�time

process Y inherits the distributional properties of the sequence of maxima�

it is a convenient tool for dealing with them	

An extremal process can be understood as a function of a PRM	 Indeed�

let

N  
�X
k��

��tk�jk� ��	��

be PRM�j � j � � with state space E  R� � R� where j � j denotes Lebesgue
measure� and  is given by the relation �a� b�  lnF �b�� lnF �a� for a � b	

It is convenient to interpret �tk� jk� as coordinates of time �i	e	 tk� and space

�i	e	 jk�	 Recall the de�nition of the Skorokhod space D of cadlag functions

from Appendix A�	� and de�ne the mapping eT� �Mp�E�	 D ����� by

eT��N�  eT� � �X
k��

��tk�jk�

�
 sup fjk � tk � �g � ��	���

Proposition ����� �Point process representation of F�extremal processes�

The F�extremal process Y  �Y �t��t�� has representation

Y ��� d
 sup fjk � tk � �g

with respect to the PRM�j � j � � de�ned in ��	���

Sketch of the proof� In view of the constructive de�nition of Y given above

it su�ces to show that the �nite�dimensional distributions of Y and eT��N�
coincide	 Fix t � �	 Notice that

fsup fjk � tk � tg � xg  fN ���� t�� �x����  �g �

Thus we have by de�nition of a PRM that

P �sup fjk � tk � tg � x�  P �N ���� t�� �x����  ��

 exp f�EN ���� t�� �x����g

 exp f�t �x���g

 F t�x�

 P �Y �t� � x� �
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Similar arguments yield the �nite�dimensional distributions in the general

case	 �The reader is urged to calculate them at least for two dimensions	� They

can be shown to coincide with ��	��� which determine the whole distribution

of Y 	 This concludes the proof	 �

In the following we need another representation of an F�extremal process	 It

is a consequence of the following auxiliary result�

Lemma ����� Assume F is continuous� Let N be the PRM�j � j � � on

��� t��� �xlF � xrF �� t� � �� as de�ned in ��	��� Then N has representation

N �  

�X
i��

��Ui�Q���i�t��� �

where �Ui� are iid uniform on ��� t��� independent of the points ��i� of a

homogeneous Poisson process on ����� with intensity �� and

Q��y�  inffs � Q�s� � yg � Q�x�  � lnF �x� �

Proof� In view of Remark � after De�nition �	�	� it su�ces to show that the

Laplace functionals of N and N � coincide	 Since N is PRM we know from

Example �	�	�� that

�N �g�  exp

�
�

Z
���t�	

Z
�xl

F
�xr
F
�

�
�� e�g�t�x�

�
d�lnF �x�� dt

�
� ��	���

Now� since F is continuous� Q� is monotone decreasing	 Conditioning on

��i� and writing

g��x�  
�

t�

Z t�

�

exp f�g�t� x�g dt  E exp f�g�U�� x�g �

we obtain

�N ��g�  E exp

�
�

Z
���t�	��xl

F
�xr
F
�

g dN �

�

 E exp

�
�

�X
i��

g �Ui� Q
���i�t���

�

 E

�Y
i��

g� �Q
���i�t���

 E exp

�
�X
i��

ln g� �Q
���i�t���

�
�
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An application of Lemma �	�	�� yields

�N ��g�  exp

�
�

Z
R�

��� g� �Q
��z�t���� dz

�

 exp

�
�

Z
���t�	

Z
R�

�
�� e�g�t�Q

��z��
�
dz dt

�
�

Substituting x for Q��z� we arrive at the right�hand side of ��	��� which

concludes the proof	 �

An immediate consequence of Lemma �		� and Proposition �		 is the fol�

lowing

Corollary ����� Let F be a continuous df� Y an F�extremal process� Then

Y has representation

Y �t�  sup fQ���i�t�� � Ui � tg � t � ��� t�� �

where �Ui� and ��i� are de�ned in Lemma ������ �

The jump times �n of an F�extremal process are of particular interest since

we may hope that jumps of �Mn� �the records� and of Y occur almost at the

same time	 This intuition will be made precise by a coupling argument in

Section �		�	

Theorem ����� �Point process of the jump times of an extremal process�

If F is continuous then

N�  

�X
n��

��n ��	���

is PRM�� on R� with intensity f�t�  ��t� i�e�

�a� b�  

Z b

a

f�t� dt  ln b� ln a for a � b �

Proof� It su�ces to show that N� is PRM�� on ��� t�� for every �xed t� � �	

In view of Corollary �		� we may assume that the F�extremal process Y has

representation

Y �t�  sup fQ���i�t�� � Ui � tg � t � ��� t�� �

Since F is continuous� Q� is monotone decreasing� hence the jump times of

the processes Y and N��t�  inffn � � � Un � tg are identical	 We may write
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N��t�  inffn � � � U��
n � t��g

 inf

�
n � � �

n!
i��

U��
i � t��

�
�

Hence the jump times of N� in ��� t�� must be the records of maxi�������nU
��
i

in �t��
� ���	 By Theorem �		�� the records of maxi�������n U��

i are the points

of a PRM on �t���� with mean measure of �a� b� given by
� lnP �

U��
� � b

�� �� lnP �
U��
� � a

��
 � ln�b���t�� & ln�a

���t��

 ln�b�a� �

This concludes the proof	 �

����� The Frequency of Records and the Growth of Record Times

In this section we use a special �coupling
 construction of the jump times

Ln of �Mn� and �n of the F�extremal process Y to derive information about

the record times of the iid sequence �Xn�	 This will allow us to compare �Ln�

and ��n� not only in distribution but also path by path	

By de�nition of Y �see De�nition �		�� �Mn�
d
 �Y �n��	 This relation

allows us to assume that �Ln� and ��n� are de�ned on the same probability

space in such a way that a jump of �Mn� �i	e	 a record � at Ln �the record

time� is also a jump of Y but the converse is not necessarily true	 Indeed�

Y is a continuous�time process� and so it may also have jumps in the open

intervals �Ln � �� Ln�	 Recall the de�nition of the point process N� of the

jump times of Y from ��	��� and de�ne the point process of the record times

of �Xn� by

N  

�X
i��

�Li � ��	���

Then� given the above coupling construction of �Ln� and ��n��

fN�n� �� n�  �g  f�Xi� has a record at time n	g

 fN��n� �� n� � �g � ��	���

The following question arises naturally�

How often does it actually happen that N��n� �� n� � N�n� �� n�

The following result ensures that the sequences �N��n � �� n�� and �N�n �
�� n�� are identical starting from a certain random index	
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Proposition ����
 �Coupling of N� and N�

Assume the df F is continuous and that �Ln� and ��n� are constructed as

above� Then there exists an integer�valued rv N� such that for almost every

� � ��

N��n� n& ��� ��  N���n� n& ��� �� � n � N���� � ��	���

Proof� It su�ces to show �see ��	���� that the event fN��n� n & �� � �g
occurs only �nitely often with probability �	 By the Borel�Cantelli lemma�

see Section �	�� this is the case if

�X
n��

P �N��n� n& �� � �� �� � ��	���

Since N� is PRM�� with �a� b�  ln�b�a� �see Theorem �		��� direct cal�

culation shows that

P �N��n� n& �� � ��

 �� P �N��n� n& ��  ��� P �N��n� n& ��  ��

 �� e� ln���n��� � e� ln���n��� ln�� & n���

 �� �� & n�����
�
� & ln�� & n���

�
� n�� � n � � �

and ��	��� follows� which concludes the proof	 �

Remark� The coupling relation ��	��� can be reformulated as follows� for

almost every � � � there exists an integer j��� such that

N����� n�� ��  j��� &N���� n�� �� � n � N���� � ��	���

�

We use the coupling argument to answer the following question�

How often do records happen in a given period of time


A �rst answer is supported by the following Poisson approximation to the

point process N of the record times �see ��	�����

Theorem ����� �Weak convergence of the point process of record times�

The limit relation

Nn���  N�n��  
�X
i��

�n��Li��� d	 N����  
�X
i��

��i���

holds in Mp�R� ��
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Proof� According to Theorem �	�	� and Remark � afterwards it su�ces to

show that

In  

Z
R�

g�x�dNn�x�
d	

Z
R�

g�x�dN��x� � g � C�
K�R� � � ��	���

Since g has compact support� there exists an interval �a� b� � R� such that

g�x�  � for x �� �a� b�	 Hence

In  

�X
i��

g�n��Li�

 
X

i�a�n��i�b

g�n��i�IfN�i���i	��g �

Recalling the special construction ��	��� we obtain� for na � N�����

In  
X

i�a�n��i�b

g�n��i� IfN��i���i	��g

 
X

i�a�n��i�b

g�n��i� N��i� �� i�

 

Z
R�

gn�x�dN��x�  Jn �

where gn�x�  
P�

i�� g�n
��i�I�i���i	�x�	 Thus we have shown that In� Jn

a�s�	
�	 By a Slutsky argument �see Appendix A�	�� it remains� for ��	���� to show

that

Jn
d	

Z
R�

g�x�dN��x� � ��	��

Recall from Example �	�	� that N���� and N��n�� have the same distribu�
tion	 Then

Jn
d
 

Z
R�

gn�x�dN��nx�

 

�X
i��

g�n��i� N�

�
n���i� ��� n��i

 
a�s�	

Z
R�

g�x�dN��x� �

In the last step we have used the de�ning properties of a Lebesgue integral�

which here exists since g is continuous� has compact support and is bounded	

This proves ��	�� and thus the theorem	 �
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It is an immediate consequence of this theorem that Nn�a� b� is approximately

Poi�ln�b�a�� distributed�

Nn�a� b�  card
�
i � a � n��Li � b

�
d	 N��a� b�

d
 Poi�ln�b�a�� �

Alternatively� the frequency of records in a given interval can be described

by limit theorems for N���� t�	 In the following we assume that �� � ��

Otherwise we may consider only that part of the sequence ��n� for which

�i � �	 Since N� is PRM�� on R� with �a� b�  ln�b�a� we may work with

the representation �see Example �	�	��

N�  

�X
i��

�expf�ig � ��	���

where� as usual� ��i� are the points of a homogeneous Poisson process on

����� with intensity �	 Thus

N���� t�  card
�
i � � � e�i � t

�
 card fi � � � �i � ln tg �

It is immediate that we can now apply the whole limit machinery for renewal

counting processes from Section �	�	�	 For the time�changed renewal counting

process �N���� t�� we obtain the following� let � denote the standard normal

distribution	 Then

SLLN lim
t��

�ln t���N���� t�  � a�s� �

LIL lim sup
t��

�� ln t ln ln ln t����� �N���� t�� ln t�
 � lim inf

t��
�� ln t ln ln ln t����� �N���� t�� ln t�  � a�s� �

CLT �ln t����� �N���� t�� ln t� d	 � �

#������$������%
��	���

The coupling construction ��	��� immediately implies that

c��
n �N���� n��N��� n��

a�s�	 �

provided cn 	 �	 This ensures that we may replace N� by N and t by n�

everywhere in ��	����

Theorem ������ �Limit results for the frequency of records�

Suppose F has a continuous distribution� let �Xn� be an iid sequence with

record times �Ln� and let N be the corresponding point process ��	���� Then

the following relations hold	
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Figure �
�
�� The number of records N��	 n�� n � � ���� from iid standard normal
rvs� Five sample paths are given� The solid lines indicate the graphs of lnn �middle�
and the 
�! asymptotic con
dence bands �top and bottom� based on Theorem �������
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Figure �
�
�� The number of records N��	 n�� n � 
��� from 
�� daily log�returns
of the Japanese stock index NIKKEI �February 		� ���� � October �� ������ The
solid lines are the graphs of lnn �middle� and the 
�! asymptotic con
dence bands
for the iid case� see Theorem �������

SLLN lim
t��

�ln t���N��� t�  � a�s� �

LIL lim sup
t��

�� ln t ln ln ln t����� �N��� t�� ln t�
 � lim inf

t��
�� ln t ln ln ln t����� �N��� t�� ln t�  � a�s� �

CLT �ln t����� �N��� t�� ln t� d	 � �

where � denotes the standard normal distribution� �

Finally� we attack the following problem�
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When do the records of �Xn� occur


The coupling construction ��	��� again gives an answer� for n � N���� and

almost every �� 		Ln���� �n�j������
		 � � �

Hence� by ��	����

lnLn  ln
�
e�n�j

�
� &O

�
e��n�j

���
 �n�j & o��� a�s�

since �n�j  O�n� a	s	 by the SLLN	 We learnt in Example �	�	� that

lim
n��

�lnn���max�E�� � � � � En�  � a�s�

Hence

lnLn  �n & ��n�j � �n� & o���  �n &O�ln n� a�s�

This and the classical limit theory for sums of iid rvs �see Sections �	� and

�	�� yield the following�

Theorem ������ �Limit results for the growth of record times�

Assume F is continuous� Then the following relations hold for the record

times Ln of an iid sequence �Xn� �

SLLN lim
n��

n�� lnLn  � a�s� �

LIL lim sup
n��

��n ln lnn����� �lnLn � n�

 � lim inf
n��

��n ln lnn����� �lnLn � n�  � a�s� �

CLT n���� �lnLn � n�
d	 � �

where � denotes the standard normal distribution� �

In summary� the number of records in the interval ��� t� is roughly of the

order ln t	 Thus records become more and more unlikely for large t	 Alter�

natively� the record times Ln grow roughly exponentially like expf�ng �or
expfng� and thus the period between two successive records becomes bigger
and bigger	
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Figure �
�
�� The logarithmic record times of � ��� daily log�returns of the S�P
index� According to Theorem ������� the logarithmic record times should grow
roughly linearly provided that they come from iid data�
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Figure �
�
�� The logarithmic record times of ��� ��� iid standard normal rvs�
Three sample paths are given� The straight line indicates the ideal asymptotic be�
haviour of these record times� see Theorem �������

����� Invariance Principle for Maxima

In Section �		� we embedded the sequence of the sample maxima �Mn� in

a continuous�time F�extremal process Y 	 This was advantageous because

we could make use of the hidden Poisson structure of Y to derive limit re�

sults about records and record times	 In the sequel we are interested in the

question�

How can we link the weak convergence of sample maxima with the weak

convergence of point processes
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Intuitively� we try to translate the problem about the extremes of the se�

quence �Xn� for some particular df F into a question about the extremes

of an iid sequence with common extreme value distribution H 	 Since there

are only three standard extreme value distributions H � but in�nitely many

dfs F in the maximum domain of attraction of H �F � MDA�H�� this is
quite a promising approach	

To make this idea precise suppose that F belongs to the maximum domain

of attraction of H � i	e	 there exist constants dn and cn � � such that

c��
n �Mn � dn�

d	 H � n	� � ��	���

where H is one of the standard extreme value distributions �Weibull� Fr�echet�

Gumbel� as introduced in De�nition �	�	�	 Set

Yn�t�  

��� c��
n

�
M�nt	 � dn

�
if t � n�� �

c��
n �X� � dn� if � � t � n�� �

where �x� denotes the integer part of x	 Recall the notion of weak convergence

in the Skorokhod space D ����� from Appendix A�	
The processes �Yn� obey a result which parallels very much the Donsker

invariance principle for sums of iid random variables� see Theorem �			

Theorem ������ �Invariance principle for maxima�

Let H be one of the extreme value distributions and Y  �Y �t��t�� the cor�

responding H�extremal process� Then the relation

Yn
d	 Y � n	� �

holds in D ����� if and only if ��	��� is satis�ed�

Sketch of the proof� For a detailed proof see Resnick ������ Proposi�

tion 	��	 Take t  �	 Then Yn
d	 Y obviously implies ��	���� i	e	

Yn���  c��
n �Mn � dn�

d	 Y ��� �

where Y ��� has distribution H 	

Now suppose that ��	��� holds	 This is known to be equivalent to

nF �cnx& dn�	 � lnH�x� ��	���

on the support S of H � see Proposition �	�	�	 We de�ne

�n�j  

�
c��
n �Xj � dn� if c��

n �Xj � dn� � S �

inf S otherwise �
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and
�a� b�  lnH�b�� lnH�a�

for �a� b� � S	 Topologising the state space E in the right way� ��	��� just

means �see Proposition A�	��� that

nP ��n�� � �� v	 ��� ��	���

on the Borel sets of S	 Now de�ne

Nn  

�X
k��

��n��k��n�k� � N  

�X
k��

��tk�jk� �

where N is PRM�j � j � � on R� � S and j � j denotes Lebesgue measure	
Then Theorem �	�	 and ��	��� imply that Nn

d	 N 	 Recall the de�nition

of the mapping eT� from ��	���	 If we restrict ourselves to path spaces in

which both Nn and N live then eT� can be shown to be a	s	 continuous	 An
application of the continuous mapping theorem �see Theorem A�	�� yields

that eT� �Nn�  
!

n��k�	

�n�k
d	 eT��N�  !

tk�	

jk

in D �����	 Note that in view of Proposition �		
Y ��� d

 
!
tk�	

jk �

Moreover� one can show that in D ����� the relation
Yn����

!
n��k�	

�n�k
P	 �

is valid	 This proves that Yn
d	 Y 	 �

Remark� In the course of the proof above we left out all messy details	 We

also swept certain problems under the carpet which are related to the fact

that the �n�k can be concentrated on the whole real line	 This requires for

instance a special treatment for F � MDA���� �equivalently� F � R��� since

a regular variation assumption on the right tail does naturally not in�uence

the left tail of the distribution	 Read Resnick ������ Section 		�� �

This invariance principle encourages one to work with the H�extremal

process Y instead of the process Yn of sample maxima for F in the maximum

domain of attraction of H 	 Thus� in an asymptotic sense� we are allowed to

work with the distribution of Y instead of the one for Yn	 We stop here the

discussion and refer to Section �	� where the weak convergence of extremal

processes and of the underlying point processes is used to derive limit results

about the upper extremes of dependent sequences	
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Notes and Comments

We have seen in this section that point process techniques are very elegant

tools for dealing with extremal properties of sequences of iid rvs	 They allow

us to derive deep results about the structure of extremal processes� of their

jump times� about records� record times� exceedances etc	 The basic idea is

always to �nd the right point process� to show weak convergence to a PRM

and possibly to apply the continuous mapping theorem in a suitable way	

The elegance of the method is one side of the coin	 We have seen from

the above outline of proofs that we have to be familiar with many tools from

functional analysis� measure theory and stochastic processes	 In particular�

the proof of the a	s	 continuity of the eT�mappings is never trivial and requires
a deep understanding of stochastic processes	 The a	s	 continuity of the eT�
mappings was treated for instance in Mori and Oodaira ����� Resnick ������

Serfozo �����	

Excellent references for extreme value theory in the context of point

processes are Falk� H�usler and Reiss ������ Leadbetter� Lindgren and Rootz�en

����� Reiss ����� and Resnick ����� ����	 We followed closely the last source

in our presentation	

In Section �	�	� we consider records as an exploratory statistical tool	

There we also give some further references to literature on records	


�
 Some Extreme Value Theory for Linear Processes

In Sections 	 and �	�	� we found conditions which ensured that the extremal

behaviour of the strictly stationary sequence �Xn� is the same as that of an

associated iid sequence � eXn�� i	e	 an iid sequence with the same common

df F as X  X�	 Intuitively� those conditions D�un� and D��un� guaranteed

that high level exceedances by the sequence �Xn� were separated in time�

i	e	 clustering of extremes was avoided	 This will change dramatically for the

special class of strictly stationary sequences which we consider in this section	

We suppose that �Xn� has representation as a linear process� i	e	

Xn  

�X
j���


jZn�j � n � Z �

where the noise sequence or the innovations �Zn� are iid and the 
j are real

numbers to be speci�ed later	 For simplicity we set Z  Z�	 Here we study

linear processes from the point of view of extreme value theory	 In Chapter �

they are reconsidered from the point of view of time series analysis	 Linear

processes are basic in classical time series analysis	 In particular� every ARMA
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process is linear� see Example �	�	�� and most interesting Gaussian stationary

sequences have a linear process representation	

Again we are interested in exceedances of a given deterministic sequence

of thresholds �un� by the process �Xn�� and in the joint distribution of a ��

nite number of upper order statistics of a sample X�� � � � � Xn	 We compare

sequences of sample maxima for the noise �Zn�� the stationary sequence �Xn�

and an associated iid sequence � eXn�	 As usual� �Mn� denotes the sequence of

the sample maxima of �Xn�	

����� Noise in the Maximum Domain of Attraction of the Fr�echet

Distribution ��

We assume that Z satis�es the following condition�

FZ�x�  P �Z � x�  
L�x�

x�
� x � � � ��	��

for some 	 � � and a slowly varying function L� i	e	 L�x�x�� is regularly

varying with index �	� see Appendix A�	 By Theorem �	�	� this is equivalent

to Z � MDA���� where
���x�  e�x

��

� x � � �

denotes the standard Fr�echet distribution which is one of the extreme value

distributions� see De�nition �	�	�	 Moreover� we assume that the tails are

balanced in the sense that

lim
x��

P �Z � x�

P �jZj � x�
 p � lim

x��

P �Z � �x�

P �jZj � x�
 q � ��	��

for some � � p � � and such that p& q  �	 Thus we can combine ��	�� and

��	���

FZ�x�  
L�x�

x�
� x � � � FZ��x� � q

p

L�x�

x�
� x	� � ��	��

We also suppose that

�X
j���

j
j j� �� for some � � � � min�	� �� � ��	��

This condition implies the absolute a	s	 convergence of the linear process

representation of Xn for every n� see also the discussion in Section �	�	 Note

that the conditions here are very much like in Sections �	���	�� but there we

restrict ourselves to symmetric 	�stable �s	s� Zn for some 	 � �	 In that

case�
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FZ�x� � c

x�
� x	� � lim

x��

P �Z � x�

P �jZj � x�
 
�

�
�

hence ��	�� and ��	�� are naturally satis�ed	 We also mention that� if 	 � ��

then the conditions ��	�� and ��	�� imply that Z has a distribution in the

domain of attraction of an 	�stable law� see Section �	�	

We plan to reduce the study of the extremes of �Xn� to the study of the

extremes of the iid sequence �Zn�	 We choose the normalisation

cn  ���FZ�
��n� � ��	�

where f� denotes the generalised inverse of the function f 	 By ��	�� this

implies that FZ�cn� � n��	 Then we also know that

cn  n���L��n�

for a slowly varying function L�	 Moreover� from Theorem �	�	� we are con�

�dent of the limit behaviour

c��
n max�Z�� � � � � Zn�

d	 �� �

So we may hope that cn is also the right normalisation for the maxima Mn

of the linear process �Xn�	

We �rst embed �c��
n Xk�k�� in a point process and show its weak con�

vergence to a function of a PRM	 This is analogous to the proof of The�

orem �		��	 Then we can proceed as in the iid case to derive information

about the extremes of the sequence �Xn�	

Theorem ����� �Weak convergence of the point processes of the embedded

linear process�

Let
P�

k�� ��tk�jk� be PRM�j � j � � on R� �E� where E  ������nf�g �
j � j is Lebesgue measure and the measure  on the Borel sets of E has density

	x����I����	�x� & qp��	��x�����I�������x� � x � R � ��	��

Suppose the conditions ��	�� and ��	�� are satis�ed� Then

�X
k��

��n��k�c��
n Xk�

d	
�X
k��

�X
i���

��tk��ijk� � n	� �

in Mp�R� �E��

Sketch of the proof� For a complete proof we refer to Davis and Resnick

������ see also Resnick ������ Section 	�	

We notice that condition ��	�� is equivalent to

nP
�
c��
n Z � �� v	 ���
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on the Borel sets of E� where the measure  on E is determined by ��	��	

This holds by virtue of Proposition A�	�� and since� as n	��

nP
�
c��
n Z � x

�	 x�� and nP
�
c��
n Z � �x

�	 qp��x�� � x � � �

It is then a consequence of Theorem �	�	 �see also the proof of Theo�

rem �		��� that

�X
k��

��n��k�c��
n Zk�

d	
�X
k��

��tk�jk� � n	� � ��	��

in Mp �R� �E�� where the limit is PRM�j � j � �	

The process Xn  
P�

j��� 
jZn�j is a �possibly in�nite� moving average of

the iid noise �Zn�	 A naive argument suggests that we should �rst consider

�nite moving averages

X�m�
n  

mX
j��m


jZn�j � n � Z �

for a �xed integer m� then apply a Slutsky argument �see Appendix A�	��

and let m	�	
For simplicity we restrict ourselves to the case m  � and we further assume

that �X
���
n � is a moving average process of order � �MA�����

X���
n  Zn & 
�Zn�� � n � Z �

We embed �X
���
n � in a point process which will be shown to converge weakly	

We notice that X
���
n is just a functional of the ��dimensional vector

Zn  �Zn��� Zn�  Zn��e� & Zne� �

and so it is natural to consider the point process

�X
k��

��n��k�c��
n Zk� � ��	��

By some technical arguments it can be shown that ��	�� has the same weak

limit behaviour as

�X
k��

�
��n��k�c��

n Zke�� & ��n��k�c��
n Zke��

�
�

Then an application of ��	�� and the continuous mapping theorem �see The�

orem A�	�� yield that the point processes ��	�� converge weakly to
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�X
k��

�
��tk�jke�� & ��tk�jke��

�
�

Since we want to deal with the MA��� process �X
���
n � we have to stick the

coordinates of Zn together� and this is again guaranteed by an a	s	 continuous

mapping eT�� say� acting on the point processes�
�X
k��

��n��k�c��
n �Zk���Zk����

 eT�
�

�X
k��

��n��k�c��
n Zk�

�

� eT� � �X
k��

�
��n��k�c��

n Zke�� & ��n��k�c��
n Zke��

��

d	 eT� � �X
k��

�
��tk�jke�� & ��tk�jke��

��

 

�X
k��

�
��tk�jk� & ��tk ���jk�

�
�

Similar arguments prove that

�X
k��

��
n��k�c��

n X
�m�

k

� d	
�X
k��

mX
i��m

��tk��ijk�

for every m � �� and a Slutsky argument as m	� concludes the proof	 �

It is now our goal to consider some applications of this theorem	 We suppose

throughout that the assumptions of Theorem �	�	� are satis�ed	

Extremal Processes and Limit Distributions of Maxima

Analogously to iid sample maxima we consider the continuous�time process

Yn�t�  

�
c��
n M�nt	 if t � n�� �

c��
n X� if � � t � n�� �

which is constructed from the sample maxima

Mn  max�X�� � � � � Xn� � n � � �

Note that Mn is now the maximum of n dependent rvs	 De�ne
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�  max
j

�
j � �� � 
�  max
j

���
j� � �� � ��	��

Recall the de�nition of the mapping eT� from ��	���� for a point processP�
k�� ��rk�sk� set

eT�
�

�X
k��

��rk�sk�

�
 sup fsk � rk � �g �

It is an a	s	 continuous mapping fromMp�R� �E� to D �����	 This relation�
Theorem �	�	� and the continuous mapping theorem yield that

eT� � �X
k��

��n��k�c��
n Xk�

�
d
 Yn��� d	

eT� � �X
k��

�X
i���

��tk��ijk�

�
 

!
tk�	

�
�!

i���


ijk

�

 
!
tk�	

�
�
�jk� � ��
�jk�

�
 Y ��� �

The process Y de�ned thus is indeed an extremal process �see De�nition �		�

and Proposition �		� since Y  eT�� eN� where
eN  

�X
k��

��tk���jk� &

�X
k��

��tk����jk� �

i	e	 eN is a PRM with mean measure of ��� t�� �x��� equal to

t
�

�� & 
��qp

��
�
x�� for t � � � x � � �

By the de�nition of a PRM� for t � �� x � ��

P �Y �t� � x�  P
� eN�

��� t�� �x���
�
 �

�
 exp

n
�E eN�

��� t�� �x���
�o

 exp
��t

�

�� & 
��qp

��
�
x��

�
�

Summarising the facts above we obtain an invariance principle for sample

maxima which in the iid case is analogous to Theorem �		���
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Theorem ����� �Invariance principle for the maxima of a linear process

with noise in MDA�����

Assume either 
�p � � or 
�q � �� that the conditions ��	�� and ��	��

hold and let �cn� be de�ned by ��	�� Then

Yn
d	 Y � n	� �

where Y is the extremal process generated by the extreme value distribution

�
�������qp

��

� �x�  exp
�� �


�� & 
��qp
��

�
x��

�
� x � � � �

Remarks� �� For �Xn� iid� 
i  � for i � � and 
�  �	 Then Theorem �	�	�

degenerates into the case of a ���extremal process Y 	

�� The above method can be extended to get joint convergence of the

processes generated by a �nite number of upper extremes in the sample

X�� � � � � Xn	 �

Corollary ����� �Limit laws for the maxima of a linear process with noise

in MDA�����

Assume that Z � MDA���� for some 	 � � and choose �cn� according to

��	�� Then

c��
n max �Z�� � � � � Zn�

d	 �� � ��	��

and� under the conditions of Theorem �	�	��

c��
n Mn

d	 �
�������qp

��

� � ��	���

Moreover� let � eXn� be an iid sequence associated with �Xn�� Then

c��
n

fMn
d	 �

k�k��
� � ��	���

where

k
k��  
�X

j���

j
j j�
�
If�j��g & qp��If�j��g

�
�

Proof� ��	�� and ��	��� follow from Theorem �	�	� and the fact that

Yn���
d
 c��

n Mn
d	 Y ����

��	��� is a consequence of ��	��� taking into consideration �see Lemma A�	���

that

P

�� �X
j���


jZj � x


A � k
k��P �jZj � x� � �

The latter relation suggests that classical estimators for the tail index 	

might also work for the tail of Xt	 This is unfortunately not the case� see for

instance Figure �	�		
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Figure �
�
� A comparative study of the Hill�plots for � ��� iid simulated data
from an AR��� process Xt � �Xt���Zt� � � f��
	 ���	 ���g� The noise sequence �Zt�
comes from a symmetric distribution with exact Pareto tail P �Z � x� � ���x��	�
x � �� According to Lemma A��	� P �X � x� 	 c x��	� The solid line corresponds
to the Hill estimator of the Xt as a function of the k upper order statistics� The
dotted line corresponds to the Hill estimator of the residuals bZt � Xt�b�Xt��� whereb� is the Yule�Walker estimator of �� Obviously� the Hill estimator of the residuals
yields much more accurate values� These 
gures indicate that the Hill estimator
for correlated data has to be used with extreme care� Even for � � ��� the Hill
estimator of the Xt cannot be considered as a satisfactory tool for estimating the
index of regular variation� The corresponding theory for the Hill estimator of linear
processes can be found in Resnick and St�aric�a ����� ����
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Exceedances

Theorem �	�	� also allows us to derive results about the observations Xk�cn
exceeding a given threshold x� or equivalently about the linear process �Xk�

exceeding the threshold un  cnx	 Without loss of generality we will assume

that j
j j � � for all j	
Applying Theorem �	�	� and the continuous mapping theorem we �nd

that the point process of points with ordinates bigger than x � � converges

as n	�	 Thus let
E�
x  �x��� � E�

x  �����x� � Ex  E�
x � E�

x � x � � �

then

�X
k��

��n��k�c��
n Xk�

�� � R� �E�
x

� d	
�X
k��

�X
i���

��tk��ijk�
�� � R� �E�

x

�
��	���

in Mp�R� �E�
x �	 We can interpret this as weak convergence of the point

processes of exceedances of xcn by �Xk�	 We need the following auxiliary

result	

Lemma ����� The following relation holds in Mp�R� �Ex� �

N�  

�X
k��

��tk�jk�
d
 N�  

�X
k��

���k�Jk� �

where ��k� is the sequence of points of a homogeneous Poisson process on R�

with intensity �  p��x��� independent of the iid sequence �Jk� with common

density

g�y�  
�
	y����I�x����y� & qp��	��y�����I�����x��y�

�
px�

 f�y���� � y � R �

Proof� It su�ces to show that the Laplace functionals of the point processes

N� and N� coincide� see Example �	�	�	 Since N� is PRM�j � j�� on R��Ex

we have by Example �	�	�� that

�N��h�  exp

�
�

Z
R�

Z
R

�
�� e�h�t�z�

�
f�z�dzdt

�
�

On the other hand� conditioning on ��k� and writing

h��t�  

Z
R

exp f�h�t� z�g g�z�dz  E exp f�h�t� J��g � t � � �

we obtain
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�N��h�  E exp

�
�

Z
R��R

hdN�

�

 E exp

�
�

�X
k��

h��k� Jk�

�

 E

�Y
k��

h���k�

 E exp

�
�X
k��

lnh���k�

�
�

The rvs �k are the points of a homogeneous Poisson process with intensity

�  p��x��	 This and Lemma �	�	�� yield

�N��h�  E exp

�
��

Z
R�

��� h��t�� dt

�

 exp

�
�

Z
R�

Z
R

�
�� e�h�t�z�

�
f�z�dzdt

�
�

This proves the lemma	 �

Therefore the limit process in ��	��� has representation

�X
k��

�X
i���

��tk��ijk�
d
 

�X
k��

�X
i���

���k��iJk�

in Mp �R� � �x����	 Finally� we de�ne the iid rvs �k  card fi � 
iJk � xg	
Now we can represent the limit process in ��	��� as a point process on R� �

N�  

�X
k��

�k��k

for independent ��k� and ��k�	 For any Borel set A in R� this means that

N��A�  

�X
k��

�k��k�A�  
X

k��k�A

�k �

i	e	 N� is a multiple point process with iid multiplicities or cluster sizes �k	

In particular� it is a compound Poisson process as de�ned in Example �	�	��	

This is completely di�erent from the point processes of exceedances of iid or

weakly dependent rvs �cf	 Section �	�� where the limit is homogeneous Pois�

son� hence simple	 Thus the special dependence structure of linear processes

yields clusters in the point process of exceedances	
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Example ����� �AR��� process�

We consider the AR��� process Xt  �Xt�� &Zt � t � Z� for some � � ��� ��	
It has a linear process representation

Xt  
�X
j��

�jZt�j � t � Z�

The iid cluster sizes �k have the following distribution�

��  P ���  ��  P �J� � x� �J� � x� � � ��  P �J� � x�  q � x � � �

and for " � ��

��  P ���  "�

 P �J� � x� � � � � ����J� � x���J� � x�

 P �����J� � x���J� � x�

 p���������� ����
�

Example ����� �MA��� process�

We consider the MA��� process Xt  Zt &  Zt��� t � Z	 Assume �rst  � �	

Direct calculation yields

P ���  ��  q

P ���  ��  ���  � � �� p

P ���  ��  � � � �� p �

Thus the cluster sizes �k may assume the values �� � and � with positive

probability for  � ��� ��� whereas for  � � only the values � and � may

occur	

Now assume  � �� then

P ���  ��  ��� �j j� � ��� q �

P ���  ��  p& �j j� � �� q �

Thus the cluster sizes �k may assume only the values � and � for  � ���
whereas for  � ���� ��� �k  � a	s	
This means �in an asymptotic sense� that exceedences may only occur in

clusters of � values if  � �� whereas the cluster size may be � or � for

 � ��� ��	 For  � � the point process of exceedences does not cluster	 �
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Figure �
�
	 Realisations of the AR��� process Xt � ��Xt���Zt �top two� and of
the corresponding absolute values �bottom two�� In each pair of 
gures� the upper one
corresponds to iid standard normal noise �Zt�� the lower one to iid standard Cauchy
noise� In the Cauchy case extremes tend to occur in clusters� see Example ����� In
the Gaussian case clustering e�ects of extremal values are not present�



��� Some Extreme Value Theory for Linear Processes ��

Maxima and Minima

We consider the joint limit behaviour of the maxima �Mn� and of the minima

W�  X� � Wn  min �X�� � � � � Xn� � n � � �

Choose x � � and y � � and write

A  ��� ��� ����� y� � �x���� �

Then� by Theorem �	�	��

P
�
c��
n Mn � x � c��

n Wn � y
�

 P

�
�X
k��

��n��k�c��
n Xk� �A�  �

�

	 P

�
�X
k��

�X
i���

��tk��ijk� �A�  �

�
� ��	���

We consider the event in ��	��� in detail	 Notice thatn
card

n
�k� i� � � � tk � � and �
ijk � y or 
ijk � x�

o
 �

o
 

n
card

n
k � � � tk � � and

�jk � �x�
� or jk � x�
� or jk � y�
� or jk � �y�
��
o
 �

o
�

Write

B  ��� ���
h�
��� ��x�
�� � �y�
��

�
�

�
�x�
�� � ��y�
�� ��

�i
�

Then the right�hand side in ��	��� translates into

P

�
�X
k��

��tk�jk� �B�  �

�

 exp
n
� 

����� ��x�
�� � �y�
��
� � �

�x�
�� � ��y�
�� ��
��o

 exp
��� �


��x
�� � 
����y���

 
& qp��

�

��x

�� � 
����y���
 ��

�

��	��

where 
�� 
� were de�ned in ��	��	 Now introduce the two�dimensional df
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G�x�� x��  

�
exp

��
��x
��
�

� � exp��
��x���

�
for x� � �� x� � � �

� otherwise �

��	���

Thus the right�hand side of ��	�� can be written in the form

G�x��y�Gq�p��y� x� �
and using the relation

P
�
c��
n Mn � x � c��

n Wn � y
�
 P

�
c��
n Mn � x

��P
�
c��
n Mn � x � c��

n Wn � y
�

we obtain the following�

Theorem ����� �Joint limit distribution of sample maxima and minima of

linear process�

Assume that the conditions of Theorem ����� hold and let �cn� be de�ned by

��	�� Then� for all real x� y�

P
�
c��
n Mn � x � c��

n Wn � y
�	 G�x���Gq�p��� x� �G�x��y�Gq�p��y� x� �

where G�x� y� is de�ned by ��	���� �

Summary

Assume that Z � MDA����� i	e	

P �Z � x�  
L�x�

x�
� x � � �

for some 	 � �� and that

P �Z � �x� � q

p

L�x�

x�
� x	� �

for non�negative p� q such that p&q  � and p � �	 Choose the constants cn by

cn  ���FZ�
��n�� �

Then
c��
n max �Z�� � � � � Zn�

d	 ��

for the Fr�echet distribution ���x�  e�x
��

� x � �	 Moreover� under the

conditions of Theorem �	�	��

c��
n Mn

d	 �
�������qp

��

� � x � � �

where 
�� 
� are de�ned in ��	��	 The point process of the exceedances

of the threshold cnx by the linear process �Xk� converges weakly to a com�

pound Poisson point process with iid cluster sizes which depend on the coef�

�cients 
j 	
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����� Subexponential Noise in the Maximum Domain of

Attraction of the Gumbel Distribution �

In this section we again consider the linear process Xn  
P�

j��� 
jZn�j
driven by iid noise �Zn� with common df FZ 	 In contrast to Section �	�	� we

assume that FZ belongs to the maximum domain of attraction of the Gumbel

distribution

��x�  e�e
�x

� x � R �

We know from Section �	�	� and Example �	�	�� that MDA��� contains a

wide range of distributions with quite di�erent tail behaviour	 Indeed� FZ
may be subexponential �for instance the lognormal distribution�� exponen�

tial or superexponential �for instance the normal distribution�	 We found in

Example 		� that fairly general Gaussian linear processes �Xn� exhibit the

same asymptotic extremal behaviour as their associated iid sequence � eXn�	

This changes dramatically for linear processes with subexponential noise as

we have already learnt in Section �	�	� for regularly varying FZ 	 A similar

statement holds when FZ � MDA��� � S� where S denotes the class of dis�
tributions FZ with subexponential positive part Z�� for the de�nition and

properties of S see Section �	�	� and Appendix A�	�	
Before we state the main results for FZ � MDA����S we introduce some

conditions on the coe�cients 
j and on the distribution FZ 	 Throughout we

suppose that the tail balance condition

lim
x��

P �Z � x�

P �jZj � x�
 p � lim

x��

P �Z � �x�

P �jZj � x�
 q ��	���

holds with � � p � �� p& q  �	 We also assume

�X
j���

j
j j� �� for some � � ��� �� � ��	���

We have that EjZj ��� which follows from the tail balance condition ��	���
and from the fact that E�Z��
 � �� � � �� for FZ � MDA���� see Corol�
lary �	�	��	 This and ��	��� guarantee the absolute a	s	 convergence of the

series Xn for every n	 Without loss of generality we assume that

max
j
j
j j  � � ��	���

since otherwise we may consider the re�scaled process Xn�maxj j
j j	 Then
one or more of the 
j have absolute value one	 The quantities

k�  card fj � 
j  �g � k�  card fj � 
j  ��g ��	���
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are crucial for the extremal behaviour of the sequence �Xn�	 The above con�

ditions lead to the following result which is analogous to Theorem �	�	�	

Theorem �	�	�� below is proved in Davis and Resnick ������ Theorem �	�� in

a more general situation	

Theorem ������ �Weak convergence of the point processes of the embedded

linear process�

Suppose FZ � MDA��� � S� Then there exist constants cn � � and dn � R

such that

nFZ �cnx& dn�	 � ln��x� � x � R � ��	���

Furthermore� assume that conditions ��	���� ��	��� hold� Then

�X
k��

��n��k�c��
n �Xk�dn��

d	 k�N� & k�N�

in Mp �R� �E� with E  ������� Here

Ni  

�X
k��

��tki�jki� � i  �� � �

are two independent PRM�j � j � i� on R� �E� � has density f��x�  e�x

and � has density f��x�  �q�p�e
�x� both with respect to Lebesgue measure�

�

Remarks� �� If k� � � or k� � �� the limit point process k�N� & k�N� is

multiple with constant multiplicities k�� k�	 The two independent processes

k�N� and k�N� are due to the contributions of those innovations Zn for

which 
n  � or 
n  ��	
�� A comparison of Theorems �	�	�� and �	�	� shows that the limit point

processes for FZ � MDA��� � S and FZ � MDA���� are completely di�erent
although in both cases FZ is subexponential	 For FZ � MDA���� the limit
depends on all coe�cients 
j whereas for FZ � MDA��� � S only the num�
bers k� and k� de�ned by ��	��� are of interest	 The di�erences are due to

the completely di�erent tail behaviour� FZ � MDA���� implies regular vari�
ation of FZ � FZ � MDA��� � S rapid variation of FZ � see Corollary �	�	��	

This has immediate consequences for P �X � x�� see Appendix A�	�	 �

In the sequel we again apply some standard arguments to derive information

from Theorem �	�	�� about the extremal behaviour of the linear process �Xn�	
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Extremal Processes and Limit Distribution of Maxima

Analogously to iid sample maxima we de�ne the process

Yn�t�  

�
c��
n

�
M�nt	 � dn

�
if t � n�� �

c��
n �X� � dn� if � � t � n�� �

Let

Y �t�  
!
tk��t

jk� �
!
tk��t

jk�  Y ��t� � Y ��t� � t � � �

We use the convention that max �  ��	 Then an application of the a	s	
continuous mapping eT� from ��	���� the continuous mapping theorem and

Theorem �	�	�� yield that

Yn  eT� � �X
k��

��n��k�c��
n �Xk�dn��

�
d	 eT� �k�

�X
k��

��tk��jk�� & k�
�X
k��

��tk��jk��

�
 Y

in D �����	 The cadlag processes Y � and Y � are independent extremal

processes and Y �being the maximum of them� is again an extremal

process	 Remember that
P�

k�� ��tk��jk�� is PRM with the mean measure of

��� t�� �x��� equal to te�x and likewise
P�

k�� ��tk��jk�� is PRM with the

mean measure of ��� t�� �x��� equal to t�q�p�e�x	 Thus Y � is ��extremal

and Y � is �q�p�extremal	 Hence Y  Y � � Y � is ���q�p�extremal	 Then�

for t � �� x � R�

P �Y �t� � x�  exp
��t�� & q�p�e�x

�
 exp

��tp��e�x
�
�

Theorem ������ �Invariance principle for the maxima of a linear process

with noise in MDA��� � S�
Assume that FZ � MDA����S and that conditions ��	������	��� hold� Choo�

se the constants cn� dn according to ��	���� Then

Yn
d	 Y � n	� �

where Y is the extremal process generated by the extreme value distribution

�p
��

�x�  exp
��p��e�x

�
� x � R � �

An immediate consequence is the following	
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Corollary ������ �Limit laws for the maxima of a linear process with noise

in MDA��� � S�
Under the conditions of Theorem ������ the following limit relations hold	

c��
n �max�Z�� � � � � Zn�� dn�

d	 � � ��	���

c��
n �Mn � dn�

d	 �p
��

� ��	���

c��
n

�fMn � dn

�
d	 �k

��k�qp��

� ��	���

Proof� ��	��� and ��	��� follow from Theorem �	�	��� while ��	��� is a con�

sequence of ��	��� taking into consideration �see Lemma A�	��� that

P

�� �X
j���


jZj � x


A � �k�p& k�q�P �jZj � x� � �

Exceedances

For x � R the point process of exceedances of cnx& dn by the linear pro�

cess �Xk� is given by

Nn���  
�X
k��

�n��k���Ifc��
n �Xk�dn��xg �

As a consequence of Theorem �	�	�� and of the continuous mapping theorem

we conclude that

Nn
d	 k�

�X
k��

�tk�Ifjk��xg & k�
�X
k��

�tk�Ifjk��xg  k�N� & k�N� ��	��

in Mp�R� �	 With a glance at the �nite�dimensional distributions or at the

Laplace functionals it is not di�cult to check that N� and N� are homoge�

neous Poisson processes on R� with intensity e�x and �q�p�e�x� respectively	

If ���
k � and ��

�
k � denote the sequences of the points of N

� and N� then we

obtain the following result from ��	���

Theorem ������ Suppose that the assumptions of Theorem �	�	�� hold�

Then the point processes of exceedances of cnx& dn by the linear process �Xk�

converge weakly in Mp�R� � as n	�	

�X
k��

�n��kIfc��
n �Xk�dn��xg

d	
�X
k��

�
k����

k
& k����

k

�
�

Here ��k�� and ��k�� are the sequences of the points of two independent

homogeneous Poisson processes on R� with corresponding intensities e�x

and �q�p�e�x� �
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We notice that the limit process of the point processes of exceedances is the

sum of two independent compound Poisson processes where the cluster sizes

are just constants k�� k�	 This is in contrast to the iid or weakly depen�

dent stationary case where the limit point process is a �simple� homogeneous

Poisson process �see Section �	��� but it is also di�erent from the situation

when FZ � MDA����	 In the latter case the limit point process is compound
Poisson with random cluster sizes �see Section �	�	��	

Maxima and Minima

As in Section �	�	� point process methods can be used to derive the joint limit

distribution of maxima and minima of linear processes with FZ � MDA����
S	 The approach is similar to the one in Section �	�	�	 We omit details and
simply state a particular result	 LetWn  

Vn
i�� Xi and suppose that k

�  ��

i	e	 there is no index j with 
j  ��	 Then

P
�
c��
n �Mn � dn� � x� c��

n �Wn & dn� � y
�	 ��x��q�p��y�

for x� y � �	 In general� the limit distribution depends on the fact whether

k�  � or k�  �	 For more details see Davis and Resnick �����	

Summary

Assume that FZ � MDA��� � S with constants cn and dn chosen according

to Theorem �	�	��� i	e	

c��
n �max �Z�� � � � � Zn�� dn�

d	 � �

where � denotes the Gumbel distribution ��x�  e�e
�x

� x � R	 Then� under

the conditions of Theorem �	�	���

c��
n �Mn � dn�

d	 �p
��

�

Furthermore� the point processes of exceedances of the threshold cnx& dn
by the linear process �Xk� converge weakly to a multiple point process with

constant multiplicities	

Notes and Comments

Asymptotic extreme value theory for linear processes with regularly varying

tails is given in Resnick ������ Chapter 	�	 The latter is based on Davis and

Resnick ����� ���� ���� who also treat more general aspects of time series
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analysis� see Chapter �� and on Rootz�en ���� and Leadbetter� Lindgren and

Rootz�en ���� who consider exceedances of linear processes	

Extremes of linear processes with exponential and subexponential noise

variables were treated in Davis and Resnick �����	 Further interesting work in

this context is due to Leadbetter and Rootz�en ���� and Rootz�en ���� ����	

Note that both the present section and Sections 	 and �	�	� deal with

strictly stationary sequences	 However� the assumptions and results are of

di�erent nature	 The central conditions in the present section are regular

variation of the tails FZ or subexponentiality of the df FZ 	 This allows one to

embed the linear process in a point process and to derive elegant results which

yield much information about the extremal behaviour of a linear process	

The assumptions on the tails are much weaker in Sections 	 and �	�	�	

In particular� the df does not have to belong to any maximum domain of

attraction	 Thus more general classes of dfs can be covered	 On the other

hand� conditions of type D�un� or D
��un� ensure that we do not go too far

away from the iid case	 Linear processes seem to allow for �more dependence


in the sequence �Xn� although the kind of dependence is quite speci�c	 We

can also compare the di�erent point processes of exceedances	 In the case of

linear processes we obtain multiple PRM in the limit	 This is in contrast to

Section �	�	�� where the limit is a homogeneous Poisson process	



�

Statistical Methods for Extremal Events

��� Introduction

In the previous chapters we have introduced a multitude of probabilistic mod�

els in order to describe� in a mathematically sound way� extremal events in

the one�dimensional case	 The real world however often informs us about

such events through statistical data� major insurance claims� �ood levels of

rivers� large decreases �or indeed increases� of stock market values over a cer�

tain period of time� extreme levels of environmental indicators such as ozone

or carbon monoxide� wind�speed values at a certain site� wave heights dur�

ing a storm or maximal and minimal performance values of a portfolio	 All

these� and indeed many more examples� have in common that they concern

questions about extreme values of some underlying set of data	 At this point

it would be utterly foolish �and indeed very wrong� to say that all such prob�

lems can be cast into one or the other probabilistic model treated so far�

this is de�nitely not the case� Applied mathematical �including statistical�

modelling is all about trying to o�er the applied researcher �the �nance ex�

pert� the insurer� the environmentalist� the biologist� the hydrologist� the risk

manager� � � �� the necessary set of tools in order to deduce scienti�cally sound

conclusions from data	 It is however also very much about reporting correctly	

the data have to be presented in a clear and objective way� precise questions

have to be formulated� model�based answers given� always stressing the un�
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derlying assumptions	 The whole process constitutes an art� statistical theory

plays only a relatively small� though crucial role here	

The previous chapters have given us a whole battery of techniques with

which to formulate in a mathematically precise way the basic questions under�

lying extreme value theory	 This chapter aims at going one step further� based

on data� we shall present statistical tools allowing us to link questions asked

in practice to a particular �though often non�unique� probabilistic model� Our

treatment as regards these statistical tools will de�nitely not be complete�

though we hope it will be representative of current statistical methodology in

this fast�expanding area	 The reader will meet data� basic descriptive meth�

ods� and techniques from mathematical statistics concerning estimation and

testing in extreme value models	 We have tried to keep the technical level of

the chapter down� the reader who has struggled through Chapter � on point

processes may well be relieved� At the same time� chapters like the one on

point processes are there to show how modern probability theory is capable of

handling fairly complicated but realistic models	 The real expert on Extremal

Event Modelling will de�nitely have to master both �extremes�	

After the mathematical theory of maxima� order statistics and heavy�

tailed distributions presented in the previous chapters� we now turn to the

crucial question�

How do extreme values manifest themselves in real data


A full answer to this question would not only take most of the present chapter�

one could write whole volumes on it	 Let us start by seeing how in practice

extremes in data manifest themselves	 We do this through a series of partly

hypothetical� partly real examples	 At a later stage in the chapter� we will

come back to some of the examples for a more detailed analysis	

Example ����� �River Nidd data�

A standard data�set in extreme value theory concerns �ows of the river Nidd

in Yorkshire� England� the source of the data is the Flood Studies Report

NERC ����	 We are grateful to Richard Smith for having provided us with

a copy of the data	 The basic set contains �� observations on �ow data

above �� CUMECS over the ���year period ��������	 A crude de�clustering

technique was used by the hydrologists to prepare these data	 Though the full

set contains a series of values for each year� for a �rst analysis only the annual

maxima are considered	 In this way� intra�year dependencies are avoided

and a valid assumption may be to suppose that the data x�� � � � � x
� are

realisations from a sequence X�� � � � � X
� of iid rvs all with common extreme

value distribution H say	 Suppose we want to answer questions like�
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Figure �
�
� The river Nidd data ��������� �top� and the corresponding annual
maxima �bottom�� The data are measured in CUMECS�

	 What is the probability that the maximum �ow for the next year will

exceed a level x"

	 What is the probability that the maximum �ow for the next year exceeds

all previous levels"

	 What is the expected length of time �in years say� before the occurrence

of a speci�c high quantity of �ow"

Clearly� a crucial step forward in answering these questions would be our

gaining knowledge of the df H 	 The theory of Chapter � gives us relevant

parametric models for H � see the Fisher�Tippett theorem �Theorem �	�	��

where the extreme value distributions enter	 Standard statistical tools such

as maximum likelihood estimation �MLE� are available	 �

Example ����� �Insurance claims�

Suppose our data consist of �re insurance claims x�� � � � � xn over a speci�ed

period of time in a well�de�ned portfolio� as for instance presented in Fig�

ure �	�		 Depending on the type of �re causing the speci�c claims� a condition

of the type �x�� � � � � xn come from an iid sample X�� � � � � Xn with df F
 may

or may not be justi�ed	 Suppose for the sake of argument that the underlying
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Figure �
�
� � ��� claims from a 
re insurance portfolio� The values are multiples
of � ��� SFr� The corresponding histogram of the claims � � ��� SFr �left� and of
the remaining claims exceeding � ��� SFr �right�� The data are very skewed to the
right� The x�axis of the histogram on the rhs reaches up to ��� due to a very large
claim around ���� see also the top 
gure�

portfolio is such that the above assumption can be made	 Questions we want

to answer �or tasks we want to perform� could be�

	 Calculate next year�s premium volume needed in order to cover� with suf�

�ciently high probability� future losses in this portfolio	

	 What is the probable�maximum�loss of this portfolio if the latter is de�ned

as a high �for instance the ������� quantile of the df F "

	 Given that we want to write an excess�of�loss cover �see Example �	�	�

with priority ak �also referred to as attachment point� resulting in a one�

in�k�year event� how do we calculate ak" The latter means that we want

to calculate ak so that the probability of exceeding ak equals ��k	
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Again� as in the previous example� we are faced with a standard statistical

�tting problem	 The main di�erence is that in this case we do not immediately

have a speci�c parametric model �such as the extreme value distributions in

Example �	�	�� in mind	 We �rst have to learn about the data�

	 Is F light� or heavy�tailed"

	 What are its further shape properties� skewed� �at� unimodal�� � �"

In the heavy�tailed case �tting by a subexponential distribution �see Chap�

ter � and Appendix A�	�� might be called for	 The method of exceedances

from Section �	� will be relevant	 �

Example ����� �ECOMOR reinsurance�

The ECOMOR reinsurance contract stands for �Le Trait�e d�Exc�edent du

Co'ut Moyen Relatif
 and was introduced by the French actuary Th�epaut

����� as a novel contract aiming to enlarge the reinsurer�s �exibility in con�

structing customised products	 A precise mathematical description is given

in Example �	�	�	 Suppose over a period ��� t�� the claims x�� � � � � xn�t� are

received by the primary insurer	 The ECOMOR contract binds the rein�

surer to cover �for a speci�c premium� the excesses above the kth largest

claim	 This leads us to a model where X�� � � � � XN�t� are �conditionally� iid

with speci�c model assumptions on the underlying df F of Xi and on the

counting process �N�t��� see Chapter �	 The relevant theory underlying the

ECOMOR contracts� i	e	 the distributional properties of the k largest order

statistics X��N�t�� � � � � Xk�N�t� from a randomly indexed ordered sample� was

given in Section 	�	 Standard models are hence at our disposal	 It is perhaps

worthwhile to stress that� though innovative in nature� ECOMOR never was

a commercial success	 �

Example ����� �Value�at�Risk�

Suppose a �nancial portfolio consists of a number of underlying assets �bonds�

stocks� derivatives�� � ��� all having individual �though correlated� values at any

time t	 Through the estimation of portfolio covariances� the portfolio man�

ager then estimates the overall portfolio Pro�t�Loss �P%L� distribution	 For

details on this see for instance RiskMetrics ����	 Management and regulators

may now be interested in setting �minimal requirements
 or� for the sake of

argument� a maximal limit on the potential losses	 A possible quantity is the

so�called Value�at�Risk �VaR� measure brie�y treated in the discussion of

Figure  of the Reader Guidelines	 There the VaR is de�ned as the �$ quan�

tile of the P%L distribution	 The following questions are relevant	

	 Estimate the VaR for a given portfolio	
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Figure �
�
� Daily log�returns of BMW share prices for the period January 	�
���� � July 	�� ��� �n � ������ together with a histogram of the data�

	 Estimate the probability that� given we exceed the VaR� we exceed it by

a certain amount	 This corresponds to the calculation of the so�called short�

fall distribution�

The �rst question concerns quantile estimation for an estimated df� in many

cases outside the range of our data	 The second question obviously concerns

the estimation of the excess df as de�ned in Section �	 �modulo a change

of sign� we are talking about losses��	 The theory presented in the latter

section advocates the use of the generalised Pareto distribution as a natural

parametric model in this case	 �

Example ����
 �Fighting the arch�enemy with mathematics�

The above heading is the actual title of an interesting paper by de Haan ����

on the famous Dutch dyke project following the disastrous �ooding of parts of

the Dutch provinces of Holland and Zeeland on February �� ����� killing over

� ��� people	 In it� de Haan gives an account of the theoretical and applied

work done in connection with the problem of how to determine a safe height

for the sea dykes in the Netherlands	 More than with any other event� the re�

sulting work by Dutch mathematicians under van Dantzig gave the statistical

methodology of extremal events a decisive push	 The statistical analyses also

made a considerable contribution to the �nal decision making about the dyke

heights	 The problem faced was the following� given a small number p �in the

range of ���� to ���
�� determine the height of the sea dykes such that the

probability that there is a �ood in a given year equals p	 Again� we are con�

fronted with a quantile estimation problem	 From the data available� it was

clear that one needed estimates well outside the range of the data	 The sea�
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water level in the Netherlands is typically measured in �N	A	P	 & x� meters

�N	A	P	  Normaal Amsterdams Peil� the Dutch reference level corresponding

to mean sea level�	 The ���� �ood was caused by a �N	A	P	 & �	��� m surge�

whereas historical accounts estimate a �N	A	P	 & � m for the ���� �ood� the

worst recorded	 The van Dantzig report estimated the ��� ������quantile

as �N	A	P	 & �	�� m for the annual maximum	 That is� the one�in�ten�

thousand�year surge height is estimated as �N	A	P	 & �	�� m	 We urge all

interested in extreme value statistics to read de Haan ����	 �

Many more examples with an increasing degree of complexity could have

been given including�

	 non�stationarity �seasonality� trends��

	 sparse data�

	 multivariate observations�

	 in�nite�dimensional data �for instance continuously monitored processes�	

The literature cited throughout the book contains a multitude of examples	

Besides the work mentioned already by Smith on the river Nidd and de Haan�s

paper on the dyke project� we call the following papers to the reader�s atten�

tion�

	 Rootz�en and Tajvidi ����� where a careful analysis of Swedish wind storm

losses �i	e	 insurance data� is given	 Besides the use of standard methodol�

ogy ��tting of generalised extreme value and Pareto distributions�� prob�

lems concerning trend analysis enter� together with a covariate analysis

looking at the potential in�uence from numerous environmental factors	

	 Resnick ����� considers heavy tail modelling in a huge data�set �n � �� ����
in the �eld of the teletra�c industry	 Besides giving a very readable and

thought provoking review of some of the classical methods� extremes in

time series models are speci�cally addressed	 See also Sections �	� and �		

	 Smith ���� applies extreme value theory to the study of ozone in Houston�

Texas	 A key question concerns the detection of a possible trend in ground�

level ozone	 Such a study is particularly interesting as air�quality standards

are often formulated in terms of the highest level of permitted emissions	

The above papers are not only written by masters at their trade �de Haan�

Resnick� Rootz�en� Smith�� they also cover a variety of �elds �hydrology� in�

surance� electrical engineering� environmental research�	

Within the context of �nance� numerous papers analysing speci�c data

are being published� see Figure �	�	� for a typical example of �nancial return

data	 A paper which uses up�to�date statistical methodology on extremes is

for instance Danielson and de Vries ���� where models for high frequency

foreign exchange recordings are treated	 See also M�uller et al	 ���� for more



�
� �� Statistical Methods for Extremal Events

background on the data	 Interesting case studies are also to be found in

Barnett and Turkman ����� Falk� H�usler and Reiss ������ and Longin ����	

The latter paper analyses US stock market data	

We hope that the examples above have singled out a series of problems	 We

now want to present their statistical solutions	 There is no way in which we

can achieve completeness concerning the statistical models now understood�

the de�nitive book on this still awaits the writing	 A formidable task indeed�

The following sections should o�er the reader both hands�on experience

of some basic methods� as well as a survival kit to get him!her safely through

the �jungle of papers on extreme value statistics
	 The outcome should be

a better understanding of those basic methods� together with a clear�er�

overview of where the �eld is heading to	 This chapter should also be a guide

on where to look for further help on speci�c problems at hand	

Of the more modern textbooks containing a fair amount of statistical

techniques we would like to single out Falk et al	 ����� and Reiss �����	 The

latter book also contains a large amount of historical notes	 It always pays

to go back to the early papers and books written by the old masters� and the

annotated references in Reiss ����� could be your guide	 However� whatever

you decide to read� don�t miss out on Gumbel ������

��� Exploratory Data Analysis for Extremes

One of the reasons why Gumbel�s book ����� is such a feast to read is its

inclusion of roughly ��� graphs and �� tables	 The author very much stresses

the importance of looking at data before engaging in a detailed statistical

analysis	 In our age of nearly unlimited computing power this graphical data

exploration is becoming increasingly important	 The reader interested in some

recent developments in this area may for instance consult Chambers et al	

������ Cleveland ����� or Tufts �����	 In the sections to follow we discuss some

of the more useful graphical methods	

����� Probability and Quantile Plots

Given a set of data to be analysed� one usually starts with a histogram� one

or more box�plots� a plot of the empirical df� in the multi�dimensional case

a scatterplot or a so�called draughtsman�s display which combines all �� �
scatterplots in a graphical matrix form	 Keeping to the main theme of the

book� we restrict ourselves however to the one�dimensional case and start

with a discussion of the problem�

Find a df F which is a good model for the iid data X�X�� � � � � Xn�
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�
� QQ�plot of exponentially �a�� uniformly �b�� lognormally �c� distrib�
uted simulated data versus the exponential distribution� In �d� a QQ�plot of t��
distributed data versus the standard normal distribution is given�
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Figure �
�
� QQ�plots� �a� Gumbel distributed simulated data versus Gumbel dis�
tribution� GEV distributed data with parameters �b�� � � ���� �c�� � � ����� �d��
� � ��� versus Gumbel� The values � � �� and � � ��� are chosen so that � � ���
either belongs to the range ��	 �� �typically encountered for insurance data� or ��	 ��
�corresponding to many examples in 
nance��
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De�ne the ordered sample Xn�n � � � � � X��n	 The theoretical basis that un�

derlies probability plots is the quantile transformation of Lemma 	�	�� which

implies that for F continuous� the rvs Ui  F �Xi�� for i  �� � � � � n� are iid

uniform on ��� ��	 Moreover�

�F �Xk�n��k�������n

d
 �Uk�n�k�������n �

From this it follows that

EF �Xk�n�  
n� k & �

n& �
� k  �� � � � � n �

Also note that Fn�Xk�n�  �n� k & ���n� where Fn stands for the empirical

df of F 	 The graph�
F �Xk�n� �

n� k & �

n& �

�
� k  �� � � � � n

�
is called a probability plot �PP�plot�	 More common however is to plot the

graph �
Xk�n � F�


n� k & �

n& �

��
� k  �� � � � � n

�
��	��

typically referred to as the quantile plot �QQ�plot�	 In both cases� the ap�

proximate linearity of the plot is justi�ed by the Glivenko�Cantelli theorem�

see Example �	�		 The theory of weak convergence of empirical processes

forms the basis for the construction of con�dence bands around the graphs�

leading to hypothesis testing	 We refrain from entering into details here� see

for instance Shorack and Wellner ������ p	 ��	

There exist various variants of ��	�� of the type

f�Xk�n � F� �pk�n�� � k  �� � � � � ng � ��	��

where pk�n is a certain plotting position	 Typical choices are

pk�n  
n� k & �k
n& �k

�

with ��k� �k� appropriately chosen allowing for some continuity correction	

We shall mostly take ��	�� or ��	�� with

pk�n  
n� k & ���

n
�

For a Gumbel distribution

��x�  exp
��e�x

�
� x � R �
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the method is easily applied and leads to so�called double logarithmic plot�

ting	 Assume for instance that we want to test whether the sampleX�� � � � � Xn

comes from �	 To this end� we take the ordered sample and plot Xk�n �more

precisely the kth largest observation xk�n� against�
��pk�n�  � ln�� ln pk�n��

where pk�n is a plotting position as discussed above	 If the Gumbel distribu�

tion provides a good �t to our data� then this QQ�plot should look roughly

linear� see Figure �	�	��a�	

Mostly� however� the data would be tested against a location�scale family

F ������
� where in some cases �for instance when F  � standard normal�

 and 
 are the mean and standard deviation ofX 	 A QQ�plot using F would

still be linear� however with slope 
 and intercept 	 Using linear regression

for instance� a quick estimate of both parameters can be deduced	

In summary� the main merits of QQ�plots stem from the following prop�

erties� taken from Chambers ������ see also Barnett ����� Castillo ����� Sec�

tion �	�	�� David ������ Section �	�� and Gnanadesikan �����	

�a� Comparison of distributions	 If the data were generated from a random

sample of the reference distribution� the plot should look roughly linear�

This remains true if the data come from a linear transformation of the

distribution�

�b� Outliers	 If one or a few of the data values are contaminated by gross er�

ror or for any reason are markedly di�erent in value from the remaining

values� the latter being more or less distributed like the reference distrib�

ution� the outlying points may be easily identi�ed on the plot�

�c� Location and scale	 Because a change of one of the distributions by a lin�

ear transformation simply transforms the plot by the same transforma�

tion� one may estimate graphically �through the intercept and slope� lo�

cation and scale parameters for a sample of data� on the assumption that

the data come from the reference distribution�

�d� Shape	 Some di�erence in distributional shape may be deduced from the

plot� For example if the reference distribution has heavier tails �tends to

have more large values� the plot will curve down at the left and�or up at

the right�

For an illustration of �a� and �d� see Figure �	�	�	 For an illustration of �d�

in a two�sided case see Figure �	�	��d�	

So far we have considered only location�scale families	 In the case of the

generalised extreme value distribution �GEV�� see De�nition �		��
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H������x�

 exp

�
�


� & �

x� 




�����
�

� � & ��x� ��
 � � � ��	��

 

�������
���� & �x � ���	
�� for x � � 
	� �  ��	 � � �

������� �x� ���	
��� for x � & 
	� �  ���	 � � �

���x � ��
� for x � R� �  � �

besides the location and scale parameters  � R � 
 � �� a shape para�

meter � � R enters� making immediate interpretation of a QQ�plot more

delicate	 Recall that ��� �� and � denote the standard extreme value dis�

tributions Fr�echet� Weibull and Gumbel� see De�nition �	�	�	 A preferred

method for testing graphically whether our sample comes from H����� would

be to �rst obtain an estimate b� for � either by guessing or by one of the

methods given in Section �		�� and consequently work out a QQ�plot using

H������ where again  and 
 may be estimated either by visual inspection

or through linear regression	 These preliminary estimates are often used as

starting values in numerical iteration procedures	

����� The Mean Excess Function

Another useful graphical tool� in particular for discrimination in the tails� is

the mean excess function	 Note that we have already introduced this func�

tion in the context of the GEV� see De�nition �		�	 We recall it here for

convenience	

Denition ����� �Mean excess function�

Let X be a rv with right endpoint xF � then

e�u�  E�X � u j X � u� � � � u � xF � ��	�

is called the mean excess function of X� �

The quantity e�u� is often referred to as the mean excess over the threshold

value u	 This interpretation will be crucial in Section �	�	 In an insurance

context� e�u� can be interpreted as the expected claim size in the unlimited

layer� over priority u	 Here e�u� is also called the mean excess loss function	

In a reliability or medical context� e�u� is referred to as the mean residual life

function	 In a �nancial risk management context� switching from the right
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Figure �
�
� Graphs of the mean excess function e�u� of some standard distribu�
tions� see also Table ������ Note that heavy�tailed dfs typically have e�u� tending to
in
nity�

tail to the left tail� e�u� is referred to as the shortfall	 A summary of the most

important mean excess functions is to be found in Table �		�	

In Example �		� we already noted that any continuous df F is uniquely

determined by its mean excess function� see ��	�� and ��	�� for the relevant

formulae linking F to e and vice versa	

Example ����� �Some elementary properties of the mean excess function�

If X is Exp��� distributed� then e�u�  ��� for all u � �	 Now assume that

X is a rv with support unbounded to the right and df F 	 If for all y � R�

lim
x��

F �x� y�

F �x�
 e�y � ��	��

for some � � ������ then limu�� e�u�  ���	 For the proof use e�u�  R�
u

F �y� dy�F �u� and apply Karamata�s theorem �Theorem A�	�� to F � ln	
Notice that for F � S �the class of subexponential distributions� see De�ni�
tion �	�	��� ��	�� is satis�ed with �  � so that in this heavy�tailed case� e�u�

tends to � as u	�	 On the other hand� superexponential functions of the
type F �x� � expf�xag� a � �� satisfy the limit relation ��	�� with �  � so

that the mean excess function tends to �	 The intermediate cases are covered
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by the so�called S����classes� see De�nition �		�� Embrechts and Goldie
����� and the references therein	 �

Example ����� Recall that for X generalised Pareto the mean excess func�

tion is linear� see Theorem �		���e�	 The mean excess function of a heavy�

tailed df� for large values of the argument� typically appears to be between

a constant function �for Exp���� and a straight line with positive slope �for

the Pareto case�	 Consequently� interesting mean excess functions are of the

form

e�u�  

�
u��
�	 � 	 � � � � � � � � �

u��	& �� lnu� � 	 � � � � �

Note that e�u� increases but the rate of increase decreases with u	 Benk�

tander ���� introduced two families of distributions as claim size models with

precisely such mean excess functions	 Within the insurance world� they now

bear his name	 The Benktander�type�I and �type�II classes are de�ned in

Table �	�	�	 �

A graphical test for tail behaviour can now be based on the empirical mean

excess function en�u�� Suppose that X�� � � � � Xn are iid with df F and let Fn
denote the empirical df and �n�u�  fi � i  �� � � � � n�Xi � ug� then

en�u�  
�

Fn�u�

Z �

u

Fn�y� dy  
�

card�n�u�

X
i��n�u�

�Xi � u� � u � � �

��	��

with the convention that ���  �	 A mean excess plot �ME�plot� then consists

of the graph

f�Xk�n� en�Xk�n�� � k  �� � � � � ng �

The statistical properties of en�u� can again be derived by using the relevant

empirical process theory as explained in Shorack and Wellner ������ p	 ���	

For our purposes� the ME�plot is used only as a graphical method� mainly

for distinguishing between light� and heavy�tailed models� see Figure �	�	�

for some simulated examples	 Indeed caution is called for when interpreting

such plots	 Due to the sparseness of the data available for calculating en�u�

for large u�values� the resulting plots are very sensitive to changes in the

data towards the end of the range� see for instance Figure �	�	�	 For this

reason� more robust versions like median excess plots and related procedures

have been suggested� see for instance Beirlant� Teugels and Vynckier ���� or

Rootz�en and Tajvidi �����	 For a critical assessment concerning the use of

mean excess functions in insurance see Rytgaard �����	 For a useful applica�

tion of the ME�plot� see Section �	�	�	
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Figure �
�
� The empirical mean excess function en�u� of simulated data �n �
� ���� compared with the corresponding theoretical mean excess function e�u�
�dashed line�� standard exponential �top�� lognormal �middle� with lnX N��	 ���
Pareto �bottom� with tail index ���
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Figure �
�
	 The mean excess function of the Pareto distribution F �x� � x��	
�
x � �� together with �� empirical mean excess functions en�u� each based on simu�
lated data �n � ����� from the above distribution� Note the very unstable behaviour�
especially towards the higher values of u� This is typical and makes the precise in�
terpretation of en�u� di�cult� see also Figure �	���

Example ����� �Exploratory data analysis for some examples from insur�

ance and �nance�

In Figures �	�	����	�	�� we have graphically summarised some properties of

three real data�sets	 Two come from insurance� one from �nance	 The data

underlying Figure �	�	�� correspond to Danish �re insurance claims in mil�

lions of Danish Kroner ����� prices�	 The data were communicated to us by

Mette Rytgaard and correspond to the period ���������� inclusive	 There is

a total of n  ��� observations	 For a preliminary analysis of these data�

see Rytgaard �����	

The second insurance data� presented in Figure �	�	��� correspond to a port�

folio of industrial �re data �n  ���� reported over a two year period	 This

data�set is de�nitely considered by the portfolio manager as �dangerous
�

i	e	 large claim considerations do enter substantially in the �nal premium

calculation	

A �rst glance at the �gures and Table �	�	�� for both data�sets immediately

reveals heavy�tailedness and skewness to the right	 The corresponding mean
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Figure �
�
�� Exploratory data analysis of BMW share prices� Top� the ���
largest values from the upper tail �positive returns� and lower tail �absolute neg�
ative returns�� Middle� the corresponding log�histograms� Bottom� the ME�plots�
See Example �	�� for some comments�
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Figure �
�
�� Exploratory data analysis of Danish insurance claims caused by

re� the data �top left�� the histogram of the log�transformed data �top right�� the
ME�plot �bottom left� and a QQ�plot against standard exponential quantiles �bottom
right�� See Example �	�� for some comments�
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Figure �
�
�� Exploratory data analysis of insurance claims caused by industrial

re� the data �top left�� the histogram of the log�transformed data �top right�� the
ME�plot �bottom left� and a QQ�plot against standard exponential quantiles �bottom
right�� See Example �	�� for some comments�
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Data Danish Industrial

n � �
� � ���
min ������ �����
�st quartile ���� ����
median ����� �����
mean ����� �����
�rd quartile ����� �����
max ����� �� ���bx		�� ������� �������


Table �
�
�� Basic statistics for the Danish and the industrial 
re data� bx		��
stands for the empirical 

!�quantile�

excess functions are close to a straight line which indicates that the underly�

ing distributions may be modelled by Pareto�like dfs	 The QQ�plots against

the standard exponential quantiles also clearly show tails much heavier than

exponential ones	

Whereas often insurance data may be supposed to represent iid observations�

this is typically not the case for �nance data as the BMW daily log�return

data underlying Figure �	�	��	 For the full data�set see Figure �	�	�	 The

period covered is January ��� ���� � July ��� ����� resulting in n  � ��

observations on the log�returns	 Nevertheless� we may assume stationarity of

the underlying times series so that many limit results �such as the SLLN�

remain valid under general conditions	 This would allow us to interpret the

graphs of Figure �	�	�� in a way similar to the iid case� i	e	 we will assume that

the empirical plots �histogram� empirical mean excess function� QQ�plot� are

close to their theoretical counterparts	 Note that we contrast these tools for

the positive daily log�returns and the absolute values of the negative ones	

The log�histograms again show skewedness to the right and heavy�tailedness	

It is interesting to observe that the upper and lower tail of the distribution of

the log�returns are di�erent	 Indeed� both the histograms and the ME�plots

�mind the di�erent slopes� indicate that the lower tail of the distribution is

heavier than the upper one	

In Figure �	�	�� we have singled out the ��� largest positive �left� and nega�

tive �right� log�returns over the above period	 In Table �	�	� we have sum�

marised some basic statistics for the three resulting data�sets� BMW-all�

BMW�upper and BMW�lower	 The nomenclature should be obvious	

We would like to stress that it is our aim to �t tail�probabilities �i	e	 proba�

bilities of extreme returns�	 Hence it is natural for such a �tting to disregard

the �small
 returns	 The choice of ��� at this point is rather arbitrary� we will
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Data BMW�all BMW�upper BMW�lower

n � ��� ��� ���
min "������� ������� �����

�st quartile "�������� ������� ����
���
median ������� ������� �������
mean �������� ����
��� ����
���
�rd quartile ������� �����
�� ��������
max ����� ����� ������

Table �
�
�� Basic statistics for the BMW data�

come back to this issue and indeed a more detailed analysis in Section �	�	�	

�

����� Gumbel�s Method of Exceedances

There is a multitude of fairly easy analytic results concerning extremes which

yield useful preliminary information on the data	 The �rst method� Gumbel�s

method of exceedances� concerns the question�

How many values among future observations exceed past records


Let Xn�n � � � � � X��n as usual be the order statistics of a sample X�� � � � � Xn

embedded in an in�nite iid sequence �Xi� with continuous df F 	 Take the kth

upper order statisticXk�n as a �random� threshold value and denote by S
n
r �k��

r � �� the number of exceedances of Xk�n among the next r observations

Xn��� � � � � Xn�r� i	e	

Snr �k�  

rX
i��

IfXn�i�Xk�ng �

For ease of notation� we sometimes write S for Snr �k� below	

Lemma ������ �Order statistics and the hypergeometric df�

The rv S de�ned above has a hypergeometric distribution� i�e�

P �S  j�  


r & n� k � j

n� k

�
j & k � �
k � �

�

r & n

n

� � j  �� �� � � � � r � ��	��

Proof� Conditioning yields

P �S  j�  

Z �

�

P �S  j j Xk�n  u� dFk�n�u� �



��� �� Statistical Methods for Extremal Events

where Fk�n denotes the df of Xk�n	 Now use the fact that �X�� � � � � Xn� and

�Xn��� � � � � Xn�r� are independent� that
Pr

i�� IfXi�ug has a binomial distri�

bution with parameters r and F �u�� and� from Proposition 	�	��b�� that

dFk�n�u�  
n�

�k � ����n� k��
Fn�k�u�F

k��
�u� dF �u�

to obtain ��	��	 �

Remark� It readily follows from the de�nition of S and the argument given in

the above proof that ES  rk��n&�� for the mean number of exceedances of

the random threshold Xk�n	 For a detailed discussion on the hypergeometric

distribution see for instance Johnson and Kotz �����	 �

Example ������ Suppose n  ���� r  ��	 We want to calculate the proba�

bilities pk  P �S���
�� �k�  �� that there are no exceedances of the level Xk�����

k � �� in the next twelve observations	 For j  �� formula ��	�� reduces to

P �Snr �k�  ��  
n�n� �� � � � �n� k & ��

�r & n��r & n� �� � � � �r & n� k & ��
�

In tabulated form we obtain for n  ��� and r  ���

k � � �  �

pk �	��� �	��� �	��� �	��� �	���

So if we have� say� ��� monthly data points and set out to design a certain

standard equal to the third largest observation� there is about a ��$ chance

that this level will not be exceeded during the next year	 �

p k � � k � � k � � k � � k � �

j � � ��� ������ ������ ������ �����
j � � ����� ���
� ����
� ������ ������
j � � ����� ����

 ������ ���
�
 ����


j � � ����� ������ ������ ���
� ������
j � � ������ ������ ������ ������ �����
j � � ������ �����
 �����
 ������ ������
j � � ������ ������ ������ ������ ������
j �  ������ ������ ������ ������ ������
j � � ������ ������ ������ ������ ������
j � 
 ������ ������ ������ ������ ������

Table �
�
�� Exceedance probabilities of the river Nidd data� For given k �order
statistic� and j �number of exceedances�� p � P �S��

�	�k� � j� as calculated in �����
is given� see Example �	����
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Example �����
 �River Nidd data� continuation�

For the river Nidd annual data from Example �	�	� we have that n  ��	 The

exceedance probabilities ��	�� for the next r  �� years are given in Table

�	�	��	 For example� the probability of not exceeding during the next �� years�

the largest annual �ow observed so far equals P �S
�
�����  ��  ������� The

probability of exceeding at least once� during the next �� years� the third

highest level observed so far equals ��P �S
�
�����  ��  �� �����  ������	

�

����� The Return Period

In this section we are interested in answering the question�

What is the mean waiting time between speci�c extremal events


This question is usually made precise in the following way	 Let �Xi� be a se�

quence of iid rvs with continuous df F and u a given threshold	 We consider

the sequence �IfXi�ug� of iid Bernoulli rvs with success probability p  F �u�	

Consequently� the time of the �rst success

L�u�  min fi � � � Xi � ug �

i	e	 the time of the �rst exceedance of the threshold u� is a geometric rv with

distribution

P �L�u�  k�  ��� p�k��p � k  �� �� � � � �

Notice that the iid rvs

L��u�  L�u� � Ln���u�  minfi � Ln�u� � Xi � ug � n � � �

describe the time periods between successive exceedances of u by �Xn�	 The

return period of the events fXi � ug is then de�ned as EL�u�  p��  

�F �u����� which increases to � as u	�	 For ease of notation we take dfs
with unbounded support above	 All relevant questions concerning the return

period can now be answered straightforwardly through the corresponding

properties of the geometric distribution	 Below we give some examples	

De�ne

rk  P �L�u� � k�  p

kX
i��

��� p�i��  �� ��� p�k � k � N �

Hence rk is the probability that there will be at least one exceedance of u

before time k �or within k observations�	 This gives a ��� relationship between

rk and the return period p��	
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The probability that there will be an exceedance of u before the return

period becomes

P �L�u� � EL�u��  P �L�u� � ���p��  �� ��� p����p	 �

where �x� denotes the integer part of x	 For high thresholds u� i	e	 for u 
 �
and consequently p � �� we obtain

lim
u
�

P �L�u� � EL�u��  lim
p��

�
�� ��� p����p	

�
 �� e��  ������� �

This shows that for high thresholds the mean of L�u� �the return period� is

larger than its median	

Example ������ �Return period� t�year event�

Within an insurance context� a structure is to be insured on the basis that it

will last at least �� years with no more than ��$ risk of failure	 What does

this information imply for the return period" Using the language above� the

engineering requirement translates into

P �L�u� � ��� � ��� �
Here we tacitly assumed that a structure failure for each year i can be mod�

elled through the event fXi � ug� where Xi is a structure�dependent critical

component� say	 We assume the iid property of the Xi	 The above condition�

solved for P �L�u� � ���  �� ��� p���  ���� now immediately implies that

p  ��������� i	e	 EL�u�  ��	 In insurance language one speaks in this case

about a ���year event	

The important next question concerns the implication of a t�year event re�

quirement on the underlying threshold value	 By de�nition this means that

for the corresponding threshold ut�

t  EL �ut�  
�

F �ut�
�

hence

ut  F�
�
�� t��

�
�

In the present example� u���  F���������	 This leads us once more to the

crucial problem of high quantile estimation	 �

Example ������ �Continuation of Example �	�	��

In the case of the Dutch dyke example� recall that� assuming stationarity

among the annual maxima of sea levels� the last comparable �ood before

���� took place in November ����� so that in the above language one would
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speak about a ����year event	 The ���� level hence corresponds roughly to

the ����������quantile of the distribution of the annual maximum	 The sub�
sequent government requirements demanded dykes to be built corresponding

to a � ����to��� ����year event� �

The above examples clearly stress the need for a solution to the following

problems�

	 Find reliable estimators for high quantiles from iid data	

	 As most data in practice will exhibit dependence and!or non�stationarity

�nd quantile estimation procedures for non�iid data	

����� Records as an Exploratory Tool

Suppose that the rvs Xi are iid with df F 	 Recall from Section �	 the de�

�nitions of records and record times� a record Xn occurs if Xn � Mn��  

max�X�� � � � � Xn���	 By de�nition we take X� as a record	 In Section �	 we

used point process language in order to describe records and record times Ln	

The latter are the random times at which the process �Mn� jumps	 De�ne

the record counting process as

N�  � � Nn  � &
nX

k��

IfXk�Mk��g � n � � �

The following result �on the mean ENn� may be surprising	

Lemma ������ �Moments of Nn�

Suppose �Xi� are iid with continuous df F and �Nn� de�ned as above� Then

ENn  

nX
k��

�

k
and var�Nn�  

nX
k��


�

k
� �

k�

�
�

Proof� From the de�nition of Nn we obtain

ENn  � &
nX

k��

P �Xk � Mk���

 � &

nX
k��

Z ��

��

P �Xk � u� dP �Mk�� � u� �

Now use P �Mk�� � u�  F k���u� which immediately yields the result for

ENn	 The same argument works for var�Nn�	 �

Notice that ENn and var�Nn� are both of the order lnn as n	�	 More
precisely� ENn � lnn 	 �� where �  ������ � � � denotes Euler�s constant	

As a consequence�
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the number of records of iid data grows very slowly�

Before reading further� guess the answer to the next question�

How many records do we expect in ���� � ���

or �� ��� iid observations


Table �	�	�� contains the somewhat surprising answer� see also Figures �		�

and �		��	

n  ��k� k  ENn lnn lnn& � Dn

� ��� ��� ��� ���

� ��� �� ��� ���

� ��� ��� ��� ��

 ��� ��� ��� ���

� ���� ���� ���� ���

� �� ���� �� ���

� ���� ���� ���� ���

� ���� ��� ���� ��

� ���� ���� ���� �

Table ������ Expected number of records ENn in an iid sequence �Xn�� to�

gether with the asymptotic approximations lnn� lnn& �� and standard devi�

ation Dn  
p
var�Nn�� based on Lemma �	�	���
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Figure �
�
�� Vancouver sunshine data and the corresponding numbers of records�

Example ������ �Records in real data�

In Figure �	�	�� the total amount of sunshine hours in Vancouver during

the month of July from ���� until ���� is given	 The data are taken from

Glick ����	 There are � records in these n  � observations� namely for

i  �� �� �� ��� ��� ��	 Clearly one would need a much larger n in order to test

con�dently the iid hypothesis for the underlying dataX�� � � � � X� on the basis
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of the record values	 If the data were iid� then we would obtain EN�  ��	

The observed value of � agrees rather well	 On the basis of these observations

we have no reason to doubt the iid hypothesis	 The picture however changes

dramatically in Figure � of the Reader Guidelines� based on catastrophic

insurance claims for the period ���������	 It is immediately clear that the

number of records does not exhibit a logarithmic growth	 �

����� The Ratio of Maximum and Sum

In this section we consider a further simple tool for detecting heavy tails of a

distribution and for giving a rough estimate of the order of its �nite moments	

Suppose that the rvs X�X�� X�� � � � are iid and de�ne for any positive p the

quantities

Sn�p�  jX�jp & � � �& jXnjp � Mn�p�  max�jX�jp� � � � � jXnjp� � n � � �

We also write Mn  Mn��� and Sn  Sn��� slightly abusing our usual

notation	 One way to study the underlying distribution is to look at the

distributional or a	s	 behaviour of functionals f�Sn�p��Mn�p��	 For instance�

in Section �	�	 we gained some information about the limit behaviour of the

ratio Mn�Sn	 In particular� we know the following facts �Y�� Y� and Y��p�

are appropriate non�degenerate rvs��

Mn

Sn

a�s�	 � � EjX j �� �

Mn

Sn

P	 � � EjX jIfjXj�xg � R� �

Sn � nEjX j
Mn

d	 Y� � P �jX j � x� � R�� for some 	 � ��� �� �
Mn

Sn

d	 Y� � P �jX j � x� � R�� for some 	 � ��� �� �
Mn

Sn

P	 � � P �jX j � x� � R� �

Writing

Rn�p�  
Mn�p�

Sn�p�
� n � � � p � � � ��	��

we may conclude from the latter relations that the following equivalences

hold�
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Rn�p�
a�s�	 � � EjX jp �� �

Rn�p�
P	 � � EjX jpIfjXj�xg � R� �

Rn�p�
d	 Y��p� � P �jX j � x� � R��p for some 	 � ��� �� �

Rn�p�
P	 � � P �jX j � x� � R� �

Now it is immediate how one can use these limit results to obtain some

preliminary information about P �jX j � x�� plot Rn�p� against n for a variety

of p�values	 Then Rn�p� should be small for large n provided thatEjX jp ��	
On the other hand� if there are signi�cant deviations of Rn�p� from zero for

large n� this is an indication for EjX jp being in�nite� see Figures �	�	����	�	��
for some examples of simulated and real data	

Clearly� what has been said about the absolute value of the Xi can be

modi�ed in the natural way to get information about the right or left dis�

tribution tail� replace everywhere jXijp by the pth power of the positive or

negative part of the Xi	 Moreover� the ratio of maximum over sum can be

replaced by more complicated functionals of the upper order statistics of a

sample� see for instance the de�nition of the empirical large claim index in

Section �	�		 This allows to discriminate the distributions in a more subtle

way	

Notes and Comments

The statistical properties of QQ�plots� with special emphasis on the heavy�

tailed case� are studied for instance in Kratz and Resnick ����	 The impor�

tance of the mean excess function �or plot� as a diagnostic tool for insurance

data is nicely demonstrated in Hogg and Klugman ������ see also Beirlant

et al	 ���� and the references therein	 Return periods and t�year events have

a long history in hydrology� see for instance Castillo ���� and Rosbjerg ����	

For relevant statistical techniques coming more from a reliability context� see

Crowder et al	 ����� methods more related to medical statistics are to be

found in Andersen et al	 ����	

Since the fundamental paper by Foster and Stuart ����� numerous papers

have been published on records� see for instance Pfeifer ����� Kapitel �

Resnick ������ Chapter � and the references cited therein� see also Goldie and

Resnick ������ Nagaraja ���� and Nevsorov ����	 We �nd Glick ���� a very

entertaining introduction	 Smith ����� gives more information on statistical

inference for records� especially in the non�iid case	 In Section �	 we have

discussed in more detail the relevant limit theorems for records and their

connections with point process theory and extremal processes	 Records in the
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Figure �
�
�� The ratio Rn�p� for di�erent p� The Xi are � ��� iid standard ex�
ponential data�
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Figure �
�
�� The ratio Rn�p� for di�erent p� The Xi are � ��� iid lognormal
data�
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Figure �
�
�� The ratio Rn�p� for di�erent n and p� The Xi are � ��� iid Pareto
data with shape parameter ��
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Figure �
�
�	 The ratio Rn�p� for di�erent n and p� The Xi are � ��� daily log�
returns from the German stock index DAX� The behaviour of Rn�p� indicates that
these data come from a distribution with in
nite �th moment�
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Figure �
�
�� The ratio Rn�p� for di�erent n and p� The Xi correspond to the
Danish 
re insurance data from Figure �	��� �n � ��
��� The behaviour of Rn�p�
indicates that these data come from a distribution with in
nite �nd moment� Also
compare with Figures �	�	���	�	��
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presence of a trend have been investigated by several authors� in particular

for sports data	 A good place to start is Ballerini and Resnick ��� and the

references therein	 The behaviour of records in an increasing population is

for instance described in Yang ���	 Smith ����� discusses the forecasting

problem of records based on maximum likelihood methodology	

The exploratory techniques introduced so far all started from an iid as�

sumption on the underlying data	 Their interpretation becomes hazardous

when applied in the non�iid case� as for instance to data exhibiting a trend	

Various statistical detrending techniques exist within the realm of regression

theory and time series analysis	 These may range from �tting of a determin�

istic trend to the data� averaging� di�erencing�� � �	 By one or more of these

methods one would hope to �lter out some iid residuals to which the previous

methods again would apply� see for instance Brockwell and Davis ����� Sec�

tion �	� Feigin and Resnick ����� or Kendall and Stuart ������ Chapter �	 It

is perhaps worth stressing at this point that extremes in the detrended data

do not necessarily correspond to extremes in the original data	

��� Parameter Estimation for the Generalised Extreme

Value Distribution

Recall from ��	�� the generalised extreme value distribution �GEV �

H������x�  exp

�
�


� & �

x� 




�����
�

� � & �
x� 



� � � ��	��

As usual the case �  � corresponds to the Gumbel distribution

H������x�  exp
n
�e��x�����

o
� x � R � ��	���

The parameter   ��� � 
� � R � R � R� consists of a shape parameter ��

location parameter  and scale parameter 
	 For notational convenience� we

shall either write H� or H� depending on the case in hand	 In Theorem �		�

we saw that H� arises as the limit distribution of normalised maxima of iid

rvs	 Standard statistical methodology from parametric estimation theory is

available if our data consist of a sample

X�� � � � � Xn iid from H� � ��	���

We mention here that the assumption of Xi having an exact extreme value

distribution H� is perhaps not the most realistic one	 In the next section

we turn to the more tenable assumption that the Xi are approximately H�

distributed	 The �approximately
 will be interpreted as �belonging to the

maximum domain of attraction of
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Fitting of Annual Maxima

As already discussed in Example �	�	�� data of the above type may become

available when theXi can be interpreted as maxima over disjoint time periods

of length s say	 In hydrology� which is the cradle of many of the ideas for

statistics of extremal events� this period mostly consists of one year� see for

instance the river Nidd data in Figure �	�	�	 The ��year period is chosen in

order to compensate for intra�year seasonalities	 Therefore the original data

may look like

X���  
�
X

���
� � � � � � X

���
s

�
X���  

�
X

���
� � � � � � X

���
s

�
			

			

X�n�  
�
X

�n�
� � � � � � X

�n�
s

�
where the vectors �X�i�� are assumed to be iid� but within each vector

X�i� the various components may �and mostly will� be dependent	 The time

length s is chosen so that the above conditions are likely to be satis�ed	 The

basic iid sample from H� on which statistical inference is to be performed

then consists of

Xi  max�X
�i�
� � � � � � X�i�

s �� i  �� � � � � n � ��	���

For historical reasons and since s often corresponds to a ��year period� sta�

tistical inference for H� based on data of the form ��	��� is referred to as

�tting of annual maxima�

Below we discuss some of the main techniques for estimating  in the exact

model ��	���	

����� Maximum Likelihood Estimation

The set�up ��	��� corresponds to the standard parametric case of statisti�

cal inference and hence in principle can be solved by maximum likelihood

methodology	 Suppose that H� has density h�	 Then the likelihood function

based on the data X  �X�� � � � � Xn� is given by

L� �X�  

nY
i��

h� �Xi� If����Xi�������g �

Denote by "� �X�  lnL� �X� the log�likelihood function� The maximum

likelihood estimator �MLE � for  then equals
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b n  argmax��� "� �X� �

i	e	 b n  b n �X�� � � � � Xn� maximises "� �X� over an appropriate parameter

space #	 In the case of H����� this gives us

"���� � 
��X�  �n ln
 �
nX
i��

exp

�
�Xi � 




�
�

nX
i��

Xi � 



�

Di�erentiating the latter function with respect to  and 
 yields the likelihood

equations in the Gumbel case�

�  n�
nX
i��

exp

�
�Xi � 




�
�

�  n&

nX
i��

Xi � 





exp

�
�Xi � 




�
� �

�
�

Clearly no explicit solution exists to these equations	 The situation for H�

when � � � is even more complicated� so that numerical procedures are called
for	 Jenkinson ����� and Prescott and Walden ����� ���� suggest variants of

the Newton�Raphson scheme	 With the existence of the Fortran algorithm

published in Hosking ����� and its supplement in Macleod ����� the numer�

ical calculation of the MLE b n for general H� poses no serious problem in

principle�

Notice that we said in principle	 Indeed in the so�called regular cases

maximum likelihood estimation o�ers a technique yielding e�cient� consis�

tent and asymptotically normal estimators	 See for instance Cox and Hinkley

����� and Lehmann ���� for a general discussion on maximum likelihood

estimation	 Relevant for applications in extreme value theory� typical non�

regular cases may occur whenever the support of the underlying df depends

on the unknown parameters� Therefore� although we have reliable numerical

procedures for �nding the MLE b n� we are less certain about its properties�
especially in the small sample case	 For a discussion on this point see Smith

�����	 In the latter paper it is shown that the classical �good� properties of

the MLE hold whenever � � ����� this is not the case for � � ����	
As most distributions encountered in insurance and �nance have support

unbounded to the right �this is possible only for � � ��� the MLE technique
o�ers a useful and reliable procedure in those �elds	

At this point we would like to quantify a bit more the often encountered

statement that for applications in insurance �and �nance for that matter�

the case � � � is most important	 Clearly� all �nancial data must be bounded
to the right� an obvious �though somewhat silly� bound is total wealth	 The

main point however is that in most data there does not seem to be clustering
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towards a well�de�ned upper limit but more a steady increase over time of the

underlying maxima	 The latter would then� for iid data� much more naturally

be modelled within � � �	 A typical example is to be found in the Danish
�re insurance data of Figure �	�	��	

An example where a natural upper limit may exist is given in Figure

�	�	�	 The data underlying this example correspond to a portfolio of water�

damage insurance	 In contrast to the industrial �re data of Figure �	�	��� in

this case the portfolio manager realises that large claims only play a minor

role	 Though the data again show an increasing ME�plot� for values above

� ���� the mean excess losses are growing much slower than to be expected

from a really heavy�tailed model� unbounded to the right	 The ME�plot for

these data should be compared with those for the Danish �re data �Figure

�	�	��� and the industrial �re data �Figure �	�	���	 The Pickands estimator

�to be introduced in Section �		�� of the extreme value index in Figure

�		� indicates that � could actually be negative	 Compare also with the

corresponding estimates of � for the �re data� see Figures �	�	� and �	�	�	

An Extension to Upper Order Statistics

So far� our data has consisted of n iid observations of maxima which we

have assumed to follow exactly a GEV H�	 By appropriately de�ning the

underlying time periods� we design independence into the model� see ��	���	

Suppose now that� rather than just having the largest observation available�

we possess the k largest of each period �year� say�	 In the notation of ��	���

this would amount to data

X
�i�
k�s � � � � � X

�i�
��s  Xi � i� �� � � � � n �

Maximum likelihood theory based on these k � n observations would use the

joint density of the independent vectors �X
�i�
k�s� � � � � X

�i�
��s�� i  �� � � � � n	 Only

rarely in practical cases could we assume that for each i the latter vectors

are derived from iid data	 If that were the case then maximum likelihood

estimation should be based on the joint density of k upper order statistics

from a GEV as discussed in Theorem 	�	��

s�

�s� k��
Hs�k
� �xk�

kY
���

h� �x�� � xk � � � � � x� �

where� depending on  � the x�values satisfy the relevant domain restrictions	

The standard error of the MLEs for  and 
 can already be reduced con�

siderably if k  �� i	e	 we take the two largest observations into account	 For

a brief discussion on this method see Smith ������ Section 	��� and Smith
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Figure �
�
� Exploratory data analysis of insurance claims caused by water� the
data �top� left�� the histogram of the log�transformed data �top� right�� the ME�plot
�bottom�� Notice the kink in the ME�plot in the range �� ���	 � ���� re�ecting the
fact that the data seem to cluster towards some speci
c upper value�
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������ where also further references and examples are to be found	 The case

n  �� i	e	 only one year of observations say� and k � � was �rst discussed in

Weissman �����	

A �nal statement concerning maximum likelihood methodology� again

taken from Smith ������ is worth stressing�

The big advantage of maximum likelihood procedures is that they

can be generalised� with very little change in the basic methodol�

ogy� to much more complicated models in which trends or other

e�ects may be present	

If the above quote has made you curious� do read Smith �����	 We� how�

ever� would like to add that the MLE properties depend on where � falls in

������	

����� Method of Probability	Weighted Moments

Among all the ad�hoc methods used in parameter estimation� the method

of moments has attracted a lot of interest	 In full generality it consists of

equating model�moments based on H� to the corresponding empirical mo�

ments based on the data	 Their general properties are notoriously unreli�

able on account of the poor sampling properties of second� and higher�order

sample moments� a statement taken from Smith ������ p	 �	 The class of

probability�weighted moment estimators stands out as more promising	 This

method goes back to Hosking� Wallis and Wood �����	 De�ne

wr� �  E �XHr
� �X�� � r � N� � ��	���

where H� is the GEV and X has df H� with parameter   ��� � 
�	 Recall

that for � � �� H� is regularly varying with index ���	 Hence w� is in�nite	

Therefore we restrict ourselves to the case � � �	 De�ne the empirical ana�

logue to ��	����

bwr� �  Z ��

��

xHr
� �x� dFn�x� � r � N� �

where Fn is the empirical df corresponding to the data X�� � � � � Xn	 In order

to estimate  we solve the equations

wr� �  bwr� � � r  �� �� � �

We immediately obtain
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bwr� �  �

n

nX
j��

Xj�nH
r
� �Xj�n� � r  �� �� � � ��	��

Recall the quantile transformation from Lemma 	�	��b��

�H��Xn�n�� � � � � H��X��n��
d
 �Un�n� � � � � U��n� �

where Un�n � � � � � U��n are the order statistics of an iid sequence U�� � � � � Un
uniformly distributed on ��� ��	 With this interpretation� ��	�� can be written

as bwr� �  �

n

nX
j��

Xj�n Ur
j�n � r  �� �� � � ��	���

Clearly� for r  �� the rhs becomesXn� the sample mean	 In order to calculate

wr� � for general r� observe that

wr� �  

Z ��

��

xHr
� �x� dH��x�  

Z �

�

H�
� �y� y

r dy �

where for � � y � ��

H�
� �y�  

��� � 


�

�
�� �� ln y���� if � � � �

� 
 ln�� ln y� if �  � �

This yields for � � � and � � �� after some calculation�

wr� �  
�

r & �

�
� 


�

�
�� � ��� ���� & r��

��
� ��	���

where � denotes the Gamma function � �t�  
R�
�

e�uut�� du� t � �	 A com�

bination of ��	��� and ��	��� gives us a probability�weighted moment esti�

mator b ���n 	 Further estimators can be obtained by replacing Ur
j�n in ��	��� by

some statistic	 Examples are�

	 b ���n � where Uj�n is replaced by any plotting position pj�n as de�ned in

Section �	�	�	

	 b �
�n � where Ur
j�n is replaced by

EUr
j�n  

�n� j��n� j � �� � � � �n� j � r & ��

�n� ���n� �� � � � �n� r�
� r  �� � �
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From ��	���� we immediately obtain

w�� �  � 


�
��� � ��� ��� �

�w�� �� w�� �  



�
� ��� ��

�
�� � �� �

�w�� �� w�� �  



�
� ��� ��

�
�� � �� �

and hence
�w�� � � w�� �

�w�� � � w�� �
 
�� � �
�� � � �

Applying any of the estimators above to the last equation yields an estima�

tor b� of �	 Given b�� the parameters  and 
 are then estimated by

b
  
�� bw� � bw�� b�

�
�
�� b� ��

�b� � �� �

b  bw� &
b
b� �
�� �

�
�� b� ��

�

where bw�� bw�� bw� are any of the empirical probability�weighted moments

discussed above	 The case �  � can of course also be covered by this method	

For a discussion on the behaviour of these estimators see Hosking et al	

�����	 Smith ����� summarises as follows	

The method is simple to apply and performs well in simulation

studies	 However� until there is some convincing theoretical expla�

nation of its properties� it is unlikely to be universally accepted	

There is also the disadvantage that� at present at least� it does not

extend to more complicated situations such as regression models

based on extreme value distributions	

����� Tail and Quantile Estimation� a First Go

Let us return to the basic set�up of ��	��� and ��	���� i	e	 we have an iid

sample X�� � � � � Xn from H�	 In this situation� a quantile estimator can be

readily obtained	 Indeed� by the methods discussed in the previous sections�

we obtain an estimate b of  	 Given any p � ��� ��� the p�quantile xp is de�ned
via xp  H�

� �p�� see De�nition �	�	�	 A natural estimator for xp� based on

X�� � � � � Xn� then becomes bxp  H�b� �p� �



��� �� Statistical Methods for Extremal Events

By the de�nition of H� this leads to

bxp  b� b
b�
�
�� �� ln p��b� �

�

The corresponding tail estimate for H��x�� for x in the appropriate domain�

corresponds to

Hb� �x�  �� exp
����


� & b� x� bb


����b� #$% �

where b  �b�� b� b
� is either estimated by the MLE or by a probability�

weighted moment estimator	

Notes and Comments

A recommendable account of estimation methods for the GEV� including

a detailed discussion of the pros and cons of the di�erent methods� is Buis�

hand �����	 Hosking ����� discusses the problem of hypothesis testing within

GEV	

If the extreme value distribution is known to be Fr�echet� Gumbel or Wei�

bull� the above methods can be adapted to the speci�c df under consideration	

This may simplify the estimation problem in the case of � � � �Fr�echet� Gum�
bel�� but not for the Weibull distribution	 The latter is due to non�regularity

problems of the MLE as explained in Section �	�	�	 The vast amount of papers

written on estimation for the three�parameter Weibull re�ects this situation�

see for instance Lawless ��� ���� Lockhart and Stephens ����� Mann ����

Smith and Naylor ����� and references therein	 To indicate the sort of prob�

lems that may occur� we refer to Smith ����� who studies the Pareto�like

probability densities

f�x�K�	� � c	�K � x���� � x 
 K �

where K and 	 are unknown parameters	
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��� Estimating Under Maximum Domain of Attraction

Conditions

����� Introduction

Relaxing condition ��	���� we assume in this section that for some � � R�

X�� � � � � Xn are iid from F � MDA �H�� � ��	���

By Proposition �	�	�� F � MDA�H�� is equivalent to

lim
n��

nF �cnx& dn�  � lnH��x� ��	���

for appropriate norming sequences �cn� and �dn�� and x belongs to a suitable

domain depending on the sign of �	 Let us from the start be very clear about

the fundamental di�erence between ��	��� and ��	���	 Consider for illustrative

purposes only the standard Fr�echet case �  ��	 � �	 Now ��	��� means that

our sample X�� � � � � Xn exactly follows a Fr�echet distribution� i	e	

F �x�  �� exp��x��� � x � � �

On the other hand� by virtue of Theorem �	�	� assumption ��	��� reduces in

the Fr�echet case to

F �x�  x�� L�x� � x � � �

for some slowly varying function L	 Clearly� in this case the estimation of

the tail F �x� is much more involved due to the non�parametric character

of L	 In various applications� one would mainly �in some cases� solely� be

interested in 		 So ��	��� amounts to full parametric assumptions� whereas

��	��� is essentially semi�parametric in nature� there is a parametric part 	

and a non�parametric part L	 Because of this di�erence� ��	��� is much more

generally considered as inference for heavy�tailed distributions as opposed to

inference for the GEV in ��	���	

A handwaving consequence of ��	��� is that for large u  cnx& dn�

nF �u� �

� & �

u� dn
cn

�����

�

so that a tail�estimator could take on the form

�
F �u�

�b
 
�

n

�
� & b� u� bdnbcn

����b�
� ��	���

for appropriate estimators b�� bcn and bdn	 As ��	��� is essentially a tail�property�
estimation of � may be based on k upper order statistics Xk�n � � � � � X��n	
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A whole battery of classical approaches has exploited this natural idea� see

Section �		�	 The following mathematical conditions are usually imposed�

�a� k�n�	� use a su�ciently large number of order statistics� but

�b�
n

k�n�
	� as we are interested in a tail property� we should also

make sure to concentrate only on the upper order

statistics	 Let the tail speak for itself�

��	���

When working out the details later� we will be able to see where exactly the

properties on �k�n�� enter	 Indeed it is precisely this degree of freedom k which

will allow us to obtain the necessary statistical properties like consistency and

asymptotic normality for our estimators	

From ��	��� we would in principle be in the position to estimate the

quantile xp  F��p�� for �xed p � ��� ��� as follows

bxp  bdn & bcnb�
�
�n��� p���b� � �� � ��	���

Typically� we will be interested in estimating high p�quantiles outside the

sample X�� � � � � Xn	 This means that p  pn is chosen in such a way that

p � � � ��n� hence the empirical df satis�es Fn�p�  � and does not yield

any information about such quantiles	 In order to get good estimators for

�� cn and dn in ��	��� a subsequence trick is needed	 Assume for notational

convenience that n�k � N	 A standard approach now consists of passing to

a subsequence �n�k� with k  k�n� satisfying ��	���	 The quantile xp is then

estimated by

bxp  bdn�k & bcn�kb�
��n

k
��� pn�

��b�
� �

�
� ��	���

Why does this work" One reason behind this construction is that we need to

estimate at two levels	 First� we have to �nd a reliable estimate for �� this

task will be worked out in Section �		�	 Condition ��	��� will appear very

naturally	 Second� we need to estimate the norming constants cn and dn which

themselves are de�ned via quantiles of F 	 For instance� in the Fr�echet case

we know that cn  F���� n���� see Theorem �	�	�	 Hence estimating cn is

equivalent to the problem of estimating xp at the boundary of our data range	

By going to the subsequence �n�k�� we move away from the critical boundary

value � � n�� to the safer � � �n�k���	 Estimating cn�k is thus reduced to

estimating quantiles within the range of our data	 Similar arguments hold

for dn�k� and indeed for the Gumbel and Weibull case	 We may therefore
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hope that the construction in ��	��� leads to a good estimator for xp	 The

above discussion is only heuristic� a detailed statistical analysis shows that

this approach can be made to work	

In the context of statistics of extremal events it may also be of interest to

estimate the following quantity which is closely related to the quantiles xp�

xp�r  F��p��r� � r � N �

Notice that xp  xp��	 The interpretation of xp�r is obvious from

p  F r�xp�r�  P �max �Xn��� � � � � Xn�r� � xp�r� �

so xp�r is that level which� with a given probability p� will not be exceeded

by the next r observations Xn��� � � � � Xn�r	 As an estimate we then obtain

from ��	���

bxp�r  bdn�k & bcn�kb�
��n

k

�
�� p��r

���b�
� �

�
�

In what follows we will concentrate only on estimation of xp� from the de��

nition of xp�r it is clear how one has to proceed for general r	

From the above heuristics we obtain a programme for the remainder of

this section�

�a� Find appropriate estimators for the shape parameter � of the GEV	

�b� Find appropriate estimators for the norming constants cn and dn	

�c� Show that the estimators proposed above yield reasonable approxima�

tions to the distribution tail in its far end and to high quantiles	

�d� Determine the statistical properties of these estimators	

����� Estimating the Shape Parameter �

In this section we study di�erent estimators of the shape parameter � for

F � MDA�H��	 We also give some of their statistical properties	

Method �� Pickands�s Estimator for � � R

The basic idea behind this estimator consists of �nding a condition equivalent

to F � MDA�H�� which involves the parameter � in an easy way	 The key to

Pickands�s estimator and its various generalisations is Theorem �		�� where

it was shown that for F � MDA�H��� U�t�  F���� t��� satis�es

lim
t��

U��t�� U�t�

U�t�� U�t���
 �� �
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Furthermore� the following uniformity property holds� whenever limt�� c�t�

 � for a positive function c�

lim
t��

U�c�t�t�� U�t�

U�t�� U�t�c�t��
 �� � ��	���

The basic idea now consists of constructing an empirical estimator using

��	���	 To that e�ect� let

Vn�n � � � � � V��n

be the order statistics from an iid sample V�� � � � � Vn with common Pareto df

FV �x�  �� x��� x � �	 It follows in the same way as for the quantile trans�
formation� see Lemma 	�	��b�� that

�Xk�n�k�������n

d
 �U�Vk�n��k�������n �

where X�� � � � � Xn are iid with df F 	 Notice that Vk�n is the empirical �� �
k�n��quantile of FV 	 Using similar methods as in Examples 	�	�� and 	�	���

i	e	 making use of the quantile transformation� it is not di�cult to see that

k

n
Vk�n

P	 � � n	� �

whenever k  k�n�	� and k�n	 �	 In particular�

Vk�n
P	� and

V�k�n
Vk�n

P	 �

�
� n	� �

Combining this with ��	��� and using a subsequence argument� see Appendix

A�	�� yields
U �Vk�n�� U �V�k�n�

U �V�k�n�� U �V�k�n�

P	 �� � n	� �

Motivated by the discussion above and by ��	���� we now de�ne the Pickands

estimator b� �P �
k�n  

�

ln �
ln

Xk�n �X�k�n

X�k�n �X�k�n
� ��	��

This estimator turns out to be weakly consistent provided k 	�� k�n	 ��

b� �P �
k�n

P	 � � n	� �

This was already observed by Pickands ����	 A full analysis on b� �P �
k�n is to be

found in Dekkers and de Haan ����� from which the following result is taken	

Theorem ����� �Properties of the Pickands estimator�

Suppose �Xn� is an iid sequence with df F � MDA�H��� � � R� Let b� �P �  b� �P �
k�n be the Pickands estimator ��	���
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Figure �
�
� Pickands�plot for the water�damage claim data� see Figure �����
The estimate of � appears to be close to �� The upper and lower lines constitute
asymptotic 
�! con
dence bands�

�a� �Weak consistency� If k 	�� k�n	 � for n	�� then

b� �P � P	 � � n	� �

�b� �Strong consistency� If k�n	 �� k� ln lnn	� for n	�� then

b� �P � a�s�	 � � n	� �

�c� �Asymptotic normality� Under further conditions on k and F �see Dek�

kers and de Haan ������ p	 ������

p
k �b� � ��

d	 N��� v���� � n	� �

where

v���  
��

�
����� & �

�
�� ��� � �� ln ���

� �

Remarks� �� This theorem forms the core of a whole series of results ob�

tained in Dekkers and de Haan ������ on it one can base quantile and tail

estimators and �asymptotic� con�dence interval constructions	 The quoted

paper ����� also contains various simulated and real life examples in order

to see the theory in action	 We strongly advise the reader to go through it�
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perhaps avoiding upon �rst reading the �rather extensive� technical details	

The main idea behind the above construction goes back to Pickands ����	

A nice summary is to be found in de Haan ���� from which the derivation

above is taken	

�� In the spirit of Section �		� notice that the calculation of Pickands�s esti�

mator ��	�� involves a sequence of upper order statistics increasing with n	

Consequently� one mostly includes a so�called Pickands�plot in the analysis�

i	e	 n
�k� b� �P �

k�n � � k  �� � � � � n
o

�

in order to allow for a choice depending on k	 The interpretation of such

plots� i	e	 the optimal choice of k� is a delicate point for which no uniformly

best solution exists	 It is intuitively clear that one should choose b� �P �
k�n from

such a k�region where the plot is roughly horizontal	 We shall come back to

this point later� see the Summary at the end of this section	 �

Method �� Hill�s Estimator for � � ��� � �

Suppose X�� � � � � Xn are iid with df F � MDA����� 	 � �� thus F �x�  

x��L�x�� x � �� for a slowly varying function L� see Theorem �	�	�	 Distri�

butions with such tails form the prime examples for modelling heavy�tailed

phenomena� see for instance Section �	�	 For many applications the knowl�

edge of the index 	 of regular variation is of major importance	 If for instance

	 � � then EX�
�  �	 This case is often observed in the modelling of insur�

ance data� see for instance Hogg and Klugman �����	

Empirical studies on the tails of daily log�returns in �nance have indicated

that one frequently encounters values 	 between � and � see for instance

Guillaume et al	 ������ Longin ���� and Loretan and Phillips ����	 Informa�

tion of the latter type implies that� whereas covariances of such data would

be well de�ned� the construction of con�dence intervals for the sample au�

tocovariances and autocorrelations on the basis of asymptotic �central limit�

theory may be questionable as typically a �nite fourth moment condition is

asked for	

The Hill estimator of 	 takes on the following form�

b	 �H�  b	 �H�
k�n  

���
k

kX
j��

lnXj�n � lnXk�n


A��

� ��	���

where k  k�n�	� in an appropriate way� so that as in the case of

Pickands�s estimator� an increasing sequence of upper order statistics is used	

One of the interesting facts concerning ��	��� is that various asymptotically



��� Estimating Under Maximum Domain of Attraction Conditions ���

equivalent versions of b	 �H� can be derived through essentially di�erent meth�

ods� showing that the Hill estimator is very natural	 Below we discuss some

derivations	

The MLE approach �Hill ������� Assume for the moment that X is a rv

with df F so that for 	 � �

P �X � x�  F �x�  x�� � x � � �

Then it immediately follows that Y  lnX has df

P �Y � y�  e��y � y � � �

i	e	 Y is Exp�	� and hence the MLE of 	 is given by

b	n  Y
��
n  

�� �
n

nX
j��

lnXj


A��

 

�� �
n

nX
j��

lnXj�n


A��

�

A trivial generalisation concerns

F �x�  Cx�� � x � u � � � ��	���

with u known	 If we interpret ��	��� as fully speci�ed� i	e	 C  u�� then we

immediately obtain as MLE of 	

b	n  
�� �

n

nX
j��

ln


Xj�n

u

�
A��

 

�� �
n

nX
j��

lnXj�n � lnu

A��

� ��	���

Now we often do not have the precise parametric information of these exam�

ples� but in the spirit of MDA���� we assume that F behaves like a Pareto df

above a certain known threshold u say	 Let

K  card fi � Xi�n � u � i  �� � � � � ng � ��	���

Conditionally on the event fK  kg� maximum likelihood estimation of 	

and C in ��	��� reduces to maximising the joint density of �Xk�n� � � � � X��n�	

From Theorem 	�	� we deduce

fXk�n�����X��n �xk� � � � � x��

 
n�

�n� k��

�
�� Cx��k

�n�k
Ck 	k

kY
i��

x
������
i � u � xk � � � � � x� �

A straightforward calculation yields the conditional MLEs
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Figure �
�
� Tail and quantile estimation based on a Hill�
t� see ����
� and
������� The data are the Danish insurance claims from Example �	��� Top� left�
the Hill�plot for � � ��� as a function of k upper order statistics �lower horizontal
axis� and of the threshold u �upper horizontal axis�� i�e� there are k exceedances of
the threshold u� Top� right� the 
t of the shifted excess df Fu�x� u�� x � u� on log�
scale� Middle� tail�
t of F �x�u�� x � �� Bottom� estimation of the ��

�quantile as
a function of the k upper order statistics and of the corresponding threshold value
u� The estimation of the tail is based on k � ��
 �u � ��� and � � ��� � ������
Compare also with the GPD�
t in Figure �����
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Figure �
�
� Tail and quantile estimation based on a Hill�
t� see ����
� and
������� The data are the industrial 
re claims from Example �	��� Top� left� the
Hill�plot for � � ��� as a function of k upper order statistics �lower horizontal axis�
and of the threshold u �upper horizontal axis�� i�e� there are k exceedances of the
threshold u� Top� right� the 
t of the shifted excess df Fu�x�u�� x � u� on log�scale�
Middle� tail�
t of F �x � u�� x � �� Bottom� estimation of the ��

�quantile as a
function of the k upper order statistics and of the corresponding threshold value u�
The estimation of the tail is based on k � ��
 �u � ���� and � � ��� � ������
Compare also with the GPD�
t in Figure �����
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b	 �H�
k�n  

���
k

kX
j��

ln


Xj�n

Xk�n

�
A��

 

���
k

kX
j��

lnXj�n � lnXk�n


A��

bCk�n  
k

n
X

b� �H�

k�n

k�n �

So Hill�s estimator has the same form as the MLE in the exact model un�

derlying ��	��� but now having the deterministic u replaced by the random

threshold Xk�n� where k is de�ned through ��	���	 We also immediately obtain

an estimate for the tail F �x�

�
F �x�

�b
 

k

n


x

Xk�n

��b��H�

k�n

��	���

and for the p�quantile

bxp  �n

k
��� p�

����b��H�

k�n

Xk�n � ��	���

From ��	��� we obtain an estimator of the excess df Fu�x � u�� x � u� by

using Fu�x � u�  �� F �x��F �u�	 Examples� based on these estimators are

to be found in Figures �		� and �		 for the Danish� respectively indus�

trial� �re insurance data	 We will come back to these data more in detail in

Section �	�	�	

Example ����� �The Hill estimator at work�

In Figures �		� and �		 we have applied the above methods to the Danish

�re insurance data �Figure �	�	��� and the industrial �re insurance data �Fig�

ure �	�	���� for a preliminary analysis see Example �	�	�	 For the Danish data

we have chosen as an initial threshold u  �� �k  ����	 The corresponding

Hill estimate has a value b�  �����	 When changed to u  �� �k  ���

we obtain b�  ����	 The Hill�plot shows a fairly stable behaviour in the

range ����� ����	 As in most applications� the quantities of main interest are

the high quantiles	 We therefore turn immediately to Figure �		� �bottom��

where bx���� is plotted across all relevant u� �equivalently� k�� values	 For k in
the region ��� ���� the quantile�Hill�plot shows a remarkably stable behav�

iour around the value ���	 This agrees perfectly with the empirical estimate

of �	� for x����� see Table �	�	��	 This should be contrasted with the sit�

uation in Figure �		 for the industrial �re data	 For the latter data� the

estimate for � ranges from �	�� for u  ��� �k  ��� over �	�� for u  ���

�k  �� to �	��� for u  ��� �k  ���	 All estimates clearly correspond to in�

�nite variance models� An estimate for x���� in the range ����� ���� emerges�

again in agreement with the empirical value of ��	 We would like to stress
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at this point that the above discussion represents only the beginning of a

detailed analysis	 The further discussions have to be conducted together with

the actuary responsible for the underlying data	 �

The regular variation approach �de Haan ������� This approach is in the

same spirit as the construction of Pickands�s estimator� i	e	 base the inference

on a suitable reformulation of F � MDA����	 Indeed F � MDA���� if and
only if

lim
t��

F �tx�

F �t�
 x�� � x � � �

Using partial integration� we obtainZ �

t

�ln x� ln t� dF �x�  
Z �

t

F �x�

x
dx �

so that by Karamata�s theorem �Theorem A�	��

�

F �t�

Z �

t

�lnx� ln t� dF �x� 	 �

	
� t	� � ��	���

How do we �nd an estimator from this result" Two choices have to be made�

�a� replace F by an estimator� the obvious candidate here is the empirical

distribution function

Fn�x�  
�

n

nX
i��

IfXi�xg  
�

n

nX
i��

IfXi�n�xg �

�b� replace t by an appropriate high� data dependent level �recall t	���
we take t  Xk�n for some k  k�n�	

The choice of t is motivated by the fact that Xk�n
a�s�	 � provided k  k�n�	

� and k�n	 �� see Proposition 	�	�	 From ��	��� the following estimator

results

�

F �Xk�n�

Z �

Xk�n

�lnx� lnXk�n� dFn�x�  
�

k � �
k��X
j��

lnXj�n � lnXk�n

which� modulo the factor k � �� is again of the form �b	 �H���� in ��	���	

Notice that the change from k to k � � is asymptotically negligible� see Ex�
ample 	�	��	
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The mean excess function approach� This is essentially a reformulation

of the approach above� we prefer to list it separately because of its method�

ological merit	 Suppose X is a rv with df F � MDA����� 	 � �� and for

notational convenience assume that X � � a	s	 One can now rewrite ��	���

as follows �see also Example �	�	��

E�lnX � ln t j lnX � ln t�	 �

	
� t	� �

So denoting u  ln t and e��u� the mean excess function of lnX �see De�ni�

tion �	�	�� we obtain

e��u�	 �

	
� u	� �

Hill�s estimator can then be interpreted as the empirical mean excess function

of lnX calculated at the threshold u  lnXk�n� i	e	 e
�
n�lnXk�n�	

We summarise as follows	

Suppose X�� � � � � Xn are iid with df F � MDA����� 	 � �� then

a natural estimator for 	 is provided by the Hill estimator

b	 �H�
k�n  

���
k

kX
j��

lnXj�n � lnXk�n


A��

� ��	���

where k  k�n� satis�es ��	���	

Below we summarise the main properties of the Hill estimator	 Before looking

at the theorem� you may want to refresh your memory on the meaning of

linear processes �see Sections �	� and �	�� and weakly dependent strictly

stationary processes �see Section 	�	

Theorem ����� �Properties of the Hill estimator�

Suppose �Xn� is strictly stationary with marginal distribution F satisfying

for some 	 � � and L � R��

F �x�  P �X � x�  x��L�x� � x � � �

Let b	 �H�  b	 �H�
k�n be the Hill estimator ��	����

�a� �Weak consistency� Assume that one of the following conditions is satis�

�ed	

	 �Xn� is iid �Mason �����

	 �Xn� is weakly dependent �Rootz�en� Leadbetter and de Haan ������

Hsing ������
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Figure �
�
� Pickands�� Hill� and DEdH�plots for � ��� simulated iid data with
df given by F �x� � x��� x � �� For reasons of comparison� we choose the Hill

estimator for � � � as b� �H� � �b�� �H����� Various Hill� and related plots from
simulated and real life data are for instance given in Figures ������ ����	 and
Section ���	� See also Figure ������ for a �Hill horror plot� for the tail F �x� �
���x lnx� and Figure ����� for the case of dependent data�

	 �Xn� is a linear process �Resnick and St.aric.a ����� ������

If k 	�� k�n	 � for n	�� then

b	 �H� P	 	 �

�b� �Strong consistency� �Deheuvels� H�ausler and Mason ������ If k�n 	 ��

k� ln lnn	� for n	� and �Xn� is an iid sequence� then

b	 �H� a�s�	 	 �

�c� �Asymptotic normality� If further conditions on k and F are satis�ed

�see for instance the Notes and Comments below� and �Xn� is an iid

sequence� then p
k

�b	 �H� � 	
�

d	 N
�
�� 	�

�
� �

Remarks� �� Theorem �		� should be viewed as a counterpart to Theo�

rem �		� on the Pickands estimator	 Because of the importance of b	 �H��

we prefer to formulate Theorem �		� in its present form for sequences �Xn�

more general than iid	

� Do not interpret this theorem as saying that the Hill estimator is always

�ne	 The theorem only says that rather generally the standard statistical

properties hold	 One still needs a crucial set of conditions on F and k�n�	

In particular� second�order regular variation assumptions on F have to be
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Figure �
�
	 Pickands�� Hill� and DEdH�plots with asymptotic 
�! con
dence
bands for � ��� absolute values of iid standard Cauchy rvs� The tail of the latter is
Pareto�like with index � � �� Recall that� for given k� the DEdH and the Hill esti�
mator use the k upper order statistics of the sample� whereas the Pickands estimator
uses �k of them� In the case of the Pickands estimator one clearly sees the trade�o�
between variance and bias� see also the discussion in the Notes and Comments�
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imposed to derive the asymptotic normality of b	 �H�	 The same applies to the

case of the Pickands estimator	 Notice that these conditions are not veri�able

in practice	

�� In Example 	�	�� we prove the weak consistency of Hill�s estimator for

the iid case and indicate how to prove its asymptotic normality	 Moreover�

we give an example showing that the rate of convergence of Hill�s estimator

can be arbitrarily slow	

�� As in the case of the Pickands estimator� an analysis based on the Hill

estimator is usually summarised graphically	 The Hill�plotn
�k� b	 �H�

k�n � � k  �� � � � � n
o

�

turns out to be instrumental in �nding the optimal k	 Smoothing Hill�plots

over a speci�c range of k�values may defuse the critical problem of the choice

of k� see for instance Resnick and St.aric.a �����	

�� The asymptotic variance of b	�H� depends on the unknown parameter 	 so

that in order to calculate the asymptotic con�dence intervals an appropriate

estimator of 	� typically b	 �H�� has to be inserted	

�� The Hill estimator is very sensitive with respect to dependence in the

data� see for instance Figure �	�	 in the case of an autoregressive process	

For ARMA and weakly dependent processes special techniques have been

developed� for instance by �rst �tting an ARMA model to the data and then

applying the Hill estimator to the residuals	 See for instance the references

mentioned under part �a� of Theorem �		�	 �

Method �� The Deckers	Einmahl	de Haan Estimator for � � R

A disadvantage of Hill�s estimator is that it is essentially designed for

F � MDA�H��� � � �	 We have already stressed before that this class of mod�

els su�ces for many applications in the realm of �nance and insurance	 In

Dekkers� Einmahl und de Haan ������ Hill�s estimator is extended to cover the

whole class H�� � � R	 In Theorem �	�	�� we saw that for F � MDA�H���

� � �� the right endpoint xF of F is �nite	 For simplicity we assume that

xF � �	 In Section �	� we found that the maximum domain of attraction

conditions for H� all involve some kind of regular variation	 As for deriving

the Pickands and Hill estimator� one can reformulate regular variation con�

ditions to �nd estimators for any � � R	 Dekkers et al	 ����� come up with

the following proposal�

b�  � &H���
n &

�

�

�
�H

���
n ��

H
���
n

� �
���

� ��	���
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where

H���
n  

�

k

kX
j��

�lnXj�n � lnXk���n�

is the reciprocal of Hill�s estimator �modulo an unimportant change from k

to k & �� and

H���
n  

�

k

kX
j��

�lnXj�n � lnXk���n�
�
�

Because H
���
n and H

���
n can be interpreted as empirical moments� b� is also

referred to as a moment estimator of �	 To make sense� in all the estimators

discussed so far we could �and actually should� replace lnx by ln�� � x�	 In

practice� this should not pose problems because we assume k�n	 �	 Hence

the relation Xk�n
a�s�	 xF � � holds� see Example 	�	�	

At this point we pause for a moment and see where we are	 First of all

Do we have all relevant approaches for estimating the shape parameter �


Although various estimators have been presented� we have to answer this

question by no� The above derivations were all motivated by analytical results

on regular variation	 In Chapter � however we have tried hard to convince you

that point process methods are the methodology to use when one discusses

extremes� and we possibly could use point process theory to �nd alternative

estimation procedures	 This can be made to work� one programme runs under

the heading

Point process of exceedances�

or� as the hydrologists call it�

POT	 the Peaks Over Threshold method�

Because of its fundamental importance we decided to spend a whole section

on this method� see Section �	�	

Notes and Comments

In the previous sections we discussed some of the main issues underlying the

statistical estimation of the shape parameter �	 This general area is rapidly

expanding so that an overview at any moment of time is immediately out�

dated	 The references cited are therefore not exhaustive and re�ect our per�

sonal interest	 The fact that a particular paper does not appear in the list of

references does not mean that it is considered less important	
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The Hill Estimator� the Bias�Variance Trade	O�

Theorem �		� for iid data asserts that whenever F �x�  x��L�x�� 	 � ��

then the Hill estimator b	 �H�  b	 �H�
k�n satis�es

p
k

�b	 �H� � 	
�

d	 N
�
�� 	�

�
�

where k  k�n�	� at an appropriate rate	 However� in the formulation

of Theorem �		� we have not told you the whole story	 depending on the

precise choice of k and on the slowly varying function L� there is an important

trade�o� between bias and variance possible	 It all comes down to second�

order behaviour of L� i	e	 asymptotic behaviour beyond the de�ning property

L�tx� � L�x�� x	�	 Typically� for increasing k the asymptotic variance

	��k of b	 �H� decreases	 so let us take k as large as possible	 Unfortunately�

when doing so� a bias may enter�

A fundamental paper introducing higher�order regular variation techniques

for solving this problem is Goldie and Smith �����	 In our discussion below

we follow de Haan and Peng �����	 Similar results are to be found in de Haan

and Resnick ������ Hall ������ H�ausler and Teugels ����� and Smith ����� for

instance	

The second�order property needed beyond F �x�  x��L�x� is that

lim
x��

F �tx��F �x�� t��

a�x�
 t��

t� � �
�

� t � � � ��	��

exists� where a�x� is a measurable function of constant sign	 The right�hand

side of ��	�� is to be interpreted as t�� ln t if �  �	 The constant � � � is
the second�order parameter governing the rate of convergence of F �tx��F �x�

to t��	 It necessarily follows that ja�x�j � R�� see Geluk and de Haan ������

Theorem �	�	 In terms of U�t�  F���� t���� ��	�� is equivalent to

lim
x��

U�tx��U�x�� t���

A�x�
 t���

t��� � �
��	

� ��	���

where A�x�  	��a�U�x��	

The following result is proved as Theorem � in de Haan and Peng �����	

Theorem ����� �The bias�variance trade�o� for the Hill estimator�

Suppose ��	���� or equivalently ��	��� holds and k  k�n�	�� k�n	 � as

n	�� If

lim
n��

p
k A

�n

k

�
 � � R � ��	���

then as n	�
p
k

�b	 �H� � 	
�

d	 N


	
�

�� 	
� 	�

�
� �
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Example ������ �The choice of the value k�

Consider the special case

F �x�  cx���� & x�
�

for positive constants c� 	 and �	 We can choose

a�x�  �x�
 �

giving �  �� in ��	��	 Since U�t�  �ct������ & o����� we obtain

A�x�  
�

	�
�cx��
���� & o���� �

Then ��	��� yields k such that

k � Cn��
����
��� � k 	� �

where C is a constant� depending on 	� �� c and �	 Moreover� �  � if and

only if C  �� hence k  o�n��
����
����	 �

From ��	��� it follows that for k tending to in�nity su�ciently slowly� i	e	

taking only a moderate number of order statistics into account for the con�

struction of the Hill estimator� �  � will follow	 In this case b	 �H� is an

asymptotically unbiased estimator for 	� as announced in Theorem �		�	

The asymptotic mean squared error equals

�

k


	� &

	��

��� 	��

�
�

Theorem �		� also explains the typical behaviour of the Hill�plot showing

large variations for small k versus small variations �leading to a biased esti�

mate� for large k	

Results such as Theorem �		� are useful mainly from a methodological point

of view	 Condition ��	�� is rarely veri�able in practice	 We shall come back

to this point later� see the Summary at the end of this section	

A Comparison of Di�erent Estimators of the Shape Parameter

The question as to which estimator for the shape parameter � one should

use has no clear cut answer	 It all depends on the possible values of � and�

as we have seen� on the precise properties of the underlying df F 	 Some

general statements can however be made	 For �  	�� � � and dfs satisfying

��	��� de Haan and Peng ����� proved results similar to Theorem �		� for

the Pickands estimator ��	�� and the Dekkers�Einmahl�de Haan �DEdH�
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Figure �
�
�� �Warning� A comparative study of Hill�plots ��� � k � � 
��� for
� 
�� iid simulated data from the distributions� standard exponential �top�� heavy�
tailed Weibull with shape parameter � � ��� �middle�� standard lognormal �bottom��
The Hill estimator does not estimate anything reasonable in these cases� A �too�
quick glance at these plots could give you an estimate of � for the exponential dis�
tribution� This should be a warning to everybody using Hill� and related plots# They
must be treated with extreme care� One de
nitely has to contrast such estimates with
the exploratory data analysis techniques from Section �	�
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Figure �
�
�� � ��� daily log�returns �closing data� of the German stock index
DAX �September 	�� ���� � August 	�� ����� �top� and the corresponding Hill�plot
of the absolute values �bottom�� It gives relatively stable estimates around the value
��� in the region ��� � k � ���� This is much a wider region than in Figures ������
This Hill�plot is also qualitatively di�erent from the exact Pareto case� see Figure
����� The deviations can be due to the complicated dependence structure of 
nancial
times series�

estimator ��	���	 It turns out that in the case �  � the Hill estimator has

minimum mean squared error	 The asymptotic relative e�ciencies for these

estimators critically depend on the interplay between � and 		 Both the

Pickands and the DEdH estimator work for general � � R	 For � � �� the
DEdH estimator has lower variance than Pickands�s	 Moreover Pickands�s

estimator is di�cult to use since it is rather unstable� see Figures �		� and

�		�	 There exist various papers combining higher�order expansions of F

together with resampling methods	 The bootstrap for Hill�s estimator has

been studied for instance by Hall �����	 An application to the analysis of high

frequency foreign exchange rate data is given by Danielson and de Vries �����

see also Pictet� Dacorogna and M�uller ����	 For applications to insurance

data see Beirlant et al	 ����	

Besides the many papers already referred to� we also would like to mention

Anderson ����� Boos ����� Cs�org+o and Mason ����� Davis and Resnick ������

Drees ������ Falk ����� H�ausler and Teugels ������ Lo ���� and Smith and

Weissman �����	

More Estimators for the Index of Regular Variation

Hahn and Weiner ����� apply Karamata�s theorem to derive a joint estimator

of the index of regular variation and an asymmetry parameter for distribution
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tails	 Their method essentially uses truncated moments	 An alternative ap�

proach based on point process methods is discussed in H�opfner ����� ���� and

Jacod and H�opfner ����	 Cs�org+o� Deheuvels and Mason ���� study kernel

type estimates of 	 including the Hill estimator as a special case	 Wei �����

proposes conditional maximum likelihood estimation under both� full and

partial knowledge of the slowly varying function	

In the case of models like

F �x�  exp
��x��L�x�

�
� 	 � � � L � R� �

one should consult Beirlant and Teugels ����� Beirlant et al	 ����� Chapter �

Broniatowski ���� Keller and Kl�uppelberg ���� and Kl�uppelberg and Vil�

lase,nor ����	

Estimators for the Index of a Stable Law

Since the early work by Mandelbrot ���� numerous papers have been pub�

lished concerning the hypothesis that logarithmic returns in �nancial data fol�

low a stable process with parameter � � 	 � �	 Though the exact stability has

been disputed� a growing consensus is formed around the heavy�tailedness of

log�returns	 Consequently� various authors focussed on parameter estimation

in stable models	 Examples include Koutrouvelis ���� using regression type

estimators based on the empirical characteristic function� see also Feuerverger

������ Feuerverger and McDunnough ����� and references therein	 McCulloch

���� suggests estimators based on functions of the sample quantiles� this

paper also contains a good overall discussion	 Though McCulloch�s approach

seems optimal in the exact stable case� the situation may dramatically change

if only slight deviations from stability are present in the data	 DuMouchel

���� ���� is a good place to start reading on this	 For a detailed discussion on

these problems together with an overview on the use of stable distributions

and processes in �nance see Mittnik and Rachev ���� ��� and the references

therein	

����� Estimating the Norming Constants

In the previous section we obtained estimators for the shape parameter �

given iid data X�� � � � � Xn with df F � MDA�H��	 Recall that the latter con�

dition is equivalent to

c��
n �Mn � dn�

d	 H�

for appropriate norming constants cn � � and dn � R	 We also know that

this relation holds if and only if
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nF �cnx& dn�	 � lnH��x� � n	� � x � R �

As we have already seen in Section �		�� norming constants enter in quantile

and tail estimation� see ��	���	 Below we discuss one method how norming

constants can be estimated	 Towards the end of this section we give some

further references to other methods	 In Section �	� we gave analytic formulae

linking the norming sequences �cn� and �dn� with the tail F 	 For instance� in

the Gumbel case �  � with right endpoint xF  � the following formulae

were derived in Theorem �	�	��

cn  a �dn� � dn  F�
�
�� n��

�
� ��	���

where a��� stands for the auxiliary function which can be taken in the form

a�x�  

Z �

x

F �y�

F �x�
dy �

Notice the problem� on the one hand� we need the norming constants cn and

dn in order to obtain quantile and tail estimates	 On the other hand� ��	���

de�nes them as functions of just that tail� so it seems that

this surely is a race we cannot win�

Though this is partly true let us see how far we can get	 We will try to

convince you that the appropriate reformulation of the above sentence is�

this is a race which will be di�cult to win�

Consider the more general set�up F � MDA�H��� � � �� which includes for
our purposes the most important cases of the Fr�echet and the Gumbel dis�

tribution	 In Examples �	�	�� and �	�	� we showed how one can unify these

two maximum domains of attraction by the logarithmic transformation

x�  ln�� � x� � x � R �

Together with Theorem �	�	�� the following useful result can be obtained	

Lemma ������ �Embedding MDA�H��� � � �� in MDA����
Let X�� � � � � Xn be iid with df F � MDA�H��� � � �� with xF  � and

norming constants cn � � and dn � R� Then X�
� � � � � � X

�
n are iid with df

F � � MDA��� and auxiliary function

a��t�  

Z �

t

F ��y�

F ��t�
dy �

The norming constants can be chosen as
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d�n  �F ������ n��� �

c�n  a��d�n�  

Z �

d�n

F ��y�

F � �d�n�
dy � n

Z �

d�n

F ��y� dy �

�

In Section �		� we tried to convince you that our estimators have to be based

on the k largest order statistics Xk�n� � � � � X��n� where k  k�n�	�	 From
the above lemma we obtain estimators if we replace F � by the empirical

df F �
n � bd�n�k  X�

k���n  ln�� �Xk���n�

bc�n�k  
n

k

Z �

bd�
n�k

F �
n�y� dy

 
n

k

Z lnX��n

lnXk���n

F �
n�y� dy

 
�

k

kX
j��

lnXj�n � lnXk���n � ��	���

The latter is a version of the Hill estimator	 The change from k to k & � in

��	��� is asymptotically unimportant� see Example 	�	��	

Next we make the transformation back from F � to F via

n

k
P

�
X� � c�n�k x& d�n�k

�
 

n

k
P

�
X � exp

n
c�n�k x& d�n�k

o�
� x � � �

Finally we use that F � � MDA���� hence the left�hand side converges to e�x

as n	�� provided that n�k 	�	 We thus obtain the tail estimator
�
F �x�

�b
 

k

n

�
exp

n
�bd�n�k & lnxo���

&bc�n�k

 
k

n


x

Xk���n

���
&bc �n�k

�

This tail estimator was already obtained by Hill ����� for the exact model

��	���� see ��	���	 As a quantile estimator we obtain

bxp  �n

k
��� p�

��bc �n�k
Xk���n �
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Time to summarise all of this�

Let b� �H� denotes the Hill estimator for �� i	e	

b� �H�  
�

k

kX
j��

lnXj�n � lnXk�n �

Let X�� � � � � Xn be a sample from F � MDA�H��� � � �� and

k  k�n�	� such that k�n	 �	 Then for x large enough� a tail

estimator for F �x� becomes

�
F �x�

�b
 

k

n


x

Xk���n

���
&b� �H�

�

The quantile xp de�ned by F �xp�  p � ��� �� can be estimated
by

bxp  �n

k
��� p�

��b� �H�

Xk���n �

Notes and Comments

It should be clear from the above that similar quantile estimation methods

can be worked out using alternative parameter estimators as discussed in

the previous sections	 For instance� both Hill ����� and Weissman ����� base

their approach on maximum likelihood theory and the limit distribution of

the k upper order statistics as in Theorem 	�	�	 They cover the whole range

� � R	 Other estimators of the norming constants were proposed by Dijk and

de Haan ����� and Falk� H�usler and Reiss �����	

����� Tail and Quantile Estimation

As before� assume that we consider a sampleX�� � � � � Xn of iid rvs with df F �
MDA�H�� for some � � R	 Let � � p � � and xp denote the corresponding

p�quantile	

The whole point behind the domain of attraction condition F � MDA�H��

is to be able to estimate quantiles outside the range of the data� i	e	

p � �� ��n	 The latter is of course equivalent to �nding estimators for the
tail F �x� with x large	 In Sections �	�	� and �		� we have already discussed

some possibilities	 Indeed� whenever we have estimators for the shape parame�

ter � and the norming constants cn and dn� natural estimators of xp and F �x�

can immediately be derived from the de�ning property of F � MDA�H��	 We
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want to discuss some of them more in detail and point at their most important

properties and caveats	 From the start we would like to stress that estimation

outside the range of the data can be made only if extra model assumptions

are imposed	 There is no magical technique which yields reliable results for

free	 One could formulate as in �nance�

There is no free lunch when it comes to high quantile estimation�

In our discussion below� we closely follow the paper by Dekkers and de Haan

�����	 The main results are formulated in terms of conditions on U�t�  

F��� � t��� so that xp  U����� � p��	 Denoting Un�t�  F�
n �� � t����

where F�
n is the empirical quantile function�

Un


n

k � �
�
 F�

n


�� k � �

n

�
 Xk�n � k  �� � � � � n �

Hence Xk�n appears as a natural estimator of the ����k����n��quantile	 The
range �Xn�n� X��n� of the data allows one to make a within�sample estimation

up to the ���n����quantile	 Although in any practical application p is �xed�

from a mathematical point of view the di�erence between high quantiles

within and outside the sample can for instance be described as follows�

�a� high quantiles within the sample	 p  pn 
 �� n��� pn�	 c � c � ����� �
�b� high quantiles outside the sample	 p  pn 
 �� n��� pn�	 c� � � c � �	

Case �a� for c  � is addressed by the following result which is Theorem �	�

in Dekkers and de Haan �����	 It basically tells us that we can just use the

empirical quantile function for estimating xp	

Theorem ������ �Estimating high quantiles I�

Suppose X�� � � � � Xn is an iid sample from F � MDA�H��� � � R� and F has

a positive density f � Assume that the density U � is in R��� � Write p  pn
and k  k�n�  �n�� � pn��� where �x� denotes the integer part of x� If the

conditions

pn 	 � and n ��� pn�	�
hold then p

�k
Xk�n � xp

Xk�n �X�k�n

d	 N
�
�� ����������� � ���� � �

Remark� �� The condition U � � R��� can be reformulated in terms of F 	

For instance for � � �� the condition becomes f � R������ 	 �

In Theorem �		� we characterised F � MDA�H�� through the asymptotic

behaviour of U �

lim
t��

U�tx�� U�t�

U�ty�� U�t�
 

x� � �
y� � � � x� y � � � y � � �
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For �  � the latter limit has to be interpreted as lnx� ln y	 We can rewrite

the above as follows

U�tx�  
x� � �
�� y�

�U�t�� U�ty���� & o���� & U�t� � ��	���

Using this relation� a heuristic argument suggests an estimator for the quan�

tiles xp outside the range of the data	 Indeed� replace U by Un in ��	��� and

put y  ���� x  �k � ����n��� p�� and t  n��k � ��	 Substitute � by an

appropriate estimator b�	 Doing so� and neglecting o����terms one �nds the

following estimator of xp�

bxp  
�k��n��� p���

b� � �
�� ��b� �Xk�n �X�k�n� &Xk�n � ��	��

The following result is Theorem �	� in Dekkers and de Haan �����	

Theorem ������ �Estimating high quantiles II�

Suppose X�� � � � � Xn is an iid sample from F � MDA�H��� � � R� and assume

that limn�� n��� p�  c for some c � �� Let bxp be de�ned by ��	�� with b�
the Pickands estimator ��	��� Then for every �xed k � c�bxp � xp

Xk�n �X�k�n

d	 Y �

where

Y  
�k�c�� � ���
�� ��� &

�� �Qk�c�
�

expf�Hkg � � � ��	��

The rvs Hk and Qk are independent� Qk has a gamma distribution with

parameter �k & � and

Hk  

�kX
j�k��

Ej

j

for iid standard exponential rvs E�� E�� � � �� �

Remarks� �� The case � � c � � of Theorem �		�� corresponds to extrap�

olation outside the range of the data	 For the extreme case c  �� a relevant

result is to be found in de Haan ������ Theorem �	�	 Most of these results de�

pend on highly technical conditions on the asymptotic behaviour of F 	 There

is a strong need for comparative numerical studies on these high quantile

estimators	

�� Approximations to the df of Y in ��	�� can be worked out explicitly	

� As for the situation of Theorem �		�� no results seem to exist concern�

ing the optimal choice of k	 For the consistency of the Pickands estimatorb�� which is part of the estimator bxp� one actually needs k  k�n� 	 �� see
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Theorem �		�	

�� In the case � � � similar results can be obtained for the estimation of

the right endpoint xF of F 	 We refer the interested reader to Dekkers and

de Haan ����� for further details and some examples	 �

Summary

Throughout Section �	� we have discovered various estimators for the impor�

tant shape parameter � of dfs in the maximum domain of attraction of the

GEV	 From these and further estimators� either for the location and scale

parameters and!or norming constants� estimators for the tail F and high

quantiles resulted	 The properties of these estimators crucially depend on

the higher�order behaviour of the underlying distribution tail F 	 The latter

is unfortunately not veri�able in practice	

On various occasions we hinted at the fact that the determination of

the number k of upper order statistics �nally used remains a delicate point

in the whole set�up	 Various papers exist which o�er a semi�automatic or

automatic� so�called 
optimal
� choice of k	 See for instance Beirlant et al	

���� for a regression based procedure with various examples to insurance

data� and Danielson and de Vries ���� for an alternative method motivated

by examples in �nance	 We personally prefer a rather pragmatic approach

realising that� whatever method one chooses� the �Hill horror plot
 �Figure

	�	��� would fool most� if not all	 It also serves to show how delicate a tail

analysis in practice really is	 On the other hand� in the 
nice case
 of exact

Pareto behaviour� all methods work well� see Figures �		�	

Our experience in analysing data� especially in �re�insurance� shows that

in practice one is often faced with data which are clearly heavy�tailed and

for which 
exact
 Pareto behaviour of F �x� sets in for relatively low values

of x� see for instance Figure �	�	��	 The latter is not so obvious in the world

of �nance	 This is mainly due to more complicated dependence structure in

most of the �nance data� compare for instance Figures �	�	�� and �	�	��	

A 
nice
 example from the realm of �nance was discussed in Figure �		��	

The conclusion 
the data are heavy�tailed
 invariably has to be backed up

with information from the user who provided the data in the �rst place�

Furthermore� any analysis performed has to be supported by exploratory

data analysis techniques as outlined in Section �	�	 Otherwise� situations as

explained in Figure �		�� may occur	

It is our experience that in many cases one obtains a Hill� �or related�

plot which tends to have a fairly noticeable horizontal stretch across di�erent

�often lower� k�values	 A choice of k in such a region is to be preferred	

Though the above may sound vague� we suggest the user of extremal event
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techniques to experiment on both simulated as well as real data in order to get

a feeling for what is going on	 A �nal piece of advice along this route� never

go for one estimate only	 Calculate and always plot estimates of the relevant

quantities �a quantile say� across a wide range of k�values� for examples

see Figures �		� and �			 In the next section we shall come back to this

point� replacing k by a threshold u	 We already warn the reader beforehand�

the approach o�ered in Setion �	� su�ers from the same problems as those

discussed in this section	

Notes and Comments

So far� we only gave a rather brief discussion on the statistical estimation

of parameters� tails and quantiles in the heavy�tailed case	 This area is still

under intensive investigation so that at present no complete picture can be

given	 Besides the availability of a whole series of mathematical results a lot of

insight is obtained through simulation and real life examples	 In the next sec�

tion some further techniques and indeed practical examples will be discussed	

The interested reader is strongly advised to consult the papers referred to so

far	 An interesting dicussion on the main issues is de Haan ������ where also

applications to currency exchange rates� life span estimation and sea level

data are given� see also Davis and Resnick �����	 In Einmahl ����� a critical

discussion concerning the exact meaning of extrapolating outside the data is

given	 He stresses the usefulness of the empirical df as an estimator	

��
 Fitting Excesses Over a Threshold

����� Fitting the GPD

Methodology introduced so far was obtained either on the assumption that

the data come from a GEV �see Section �	�� or belong to its maximum

domain of attraction �see Section �	�	 We based statistical estimation of

the relevant parameters on maximum likelihood� the method of probability�

weighted moments or some appropriate condition of regular variation type	

In Section �	 we laid the foundation to an alternative approach based on

exceedances of high thresholds	 The key idea of this approach is explained

below	

Suppose

X�X�� � � � � Xn are iid with df F � MDA�H�� for some � � R�

First� choose a high threshold u and denote by
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Figure �
�
� Data X�	 � � � 	 X�� and the corresponding excesses Y�	 � � � 	 YNu over
the threshold u�

Nu  cardfi � i  �� � � � � n � Xi � ug

the number of exceedances of u by X�� � � � � Xn	 We denote the corresponding

excesses by Y�� � � � � YNu � see Figure �	�	�	 The excess df of X is given by

Fu�y�  P �X � u � y j X � u�  P �Y � y j X � u� � y � � �

see De�nition �		�	 The latter relation can also be written as

F �u& y�  F �u�F u�y� � ��	��

Now recall the de�nition of the generalised Pareto distribution �GPD� from

De�nition �		�� a GPD G��
 with parameters � � R and � � � has distribu�

tion tail

G��
�x�  

�����

� & �

x

�

�����

if � � � �

e�x�
 if �  � �

x � D��� �� �

where

D��� ��  

�
����� if � � � �
�������� if � � � �
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Theorem �		���b� gives a limit result for F u�y�� namely

lim
u
xF

sup
��x�xF�u

jF u�x��G��
�u��x�j  � �

for an appropriate positive function �	 Based on this result� for u large� the

following approximation suggests itself�

F u�y� � G��
�u��y� � ��	��

It is important to note that � is a function of the threshold u	 In practice� u

will have to be taken su�ciently large	 Given such a u� � and �  ��u� are

estimated from the excess data� so that the resulting estimates depend on u�

see our discussion below	

Relation ��	�� then suggests a method for estimating the far end tail of

F by estimating F u�y� and F �u� separately	 A natural estimator for F �u� is

given by the empirical df

�
F �u�

�b
 Fn�u�  

�

n

nX
i��

IfXi�ug  
Nu

n
�

On the other hand� the generalised Pareto approximation ��	�� �remember

that u is large�� motivates an estimator of the form

�F u�y��
b Gb��b
 �y� ��	�

for appropriate b�  b�Nu and
b�  b�Nu 	

A resulting estimator for the tail F �u & y� for y � � then takes on the

form

�F �u& y��b Nu

n


� & b� yb�

���
&b�

� ��	��

In the Fr�echet and Gumbel case �� � ��� the domain restriction in ��	�� is
y � �� clearly stressing that we estimate F in the upper tail	 An estimator of
the quantile xp results immediately�

bxp  u&
b�b�

��
n

Nu
��� p�

��b�
� �


A � ��	��

Furthermore� for b� � � an estimator of the right endpoint xF of F is given

by

bxF  u�
b�b� �
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The latter is obtained by putting bxF  bx� �i	e	 p  �� in ��	��	 In Section
�		� we said that the method of exceedances belongs to the realm of point

process theory	 From ��	�� and ��	�� this is clear� statistical properties of

the resulting estimators crucially depend on the distributional properties of

the point process of exceedances �Nu�� see for instance Example �	�	� and

Theorem �	�	�� and also the Notes and Comments below	

The above method is intuitively appealing	 It goes back to hydrologists	

Over the last �� years they have developed this estimation procedure under

the acronym of the Peaks Over Threshold �POT � method	 In order to work

out the relevant estimators the following input is needed�

	 reliable models for the point process of exceedances�

	 a su�ciently high threshold u�

	 estimators b� and b��
	 and� if necessary� an estimator b� for location	
If one wants to choose an optimal threshold u one faces similar problems as

for the choice of the number k of upper order statistics for the Hill estimator	

A value of u too high results in too few exceedances and consequently high

variance estimators	 For u too small estimators become biased	 Theoretically�

it is possible to choose u asymptotically optimal by a quanti�cation of a bias

versus variance trade�o�� very much in the same spirit as discussed in The�

orem �		�	 In reality however� the same problems as already encountered for

other tail estimators before do occur	 We refer to the examples in Section

�	�	� for illustrations on this	

One method which is of immediate use in practice is based on the linearity

of the mean excess function e�u� for the GPD	 From Theorem �		���e� we

know that for a rv X with df G��
�

e�u�  E�X � u j X � u�  
� & �u

�� �
� u � D��� �� � � � � �

hence e�u� is linear	 Recall from ��	�� that the empirical mean excess function

of a given sample X�� � � � � Xn is de�ned by

en�u�  
�

Nu

X
i��n�u�

�Xi � u� � u � � �

where as before Nu  cardfi � i  �� � � � � n�Xi � ug  card�n�u�	 The re�

mark above now suggests a graphical approach for chosing u�

choose u � � such that en�x� is approximately linear for x � u�

The key di�culty of course lies in the interpretation of approximately	 Only

practice can tell� One often observes a change in the slope of en�u� for some
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value of u	 Referring to some examples on sulphate and nitrate level in an

acid rain study Smith ������ p	 ��� says the following�

The general form of these mean excess plots is not atypical of real data� espe�

cially the change of slope near ��� in both plots� Smith ����� observed similar

behaviour in data on extreme insurance claims� and Davison and Smith �����

used a similar plot to identify a change in the distribution of the threshold

form of the River Nidd data� Such plots therefore appear to be an extremely

useful diagnostic in this form of analysis�

The reader should never expect a unique choice of u to appear	 We recom�

mend using plots� to reinforce judgement and common sense and compare

resulting estimates across a variety of u�values	 In applications we often pre�

fer plots indicating the threshold value u� as well as the number of exceedances

used for the estimation� on the horizontal axes� the estimated value of the

parameter or the quantile� say� is plotted on the vertical one	 The latter is

illustrated in Section �	�	�	 As can be seen from the examples� and indeed

can be proved� all these plots exhibit the same behaviour as the Hill� and

Pickands�plots before� high variability for u large �few observations� versus

bias for u small �many observations� but at the same time the approximation

��	�� may not be applicable�	

Concerning estimators for � and �� various methods similar to those dis�

cussed in Section �		� exist	

Maximum Likelihood Estimation

The following results are to be found in Smith �����	

Recall that our original dataX  �X�� � � � � Xn� are iid with common df F 	

Assume F is GPD with parameters � and �� so that the density f is

f�x�  
�

�


� & �

x

�

�� �
���

� x � D��� �� �

The log�likelihood function equals

"���� ���X�  �n ln� �

�

�
& �

� nX
i��

ln


� &

�

�
Xi

�
�

Notice that the arguments of the above function have to satisfy the domain

restriction Xi � D��� ��	 For notational convenience� we have dropped that

part from the likelihood function	 Recall that D��� ��  ����� for � � �	

Now likelihood equations can be derived and solved numerically yielding the

MLE b�n� b�n	 This method works �ne if � � ����� and in this case one can
show that
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Figure �
�
� A �horror plot� for the MLE of the shape parameter � of a GPD�
The simulated data come from a df given by F �x� � ���x lnx�� Left� sample size
� ���� Right� sample size �� ���� The upper horizontal axis indicates the threshold
value u� the lower one the corresponding number k of exceedances of u� As for Hill
estimation �see Figure ������� MLE also becomes questionable for such perturbed
Pareto tails�

n���

�b�n � � �
b�n
�
� �

�
d	 N���M��� � n	� �

where

M��  �� & ��


� & �

�

�

�

�
and N��$� stands for the bivariate normal distribution with mean vector 

and covariance matrix $	 The usual MLE properties like consistency and

asymptotic e�ciency hold	

Because of ��	��� it is more realistic to assume a GPD for the ex�

cesses Y�� � � � � YN � where N  Nu is independent of the Yi	 The resulting

conditional likelihood equations can be solved best via a reparametrisation

��� ��	 ��� ��� where �  ����	 This leads to the solution

b�  b����  N��
NX
i��

ln ��� �Yi� �

where � satis�es

h���  
�

�
&
�

N

�
�b���� & �

�
NX
i��

Yi
�� �Yi

 � �
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The function h���� de�ned for � � ����max�Y�� � � � � YN ��� is continuous at �	

Letting u  un 	�� Smith ����� derives various limit results for the distrib�
ution of �b�N � b�N �	 As in the case of the Hill estimator �see Theorem �		��� an
asymptotic bias may enter	 The latter again crucially depends on a second�

order condition for F 	

Method of Probability	Weighted Moments

Similarly to our discussion in Section �	�	�� Hosking and Wallis ����� also

worked out a probability�weighted moment approach for the GPD	 This is

based on the quantitites �see Theorem �		���a��

wr  EZ
�
G��
�Z�

�r
 

�

�r & ���r & �� ��
� r  �� � �

where Z has GPD G��
	 We immediately obtain

�  
�w�w�

w� � �w�
and �  �� w�

w� � �w�
�

If we now replace w� and w� by empirical moment estimators� one obtains the

probability�weighted moment estimators b� and b�	 Hosking and Wallis �����
give formulae for the approximate standard errors of these estimators	 They

compare their approach to the MLE approach and come to the conclusion

that in the case � � � the method of probability�weighted moments o�ers
a viable alternative	 However� as we have already stressed in the case of a

GEV� maximum likelihood methodology allows us to �t much more general

models including time dependence of the parameters and the in�uence of

explanatory variables	

����� An Application to Real Data

In the above discussion we have outlined the basic principles behind the GPD

�tting programme	 Turning to the practical applications� two main issues

need to be addressed�

�a� �t the conditional df Fu�x� for an appropriate range of x� �and indeed u��

values�

�b� �t the unconditional df F �x�� again for appropriate x�values	

Though formulae ��	� and ��	�� in principle solve the problem� in practice

care has to be taken about the precise range of the data available and!or the

interval over which we want to �t	 In our examples� we have used a set�up

which is motivated mainly by insurance applications	



��� Fitting Excesses Over a Threshold ��


Take for instance the Danish �re insurance data	 Looking at the ME�plot

in Figure �	�	�� we see that the data are clearly heavy�tailed	 In order to

estimate the shape parameter � a choice of the threshold u �equivalently�

of the number k of exceedances� has to be made	 In the light of the above

discussion concerning the use of ME�plots at this stage� we suggest a �rst

choice of u  �� resulting in ��� exceedances	 This means we choose u from a

region above which the ME�plot is roughly linear	 An alternative choice would

perhaps be in the range u � ��	 Figure �	�	� �top� left� gives the resulting
estimates of � as a function of u �upper horizontal axis� and of the number

k of exceedances of u �lower horizontal axis�� the resulting plot is relatively

stable with estimated values mainly in the range ���� ����	 Compare this plot

with the Hill�plot in Figure �		�	 For u  �� maximum likelihood estimatesb�  ���� �s	e	 ����� and b�  ���� result	 A change to u  �� yieldsb�  ����� �s	e	 ������ based on k  � exceedances	

From these estimates� using ��	�� an estimate for the �conditional� excess

df Fu�x� can be plotted	 Following standard practice in reinsurance� in Figure

�	�	� �top� right� we plot the shifted df Fu�x� u�� x � u	 In the language of

reinsurance the latter procedure estimates the probability that a claim lies

in a given interval� given that the claim has indeed pierced the level u  ��	

Though the above estimation �once u  �� is chosen� only uses the ���

largest claims� a crucial question still concerns where the layer �u  �� and

above� is to be positioned in the total portfolio� i	e	 we also want to estimate

the tail of the unconditional df F which yields information on the frequency

with which a given high level u is pierced	 At this point we need the full

data�set and turn to formula ��	��	 A straightforward calculation allows us

to express bF �z� as a three�parameter GPD�
bF �z�  ��

� & b� z � u� b�b��
����b�

� z � u � ��	��

where

b�  b�b�
��

Nu

n

�b�
� �


A and b��  b�
Nu

n

�b�
�

We would like to stress that the above df is designed only to �t the data

well above the threshold u	 Below u� where the data are typically abundant�

various standard techniques can be used� for instance the empirical df	 By

combining both� GPD above u and empirical df below u� a good overall �t

can be obtained	 There are of course various possibilities to �ne�tune such a

construction	
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Figure �
�
� The positive BMW log�returns from Figure �	���� Top� left� MLE of
� as a function of u and k with asymptotic 
�! con
dence band� Top� right� GPD�

t to Fu�x � u�� x � u� on log�scale� Middle� GPD tail�
t for F �x � u�� x � ��
Bottom� estimates of the 

�
!�quantile for the positive returns as a function of
the threshold u �upper horizontal axis� and of the corresponding number k of the
upper order statistics �lower horizontal axis�� A GPD with parameters � � �������
� � ������ is 
tted� corresponding to u � ������ and k � ����
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Figure �
�
� The absolute values of the negative BMW log�returns from Figure
�	���� Top� left� MLE of � as a function of u and k with asymptotic 
�! con
dence
band� Top� right� GPD�
t to Fu�x � u�� x � u� on log�scale� Middle� GPD tail�

t for F �x � u�� x � �� Bottom� estimates of the 

�
!�quantile for the absolute
negative returns as a function of the threshold u �upper horizontal axis� and of
the corresponding number k of the upper order statistics �lower horizontal axis�� A
GPD with parameters � � ����� � � ������
 is 
tted� corresponding to u � ������
and k � ���� i�e� the distribution has an in
nite �th moment� As mentioned in the
discussion of Figure �	���� the lower tail of the distribution appears to be heavier
than the upper one�
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Figure �
�
� The Danish 
re insurance data� see Figure �	���� Top� left� MLE for
the shape parameter � of the GPD� The upper horizontal axis indicates the threshold
u� the lower one the number k of exceedances�upper order statistics involved in the
estimation� Top� right� 
t of the shifted excess df Fu�x � u�� x � u� on log�scale�
Middle� GPD tail�
t for F �x�u�� x � �� Bottom� estimates of the ��

�quantile as
a function of u �upper horizontal axis� and k �lower horizontal axis�� A GPD with
parameters � � ���
 and � � ��
� is 
tted� corresponding to k � ��
 exceedances
of u � ��� Compare also with Figure ���� for the corresponding Hill�
t�
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Figure �
�
� The industrial 
re insurance data� see Figure �	��	� Top� left� MLE
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tted� corresponding to
k � ��
 exceedances of u � ���� Compare also with Figure ���� for the correspond�
ing Hill�
t�



��� �� Statistical Methods for Extremal Events

Finally� using the above �t to F �z�� we can give estimates for the p�

quantiles� p � F �u�	 In Figure �	�	� �bottom� we have summarised the �����

quantile estimates obtained by the above method across a wide range of

u�values �upper horizontal axis�� i	e	 for each u�value a new model was �tted

and x���� estimated	 Alternatively� the number of exccedances of u is indicated

on the lower horizontal axis	 For these data a rather stable picture emerges	

A value in the range ������� follows	 Con�dence intervals can be calculated	

The software needed to do these� and further analyses are discussed in the

Notes and Comments below	

Figure �	�	� for the industrial �re data �see Figure �	�	��� and Figure

�	�	� for the BMW share prices �see Figure �	�	��� can be interpreted in a

similar way	

Mission Improbable� How to Predict the Unpredictable

On studying the above data analyses� the reader may have wondered why we

restricted our plots to x���� for the Danish and industrial insurance data� and

x����� for the BMW data	 In answering this question� we restrict attention

to the insurance data	 At various stages throughout the text we hinted at

the fact that extreme value theory �EVT� o�ers methodology allowing for

extrapolation outside the range of the available data	 The reason why we

are very reluctant to produce plots for high quantiles like �	���� or more� is

that we feel that such estimates are to be treated with extreme care	 Recall

Richard Smith�s statement from the Preface� 
There is always going to be an

element of doubt� as one is extrapolating into areas one doesn�t know about	

But what EVT is doing is making the best use of whatever data you have

about extreme phenomena	
 Both �re insurance data�sets have information

on extremes� and indeed EVT has produced models which make best use of

whatever data we had at our disposal	 Using these models� estimates for the

p�quantiles xp for every p � ��� �� can be given	 The statistical reliability of
these estimates becomes� as we have seen� very di�cult to judge in general	

Though we can work out approximate con�dence intervals for these estima�

tors� such constructions strongly rely on mathematical assumptions which

are unveri�able in practice	

In Figures �	�	� and �	�	� we have reproduced the GPD estimates for

x����� and x������ for both the Danish and the industrial �re data	 These

plots should be interpreted with the above quote from Smith in mind	 For

instance� for the Danish �re insurance data we see that the estimate of about

�� for x���� jumps at �� for x����� and at around ��� for x������	 Likewise for

the industrial �re� we get an increase from around ��� for x���� to about � ��

for x����� and �� ��� for x������	 These model�based estimates could form the
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basis for a detailed discussion with the actuary!underwriter!broker!client

responsible for these data	 One can use them to calculate so�called technical

premiums� which are to be interpreted as those premiums which we as sta�

tisticians believe to most honestly re�ect the information available from the

data	 Clearly many other factors have to enter at this stage of the discus�

sion	 We already stressed before that in dealing with high layers!extremes

one should always consider total exposure as an alternative	 Economic con�

siderations� management strategy� market forces will enter so that by using

all these inputs we are able to come up with a premium acceptable both for

the insurer as well as the insured	 Finally� once the EVT model�machinery

�GPD for instance� is put into place� it o�ers an ideal platform for simu�

lation experiments and stress�scenarios	 For instance� questions about the

in�uence of single or few observations and model�robustness can be analysed

in a straightforward way	 Though we have restricted ourselves to a more de�

tailed discussion for the examples from insurance� similar remarks apply to

�nancial or indeed any other kind of data where extremal events play an

important role	

Notes and Comments

The POT method has been used by hydrologists for more than �� years	 It

has also been suggested for dealing with large claims in insurance� see for

instance Kremer ����� Reiss ����� and Teugels ����� ����	 It may be viewed

as an alternative approach to the more classical GEV �tting	

In the present section� we gave a brief heuristic introduction to the POT	

The practical use of the GPD in extreme value modelling is best learnt from

the fundamental papers by Smith ����� Davison ������ Davison and Smith

������ North ���� and the references therein	 Falk ���� uses the POT method

for estimating �	 Its theoretical foundation was already laid by Pickands ����

and developed further for instance by Smith ����� and Leadbetter ����	 The

statistical estimation of the parameters of the GPD is also studied in Taj�

vidi �����	

The POT model is usually formulated as follows�

�a� the excesses of an iid �or stationary� sequence over a high threshold u

occur at the times of a Poisson process�

�b� the corresponding excesses over u are independent and have a GPD�

�c� excesses and exceedance times are independent of each other	

Here one basically looks at a space�time problem� excess sizes and exceedance

times	 Therefore it is natural to model this problem in a two�dimensional
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point process or in a marked point process setting� see Falk et al	 ������ Sec�

tion �	� and Section ��	�� and Leadbetter ���� for the necessary theoretical

background	 There also the stationary non�iid case is treated	 Using these

tools one can justify the above assumptions on the excesses and exceedance

times in an asymptotic sense	 A partial justi�cation is to be found in Sec�

tion �	�	� �weak convergence of the point process of exceedances to a Poisson

limit� and in Theorem �		���b� �GPD approximation of the excess df�	

The POT method allows for �tting GPD models with time�dependent

parameters ��t�� ��t� and ��t�� in particular one may include non�stationarity

e�ects �trends� seasonality� into the model� see for instance Smith ����	 These

are further attractive aspects of GPD �tting	

Example ����� �Diagnostic tools for checking the assumptions of the POT

method�

In Figures �	�	�� and �	�	�� we consider some diagnostic tools �suggested by

Smith and Shively ������ for checking the Poisson process assumption for the

exceedance times in the POT model	 Figure �	�	�� �top� shows the excesses

over u  �� by the Danish �re insurance claims� see Figure �	�	��	 The left

middle �gure is a plot of the �rst sample autocorrelations of the excesses	

In interpreting the latter plot� the value of � is of course crucial	 Indeed for

� � ���� the theoretical autocorrelations do not exist and hence there is no

straightforward interpretation of the sample autocorrelation plot	 As we have

seen� � takes values around ��� for u  �� and above ��� for u  ��	 Further

analyses on this point gave however no reason to reject independence	 In the

right middle �gure the corresponding inter�arrival times of the exceedances

appear	 If these times came from a homogeneous Poisson process they should

be iid exponential� see Example �	�	�	 The �Lowess smoothed� curve in the

�gure can be used to indicate possible deviations from the stationary as�

sumption� it is basically a smoothed mean value of the data and estimates

the reciprocal of the intensity of the Poisson process	 The curve is almost

a straight line� parallel to the horizontal axis	 In the left bottom �gure a

QQ�plot of the inter�arrival times versus exponential quantiles is given	 The

exponential �t is quite convincing	 The sample autocorrelations of the inter�

arrival times �bottom� right� yield no ground for rejecting the hypothesis of

zero correlation	 For a more detailed analysis of these data� see McNeil ����

and Resnick ����	 The last paper also discusses the problem of testing for

independence when the underlying data possibly have in�nite variance	

The picture changes for instance for the absolute values of the negative log�

returns of the BMW share prices �see Figure �	�	���	 In Figure �	�	�� the

excesses over u  ����� are given	 Both autocorrelograms show a more in�

tricate dependence structure often encountered in �nance data	 �
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Figure �
�
�� Top� the excesses over u � �� of the Danish 
re insurance data�
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Figure �
�
�� Top� the excesses over u � ������ of the absolute values of the
negative BMW log�returns� see Figure �	���� Middle� left� the sample autocorre�
lations of the excesses� Middle� right� the inter�arrival times of the exceedances
and smoothed mean values curve� Bottom� left� QQ�plot of the inter�arrival times
against exponential quantiles� Bottom� right� sample autocorrelations of these times�
See Example ���� for further comments�
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Concerning software� most of the analyses done in this and other chapters

may be performed in any statistical software environment� pick your favourite	

We have mainly used S	Plus	 An introduction to the latter package is for

instance to be found in Spector �����	 Venables and Ripley ����� give a nice

introduction to modern applied statistics with S�Plus	 The programs used

for the analyses of the present chapter were written by Alexander McNeil

and can be obtained from http�!!www	math	ethz	ch!�mcneil!software	html	
We thank Richard Smith for having made some code available forming

the basis of the above programs	 Further S�Plus programs providing con�

�dence intervals for parameters in the GPD have been made available by

Nader Tajvidi under http�!!www	math	chalmers	se!�nader!software	html	
Various customised packages for extreme value �tting exist	 Examples are

XTREMES� which comes as part of Falk et al	 ������ and ANEX ����	

In the context of risk management� RiskMetrics ���� forms an interest�

ing software environment in which various of the techniques discussed so far�

especially concerning quantile �VaR� estimation� are to be found	



�

Time Series Analysis for Heavy	Tailed

Processes

In this chapter we present some recent research on time series with large

�uctuations� relevant for many �nancial time series	 We approach the problem

starting from classical time series analysis presented in such a way that many

standard results can also be used in the heavy�tailed case	

In Section �	� we give a short introduction to classical time series analysis

stressing the basic de�nitions and properties	 This summary clearly cannot

replace a monograph on the topic� and so the interested reader who is not

familiar with time series analysis should also consult a standard textbook	

At the elementary level� Brockwell and Davis ����� and at the more advanced

level Brockwell and Davis ���� provide the necessary background	 In Sec�

tion �	� linear processes with in�nite variance are introduced	 In Section �	�

we concentrate on asymptotic properties of the sample correlations both in

the �nite and the in�nite variance case	 In Section �	 asymptotic properties

of the periodogram under light or heavy tails of the observed time series are

studied	 Parameter estimation for ARMA processes is the topic of Section �	�	

We conclude with Section �	� in which notions such as �heteroscedasticity
�

�stochastic volatility
 and their relationship to the previous sections are ex�

plained	 We also give a short discussion about ARCH and related processes

which are alternative models for time series exhibiting large �uctuations	 A

more profound analysis of ARCH processes is to be found in Section �		
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�� A Short Introduction to Classical Time Series

Analysis

Classical time series analysis is mainly concerned with the statistical analysis

of stationary processes and� in particular� of linear processes

Xt  

�X
j���


jZt�j � t � Z � ��	��

with iid real�valued innovations or noise variables �Zt�t�Zwhich have mean

zero and �nite variance ��
Z 	 For reasons of standardisation we also require

that 
�  �	 In practical situations� one would of course consider so�called

causal representations in ��	��� i	e	 
j  � for j � �	 For �xed t� the series

in ��	�� converges a	s	 provided the real�valued coe�cients 
j satisfy the

condition

var�Xt�  ��
Z

�X
j���


�
j �� � ��	��

The process �Xt�t�Z is strictly stationary� i	e	 the �nite�dimensional distribu�

tions of the process are invariant under shifts of the time index	 Every strictly

stationary �nite variance process is also stationary �in the wide sense�� i	e	

there exists a constant  such that EXt   and EXtXt�h is only a function

of h� not of t� see Appendix A�	�	

Example ����� �ARMA process�

The most popular linear processes are ARMA�p� q� processes �autoregressi�

ve�moving average processes of order �p� q�� which are given by the di�erence

equations

Xt � �� Xt�� � � � � � �p Xt�p  Zt &  � Zt�� & � � �&  q Zt�q � t � Z �

��	��

The order �p� q� will typically be determined via an order selection criterion	

The parameters �i and  i satisfy certain conditions in order to guarantee

that equation ��	�� has a solution which can be expressed in the form ��	��	

Special cases are the MA�q� or moving average processes of order q

Xt  Zt &  � Zt�� & � � �&  q Zt�q � t � Z �

which only depend on the noise at the instants of time t� q� � � � � t	 Under

additional assumptions on the parameters �i �see the discussion in Section

�	��� pure AR�p� or autoregressive processes of order p can be interpreted as

genuine in�nite moving average processes	 For example� the AR��� process

can be written as
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�
� ��� realisations of iid N��	 �� noise �Zt� �top� and of the correspond�
ing AR��� processes Xt � ����Xt���Zt �middle� and Xt � ���Xt���Zt �bottom��

Xt  Zt & �� Xt��

 Zt & �� Zt�� & ��� Xt��

 Zt & �� Zt�� & ��� Zt�� & �
� Zt�
 & � � �

 

�X
j��

�j� Zt�j � ��	�

The condition j��j � � is obviously needed in order to justify the last equality�
only in that case does the series ��	�� converge� and then ��	� converges a	s	

In the case of causal ARMA processes� see Section �	�� the coe�cients 
j in

the representation ��	�� decrease to zero at an exponential rate and 
j  �

for j � �	 In particular� for MA�q��processes� 
j  � for j � q� and for an

AR��� process� 
j  �j� for j � �	 �

In order to �t a model of type ��	��� the parameters 
j and ��
Z have to

be estimated	 Roughly speaking� there exist two di�erent approaches	 In

the time domain one studies the dependence structure in the series via

the analysis of the autocovariances ��h�  cov�Xt� Xt�h� or autocorrelations

��h�  corr�Xt� Xt�h��
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��h�  ��jhj�  E �Xt Xt�h�  E �X� Xh� � h � Z � ��	��

��h�  
��h�

����
� h � Z � ��	��

Example ����� �Continuation of Example �	�	��

Using the uncorrelatedness of the rvs Zt it is easily seen that for the linear

process ��	�� the relations

��h�  ��
Z

�X
j���


j
j�jhj � h � Z �

and

��h�  

P�
j��� 
j
j�jhjP�

j��� 
�
j

� h � Z �

hold	 �

The second approach is based on the spectral �Fourier� analysis of the series�

and is referred to as the frequency domain approach	 The basic result for

spectral analysis is the so�called spectral representation of a stationary �in

the wide sense� process	

Theorem ����� �Spectral representation of stationary process�

Every �complex�valued� stationary mean�zero process �Xt�t�Z admits a sto�

chastic integral representation

Xt  

Z
�����	

eizt dZ�z� � t � Z � ��	��

with respect to a mean�zero complex�valued process �Z�z�����z�� with un�

correlated increments and such that

E jZ �z��� Z �z��j�  F �z��� F �z�� � �� � z� � z� � � �

for a right�continuous� non�decreasing� bounded function F on ���� �� with
F ����  �� �

Remark� The stochastic integrals in ��	�� are not �pathwise� Riemann or

Riemann�Stieltjes integrals	 They are de�ned as the mean square limit of

Riemann�Stieltjes type integrals for step functions �similarly to the de�nition

of an It'o integral�	 In particular� if �Xt� is a Gaussian process then �Z�z��

must also be a Gaussian process with independent increments	

Representation ��	�� of a complex�valued stationary process �Xt� is often

preferred in the literature although in most cases of practical interest one

deals with real�valued time series	 In this case� ��	�� takes on the form
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Xt  

Z
�����	

cos��t� dZ���� &

Z
�����	

sin��t� dZ���� � ��	��

where Z� and�Z� are the real and the imaginary part of Z� respectively	 Here

we also assumed for simplicity that F is continuous at � and �	 Moreover�

for real�valued �Xt�� F is a symmetric function about �	 This means that

F ���  F ���� � F ������ � � ���� ��	 In what follows we stick to the

complex�valued representation of �Xt�	 This is for notational convenience�

every statement can be interpreted in terms of real�valued processes by using

��	��	 �

We can roughly think of the stochastic integral ��	�� as a sum

nX
k��

exp fizk��tg �Z �zk�� Z �zk���� ��	��

for a partition ��zk��� zk��k�������n of the interval ���� ��	 Hence Xt is approx�

imated by a linear combination of trigonometric functions expfizk��tg with
random weights Z�zk�� Z�zk���	 It is clear that the trigonometric function

expfizk��tg will have the more in�uence on the value of Xt the �larger
 its

random weight	 A measure for the magnitude of this weight is the quantity

EjZ�zk�� Z�zk���j�  F �zk�� F �zk��� 	

The function F �x�� �� � x � �� is called the spectral distribution function

�spectral df � of the stationary process �Xt�	 Note that F�F ��� is a probability

df	 The �nite measure which is de�ned by the spectral df is called the spectral

distribution of the stationary process �Xt�	 If F is absolutely continuous with

respect to Lebesgue measure we can write it as an integral

F �x�  

Z x

��

f�z� dz � x � ���� �� �

where the non�negative function f�z� is called the spectral density of the

process �Xt�	 Having the approximation ��	�� to the stationary process ��	��

in mind� we see that

E jZ �zk�� Z �zk���j�  
Z zk

zk��

f�z�dz �

In particular� if f�z� has a large absolute maximum in the �su�ciently

small� interval �zk��� zk� we may conclude that the summand eizk��t�Z�zk��
Z�zk���� makes a relevant contribution to the magnitude of the sum ��	��	

Since the function expfizg has period �� we have for l � Z� expfizk��g  
expfizk���� & ��l�zk���g	 This means that� with high probability� the time
series Xt assumes large values around the instants of time � & ��l�zk��	
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Thus it exhibits some kind of cyclic behaviour with period ���zk�� and ran�

dom amplitude determined by Z�zk� � Z�zk���	 What has been said about

the largest summand in ��	�� translates analogously to the other summands

which clearly have less in�uence on Xt but they also create periodic subcycles

with smaller amplitude	

Theorem ����� �Spectral density of linear process�

Each mean�zero linear process ��	�� with �nite variance ��
Z  var�Z�� admits

a spectral representation ��	�� with spectral density

f�z�  
��
Z

��

						
�X

j���


je
�izj

						
�

� z � ���� �� � ��	���

�

From ��	��� it is clear that the spectral density of a linear process is basically

determined by the function


�z�  
�X

j���


je
�izj � z � ���� �� �

which is called the transfer function of the linear �lter �
j� or simply the

transfer function	 The function

j
�z�j� � z � ���� �� � ��	���

is the power transfer function	 Its estimation is of crucial importance for

estimating the spectral density	

Example ����� �Continuation of Example �	�	��

The spectral density of an ARMA�p� q��process has a particularly simple

representation� consider the two polynomials

��z�  �� �� z � � � � � �p zp � ��	���

 �z�  � &  � z & � � �&  q zq � ��	���

Then the spectral density of this ARMA process has representation

f�z�  
��
Z

��

j �expf�izg�j�
j��expf�izg�j� � z � ���� �� �

Notice that the constant spectral density f�z�  ��
Z������ z � ���� ��� corre�

sponds to iid noise �Zt�	 It is precisely for this reason �i	e	 constant f� that

the latter is often referred to as white noise� all frequencies contribute equally	

�
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Figure �
�
� Estimated spectral density of the closing log�returns of the Japanese
stock index NIKKEI �February 		� ���� � October �� ���� �� There is a peak around
the frequency z� � ����� The spectral density is estimated from n � 
�� daily data
at the frequencies zl � �
l�n� Thus z� corresponds to l 
 ��� which is roughly the
annual number of days at which the NIKKEI is evaluated� Thus the NIKKEI index
has roughly a cycle of one business year which gives a natural explanation for the
absolute maximum of the spectral density� On the other hand� there are plenty of
submaxima in the spectral density whose interpretation is not immediate� Moreover�
notice that the estimated spectral density is very �at� i�e� very close to the spectral
density of an iid sequence� A detailed analysis would involve the construction of
con
dence intervals on the log�scale followed by appropriate testing for peaks�

Time domain and frequency domain methods are equivalent analytic descrip�

tions of a time series� they are actually two languages based on di�erent tools	

The following statement describes the close link between both domains	

Theorem ����
 �Herglotz lemma�

A real�valued function ��h� de�ned on the integers is the autocovariance func�

tion of a �real�valued� stationary process �Xt�t�Z if and only if there exists

a spectral df F on ���� �� such that

��h�  

Z
�����	

cos�hz� dF �z� � h � Z � ��	��

�

As a consequence of ��	��� ���h�� uniquely determines F 	
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In the following sections we consider statistical methods which have been

developed for linear processes in the classical case� i	e	 when EX�
� ��	 We

will see that many methods of classical time series analysis in the time and in

the frequency domain can be adapted to the heavy�tailed case� i	e	 to in�nite

variance processes	

Notes and Comments

The basics of classical time series analysis as presented above can be found

in any standard monograph on the topic� see for instance Anderson ����� Box

and Jenkins ����� Brillinger ����� Brockwell and Davis ���� ���� Chat�eld ������

Fuller ����� Hamilton ����� Hannan ������ Priestley ����� and Rosenblatt

�����	

�� Heavy�Tailed Time Series

In this section we consider the �strictly stationary� linear process ��	�� with

iid innovations or noise �Zt�� but we do not suppose that the variance �
�
Z is

�nite	 To be more speci�c� we assume that Z� Z�� has an s	s distribution�

i	e	 a symmetric 	�stable distribution with chf

E expfizZg  exp f�cjzj�g � z � R � ��	���

where 	 � ��� �� and c � �	 We refer to Section �	� for more details on stable

laws and their domains of attraction and we recall that Z has an in�nite

variance	 In particular� by the properties of stable distributions we have the

following identity in law for each t�

Xt
d
 Z

�� �X
j���

j
j j�

A���

� ��	���

This implies thatXt is s	s� and one can even show that the �nite�dimensional

distributions of the process �Xt� are 	�stable and therefore the process is

stable � see Section �	�� in particular Example �	�	��	 We conclude from ��	���

that we need a speci�c condition on the coe�cients 
j in order to guarantee

the a	s	 existence of the series in ��	��	 By virtue of the ��series theorem for

a series of independent summands �for instance Petrov ���� ���� Billingsley

����� Theorem ��	��� Xt is well de�ned if and only if

�X
j���

j
j j� �� � ��	���
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Figure �
�
� ��� realisations of iid symmetric ����stable noise �Zt� with chf
����� �top� and of the corresponding AR��� processes Xt � ����Xt���Zt �middle�
and Xt � ���Xt�� � Zt �bottom�� Compare also with Figure ����	 where the same
time series models with Gaussian noise are considered�

This condition �ts nicely with ��	���	 Note that condition ��	��� is satis�ed

if �Xt� is an ARMA�p� q� process which is given by the di�erence equation

��	��� as in the classical case one can show that ��	�� has a unique solution

which can be expressed as a series ��	��	 Moreover� the coe�cients 
j are the

same as in the classical case	

In our considerations below we will not only assume that ��	��� holds�

but will require the more stringent condition

�X
j���

j
j j� j �� � ��	���

for some constant � � � such that

�  � if 	 � � �

� � 	 if 	 � � �
The ��series theorem and ��	��� ensure that the random series Xt converges

absolutely with probability �	 Such a condition is necessary in order to guar�

antee that we can interchange limits� in�nite sums and expectations	
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Recall from Example �	�	� that the iid s	s rvs Zt have representation

Zt  A
���
t Nt� where �At� and �Nt� are independent� At are iid 	���stable

positive rvs and Nt are iid standard normal	 Hence �Xt� has representation

Xt  

�X
j���


jA
���
t�jNt�j � t � Z �

This can be interpreted as a linear process with Gaussian innovations Nt

which are perturbed by potentially large multiplicative factors A
���
t 	 In this

sense� the theory below may be considered as a modi�cation of the classical

�Gaussian� theory when there are large �uctuations in the noise	

The restriction to s	s rvs is not at all necessary	 It is possible to consider

analogous theorems for Z in the domain of attraction of a stable law or even

under the assumption EjZjp �� for some p � �	 The symmetry condition

on Z can also be relaxed in a natural way� i	e	 by appropriate centring of

the rvs Xt	 However� the theory then becomes even more technical since we

would have to make several case studies according to di�erent parameter

values	 In particular� we would have to introduce a possibly confusing variety

of normalising and centring constants	 Thus� for the sake of clarity and brevity

of presentation� we restrict ourselves to this simple particular case	

Notes and Comments

There is a small but steadily increasing number of articles on heavy�tailed

linear processes in the literature	 An introduction to the topic can be found

in Brockwell and Davis ����� Chapter ��	�� where a justi�cation of the rep�

resentation of an ARMA process as a linear process ��	�� is given� see also

Samorodnitsky and Taqqu ������ Section �	��	 In the following sections we

will cite more speci�c literature at the appropriate places	 In a survey paper

Kl�uppelberg and Mikosch ���� contrast results in the classical and in the

heavy�tailed situation� both in the time and in the frequency domain	

In Section �	� we learnt about the spectral representation of a mean�zero

stationary process	 According to Theorem �	�	 every mean�zero station�

ary process has a representation via stochastic integrals ��	�� with respect

to a process �Z�z�� with uncorrelated increments	 For Gaussian �Xt� the

process �Z�z�� is necessarily Gaussian with independent increments	 In par�

ticular� every linear Gaussian process has a stochastic integral representation

��	��	 We might ask whether we can obtain a similar integral representation

for an s	s linear process	 It is possible to de�ne a stochastic integral ��	��

with respect to an s	s motion� see Section �	�	�	 One can even show that

this process is strictly stationary and has some kind of a generalised spec�

tral density	 However� the harmonisable stable process �Xt� �see Example
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�	�	��� does not have a representation as linear process ��	�� �see Cambanis

and Soltani ������ Rosinski ������� i	e	 for 	 � � the class of the s	s linear

processes and the class of the harmonisable s	s processes are disjoint	

One of the main objectives in time series analysis is prediction	 In the ��

nite variance case� Hilbert space methods are used to make a linear prediction

of a linear process� see for instance Chapter � in Brockwell and Davis ����	

In the in�nite variance case� the L� distance cannot be used as a measure of

error between the future value of the time series and its prediction	 Another

distance measure has to be introduced to build up a prediction theory analo�

gous to the �nite variance case	 We refer to Cline and Brockwell ����� and to

Brockwell and Davis ����� Section ��	�� who give some results in this spirit	

�� Estimation of the Autocorrelation Function

As pointed out in Section �	�� in the time domain one studies the dependence

structure of time series via autocovariances or autocorrelations	 In this section

we will consider some statistical estimation problems in the time domain for

linear processes with or without �nite variance	

In the classical case ���
Z ��� natural estimators for ��h�� see ��	��� and

��h�� see ��	��� are given by the sample autocovariance e�n�h� and the sample
autocorrelation e�n�h��

e�n�h�  
�

n

n�jhjX
t��

Xt Xt�jhj � h � Z � ��	���

e�n�h�  
e�n�h�e�n���  

Pn�jhj
t�� Xt Xt�jhjPn

t�� X
�
t

� h � Z � ��	���

with the convention that e�n�h�  e�n�h�  � for jhj � n	 In the classical case�e�n�h� and e�n�h� are consistent and asymptotically normal estimators of their
deterministic counterparts	 We restrict ourselves to autocorrelations	

Theorem ����� �Asymptotic normality of sample autocorrelations�

Let �Xt�t�Z be the mean�zero linear process ��	��� Suppose that either

�X
j���

j
j j �� and EZ� �� �

or
�X

j���

j
j j �� �

�X
j���


�
j j �� and ��

Z �� �
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Then� for each m � ��
p
n �e�n�h�� ��h��h�������m

d	 �Yh�h�������m �

where

Yh  
�X
j��

���h& j� & ��h� j�� ���j���h�� Gj � h  �� � � � �m � ��	���

and �Gj�j�� are iid N��� �� rvs� �

In particular� we obtain from Theorem �	�	� that� for each �xed h � ��

p
n �e�n�h�� ��h��

d	
�� �X
j��

j��h& j� & ��h� j�� ���j���h�j�

A���

G� �

Now suppose that �Zt�t�Z is iid s	s noise with chf E expfizZg  

expf�cjzj�g for some 	 � �	 Since ��
Z  var�Z�  � the notions of autoco�

variance and autocorrelation do not make sense	 However� the corresponding

sample analogues are obviously well de�ned �nite rvs� see ��	��� and ��	���	

Moreover� if the coe�cients 
j satisfy ��	��� then the quantities

��h�  

P�
j��� 
j
j�jhjP�

j��� 
�
j

� h � Z �

are �nite numbers although they cannot be interpreted as autocorrelations of

the process �Xt�	 Nevertheless� we will use the same notation ��h�	 Despite

the fact that the autocorrelations are not de�ned� the sample autocorrelations

are consistent estimators of the quantities ��h� just as in the classical case	

Theorem ����� �Weak convergence of sample autocorrelations for s	s time

series�

Let �Xt�t�Z be the linear process ��	��� Suppose that �Zt�t�Z is s	s noise with

common chf ��	��� for some 	 � � and that the coe�cients 
j satisfy ��	����

Then� for each m � ��

�n� lnn���� �e�n�h�� ��h��h�������m
d	 �Yh�h�������m �

where

Yh  

�X
j��

���h& j� & ��h� j�� ���j���h�� Gj

G�
� h  �� � � � �m � ��	���

and �Gj�j�� are independent stable rvs� G� is positive 	���stable with chf
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Figure �
�
� The sample autocorrelations e�n�h� at lags h � �� from n � ���
values of the ARMA����� process Xt � ���Xt�� � Zt � ���Zt with ���� � ����
���� � ����� ���� � ����� ���� � ���
 etc� In the 
gure above� the noise is iid
N��	 ��� in the 
gure below the noise is iid symmetric Cauchy� The dotted lines
indicate the 
�! asymptotic con
dence band for the sample autocorrelations of iid
N��	 �� rvs�

E exp fizG�g ��	���

 exp
n
�� ��� 	��� cos��	��jzj��� ��� i sign�z� tan��	���

o
�

and �Gj�j�� are iid s	s rvs with chf

E exp fizG�g  
�
exp f�� ��� 	� cos��	���jzj�g if 	 � � �
exp f��jzj��g if 	  � �

��	��

�

Remarks� �� Theorem �	�	� can be compared with Theorem �	�	�� if we

specialise Theorem �	�	� to one component then we obtain� for each �xed

h � ��
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Figure �
�
� The sample autocorrelations e�n�h� at lags h � �� of the closing log�
returns of the NIKKEI index �February 		� ���� � October �� ���� �� The autocor�
relations of X�	 � � � 	 X�		 �top left�� of X�			 � � � 	 X�		 �top right�� of X�			 � � � 	 X
		

�bottom left� and of X			 � � � 	 X��	 �bottom right� are given� The dotted lines in�
dicate the 
�! asymptotic con
dence band for the sample autocorrelations of iid
N��	 �� rvs� Notice that only the sample autocorrelation at lag � is signi
cantly dif�
ferent from zero in the top 
gures� This signi
cant value may� however� be spurious�

�n� lnn�
���
�e�n�h�� ��h��

d	
�� �X
j��

j��h& j� & ��h� j�� ���j���h�j�

A���

G�

G�
� ��	���

In particular� e�n�h�  ��h� &OP

�
�n� lnn�

����
�
�

which compares favourably with the slower rate OP �n
����� in the classical

case	 We can interpret this faster rate of convergence in the sense that large

�uctuations in the innovations stabilise the estimation of ��h�	 The sample

autocorrelation e�n�h� is a studentised or self�normalised version of the sample
autocovariance	 Self�normalisation has the e�ect that we replace the original
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observations Xt� t  �� � � � � n� by Xt��
Pn

s�� X
�
s �

���� t  �� � � � � n	 In contrast

to the former rvs the latter are bounded quantities and have a �nite variance	

�� A close look at the proof of this result shows that the rv G� in the

denominator is �up to a multiplicative constant� nothing but the limit of

n����
Pn

t�� X
�
t 	 In the classical case the latter corresponds to the quantity

n��
Pn

t�� X
�
t which converges in distribution to a constant and therefore

self�normalisation is not necessary to guarantee consistent estimation of the

sample autocovariances	 However� it is common practice to estimate the auto�

correlations� they are standardised autocovariances and therefore the depen�

dence structure of di�erent time series is made comparable from one series

to another	 Theorem �	�	� explains to some extent what happens to the es�

timation of ��h� when there are large �uctuations in the noise	

A glance at the proofs in the �nite variance case �see Brockwell and Davis

����� Chapter ��� and in the in�nite variance case �Davis and Resnick

����� ���� ����� explains why the structure of the limit variables Yh in ��	���

and ��	��� is so similar	 These limits are �built up
 by the rvs Gh which

are the limits of the normalised sample autocovariances n��
Pn�jhj

t�� ZtZt�jhj
of the iid noise �Zt�	 Notice that� for m � �� the normalised sample au�

tocovariances �n����
Pn�h

t�� ZtZt�h�h�������m converge in distribution to iid

Gaussian �Gh�h�������m� provided ��
Z ��	 If Z is s	s� the random vec�

tor ��n lnn�����
Pn�h

t�� ZtZt�h�h�������m converges in distribution to iid s	s

�Gh�h�������m	

�� The distribution ofG��G� in ��	��� is quite unfamiliar	 It is given in Brock�

well and Davis ����� formula ���	�	���� and can be expressed via some special

functions� see Kl�uppelberg and Mikosch �����	 In particular� EjG��G�j�  �
or � � according as � � 	 or � � 		 Quantiles of this distribution can be

found by Monte�Carlo simulation of G��G�	 The limit distribution depends

on 	 which has to be estimated� see Section �		�	 �

Notes and Comments

Theorem �	�	� and related results can be found in Brockwell and Davis �����

Chapter �	 Theorem �	�	� and more asymptotic theory for the sample auto�

covariance and the sample autocorrelation in the heavy�tailed situation are

given in Davis and Resnick ����� ���� ����� see also Brockwell and Davis �����

Chapter ��	�	 We note that Davis and Resnick also treat the joint asymptotic

behaviour of the �properly centred and normalised� sample autocovariances

�e�n���� e�n���� � � � � e�n�m��	 In that case� various subcases must be considered�
a� EZ� ��	 Then the limit vector is jointly Gaussian	
b� EZ�  �� ��

Z �� and Z� has a regularly varying tail	 If �Xt� is a gen�
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uine linear process �i	e	 not an iid sequence� then the limit vector consists of

a stable rv multiplied by a constant vector� see Theorem �	� in Davis and

Resnick �����	 This result can be re�ned for iid noise �Zt� in which case the

limit vector consists of a stable rv in the �rst component and of iid Gaussian

variables in the remaining components	

c� Z is in the domain of attraction of an 	�stable law� 	 � �	 The limit vector

is positive 	���stable in the �rst component and 	�stable in the remaining

components	

Case b� has recently attracted some attention in the econometrics literature�

where the results by Davis and Resnick were partly reproved	 The interest

is based on the empirical evidence that some �nancial time series have regu�

larly varying tails with index between � and � see for instance Longin ���� or

Loretan and Philips ����	 The paper by M�uller� Dacorogna and Pictet ����

contains a detailed analysis con�rming fat�tailedness in the foreign exchange

market and the inter�bank market of cash interest rates	

The similarity of the results in Theorems �	�	� and �	�	� is a consequence

of the linearity of the process �Xt�	 Recent results by Davis and Resnick ����

and Resnick ����� for a bilinear process Xt  cXt��Zt�� & Zt with in�nite

variance innovations Zt show that the sample autocorrelations converge to

non�degenerate limit laws	

�� Estimation of the Power Transfer Function

In this section we concentrate on the estimation of the power transfer function

j
�z�j�� see ��	���� of the linear process ��	��	 We again commence with the
classical �nite variance case	 As we know from Theorem �	�	�� the spectral

density of a linear process is given by

f�z�  
��
Z

��

						
�X

j���


je
�izj

						
�

 
��
Z

��
j
�z�j� � z � ���� �� �

Therefore it is important to estimate the power transfer function j
�z�j�	 Its
classical estimator is the periodogram

In�X �z�  
�

n

					
nX
t��

Xte
�izt

					
�

� z � ���� �� � ��	���

It is a natural estimator because it is constructed as empirical analogue to

the power transfer function	 Indeed� notice that
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Figure �
�
� The log�transformed smoothed periodogram ����� for n � ����
daily log�returns �closing data� of the German stock index DAX �September 	��
���� � August 	�� ����� �bottom� and the corresponding log�transformed smoothed
self�normalised version of the periodogram �top�� Both lines are almost constant
indicating that the DAX log�returns perform very much like an iid noise sequence�

��
Z j
 �z�j�  

�X
h���

��h�e�izh

and that
In�X �z�  

X
jhj�n

e�n�h�e�izh �
The periodogram is not a consistent estimator of the power transfer function�

but under mild conditions we are not far away from consistency	

Theorem ����� �Limit distribution of the periodogram� classical case�

Let �Xt�t�Z be the linear process ��	��� Suppose that EZ  �� ��
Z ���

�X
j���

j
j j �� and j
�z�j� � � � z � ���� �� �

Then� for any frequencies � � z� � � � � � zm � ��

�In�X �zi��i�������m

d	 ��
Z

�

�
j
�zi�j�

�
	�
i & ��

i

��
i�������m

�

where 	�� ��� � � � � 	m� �m are iid N��� �� rvs�
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Note that �	�
i & ��

i ���� as the sum of two independent %� rvs� is a stan�

dard exponential rv	 This is the form in which this classical result is usually

formulated	

Sketch of the proof� As a �rst step one can show that

In�X�z�  j
�z�j� In�Z�z� & oP ��� � n	� � ��	���

where In�Z�z� denotes the periodogram of the iid sequence �Zt�	 Hence the

asymptotic behaviour of In�X�z� depends only on the periodogram of an iid

sequence	 We write

In�Z�z�

 
�

�
	�
n�z� &

�

�
��
n�z�

 
�

�

�
�

n

���� nX
t��

Zt cos�zt�

��

&
�

�

�
�

n

���� nX
t��

Zt sin�zt�

��

�

Thus we have to study the weak convergence of the vector �	n�z�� �n�z��

which is not too di�cult	 The normalisation
p
n in both terms 	n�z� and

�n�z� at once suggests applying a two�dimensional CLT for non�iid sum�

mands	 This argument indeed works �also for a �nite number of periodogram

ordinates� and proves that

�	n�z�� �n�z��
d	 �Z �	�� ��� �

for iid N��� �� rvs 	� and ��	 An application of the continuous mapping

theorem concludes the proof	 �

Now suppose that �Zt� is a sequence of iid s	s rvs with chf ��	��� for some

	 � � and c � �	 We learnt from Theorem �	�	 that the notions of a spectral

distribution and of a spectral density are very much related to stationary

processes in the wide sense� i	e	 processes with �nite covariance function	

Thus� for linear processes �Xt� with iid s	s noise� the notion of a spectral

density does not make sense	 However� the power transfer function of such

a process is well de�ned under quite general conditions	 And one can even

show that a result similar to Theorem �		� is valid� we browse through the

arguments of the proof of Theorem �		�	 First� ��	��� remains true if we

rede�ne the periodogram in a suitable way�

In�X�z�  n����

					
nX
t��

Xte
�izt

					
�

� z � ���� �� � ��	���
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Whenever we work with s	s time series we will assume that we deal with

this modi�cation of the periodogram� i	e	 we suppress its dependence on 	

in the notation	 Similar arguments as above show that we have to study the

joint convergence of

�	n�z� � �n�z��  

�
n����

nX
t��

Zt cos�zt� � n
����

nX
t��

Zt sin�zt�

�
�

and the normalisation n��� already suggests that we have to apply a CLT for

rvs in the domain of normal attraction of an 	�stable law� see Section �	�	

However� 	n�z� and �n�z� are sums of non�iid rvs� so one has to modify the

theory for weighted sums of iid s	s rvs	 Finally� one arrives at the following

result�

Theorem ����� �Limit distribution of the periodogram� s	s case�

Let �Xt�t�Z be the linear process ��	�� with iid s	s noise �Zt�t�Zand common

chf ��	��� for some 	 � �� Suppose ��	��� and j
�z�j� � � � z � ���� ��� Then�
for any frequencies � � z� � � � � � zm � ��

�In�X �zi��i�������m

d	
�
j
�zi�j�

�
	� �zi� & �� �zi�

��
i�������m

�

where �	�z��� ��z��� � � � � 	�zm�� ��zm�� is an s	s random vector in R�m �

Moreover� there do not exist any two components in this vector which are

independent� �

Remark� For a precise formulation of this result we would need rather so�

phisticated arguments	 The de�nition of an s	s random vector via its chf

is given in Section �	�	�	 If we compare Theorems �		� and �		� there are

some similarities in structure� but we also see signi�cant di�erences	 Con�

cerning the latter� the components in the limit vector are dependent and

their distribution depends on the frequencies zk	 A more detailed analysis

of Theorem �		� shows that the limit distribution of In�Z�z� is identical for

all frequencies z which are irrational multiples of �	 In many situations the

components �	��zk�&���zk��k�������m of the limit vector are exchangeable in

the sense that they can be embedded in a sequence of conditionally indepen�

dent rvs	 On the other hand� it seems di�cult to apply such a result since it

depends very much on the form of the frequencies and creates a non�tractable

form of dependence in the limit	 �

An application of Theorem �		� requires the knowledge of 	 which appears

in the normalisation of ��	���	 One way to overcome this problem is by self�

normalisation or studentisation	 But notice that 	 still appears in the limit
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distribution	 This technique was already mentioned in the context of sam�

ple autocovariances and sample autocorrelations	 Results similar to Theo�

rem �		� hold true for the self�normalised periodogram

eIn�X�z�  jPn
t�� Xt expf�iztgj�Pn

t�� X
�
t

� z � ���� �� �

The motivation for such an estimator is given by the fact that

n����
nX
t��

X�
t  n������

nX
t��

Z�
t �� & oP ����

d	 �� G� �

where G� is a positive 	���stable rv and ��  
P�

j��� 
�
j 	 This means thatPn

t�� X
�
t and n��� are roughly of the same order	 It can be shown both in the

classical and in the s	s case that the following holds true for any frequency

z � ��� ���

eIn�X �z� d	 j
�z�j�
��

	��z� & ���z�

G�
 
j
�z�j�
��

�� & T �z�� �

In the classical case� G�  � and �	
��z� & ���z���� is a standard exponen�

tial rv� thus independent of the frequency z	 In the s	s situation� 	�z�� ��z�

and G� are dependent and �	�z�� ��z�� has an s	s distribution in R� depend�

ing on z	 In spite of these di�erences� in both cases

P �� & T �z� � x� � expf�cxg � x � � � ��	���

for a constant c � � independent of the distribution of Z and

ET �z�  � � cov �T �z�� T �z���  � � � � z � z� � � � ��	���

These statements are trivial in the classical situation	 They show how close

the classical and the self�normalised s	s case actually are	 Self�normalisation

under the condition of a �nite variance is clearly not necessary for convergence

because n��
Pn

t�� X
�
t satis�es a fairly general LLN	

In the classical situation� the properties ��	��� and ��	��� suggest estimat�

ing the power transfer function via a smoothed version of the periodogram	

The same methods also work in the s	s situation although it seems di�cult

to derive good con�dence intervals in that case	 In order to illustrate the

method we restrict ourselves to a simple discrete weighted average estimator�

similar results can be obtained for kernel type smoothers	

We introduce the following class of weights� let �wn�k��jkj�m be non�

negative real numbers such that

wn�k�  wn��k� �
X
jkj�m

wn�k�  � �
X
jkj�m

w�
n�k�	 � �
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Figure �
�
� The 
gure above shows the logarithm of the smoothed classical peri�
odogram ����� for n � ��� realisations of the AR��� process Xt � ���Xt�� � Zt�
The iid noise �Zt� has either a common standard normal distribution �� � �� or a
common s�s distribution �� � f���	 ���	 ���	 ���g�� The estimated curves are almost
parallel indicating that the normalisation in the cases � �� � is not correctly chosen�
The 
gure below shows the logarithm of the smoothed� self�normalised periodogram
as used in Proposition ����� for the same realisations of the AR��� process with
weights ������ m � ���

where we also require that m  m�n�	� and m�n	 � as n	�	 The
simplest example of such weights is given by

wn�k�  
�

�m& �
� m  �n� � � for some � � ��� �� � ��	���

where ��� denotes the integer part	
Proposition ����� Suppose that the iid noise rvs Zt are either s	s for some

	 � � or that var�Z�  ��
Z �� and EZ  �� Then� for � � z � ��

X
jkj�m

wn�k� eIn�X �zk� P	 j
�z�j�
��

� n	� �
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Here z�  ��l�n for some l � N is the Fourier frequency closest to z from the

left� and zk  ���l & k��n for the same l and jkj � m� �

Notes and Comments

The classical asymptotic theory for the periodogram �Theorem �		�� can for

instance be found in Brockwell and Davis ����� Section ��	�� or in Priestley

�����	 The asymptotic independence of the periodogram ordinates at di�erent

frequencies gives an intuitive explanation for the fact that one cannot im�

prove the pointwise weak convergence �i	e	 convergence at �xed frequencies�

towards a FCLT	 However� the asymptotic independence suggests consider�

ing integrated versions of the periodogram as analogues to the empirical df	

A rule of thumb is that any asymptotic result which holds for the empirical

df of iid rvs has some analogue in the language of the integrated periodogram	

There exist many results which show the close relationship between the the�

ory for the integrated periodogram and for the empirical df� see for instance

Dzhaparidze ������ Grenander and Rosenblatt ����� or Priestley �����	 For this

reason the integrated periodogram is sometimes also called the empirical spec�

tral distribution function	 FCLTs for the integrated periodogram can be used

for constructing goodness�of��t tests or for detecting a changepoint of the

spectral distribution function via Kolmogorov�Smirnov or Cram�er�von Mises

type statistics	 A recent account of the asymptotic theory in the classical case

has been given by Anderson ����� see also Bartlett �� �� and Grenander

and Rosenblatt ����� as classical references� Kl�uppelberg and Mikosch �����

�for changepoint detection via the integrated periodogram with a limiting

Kiefer�M�uller process� see also the literature cited therein�� Dahlhaus �����

and Mikosch and Norvai*sa ���� �for uniform CLTs and LLNs of the inte�

grated periodogram indexed by classes of square�integrable functions�	 In

the 	�stable case Kl�uppelberg and Mikosch ����� show FCLTs for the in�

tegrated periodogram with limiting processes which can be considered as

	�stable analogues of the Brownian bridge� see Example �	�	�	 For long

memory processes� Kokoszka and Mikosch ���� show analogous results both

in the classical situation and in the in�nite variance case	 We also refer to

the survey papers by Kl�uppelberg and Mikosch ����� and Mikosch ���� 	

The theory for the estimation of the power transfer function in the s	s and

more general cases has been developed in Kl�uppelberg and Mikosch ����� ����	

The exact formulation of Theorem �		� is given in ������ and related results

for the self�normalised version of the periodogram are contained in ������

see also Bhansali ����	 It should be mentioned that the e�ect of �robusti��

cation
 of periodogram estimators via self�normalisation has been observed
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in the time series context for a long time� see for instance Anderson ���� or

Priestley ������ Chapter �	

Results for the smoothed periodogram �such as Proposition �		�� in the

classical setting can be found for instance in Brockwell and Davis ����� Chap�

ter ��� in Grenander and Rosenblatt ����� or in Priestley ������ Chapter �	 In

the s	s situation� Proposition �		� is formulated in Kl�uppelberg andMikosch

�����	

The estimation of the pseudo�spectral density of harmonisable stable

processes �see the Notes and Comments at the end of Section �	�� has been

considered for instance in Masry and Cambanis ��� and Hsing ����	

�
 Parameter Estimation for ARMA Processes

From Section �	� we recall the notion of an ARMA�p� q� process� which is

a linear process given by the di�erence equations

Xt � �� Xt�� � � � � � �pXt�p  Zt &  � Zt�� & � � �&  q Zt�q � t � Z �

��	���

for a �xed order �p� q�	 We write

�  ���� � � � � �p�  �� � � � �  q�
T

and use the symbol �� for the true� but unknown parameter vector	 The

observed time series X�� � � � � Xn is supposed to come from the model ��	���

with �  ��	

In the classical setting� there exist three basic techniques for estimat�

ing ��� Gaussian maximum likelihood� least squares and Whittle estimation�

The latter two methods provide approximations to the Gaussian maximum

likelihood estimator� the least squares estimator in the time domain and the

Whittle estimator in the frequency domain	 They can be shown to be as�

ymptotically equivalent in the sense that they yield strongly consistent and

asymptotically normal estimators of ��	 Moreover� the Whittle estimator�

when restricted to pure AR processes� is the celebrated Yule�Walker esti�

mator� The Yule�Walker estimator is introduced as moment estimator� the

parameter vector is chosen such that the theoretical and empirical autorcorre�

lations of an AR process match	 It has been extended to ARMA processes and

is commonly used as preliminary estimator for more advanced optimisation

procedures� see Brockwell and Davis ����� Sections �	���	�	 In the following

we restrict ourselves to Whittle estimation which has been important within

asymptotic estimation theory since its discovery� see Whittle ����	 It works
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Figure �
�
� ��� realisations of iid s���s noise �top�� They are used to generate
the ARMA processes Xt � ���Xt�� � Zt� Xt � Zt � ���Zt�� and Xt � ��� Xt�� �
Zt � ��� Zt�� �from top to bottom��

for processes under very di�erent conditions such as long� or short�range

dependence� heavy or light tails	 It can easily be calculated by means of the

fast Fourier transform algorithm� see Brockwell and Davis ����� Section ��	�	

First we formulate the classical �nite variance result and then turn to the

s	s case	

For a given parameter vector � the coe�cients 
j  
j���� j � �� of the
linear process de�ne the corresponding power transfer function

j
 �z� ��j�  
						
�X
j��


j���e
�izj

						
�

� z � ���� �� �

We suppose that �� belongs to the natural parameter space

C  
�
� � R

p�q � �p � � �  q � � �
��z� and  �z� have no common zeros�

��z�  �z� � � for jzj � �g �

where the polynomials ��z� and  �z� are de�ned in ��	��� and ��	���� re�

spectively	 In that case the di�erence equations ��	��� have a unique solution
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which is a linear process ��	�� whose coe�cients 
j��� decrease to zero at an

exponential rate	 De�ne

e��
n���  

Z �

��

In�X�z�

j
 �z� ��j� dz �

The Whittle estimator is motivated by the observation that the function

g���  

Z �

��

j
 �z� ���j�
j
 �z� ��j� dz

assumes its absolute minimum on the closure of C precisely at the point
�  ��� see Brockwell and Davis ����� Proposition ��	�	�	 Thus� if we replaced

j
�z� ���j� by an appropriate periodogram estimator we would expect that

the Whittle estimator e�n  argmin
�C e��
n��� ��	���

should be close to ��	 Indeed� this approach works	 Note that we may re�

place the ordinary periodogram In�X � see ��	���� in e��
n��� by any other re�

normalised version of it� the value of e�n is not in�uenced	 However� if we are
interested in the limiting behaviour of e��

n�
e�n� then the normalisation of In�X

is important	

For practical purposes� the following version of the Whittle estimator

��	��� is more appropriate� de�ne the discretised version of e��
n��� as

b��
n���  

��

n

X
zt������	

In�X �zt�

j
 �zt� ��j�
�

where zt  ��t�n denote the Fourier frequencies andb�n  argmin
�C b��
n��� � ��	��

Both versions of Whittle�s estimator have the same asymptotic properties�

Theorem ����� �Asymptotic normality of Whittle estimator� classical case�

Suppose �Xt�t�Z is the ARMA�p� q� process given by ��	��� with EZ  � and

��
Z  var�Z� ��� Then

p
n �e�n � ���

d	 ���W������

�X
j��

bjGj ��	���

in Rp�q � where �Gj� are iid N��� �� rvs� W������ is the inverse of the matrix

W ����  

Z �

��

�
! ln j
 �z� ���j�

!�

��
! ln j
 �z� ���j�

!�

�T
dz � ��	���
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and

bj  
�

��

Z �

��

e�ijz j
 �z� ���j� ! j
 �z� ���j��

!�
dz � ��	���

Relation ��	��� remains valid with e�n replaced by b�n� Moreover�

e��
n�

e�n� a�s�	 ����
Z � b��

n�
b�n� a�s�	 ����

Z � �

Remarks� �� The limit vector in ��	��� is mean�zero Gaussian with covari�

ance matrix �W������� see Brockwell and Davis ����� Theorem ��	�	�	

�� The estimators which are based on Gaussian maximum likelihood or least

squares yield exactly the same asymptotic results� see Brockwell and Davis

����� Theorem ��	�	�	 Moreover� if we restrict ourselves to AR processes then

the estimator e�n coincides with the commonly used Yule�Walker estimator�
for a de�nition see Brockwell and Davis ����� Section �	�	 �

The basic idea for the proof of Theorem �	�	� is a Taylor expansion of

!e��
n�����!� about �  

e�n and then an approximation of the expansion via
linear combinations of a �nite number of sample autocovariances of the iid

noise which are jointly asymptotically normal� see Theorem �	�	�	 The same

idea also works in the heavy�tailed case since we have joint weak convergence

of a vector of sample autocorrelations of the iid noise� see Theorem �	�	�	

The following is analogous to the classical result of Theorem �	�	�	 Recall

that we de�ne the periodogram for s	s �Xt� by ��	���	

Theorem ����� �Limit distribution of Whittle estimator� s	s case�

Suppose �Xt�t�Z is the ARMA�p� q� process given by ��	��� for iid s	s noise

�Zt�t�Z with common chf ��	��� for some 	 � �� Then

�n� lnn����
�e�n � ��

�
d	 ��� W�� ����

�X
j��

bj
Gj

G�
��	���

in R
p�q � where G� and �Gj�j�� are independent rvs with chfs ��	��� and

��	��� respectively� W������ is the inverse of the matrix ��	��� and� for

j � �� bj is the vector ��	���� Relation ��	��� remains valid with e�n replaced

by b�n� Moreover�

e��
n�

e�n� d	 ��G� �

b��
n�

b�n� d	 ��G� �

n���
� nX
t��

X�
t

���e��
n�

e�n� P	 ����� �
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n���
� nX
t��

X�
t

���b��
n�

b�n� P	 ����� � �
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Figure �
�
� ��� realisations of the AR��� process Xt � ���Xt�� � Zt with stan�
dard normal noise �top left� and standard Cauchy noise �top right�� In the two bot�
tom 
gures the respective scatterplots and a straight line with slope ��� are shown�
The latter two graphs indicate that a regression estimator of the value ��� would
yield more precise results in the Cauchy case� These graphs indicate to some extent
why parameter estimators usually work better in the in
nite variance case� large
values of the noise show the dependence structure of the observed time series much
better than for small values Zt�

Remarks� �� Theorem �	�	� shows that one of the important classical es�

timation procedures also works for heavy�tailed processes	 The rate of con�

vergence OP �
�
n� lnn�����

�
in the s	s case is faster than OP �n

����� in the

classical case	

� Remark � in Section �	� concerning the calculation of the distribution

of G��G� also applies to the situation of Theorem �	�	�	 �

To get some idea of how the Whittle estimator behaves in the heavy�tailed

situation� we ran a small simulation study using the estimator b�n in ��	��
based on the summed periodogram b��

n	 It should be emphasized that the
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estimation requires knowledge of neither the stability parameter 	 nor the

scale parameter c of the data� see the chf ��	���	

The following table summarizes some of our simulation results	 We gen�

erated ��� observations from each of the models

�	 Xt � �� Xt��  Zt�

�	 Xt  Zt & ��� Zt���

�	 Xt � �� Xt��  Zt & ��� Zt���

where the innovations sequence �Zt� was either iid 	�stable with 	  ��� and

scale parameter c  �� or� for comparison purposes� N��� ��	 In the stable

case we relied on the algorithm given by Chambers� Mallows and Stuck �����

for the generation of the innovation process	 We ran � ��� such simulations

for each model	 In the stable example we estimated the ARMA parameters

via the estimator b�n� and in the Gaussian case via the usual ML estimator
�MLE�	 The results were as follows�

Model True Whittle estimate Maximum likelihood

No	 values mean st	 dev	 mean st	 dev	

� ��  �� �	�� �	��� �	�� �	���

�  �  ��� �	��� �	��� �	��� �	���

� ��  �� �	��� �	��� �	��� �	���

 �  ��� �	��� �	�� �	��� �	���

Table ����� Estimating the parameters of stable and normal ARMA

processes via Whittle and MLE estimates�

We point out that the accuracy of the Whittle estimator in the stable case

seems to be comparable to that of the MLE in the Gaussian case	 See also

the comparative empirical study of di�erent parameter estimators given in

Figures �	�	� and �	�	�	

Notes and Comments

The classical estimation theory for ARMA processes can be found in any stan�

dard textbook on times series analysis� see for instance Box and Jenkins ����

as a classical monograph or Brockwell and Davis ����	 The asymptotic theory

for the Yule�Walker� the Gaussian maximum likelihood� the least squares and

the Whittle estimator �Theorem �	�	�� is given in Brockwell and Davis �����
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Chapters � and ��	 There the estimator b�n� see ��	��� is treated� but similar
arguments prove the results for e�n	
The general methodology for the Whittle estimator �see Whittle ������

with many subsequent contributions� such as from Hannan ����� ����� Fox

and Taqqu ���� Dahlhaus ������ or Giraitis and Surgailis ������ has evolved

steadily towards a uni�ed theory	 Heyde and Gay ���� give an overview of the

existing literature in the univariate and multivariate case for Gaussian!non�

Gaussian processes!�elds with or without long�range dependence	

Theorem �	�	� and related results for the heavy�tailed case can be found

in Mikosch et al	 ����	 There a discussion of other parameter estimators for

heavy�tailed processes is also given	 We provide here an outline�

�There is a small� but interesting and rapidly growing� literature on paramet�

ric estimation for ARMA processes with in�nite variance innovations	 The

di�culties in developing a maximum likelihood estimator have led to a num�

ber of essentially ad hoc procedures� each of which generalises some aspect

of the Gaussian case	 Nevertheless� a relatively consistent picture� at least as

far as rates of convergence are concerned� has developed	 Not surprisingly�

the �rst estimator studied was a Yule�Walker �YW� type estimator for the

parameters of an AR�p� process	

The YW�estimates b�YW of the true values �� of an AR�p� process are

de�ned as the solution of e&�YW  e�
where e&  �e�n�i� j��pi�j��� e�  �e�n���� � � � � e�n�p��T � and e�n�h� is the sample
autocorrelation function	 In the autoregressive case it is not di�cult to see

that the YW�estimate coincides with the Whittle estimate based on e��
n���	

Hannan and Kanter ����� showed that if � � 	 � �� and � � 	� then

n���
�b�YW � ��

�
a�s�	 � � n	� �

More recently� Davis and Resnick ����� showed that there exists a slowly

varying function L� such that

n��� L��n�
�b�YW � ��

�
d	 Y � n	�

where the structure of Y is closely related to the rhs of ��	���	

A somewhat di�erent approach to parameter estimation� still in the purely

autoregressive case� is based on a least absolute deviation �LAD� estimator�

which we denote by b�LAD 	 The LAD�estimate of �� is de�ned as the min�
imiser of

nX
t��

jXt � �� Xt�� � � � � � �pXt�pj
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Figure �
�
� Boxplots of four parameter estimators of �� � ���� in the AR���
model Xt � ���Xt�� � Zt �top� and of �� � ��� in the MA��� model Xt � Zt �
���Zt�� �bottom�� They are based on �� simulations of a time series of length ����
Z is s�s with scale parameter c � �� � � f���	 �	 ���	 �g�
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Figure �
�
� Boxplots of four parameter estimators for �� � ���� �top� and �� �
��� �bottom� in the ARMA��	 �� model Xt����Xt�� � Zt����Zt��� They are based
on �� simulations of a time series of length ���� Z is s�s with scale parameter c � ��
� � f���	 �	 ���	 �g�
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with respect to �  ���� � � � � �p�
T 	

An and Chen ��� showed that if Z has a unique median at zero and Z is

in the domain of attraction of a stable distribution with index 	 � ��� ��� or
Z has a Cauchy distribution centred at zero� then� for � � 	�

n���
�b�LAD � ��

�
P	 � � n	� �

More recently� Davis� Knight and Liu ����� de�ned the M�estimate b�M of an

AR�p� process as the minimiser of the objective function

nX
t�p��

r �Xt � ��Xt�� � � � � � �pXt�p�

with respect to �� where r is some loss function	 They also established the

weak convergence of b�M � for the case when r is convex with a Lipschitz

continuous derivative	 Speci�cally� they showed that

n��� L��n�
�b�M � ��

�
d	 � � n	� �

where � is the position of the minimum of a certain random �eld� and L� is

a certain slowly varying function	

Thus� as is the case for the Whittle estimator� the rate of convergence of

the estimator is better than that in the Gaussian case� while the asymptotic

distribution is considerably less familiar	

We note that �more rapid than Gaussian
 rates of convergence for estima�

tors in heavy�tailed problems seem to be the norm rather than the exception	

For example� Feigin and Resnick ����� ���� study parameter estimation for

autoregressive processes with positive� heavy�tailed innovations� and obtain

rates of convergence for their estimator of the same order as the Whittle

estimator� but without the slowly varying term	 Their estimators� however�

are di�erent from the Whittle estimator both in spirit and detail� and involve

the numerical solution of a non�trivial linear programming problem	 For the

latter standard software exists	 Finally� Hsing ����� Theorem �	�� suggests

an estimator based on extreme value considerations� which works for the pure

MA case	 Once again� he obtains an asymptotic distribution reminiscent of

��	���� with a similar rate of convergence	


There are some more recent contributions to parameter estimation of heavy�

tailed ARMA and related processes	 Kokoszka and Taqqu ���� prove that

Theorem �	�	� remains valid for fractional ARIMA processes with noise dis�

tribution in the domain of normal attraction of an 	�stable law� � � 	 � �	

In that case� the coe�cients 
j are not absolutely summable� but of order


j � cjd�� for some d � �� ��		 In analogy to the �nite variance case� such
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processes are said to have long memory or long�range dependence	 Davis �����

proves results on M� LAD and Gauss�Newton estimates of in�nite variance

ARMA processes	 He shows that LAD estimates outperform Gauss�Newton

and Whittle estimation in the sense that �n����b�LAD � ���� converges in

distribution	 Thus one can avoid the logarithmic term in the normalisation

of ��	���	 The performance of these estimators is illustrated in Figures �	�	�

and �	�	�	

We mention that some of the classical procedures for determining the

order �p� q� of an ARMA process� for instance the AIC for AR processes �see

Brockwell and Davis ����� Chapter �	��� also work in the heavy�tailed case

�see for instance Bhansali ��� ���� Knight �����	

�� Some Remarks About Non�Linear Heavy�Tailed

Models

In the literature on �nancial time series and �nance one often �nds claims

like �real �nancial data come from non�linear� non�stationary processes with

heavy�tailed� leptokurtic marginal distributions� or ��nancial data are het�

eroscedastic� or �the price process is highly volatile�	 It is the aim of this

section to give a brief explanation of some of these catchy words which are

used to describe irregular behaviour of �nancial time series and processes	

Though price or exchange rate processes �Xt� themselves can rarily be

described as a stationary time series� in most cases a straightforward trans�

formation brings them back �or closer� to a stationary model	 For instance�

share prices� exchange rates� stock indexes etc	 are believed to grow roughly

exponentially when time goes by	 Therefore time series analysts and econo�

metricians mostly agree on the fact that daily logarithmic di�erences or log�

returns

Rt  ln


Xt

Xt��

�
 lnXt � lnXt��

constitute a stationary process �strictly or in the wide sense�� see for instance

Taylor �����	 Clearly� �daily
 can be changed into any relevant period of time	

Note that� by Taylor�s formula�

ln


Xt

Xt��

�
 ln


� &

Xt �Xt��

Xt��

�
� Xt �Xt��

Xt��
�

Hence �Rt� can be considered as the sequence of daily relative returns	 No�

tice that log�di�erencing of �nancial data makes them comparable� only the

relative change over time is then of interest	 In particular� they become in�

dependent of the monetary unit	
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Figure �
�
� Top� ��� daily log�returns of the S�P index �left� and ��� realisa�
tions of iid Gaussian noise �right� with the same mean and variance� The corre�
sponding sample autocorrelations of the data �second row�� of their absolute values
�third row� and of their squares �bottom�� A comparion shows that the S�P data
have a di�cult dependence structure di�erent from an iid sequence� The dashed
lines indicate 
�! asymptotic con
dence bands for the sample autocorrelations of
iid Gaussian rvs�
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In what follows we always consider log�returns or log�di�erences which

are supposed to come from a stationary sequence	 Stationarity of log�returns

may hence be accepted as a working hypothesis	 Clearly� this assumption

becomes questionable if one considers times series over too long periods of

time� or in the case of so�called high frequency or tick�by�tick data� where

the sampling interval may go down to second or minute level	

A glance at any series of log�returns shows very convincingly that there

are values which are signi�cantly larger than the others� see for instance the

S%P series in Figure �	�	�	 Therefore the one�dimensional marginal distrib�

ution is certainly not light�tailed� in particular not Gaussian	 We discussed

an example of this in the analysis of the BMW data� see Figures �	�	�� and

�	�	�	 The notion of �heavy�tailedness
 is obviously not de�ned in a unique

way� in this book we tend to use it as �not having exponential moments
	 The

class of subexponential distributions� see Section �	�	�� satis�es this assump�

tion	 There exist several approaches for modelling heavy�tailed log�returns�

for instance in�nite variance processes and the ARCH family	 Below we give

a short description of both classes	

In the previous sections we considered in�nite variance stable processes�

in particular ARMA and linear processes� and related statistical problems	

Our conclusion was that many classical techniques work for such processes�

and the rate of convergence in the estimation of parameters and functions is

usually better than in the �nite variance case� although the limit distributions

are in general not easy to handle	 In the �nancial literature there has been

interest in in�nite variance stable distributions and processes for a long time	

Articles on in�nite variance processes in �nance usually refer to the two�

by now classical� sources Mandelbrot ���� and Fama �����	 These authors

propagated the use of stable and Pareto distributions in �nance	 However�

articles supporting the hypothesis of 	�stable distributions in �nance do not

always mention the discussion which started afterwards and has never been

�nished� see for instance Groenendijk� Lucas and de Vries ����� and Ghose

and Kroner ����� for some recent contributions	 We cite here Taylor ������

pp	 ���� which is a standard monograph on �nancial time series�

�Fama and Roll ����� describe a practical method for estimating 		 Estimates

are always between the special cases 	  � for Cauchy distributions and 	  �

for normal distributions	 Many researchers �nd the conclusion of in�nite vari�

ance� when 	 � �� unacceptable	 Detailed studies of stock returns have con�

clusively rejected the stable distributions �Blattberg and Gonedes ����� Hager�

man ����� Perry �����	 Hagerman� for example� shows that estimates of 	

steadily increase from about �	� for daily returns to about �	� for returns

measured over �� days	 Returns over a month or more have distributions
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much closer to the normal shape than daily returns	 A decade after his ����

paper� Fama prefers to use normal distributions for monthly returns and so

discard stable distributions for daily returns �Fama ������ Chapter ��	


These remarks should be read in the spirit of Chapter � where� among other

topics� we considered the hypothesis of Pareto tails and certain in�nite mo�

ments for �nancial and insurance data	 One of our main conclusions was that

it is very di�cult to make a �nal decision about the value of a tail index

	 or the �niteness of a certain power moment	 However� the examples con�

sidered there show convincingly that log�returns have certain in�nite power

moments	 This is already seen by using simple diagnostic tools such as QQ�

or mean excess plots� and later reinforced by more subtle means such as tail

index estimators	

Log�returns exhibit a complicated dependence structure� see for instance

the sample autocorrelations of the transformed S%P data in Figure �	�	�	

Therefore the direct use of standard tail index estimates �Hill� Pickands�

may become questionable	 These estimators are very sensitive with respect

to dependence in the data� see for instance Figure �	�	 and Resnick and

St.aric.a ����� ����	 The dependence structure gets even more complicated

when data are aggregated over weeks or months	 Moreover� we have seen

in Chapter � that tail index estimation requires large sample sizes	 Thus

some of the problems mentioned in the above citation could be due to the

dependence in the data and!or too small sample sizes	 In our opinion� tail

estimation methods do not allow for a precise conclusion concerning patterns

in estimates for 	 based on data at di�erent time scales	

Clearly� much of the �nance literature is based on the notions of volatility

and correlation� i	e	 �nite second moments are necessarily required in such

models� and therefore the in�nite variance case has gained only marginal pop�

ularity	 The emergence of quantitative techniques for risk management has

changed this attitude considerably	 It is a fact �or a so�called stylized fact�

as �nance experts like to call it� that most �nancial data are heavy�tailed �

The in�nite variance linear processes discussed in the previous sections o�er

only one possible model for such data	 A more careful look at �nancial data

quickly reveals the need for much more versatile models	 For instance� the

detailed analysis of high�frequency foreign exchange data and data on the

inter�bank market of cash interest rates as summarised in M�uller et al	 ����

shows that though variances are �nite� third or fourth moments may be in��

nite	 See also Longin ����� Loretan and Phillips ���� and various examples

in Chapter � for some empirical evidence	 If one accepts an in�nite fourth

moment for a stationary process� standard time series procedures may not

work	 For instance� asymptotic con�dence bands for sample autocorrelations
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are based on a CLT for which a �nite fourth moment is required	 Therefore�

the interpretation of sample autocorrelations may become problematic	

In the context of heavy�tailed models the notion of leptokurtosis often

occurs	 As noted for instance in Eberlein and Keller ����� upon studying

data consisting of daily prices of the �� DAX shares over a three�year period�

�� � � there is considerably more mass around the origin and in the tails than

the standard normal distribution can provide	
 The kurtosis of a rv X with

df F is de�ned either as

km  
E�X � ��

�E�X � ����
� ��	���

or

kp  
�
� �x���� � x�����

x��� � x���
� ��	��

where for � � p � �� the quantiles xp are de�ned via xp  F��p�	 The ad�

vantage of kp over km is that kp is always well de�ned	 For the normal dis�

tribution� km  � and kp  �����	 A df F is now called leptokurtic if either

km � � or kp � ������ see Medhi ����� Section 	��	�� for a further discussion	

As stated in Mood� Graybill and Boes ����� p	 ��� �these measures do not

always measure what they suppose to
� and indeed practice in the �nance

literature has evolved to using the notion �leptokurtic
 for indicating �excess

peakedness and heavy tails
	

The notion stochastic volatility is used for describing random changes of

the variance as a function of time� the latter mainly in the context of solutions

to stochastic di�erential equations �SDE�	 To set the scene� �rst consider the

linear SDE

dXt  cXt dt& ��Xt dBt � t � ��� T � � ��	��

where for the moment c � R and �� � � are constants	 The driving

process �Bt� is Brownian motion� see Section �	� and the di�erential dBt

has to be interpreted in the sense of It'o calculus	 It is well known that ��	��

has a unique strong solution

Xt  X� exp

�
c� �

�
��
�

�
t& ��Bt

�
� t � ��� T � � ��	��

The stochastic process �Xt� in ��	�� is called geometric Brownian motion and

is the standard� so�called Black�Scholes� model for �nancial price processes	

The value �� is called volatility� it constitutes the main parameter to be

estimated from the data	 If �Xt� were geometric Brownian motion we would

obtain for the log�returns

Rt  


c� �

�
��
�

�
& �� �Bt �Bt��� �
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Hence log�returns should look like iid normal data with variance ��
� 	 If we

compare this with real data we see that this rarely is the case� see for instance

Figure �	�	�	 Hence the SDE ��	�� is clearly an idealisation of the real world	

The main� obvious� reason in favour of ��	�� is its tractability with respect to

actual calculations	 Also micro�economic considerations may be given leading

to processes of the type ��	��	 Though as a �rst approximation� the statistical

�t of ��	�� to data may be reasonable� there are various arguments going

against it	 These include�

	 Real processes are not continuous in time� in the real world prices do not

change in intervals of microsecond length	 On the other hand� the self�

similarity property of Brownian motion suggests that in any time interval

the driving process generates some noise	

	 The linear SDE ��	�� with constant coe�cients does not explain the �uctu�

ations and jumps in real data	 Nor does it explain the observed leptokurtic

behaviour of price distributions	

	 The SDE ��	�� suggests that the noise dBt of the market is independent

for disjoint time intervals	 This is certainly not the case� at least not in

small intervals of time	

�Over the last twenty years� the Black�Scholes option pricing model has

proved to be a valuable tool for the pricing of options and� more generally�

for the management of hedged positions in the derivative markets	 However� a

number of systematic biases in the model prices suggests that the underlying

security volatility may be stochastic� This observation is further reinforced

by empirical evidence from the underlying asset prices	
 This statement is

taken from the review paper by Ball ���� on stochastic volatility	 What does

the latter mean" The word �stochastic
 actually refers to the fact that the

volatility �� in the SDE ��	�� is a random function of time� ��  ���t� ��	

Stochastic volatility is one of the current main research topics in mathemati�

cal �nance	 By allowing for a random and time�dependent volatility one can

quite �exibly describe the change of the variance of log�returns� for some

more references see the Notes and Comments	

Discrete�time versions of stochastic volatility models are also relevant	

They are usually referred to as �conditional heteroscedasticity
 models in the

econometrics and time series literature	 In their simplest form these models

can often be written in multiplicative form

Rt  & Vt Zt � t � Z � ��	��

where Rt is again interpreted as a daily log�return� say� and  is the expecta�

tion of Rt	 With few exceptions� Vt and Zt are supposed to be independent�
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Zt are iid standard normal rvs and Vt are non�negative rvs such that Vt is

a function of Rt��� Rt��� � � �	 Then

ERt   � var �RtjRt��� Rt��� � � ��  V �
t �

i	e	 V �
t is the conditional variance of Rt given the past Rt��� Rt��� � � �	 As a

consequence� Rt is mixed Gaussian	

The argument which is usually given in favour of the model ��	�� is the

following� many real �nancial time series have negligible sample autocorre�

lations at all lags with possible exceptions at lags �� � or �� although these

values are fairly small	 This �ts well with the fact that

cov �Rt� Rt�h�  E �Vt ZtVt�hZt�h�  � � h � � �

On the other hand� the sample autocorrelations of the absolute value and of

the squares of real returns are usually greater than ��� at the �rst few lags

which is supported in part by the theoretical model ��	��	 Figure �	�	� shows

a �nancial time series with typical behaviour of the sample autocorrelations	 If

one �ts an ARMA model to these data and simulates an ARMA process of the

same length with the same parameters� one can see that the autocorrelations

of the real and of the simulated data almost coincide� but the absolute values

and the squares of the ARMA process do not have autocorrelations similar

to the real data	

The processes which are most popular in econometrics and which belong

to the class ��	�� are the ARCH �autoregressive�conditionally�heterosce�

dastic� models and their variants GARCH �generalised ARCH�� ARMACH

�autoregressive�moving�average�conditionally�heteroscedastic� etc	 For ex�

ample� an ARCH�p��process �ARCH of order p� with mean   � is given by

the equation

Rt  

�
�� &

pX
i��

�iR
�
t�i

����

Zt � t � Z �

for iid N��� �� rvs Zt� and non�negative parameters �i	 Then

V �
t  var �RtjRt��� Rt��� � � ��  �� &

pX
i��

�i R
�
t�i �

i	e	 the conditional variance of the return Rt� given the returns in the past�

is just a function of the last p returns	 Thus� if V �
t is large� the order of mag�

nitude of Rt and future returns is very much in�uenced by this conditional

variance	 This may lead to clusters of large values of Rt� see Figure �	�	�	 One

can show that a stationary version of �Rt� exists if the coe�cients �i belong to

the parameter set C �see Section �	��� i	e	 if the corresponding AR di�erence
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equations have a unique a	s	 convergent solution	 We refer to Section �	 for

a more detailed analysis of ARCH��� processes	 There we show in particular

that such processes have Pareto�like tails	

Notes and Comments

Standard references for SDE are the monographs by Chung and Williams

����� �it contains a derivation of the Black�Scholes formula�� Karatzas and

Shreve ����� �it also has a chapter about stochastic �nance� the recent mono�

graph ����� of these authors is solely devoted to mathematical �nance�� Prot�

ter ���� �this is an excellent reference to stochastic integration with respect

to semimartingales�	 The modern theory of stochastic calculus is masterfully

presented in Rogers and Williams ����	 Chapter II of Volume One of the lat�

ter is �a highly systematic account� with detailed proofs� of what every young

probabilistmust know
	 We always found Revuz and Yor ���� a most reliable

source on martingales and Brownian motion when studying new continuous�

time models in �nance	 Kloeden and Platen ����� is a compendium on numer�

ical solutions and applications of SDE� see also the companion book Kloeden�

Platen and Schurz ����� which is understood as an introduction to SDE and
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their numerical solution aimed at the non�mathematician	 The extremal be�

haviour of �nancial models given by SDE has been investigated in Borkovec

and Kl�uppelberg ����	

Parameter estimation in �nancial models is an important subject	 In the

by now classical case of ��	��� the volatility �� appears as the main para�

meter of interest	 It is traditionally either estimated using historical data

�historical volatility� or by inverting certain option pricing formulae contain�

ing the volatility parameter in a ��to�� way �implied volatility�	 Most standard

textbooks on mathematical �nance contain a discussion on this topic	 The

interested reader may also want to consult for instance Garman and Klass

����� or Rogers and Satchell ���� for some basic ideas underlying volatil�

ity estimation	 More generally� however� the topic of parameter estimation

for stochastic processes relevant in �nance is becoming an important area of

research	 A key question concerns estimation of parameters in continuous�

time models from discrete�time observations	 The statistical literature on

this topic is huge� We personally found the accumulated contributions from

the �Aarhus School
 particularly useful	 Relevant references from the latter

are Bibby and S(rensen ����� Pedersen ���� and the recent review paper by

S(rensen ������ see also Florens�Zmirou ����� Genon�Catalot and Jacod �����

Kessler �����	 G�oing ����� summarises the various alternative approaches� see

also the references in that paper	 Especially the problem of discretisation and

estimation in stochastic volatility models receives attention	 Melino ���� is

a further recent review on estimation of continuous�time models in �nance	

From the growing literature on stochastic volatility in SDE and option

pricing we give a short list� Ball and Roma ���� Eisenberg and Jarrow ������

Frey ����� Ghysels� Harvey and Renault ������ Hull and White ���� ����

Rydberg ������ Scott ������ Sin ������ Stein and Stein �����	 We especially

found Frey ���� a most informative and readable introduction	

An alternative approach to modelling changing volatility in �nancial data

is by assuming that the driving process in the underlying SDE is not Brownian

motion� but a process with marginal distribution tails heavier than Gaussian

ones	 Candidates for such processes may come from the class of semimartin�

gales� including for instance L�evy and in�nite variance stable processes	 In

this context� Barndor��Nielsen ��� �� discusses the use of generalised in�

verse Gaussian distributions for modelling �nancial data� see also Eberlein

and Keller ����� and K�uchler et al	 ����	

The literature on links between time series and SDE should be viewed

more generally within the context of embedding discrete�time �and possibly

space�time� models in continuous�time processes	 A paper to start with is

de Haan and Karandikar ������ see also Nelson ���� and references therein	
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The models ��	�� can be understood as solutions to stochastic recurrence

equations	 Work by Kesten ����� and Goldie ����� shows for some particular

cases� including the ARCH��� process� that P �Xt � x� � cx�p for certain

positive constants c and p	 This will be shown explicitly in Section �		

Samorodnitsky ���� explains the e�ect of changes in the estimation of the

tail index 	� when di�erent time aggregations are used� by a shot noise process

with heavy tails	 The reader interested in some of the more recent analysis

on this topic may consult M�uller at al	 ���� and the references therein	

A useful model of the type ��	�� is the so�called heterogeneous ARCH

�or HARCH� model introduced in M�uller et al	 ����	 The HARCH�k� process

with k � � satis�es

Rt  

�B��� &

kX
i��

�i

�� iX
j��

Rt�j


A�

CA

���

Zt � t � Z � ��	�

for iid rvs Zt and non�negative parameters �i	 Note that HARCH���

processes are ARCH���	 They allow for instance to model the empirically

observed fact that for foreign exchange intra�day data� volatility over a

coarse time grid signi�cantly predicts volatility de�ned over a �ne grid	 The

conditions for the existence of stationary solutions of ��	� together with

necessary and!or su�cient conditions for the existence of moments are given

in Embrechts et al	 �����	

Links between GARCH and stable processes were considered by Diebold

����� and by de Vries ����	 Mittnik and Rachev ���� ��� model asset returns

with �alternative
 stable distributions� i	e	 with distributions which are stable

with respect to certain operations� for ordinary summation the 	�stable laws

appear� for maxima the max�stable limit distributions	

A good introduction to the problem of modelling �nancial time series is

given by Taylor �����	 He discusses di�erent models of multiplicative type�

see ��	��� and compares the performance of these models with the behav�

iour of a large amount of real �nancial data sets	 The literature on ARCH

models� their rami�cations and related models is rapidly increasing	 There

exist more than �� di�erent such models which fact does not make it easy

to distinguish between them	 We refer here to Bollerslev� Chou and Kroner

����� Shephard ����� and references therein	






Special Topics

��� The Extremal Index


���� Denition and Elementary Properties

In Chapters ��� we presented a wealth of material on extremes	 In most

cases we restricted ourselves to iid observations	 However� in reality extremal

events often tend to occur in clusters caused by local dependence in the data	

For instance� large claims in insurance are mainly due to hurricanes� storms�

�oods� earthquakes etc	 Claims are then linked with these events and do not

occur independently	 The same can be observed with �nancial data such as

exchange rates and asset prices	 If one large value in such a time series occurs

we can usually observe a cluster of large values over a short period afterwards	

The extremal index is a quantity which� in an intuitive way� allows one to

characterise the relationship between the dependence structure of the data

and their extremal behaviour	 To understand this notion we �rst recall some

of the examples of extremal behaviour for a strictly stationary sequence �Xn�

with marginal df F 	 In this section we consider only this kind of model	

As usual� Mn stands for the maximum of the sample X�� � � � � Xn� � eXn� is

an associated iid sequence �i	e	 with common df F � and �fMn� denotes the

corresponding sequence of maxima	

Example 
���� Assume that the condition

nF �un�	 � � ����� ��	��



��� �� Special Topics

holds for some non�decreasing sequence �un�	

�a� For an iid sequence �Xn� we know from Proposition �	�	� that ��	�� is

equivalent to the relation

lim
n��

P �Mn � un�  e�� � ��	��

Moreover� from Theorem �	�	� we conclude that the point processes of ex�

ceedances

Nn���  
nX
i��

�n��i���IfXi�ung

of un by X�� � � � � Xn converge weakly to a homogeneous Poisson process N

with intensity � 	

�b� Recall the conditions D�un� and D��un� from Section 		 They en�

sure that the strictly stationary sequence �Xn� has the same asymptotic

extremal behaviour as an associated iid sequence	 In particular� ��	�� implies

��	�� �see Proposition 		�� and Nn
d	 N where N is again a homogeneous

Poisson process with intensity � � see Theorem �	�	�	 Conditions D�un� and

D��un� are satis�ed for large classes of Gaussian stationary sequences� in�

cluding many Gaussian linear processes �for instance Gaussian ARMA and

fractional ARIMA processes�	

�c� Recall the situation of Example 		�� starting with an iid sequence �Yn�

with df
p
F � the strictly stationary sequence

Xn  max �Yn� Yn��� � n � N �

has df F and

Mn  max �Y�� � � � � Yn��� � n � N �

If ��	�� is satis�ed then

lim
n��

P �Mn � un�  e���� �

We know from Example 		� that condition D�un� is satis�ed in this case�

but D��un� is not� see Example 			

�d� Let �Xn� be a linear process

Xn  

�X
j���


jZn�j � n � Z �

driven by iid noise �Zt�	 Assume P �Z� � x�  x��L�x� as x 	 � and that

the tail balance condition

P �Z� � x� � pP �jZ�j � x� and P �Z� � �x� � qP �jZ�j � x� ��	��
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holds for some p � ��� ��� q  ��p	 This implies that F � MDA���� for some
	 � �	 Then we obtain from Corollary �	�	� that there exist constants cn � �

such that un  un�x�  cnx satis�es ��	�� for �  ��x�  x��� x � �� and

lim
n��

P �fMn � un�x��  ���x� � x � R� �

lim
n��

P �Mn � un�x��  ����x� � x � R� �

Here �� denotes the standard Fr�echet distribution and

  
�

�� p& 
�� q

�
!k
k�� �

where


�  max
j
�
j � �� and 
�  max

j
���
j� � �� �

k
k��  
�X

j���

j
j j��p If�j��g & q If�j��g� �

The point processes Nn of the exceedances of un�x� by X�� � � � � Xn converge

weakly to a compound Poisson process

N�  

�X
k��

�k��k �

see Section �	�	�	 The �k are the points of a homogeneous Poisson process�

and the �k are iid cluster sizes	

�e� Let �Xn� be a linear process driven by iid subexponential noise �Zt� with

F � MDA���� where � denotes the standard Gumbel distribution	 We also

assume the tail balance condition ��	�� and maxj j
j j  �	 Then we know

from Corollary �	�	�� that there exist constants cn � � and dn � R such that

un  un�x�  cnx& dn satis�es ��	�� for �  ��x�  expf�xg� x � R� and

lim
n��

P �fMn � un�x��  ��x� � x � R �

lim
n��

P �Mn � un�x��  ���x� � x � R �

where

  �k�p & k�q��� �

and

k�  cardfj � 
j  �g and k�  cardfj � 
j  ��g �
The point processes Nn of exceedances of un�x� converge weakly to a com�

pound Poisson process N �see Theorem �	�	��� such that
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N  

�X
k��

�
k����

k
& k����

k

�
�

where the sequences of the points ���
k � and ��

�
k � are independent of each

other� each of them representing the points of a homogeneous Poisson process	

�f� Recall the de�nition of an ARCH��� process from Section �		��

Xn  
q

� & �X�
n�� Zn � n � N �

for � � �� � � ��� �e�� and iid standard normal rvs Zn	 We also know that
�Xn� is a strictly stationary sequence provided X� is appropriately chosen	

Moreover� by Theorem �		��� there exist constants cn � � such that un  

un�x�  cnx satis�es condition ��	�� for certain �  ��x�� and

P �Mn � un�x��  ����x� � x � R� �

for some '  '��� and  � ��� ��� whereas an associated iid sequence has limit
distribution �� provided the same norming constants cn are used	 Moreover�

the point processes Nn of exceedances of the threshold un�x� by X�� � � � � Xn

converge weakly to a compound Poisson process whose structure is described

in Theorem �		��	 �

The examples above follow similar patterns	 Indeed� it is typical for station�

ary �Xn� and �un� satisfying ��	�� that P �Mn � un� 	 expf� �g for some
 � ��� ��� whereas P �fMn � un�	 expf��g	 Moreover� in the iid and weakly
dependent cases� the limit of the point processes of exceedances is homoge�

neous Poisson� whereas it is compound Poisson for the case of �stronger


dependence	 The latter fact indicates that exceedances of high threshold val�

ues un tend to occur in clusters for dependent data	 This is something we

might have expected when looking at real data�sets	

The above examples suggest the following de�nition which allows us to

distinguish between the extremal behaviour of di�erent dependence struc�

tures	

Denition 
���� �Extremal index�

Let �Xn� be a strictly stationary sequence and  a non�negative number�

Assume that for every � � � there exists a sequence �un� such that

lim
n��

nF �un�  � � ��	�

lim
n��

P �Mn � un�  e��� � ��	��

Then  is called the extremal index of the sequence �Xn�� �
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Remarks� �� The de�nition of the extremal index can be shown to be inde�

pendent of the particular sequence �un�	 More precisely� if �Xn� has extremal

index  � � then� for any sequence of real numbers �un� and � � ������
the relations ��	�� ��	�� and P �fMn � un� 	 expf��g are equivalent� see
Leadbetter ����	 A particular consequence is the following� if F � MDA�H�
for some extreme value distribution H then

c��
n �

fMn � dn�
d	 H � c��

n �Mn � dn�
d	 H� ��	��

for appropriate norming constants cn � � and dn � R	

�� Since an extreme value distribution H is max�stable �see De�nition �	�	���

H� is of the same type as H � i	e	 there exist constants c � �� d � R such that

H��x�  H�cx & d�	 This also implies that the limits in ��	�� can be chosen

to be identical after a simple change of the norming constants	 �

Example 
���� �Continuation of Example �	�	��

From the discussion in Example �	�	� it is immediate that the cases �a� and

�b� �iid and weakly dependent stationary sequences� yield the extremal index

  �	 In the case �c��   ��� �this type of example can naturally be extended

for constructing stationary sequences with extremal index   ��k for any

integer k � ��	 The examples �d���f� �linear and ARCH��� processes� show
that we can get any number  � ��� �� as extremal index	 �

From these examples two natural questions arise�

How can we interpret the extremal index  


and

What is the range of the extremal index


Section �	�	� is devoted to the �rst problem	 The second one has a simple

solution�

 always belongs to the interval ��� ���

From Example �	�	� we already know that any number  � ��� �� can be an
extremal index	 The case   � is somewhat pathological	 We refer to Lead�

better� Lindgren and Rootz�en ���� and Leadbetter ���� for some examples	

The cases  � � are of particular practical interest	 It remains to show that

 � � is impossible� but this follows from the following easy argument�

P �Mn � un�  �� P

�
n�
i��

fXi � ung
�
� �� nF �un� �
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By de�nition of the extremal index� the lhs converges to e��� whereas the

rhs has limit �� � 	 Hence e��� � �� � for all � � � which is possible only if

 � �	
Next we ask�

Does every strictly stationary sequence have an extremal index


Life would be easy if this were true	 Indeed� extreme value theory for sta�

tionary sequences could then be derived from the corresponding results for

iid sequences	 The answer to the above question is �unfortunately� no	

Example 
���� Assume �Xn� is iid with F � MDA���� and norming con�
stants cn � �	 Assume A is a positive rv independent of �Xn�	 Then

P
�
c��
n max�AX�� � � � � AXn� � x

�
 P

�
c��
n Mn � A��x

�
 EP

�
c��
n Mn � A��x

		A�
	 E exp

��x��A�
�

� x � � �
�

It is worthwhile mentioning that� for large classes of stationary sequences

�Xn�� there exist real numbers � �  � �  �� � � such that

e��
��� � lim inf

n��
P �Mn � un� � lim sup

n��
P �Mn � un� � e��

�� � � � � �

for every sequence �un� satisfying ��	�	 A proof of this result under condi�

tion D�un� is to be found in Leadbetter� Lindgren and Rootz�en ����� Theo�

rem �	�	�	


���� Interpretation and Estimation of the Extremal Index

We start with a somewhat simplistic example �taken from Weissman ������

showing the relevance of the notion of extremal index	

Example 
���� Assume a dyke has to be built at the seashore to protect

against �oods with ��$ certainty for the next ��� years	 Suppose it has been

established that the ��	� and ��	�� percentiles of the annual wave�height are

�� m and �� m� respectively	 If the annual maxima are believed to be iid� then

the dyke should be �� m high
�
��������� � �����	 But if the annual maxima

are stationary with extremal index   ���� then a height of �� m is su�cient�
������� � �����	 �
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This example brings out already that estimation of the extremal index  must

be a central issue in extreme value statistics for dependent data	 Estimation

of  will be based on a number of di�erent probabilistic interpretations of the

extremal index� leading to the construction of di�erent estimators	 Through�

out we exclude the degenerate case   �	

A First �Naive� Approach to the Estimation of �� the Blocks

Method

Starting from the de�nition of the extremal index  � we have

P �Mn � un� � P ��fMn � un�  F �n�un� �

provided nF �un�	 � � �	 Hence

lim
n��

lnP �Mn � un�

n lnF �un�
  � ��	��

This simple limit relation suggests constructing naive estimators of  	 Since

we do not know F �un� and P �Mn � un�� these quantities have to be re�

placed by estimators	 An obvious candidate for estimating the tail F �un� is

its empirical version

N

n
 
�

n

nX
i��

IfXi�ung �

This choice is motivated by the Glivenko�Cantelli theorem for stationary

ergodic sequences �Xn�� see Example �	�		 To �nd an empirical estimator

for P �Mn � un� is not straightforward	 Recall from Section 	 that condition

D�un� implies

P �Mn � un� � P k�M�n�k	 � un� ��	��

for constant k or slowly increasing k  k�n�	 The approximation ��	�� forms

the basis for the blocks method	 For the sake of argument assume that n  rk

for integers r  r�n� 	 � and k  k�n� 	 �	 Otherwise� let r  �n�k�	

This divides the sample X�� � � � � Xn into k blocks of size r�

X�� � � � � Xr� � � � �X�k���r��� � � � � Xkr � ��	��

For each block we calculate the maximum

M �i�
r  max

�
X�i���r��� � � � � Xir

�
� i  �� � � � � k �

Relation ��	�� then suggests the approximation
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P �Mn � un�  P


max
��i�k

M �i�
r � un

�
� P k�Mr � un�

�
�
�

k

kX
i��

I
fM

�i�
r �ung

�k

 


�� K

k

�k

�

A combination of these heuristic arguments with ��	�� leads to the following

estimator of  �

b ���
n  

k

n

ln ���K�k�

ln ���N�n�
 
�

r

ln ���K�k�

ln ���N�n�
� ��	���

Here N is the number of exceedances of un by X�� � � � � Xn and K is the

number of blocks with one or more exceedances	 A Taylor expansion argument

yields a second estimator

b ���
n  

K

N
 
�

r

K�k

N�n
� b ���n � ��	���

The blocks method accounts for clustering in the data	 If the eventn
M �i�

r � un

o
 

r�
j��

fX�i���r�j � ung

happens one says that a cluster occurred in the ith block	 These events char�

acterise the extremal behaviour of �Xn� if we assume that the size r�n� of the

blocks increases slowly with n	 This gives us some feeling for the dependence

structure in the sequence �Xn�	 In this sense� the extremal index is a mea�

sure of the clustering tendency of high�threshold exceedances in a stationary

sequence	

There has been plenty of hand�waving in the course of the derivation of

the estimators b �i�
n 	 Therefore the following questions naturally arise�

What are the statistical properties of b ���
n and b ���

n as estimators of  


and

Given that we have n observations� how do we choose

the values of r �or k� and un


These are important questions	 Partial answers are to be found in the lit�

erature� see the Notes and Comments	 A �avour of what one can expect as

an answer is summarised in the following remark from Weissman and Co�

hen ������

It turns out that it is not easy to obtain accurate estimates of  �
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It seems that we are in a similar situation to that in Chapter �� where we

tried to estimate the index � of an extreme value distribution	 This should

not discourage us from considering some more estimators of  � especially as

we will meet alternative interpretations of the extremal index along the way	

The Extremal Index as Reciprocal of the Mean Cluster Size

This approach is based on results by Hsing� H�usler and Leadbetter �����

Theorems 	� and 	�	 They show that� under a mixing condition which is

slightly stronger than D�un�� the point processes of exceedances

Nn  

nX
i��

�n��iIfXi�ung

converge weakly to a compound Poisson process �see Example �	�	���

N���  
�X
i��

�i��i���

provided nF �un� 	 � � �	 Note that this is in accordance with the results

for linear and ARCH processes� see Example �	�	��d���f�	 The homogeneous

Poisson process underlying N��� has intensity  � � and the iid cluster sizes �j
of N��� have distribution ��j� on N	 Also notice that

EN��� ��  E

�X
i��

�i��i��� ��

 E

�X
i��

��i��� �� E��

  � E�� � ��	���

Under general assumptions the following relation holds�

�j  lim
n��

�j�n�

 lim
n��

P

�
rX
i��

IfXi�ung  j

					
rX
i��

IfXi�ung � �

�
� j � N �

Here again we have used the blocks as de�ned by ��	��� and r  r�n� is the

size of such a block	 The integer sequence �r�n�� has to satisfy r�n� 	 �
and r�n��n	 � and some more speci�c growth conditions	 Moreover� under

an additional summability condition on ��j�n���
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lim
n��

�X
j��

j�j�n�  

�X
j��

j�j  E�� � ��	���

�Some summability condition is indeed needed� see Smith �����	� Recalling

��	���� we see that ��	��� has the following interesting interpretation�

�  lim
n��

nF �un�  lim
n��

ENn��� ��  lim
n��

E
nX
i��

IfXi�ung

 EN��� ��   � E���

This means that   �E���
�� can be interpreted as the reciprocal of the mean

cluster size of the limiting compound Poisson process N 	

This interpretation of  suggests an estimator based on the blocks method�

b ���
n  

Pk
i�� IfM�i�

r �ungPn
i�� IfXi�ung

 
K

N
�

i	e	 number K of clusters of exceedances divided by the total number N of

exceedances	 The same estimator has already been suggested as an approxi�

mation to b ���
n 	

The Extremal Index as Conditional Probability� the Runs Method

O�Brien ���� proved� under a weak mixing condition� that the following limit

relation holds�

P �Mn � un�  �F �un��
nP �M��s�unjX��un� & o���

 exp f�nP �X� � un�M��s � un�g& o���

provided nF �un�	 � 	 Here

M��s  max�X�� � � � � Xs� �

and s  s�n� satis�es s�n 	 �� s 	 � and some more speci�c growth

conditions	 On the other hand� by de�nition of the extremal index�

P �Mn � un�  expf� �g& o��� �

Hence� under the conditions above�

lim
n��

 n�s�n�� un�  lim
n��

P �M��s � un j X� � un�   �

Thus  can be interpreted as a limiting conditional probability	 The condi�

tional probability  n�s�n�� un� is some measure of the clustering tendency of
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high threshold exceedances�M��s can be less than un only if X� is the last ele�

ment in a cluster of values which exceed un	 If large values appear in clusters�

there must be longer intervals between di�erent clusters	 As a consequence�

P �Mn � un� will typically be larger than for independent observations	

O�Brien�s result has been used to construct an estimator of  based on

runs�

b �
�
n  

Pn�r
i�� IAi�nPn

i�� IfXi�ung
 

Pn�r
i�� IAi�n

N
� ��	��

where

Ai�n  fXi � un� Xi�� � un� � � � � Xi�r � ung � ��	���

This means we take any sequence of r  r�n� consecutive observations below

the threshold as separating two clusters	

Example 
���� We re�consider Example �	�	��c�� see also Example 		�	

We show that   ��� can be calculated explicitly in the three di�erent ways

explained above	 Assume that nF �un�	 � � �	

�a� The following is immediate from the de�nition of Xn�

lnP �Mn � un�

n lnF �un�
	 �

�
�

�b� High threshold exceedances of �Xn� typically appear in pairs	 Hence

��  � and E��  
P�

j�� j�j  �	 Since  is the reciprocal of the mean cluster

size E���   �
��	

�c� Finally� consider the conditional probability

P �X� � un� � � � � Xs � un j X� � un�

 
P �X� � un� X� � un� � � � � Xs � un�

P �X� � un�

 
F s���un�� F �s������un�

F �un�
 

F s���un�

� & F ����un�
�

The latter expression converges to ��� provided

F s���un�  expf���s ln��� F �un�g 	 � �

This is clearly satis�ed if s  s�n�  o�n�	 �
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u

XX X X

Cluster i+1Cluster i
X

Figure 	
�
� Clusters de
ned by the runs method� We chose r � �� the cluster
size is equal to 
 for both clusters�


���� Estimating the Extremal Index from Data

In this section we compare the performance of the estimators b �i�
n of the

extremal index  both� for real and simulated data	 Table �	�	� summarises

the results for the exchange rate data presented in Figure �			 For data of

this type one often claims that ARCH or GARCH models yield a reasonable

�t	 An ARCH��� �t� based on maximum likelihood estimation� yields

Xn  
q
��� � ���� & ���X�

n�� Zn � n � N � ��	���

for iid N��� �� noise �Zn�� see Section �		�	 For the above model an ARCH���

time series with the same length as for the exchange rate data was simulated	

The estimators b �i� are given in Table �	�	�	 From Table �		�� we may read
o� the corresponding theoretical value   �����	 This shows that  is clearly

underestimated	 Also notice that the estimates strongly depend on the chosen

threshold value u and the size r	

In Figures �	�	����	�	�� the number of exceedances of a given threshold u

in a cluster of observations is visualised for the above data	 Both� the blocks

and the runs method� are illustrated	 For the former� r denotes the block

size as de�ned in ��	��	 Every block is regarded as a cluster	 For the same

r we de�ne a cluster in the runs method as follows� it is a set of successive

observations separated from the neighbouring sets by a least r values below u	

See Figure �	�	� for an illustration	 The cluster size is then the number of

exceedances of u in the cluster	

Every �gure consists of three pairs of graphs	 For each pair the upper

�lower� graph illustrates the blocks �runs� method for the same u and r	
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u r b���� b���� b���� r b���� b���� b����
����� ��� ����� ���� ���� �� ����� ����� �����
����� ��� ����� ����� ����� �� ���� ����� �����
����� ��� ����
 ����� ����� �� ���� ��� �����

Table 	
�
	 Estimators of � for the exchange rate data of Figure ����� �n � ����
for di�erent thresholds u and sizes r�

u r b���� b���� b���� r b���� b���� b����
����� ��� ����� ����� ����
 �� ����� ����� �����
����� ��� ���� ���� ���
� �� ���� ����� �����
����� ��� ����� ����� ����� �� ���
� ���� �����

Table 	
�
� Estimators of � for n � ��� simulated data from the ARCH��� model
given in ����� for di�erent thresholds u and sizes r�

Notes and Comments

The concept of extremal index originates from Newell ����� Loynes ���� and

O�Brien ����	 A �rm de�nition was given by Leadbetter ����	 An overview

of results concerning the extremal index is given in Smith and Weissman �����

and Weissman �����	

Weissman and Cohen ����� present various models where the extremal

index can be calculated explicitly	 Special methods have been developed for

ARMA processes �see Section �	�� and Markov processes �see Leadbetter and

Rootz�en ����� Perfekt ���� and Rootz�en ������	

The presence of exceedance clustering also a�ects the asymptotic distri�

bution of the upper order statistics	 The following result is a consequence of

Theorem �	� in Hsing et al	 ���� �which holds under certain mixing condi�

tions�� whenever �c��
n �Mn � dn�� converges weakly� the limit distribution is

equal to H� for an extreme value distribution H and

lim
n��

P
�
c��
n �Xk�n � dn� � x

�
 H��x�

k��X
j��

�� lnH��x�
�j

j�

k��X
i�j

�j��i� �

where ���  � and �j� is the j�fold convolution of �  ��j�� see also Cohen

������ Hsing ����� and Leadbetter and Rootz�en ����	

Hsing ����� ��� ��� ��� investigates the asymptotic properties of the

estimators of  	 Aspects of bias� variance and the optimal choice of r�n�

and un for the b �i�
n are discussed in Smith and Weissman �����	 Real�life

data analyses involving extremal index estimation have been carried out by

Buishand ������ Coles ������ Davison and Smith ������ Smith� Tawn and Coles

������ and Tawn �����	
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Figure 	
�
�� Clusters of exceedances by the blocks method �top 
gures� in com�
parison with the runs method �bottom 
gures� for the exchange rate data from Fig�
ure ����� �top�� The chosen values are r � ��� and u � ����� �top two�� u � �����
�middle two� and u � ����� �bottom two�� These 
gures clearly indicate the depen�
dence in the data�
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Figure 	
�
�� Clusters of exceedances by the blocks method �top 
gures� in com�
parison with the runs method �bottom 
gures� for simulated ARCH��� data �top�

with parameters b� � ��� and b� � ��
 � ����� The chosen values are r � ��� and
u � ����� �top two�� u � ����� �middle two� and u � ����� �bottom two��
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��� A Large Claim Index


���� The Problem

Throughout the book� we have seen various examples where a comparison

between the behaviour of the partial sum Sn and the partial maximum Mn

�or indeed more general order statistics� of an iid sequence X�X�� � � � � Xn

with df F was instrumental in deriving estimates on extreme values	 One

very prominent example for non�negative rvs was the introduction of the

famility S of subexponential distributions as the kind of dfs �t for modelling
heavy�tailed phenomena	 Recall from De�nition �	�	� that for F � S

lim
x��

P �Sn � x�

P �Mn � x�
 � � n � � �

Hence the tail of the partial maximum essentially determines the tail of the

partial sum	 The idea that heavy�tailedness corresponds to a statement of the

type� �The behaviour of Sn is mainly determined by few upper order statis�

tics
� has been discussed in many publications	 For instance� in Rootz�en and

Tajvidi ����� on the accumulated loss in the most severe storms encountered

by a Swedish insurance group over a ���year period ���������� the following

summary is to be found	

It can be seen that the most costly storm contributes about ��$ of

the total amount for the period� that it is ��� times bigger than the

second worst storm� and that four storms together make up about half

of the claims�

Some of the results of this type will be treated in this section	

We would like to start our discussion however by a story	 In a consulting

discussion on premium calculations of one of us with two non�mathematicians

working in insurance� the problem of the in�uence of extreme values on rating

came up	 Early on in the discussion it was realised that we were talking

about two di�erent kinds of Pareto law	 Indeed� the Pareto law they referred

to corresponded to the so�called ����� rule�of�thumb used by practicing

actuaries when large claims are involved	 This rule states that ��$ of the

individual claims are responsible for more than ��$ of the total claim amount

in a well de�ned portfolio	 Using some of the methods developed so far in the

book� we would like to answer the following question�

Can one characterise those portfolios where the ����� rule applies


Or more precisely�

Classify those claim size dfs for which the ����� rule holds�

The next section will be devoted to the answer of the latter question	
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���� The Index

Let X�� � � � � Xn denote the �rst n claims in a portfolio	 The Xi are assumed

to be iid with continuous df F and �nite mean  � �	 As before� we denote

by Xn�n � � � � � X��n the corresponding order statistics	 The total claim

amount of the �rst n claims is denoted by Sn  
Pn

k�� Xk and F�
n stands for

the empirical quantile function	 Consequently�

F�
n �y�  Xk�n for �� k

n
� y � �� k � �

n
�

In particular� for i  �� � � � � n� F�
n �i�n�  Xn�i���n	 The rvs needed in the

analysis of the problem posed in the introduction are

Tn�p�  
X��n &X��n & � � �&X�pn	�n

Sn
�

�

n
� p � � �

Hence Tn�p� is the proportion of the �np� largest claims to the aggregate

claim amount Sn	 The ����� rule now says that Tn����� accounts for ��$ of

Sn	 The following result gives us the behaviour of Tn�p� for n large	 For its

formulation we introduce the function

DG�p�  
�

G

Z �

��p

G��y�dy � p � ��� �� �

where G is the continuous df of a positive rv Y and

G  EY  

Z �

�

ydG�y�  

Z �

�

G��y�dy �

Theorem 
���� �Order statistics versus sums� asymptotic behaviour�

Suppose X�� � � � � Xn are iid positive rvs with continuous df F and �nite

mean � Then as n	��

sup
p�����	

jTn�p��DF �p�j 	 � a�s�

Proof� Observe that

�

n

�
X��n &X��n & � � �&X�np	�n

�
 

�

n

�np	��X
i��

F�
n


n� i

n

�

 
�

n

Z �np	��

�

F�
n


n� y

n

�
dy

 

Z �

�� �np	
n � �

n

F�
n �v� dv

 FnDFn


�np�

n
� �

n

�
�
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where

Fn  Xn  n��Sn  

Z �

�

ydFn�y� �

We have by the SLLN that Xn
a�s�	 	 Moreover� a Borel�Cantelli argument

yields

 �� �
�X
n��

P �Xn � �n� �� � �� � �

� P �Xn � �n i�o��  � � �� � �

� lim
n��

n��Xn  � a�s�

� lim
n��

n��Mn  � a�s� ��	���

Hence 				DFn


�np�

n
� �

n

�
�DFn�p�

				 � �n��Mn

Xn

a�s�	 � �

We thus have Tn�p�  �� & o����DFn�p� a	s	 uniformly for p and hence it

su�ces to show that

sup
p�����	

jDF �p��DFn�p�j 	 � a�s�

Notice that 				Z �

��p

F��y�dy �
Z �

��p

F�
n �y�dy

				
�

Z �

��p

jF��y�� F�
n �y�j dy

�
Z �

�

jF��y�� F�
n �y�j dy � ��	���

From the Glivenko�Cantelli theorem �Example �	�	� we know that

sup
x
jF �x� � Fn�x�j a�s�	 � �

Hence by Proposition A�	�� F�
n �y� 	 F��y� a	s	 for every continuity point

y of F�	 Moreover� the function jF��y��F�
n �y�j is dominated by F��y�&

F�
n �y� andZ �

�

jF��y�� F�
n �y�j dy �

Z �

�

F��y� &

Z �

�

F�
n �y�dy

 & Fn  �& o��� a	s	 �
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where we used the SLLN	 Combining the argument above and Pratt�s lemma

�see Pratt ������� we may conclude that the right�hand side in ��	��� con�

verges to zero with probability �	 This concludes the proof	 �

Motivated by the previous result� we have the following de�nition	

Denition 
���� �A large claim index�

Let F be a continuous df on ����� with �nite mean � For � � p � �� we
de�ne the large claim index of F at p by

DF �p�  
�



Z �

��p

F��y� dy � �

Remarks� �� The value DF �p� measures the extent to which the ���p$

largest claims in a portfolio contribute to the total claim amount	 The�

orem �	�	� suggests to call Tn�p�  DFn��np��n� ��n� the empirical large

claim index	

�� If one de�nes LF ��� p�  ��DF �p�� then LF becomes the so�called

Lorenz curve	 See for instance Cs�org+o� Cs�org+o and Horv�ath ���� Goldie

����� and references therein for a detailed discussion on properties of LF 	

�� The condition  �� in Theorem �	�	� can be dropped� yielding Tn�p�	 �

in probability� whenever   � and the boundedness condition F �x� � �� &
x��� for some � � 	 � � and x large holds	 For a proof see Aebi� Embrechts

and Mikosch ���� Theorem �	

� In Hipp ����� the asymptotic distribution of
p
n�Tn�p��DF �p�� is studied

by using the delta�method and the CLT for empirical processes� see Pollard

����	 This allows one to construct asymptotic con�dence bands for Tn�p�	

See also Cs�org+o et al	 ���	


���� Some Examples

The basic question from the introduction can now be formulated as follows�

Give examples of dfs F for which DF ����� is approximately ����

Below we have summarisedDF �values for the most important classes of claim

size dfs	 The parametrisations used are �see Tables �	�	� and �	�	� for details��

	 Pareto �	� � F �x�  �� & x���� x � ��
	 loggamma �	� ���

	 lognormal �� ���

	 gamma �	� ���

	 exponential	
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Figure 	
�
� The large claim index DF �p� across a wide class of potential claim
size distributions �top� and for the family of the Pareto distributions with the expo�
nential as a light�tailed limiting case�
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Figure 	
�
� The empirical large claim indices Tn�p� for �� excesses of ��� mil�
lions Danish Kroner corresponding to � �
� Danish 
re insurance losses from ����
to ���� �curve �a�� and for � ��� industrial 
re losses from ���	 � ���� �curve �b���
For comparison the theoretical large claim index DF �p� is plotted for the Pareto dis�
tribution with shape parameters � � f���	 ���	 ���	 �g� The industrial 
re losses are
very heavy�tailed� their index curve appears between the Pareto index for � � ���
and � � ���� the Danish excess data appear between � � ��� and � � ��

�np ��� ��� ��� ��� ��� ���� ���� ����� �����

���� ��

� ��

 ��

� ��

� ��
�� ��
�� ��
�� ��
�� ��
��
���� ��

� ��
�� ��
� ��
�� ��
�� ��
�� ����� ����� ����
��� ��
�� ��
� ��
�� ��
�� ����� ����� ���� ���
 ����
��� ��
�
 ��
�� ��
�� ���� ��
� ���� ����� ���
� ���

��� ��
�� ��
�� ���� ����� ����� ���� ���� ����� ���
�
�� ��
�� ����� ����� ���� ����
 ����� ����� ����� ���
�
� ��
�� ����� ��
� ���
� ����� ���
 ���
� ����� �����
� ���
� ����
 ���� ����� ����� ���� ����
 ���� �����
� ���� ����� ���� ����� ���
� ����� ����� ����� �����
�� ����
 ���� ����� ����
 ����
 ����� ����� ����� �����

���� ���� ��� ����� ����� ����� ����� ����� ����� �����
Exp ���� ��� ����� ����� ����� ����� ����� ����� �����

Table 	
�
� Large claim index DF �p� for di�erent Pareto laws with index � and
the exponential distribution�
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In Figure �	�	�� DF is plotted for a wide family of potential claim size dis�

tributions	 The ����� rule seems to apply for Pareto dfs with parameter 	

in the range �	� to �	�	 Table �	�	� contains the calculated values of DF for

speci�c Pareto dfs and p�values	 It is for instance seen that for F Pareto with

	  ��� DF �����  ���� exactly explaining the ����� rule	 The information

coming out of Figure �	�	 once more con�rms the heavy�tailed behaviour

often encountered in non�life insurance data	 Both the Danish �re insurance

data� as well as the industrial �re insurance data� though having �nite mean�

correspond to Pareto models with in�nite variance	 The Danish data also ap�

pear less heavy�tailed than the industrial �re data� a conclusion we already

reached in Sections �	�	� and �	�	�	 At this point we would like to stress that

the large claim index introduced in this section should be viewed only as

a quick diagnostic tool� it therefore could have been included in the set of

exploratory data analysis techniques in Section �	�	 We decided to spend a

separate section on it because of the importance of ����� type rules often

used by applied actuaries	


���� On Sums and Extremes

Suppose X�X�� � � � � Xn are iid with df F concentrated on �����	 It im�
mediately follows from ��	��� and the SLLN that   EX �� implies

Mn�Sn
a�s�	 �	 O�Brien ��� also showed that the converse implication holds	

Thus

lim
n��

Mn

Sn
 � a�s� if and only if EX �� � ��	���

so that for rvs with �nite mean� in a strong �a	s	� sense�

the contribution of the maximum to the sum is asymptotically neglible�

Statement ��	��� has been further re�ned by O�Brien ���	 indeed� by weak�

ening a	s	 convergence to convergence in probability� he obtained

Mn�Sn
P	 � if and only if

Z x

�

y dF �y� � R� � ��	���

The above results ��	��� and ��	��� give conditions so that the maximum

�and a�fortiori every order statistic� is asymptotically negligible with respect

to the sum	 A natural question concerns the other extreme case� namely

Under what conditions does Mn�Sn 	 � in a speci�ed way


The following result was proved in Arov and Bobrov ���� �su�ciency� and

Maller and Resnick ���� �necessity��

Mn�Sn
P	 � if and only if F � R� � ��	���
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Figure 	
�
� Five realisations of �Mn�Sn� for iid standard exponential rvs �top�

and ����stable positive rvs �middle�� In the 
rst case Mn�Sn
a	s	� �� in the second

one �Mn�Sn� converges in distribution� The bottom graph shows realisations of

�ln�Mn�Sn�� for a df with tail F �x� � �� ln�x�� x � e� In this case� Mn�Sn
P� ��

hence ln�Mn�Sn�
P� �� The convergence appears to be very slow�
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Pruitt ����� gives necessary and su�cient conditions for the relation

Mn�Sn 	 � a	s	� this clearly means that one has to consider a subclass

of distributions with F � R�	 The latter condition is a very strong one

indeed� it implies that EX�  � for all � � �	 A natural question therefore

concerns situations in between ��	��� and ��	���	 Twice the class R� of

slowly varying functions entered as the characterising class	 The following

result ��a�� � �a��� may therefore not come as a surprise	

�a� Equivalent are�

�a�� Mn�Sn
d	 Y� for some non�degenerate Y��

�a�� F � R�� for some 	 � ��� ���
�a� limn��E�Sn�Mn�  c� � �����	

�b� If  ��� then equivalent are�
�b�� �Sn � n��Mn

d	 Y� for some non�degenerate Y��

�b�� F � R�� for some 	 � ��� ���
�b� limn��E��Sn � n��Mn�  c� � �����	

The implication �a����a�� is proved in Breiman ����� �a����a�� in Chow
and Teugels ������ for the rest see Bingham and Teugels ����	

Remark� Reconsidering the results of this section� we have learnt that the

probabilistic behaviour of the ratio Mn�Sn for iid positive rvs �claims in

the insurance context� characterises the underlying df only for F � R���

� � 	 � �	 Although this class of distributions is not unimportant for the

purposes of insurance it is nevertheless a relatively small class	 For instance� it

does not help to discriminate data from a lognormal or a Pareto distribution

with �nite variance	 Therefore the large claim index introduced above o�ers

some more �exibility for discriminating dfs F with heavy tails	

Nevertheless� the limit behaviour ofMn�Sn and the corresponding quantities

for Xp
i can be used as an exploratory statistical tool for detecting whether

EXp is �nite� see Section �	�	� where several data�sets were considered	 �

Notes and Comments

In our discussion in Section �	�	� we closely followed Aebi et al	 ���	 Some of

the earlier work concerning the behaviour of Mn�Sn in the iid case is to be

found in Arov and Bobrov ���� and Darling �����	 An early paper linking the

asymptotic behaviour of partial sums with that of order statistics is Smirnov

�����	 Since then many publications on the relation between maxima and

sums appeared	 In order to get up�to�date concerning sums� trimmed sums

�i	e	 sums minus some order statistics� and maxima for iid rvs with general



��� When and How Ruin Occurs ��


df F � read Kesten and Maller ����� and consult references therein	 See also

Hahn� Mason and Weiner ����� on this topic	

The questions discussed above for the iid case are more naturally stud�

ied in a two�dimensional set�up� i	e	 analyse the asymptotic behaviour of

the vectors �Sn�Mn� properly normalised	 Assume that there exist norming

sequences �an�� �bn�� �cn� and �dn� such thateSn  a��
n �Sn � bn� and fMn  c��

n �Mn � dn�

converge weakly to eS� respectively fM 	 This means that F � DA�	��MDA�H�
for some 	 � ��� �� and extreme value distribution H 	 Chow and Teugels

����� show that the latter conditions holds if and only if the normalised joint

weak limit of �eSn� fMn� exists	 Resnick ����� gives a detailed discussion of

the properties of the limiting random vector� using point process techniques	

Chow and Teugels ����� show that the limiting variables are independent if

	  �	 This result has been generalised by Anderson and Turkman ��� ���

and Hsing ��� to certain stationary sequences	

��� When and How Ruin Occurs


���� Introduction

In this section we return to the insurance risk process introduced in Chapter �	

There we studied� mainly by analytical methods� the asymptotic behaviour

of the ruin probability when the initial capital increases to in�nity	 In this

section we �rst review these results from a probabilistic point of view	 We

also continue the analysis of the risk process	 In particular� we are interested

in the question�

What does a sample path of the risk process leading to ruin look like


This will be answered in Sections �	�	� and �	�	�� both for the light� and the

heavy�tailed case	 An important issue in our analysis concerns information

on the claim�s� causing ruin	

Throughout we consider the classical Cram�er�Lundberg model as intro�

duced in De�nition �	�	��

�a� The claim sizes X�X�� X�� � � � are iid positive rvs with common non�

lattice df F and �nite mean   EX�	

�b� The claim Xk arrives at time Tk  Y� & � � � & Yk� where Y� Y�� Y�� � � �

are iid Exp��� rvs for some � � �	 The corresponding claim numbers

N�t�  supfk � � � Tk � tg� t � �� constitute a homogeneous Poisson
process with intensity � � �	
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�c� The processes �N�t�� and �Xk� are independent	

The corresponding risk process is then de�ned by

U�t�  u& ct� S�t� � t � � �
where u is the initial capital� S�t�  

PN�t�
n�� Xn the total claim amount until

time t and c � � is the premium income rate	 We also assume the net pro�t

condition �� c � �	

In Chapter � we mainly concentrated on estimating the ruin probability

in in�nite time�


�u�  P


inf

��t��
U�t� � �

�
�

For our purposes� it turns out to be convenient to express 
�u� in terms of

the L�evy process R� where

R�t�  S�t�� ct  u� U�t� � t � � �
Therefore R can be considered as a continuous�time analogue to a random

walk with negative drift	 Consequently� we expect various results from ran�

dom walk theory to be useful in this context� see also Chapter �� equation

��	�� and the related discussion	 In some cases the translation is a straight�

forward application of the so�called method of the discrete skeleton which is

described below	

Since c � � ruin can occur only at the claim arrival times Tk when R

jumps upwards� see Figure �	�	� �top�	 By virtue of the net pro�t condition

the discrete�time process

Rn  

nX
k��

�Xk � cYk�  

nX
k��

Zk � n � N �

constitutes a random walk with negative drift which is generated by the iid

sequence Z�Z�� Z�� � � �	 Moreover�


�u�  P


sup
t��

R�t� � u

�
 P


sup
n��

Rn � u

�
� ��	���

It is an immediate consequence of the SLLN that

M  sup
t��

R�t�  sup
n��

Rn � � a�s� ��	���

The random walk �Rn� is referred to as a discrete skeleton embedded in

the continuous�time L�evy process R	 Such a construction allows us to use

renewal theoretic arguments on the skeleton and to translate the results to
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Figure 	
�
� A sample path of �R�t�� �top� and its discrete skeleton random walk
�Rn� �bottom�� The ladder points are indicated by �� They appear for Rn at the
indices �i�e� claim numbers� n � �	 �	 �	 ��� The ladder heights of �Rn� and �R�t��
coincide� they are also the records of �Rn��

the process R	 Thus representation ��	��� suggests using standard theory for

the maximum of a random walk with negative drift	 Below we present some

of the main ideas and refer to the monographs Asmussen ���� ���� Feller �����

or Resnick ����� for more details	

Recall from equation ��	��� in Chapter � that

�� 
�u�  ��� 	�
�X
n��

	nFn�
I �u� � u � � � ��	��

where

	  
���  
�

c
� ��� �� � ��	���

Here FI is the integrated tail df FI�u�  ��
R u
�
F �y�dy	
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In what follows we give a probabilistic interpretation of ��	�� by ex�

ploiting the relation �� 
�u�  P �M � u�	 We start by introducing another

discrete skeleton for R	 The quantities which suggest themselves in a natural

way are the ladder indices

�����  � �

�����  infft � � � R�t� � �g �

���k & ��  infft � ���k� � R�t� � R����k��g � k � N �

and the ladder heights R����k��� see Figure �	�	� �top�	 Here� as usual� inf �  
�	 In the language of Section �	 one could call R����k�� a record of the
continuous�time process R and ���k� the corresponding record time	

The process between two consecutive ladder indices is called a ladder seg�

ment	 Due to the independent and stationary increments property of R� it

is intuitively clear that at each ladder point ����k�� R����k��� the process

starts anew� and that the ladder segments constitute a sequence of iid sto�

chastic processes	 A detailed proof of these results uses the so�called strong

Markov property� we refrain from going into details here	 The resulting re�

generative nature of the process is nicely discussed in Resnick ������ Sections

�	�	� and �	��	

Before we return to formula ��	��� we collect some useful facts about the

�rst ladder segment	 Writing

V  R������� and bZ  �R�������� �

it follows that A  V & bZ is the size of the claim leading to ruin� given

the initial capital u  �	 See Figure �	�	� for an illustration with V  V�
and bZ  bZ�	 The following statement about V is classical� see for instance

Cram�er ����� or Feller ������ Section XI		 The results for bZ and A are to be

found in Dufresne and Gerber �����	 Here and in what follows we write

P �u����  P ��j��u� ��� � u � � � ��	���

where

��u�  infft � � � R�t� � ug
is the ruin time� given the initial capital u	

Proposition 
���� �Ruin with initial capital u  ��

The following statements hold	

�a� P ����V � x�  P ���� bZ � x�  FI �x��
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�b� P ����A � x�  ��
R x
� y dF �y��

�c� Let U be uniform on ��� ��� independent of A� Then the vectors �V� bZ�
and �UA� ��� U�A� have the same distribution with respect to P ���� �

Remark� Statement �c� can be translated into

P ����V � v� bZ � z�  
�



Z �

v�z

P ���


v

y
� U � �� z

y

�
y dF �y�

 
�



Z �

v�z

�y � z � v�dF �y�

 F I�v & z� � v� z � � � ��	���

where we applied partial integration for the last equality	 In the heavy�tailed

case� for initial capital u tending to �� we shall derive a formula similar to
��	���� see ��	��	 �

Now we return to formula ��	��	 From ��	��� it follows that the ladder

heights R����k�� determine the distribution of the maximum M 	 A precise

formulation of the regenerative property of R at its ladder points implies that

R����k���R����k � ��� are iid positive rvs	 By Proposition �	�	��a�� they
have distribution tail

P �R������� � x�  P ����� ���P ����V � x�  	F I�x� � x � � �

where 	 � ��� �� is de�ned in ��	���	 Here we used that� if ����  �� then
R�t� � � for all t � �	 The ladder indices constitute a renewal process which is
transient� see Remark � in Appendix A	 This means that the total number

K of renewals has a geometric distribution with parameter �� 	� where

	  
���  P ������ ���	 Indeed� using the iid property of the increments
���k�� ���k � ��� we obtain

P �K  n�  P ����n� �� � ���n& ��  ��

 P


max

k�������n
����k�� ���k � ��� �� � ���n& ��  �

�
 	n��� 	� � n � � �

Since

M  

KX
k��

�
R����k���R����k � ���

�
�

we have that
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�u�  P �M � u�

 

�X
n��

P �M � u � K  n�

 

�X
n��

P

�
nX

k��

�
R����k���R����k � ���

�
� u � K  n

�

 ��� 	�

�X
n��

	n ��� Fn�
I �u�� � u � � �

This yields ��	��	

In the following sections we further exploit the underlying random walk

structure of R	 There we study a sample path of the risk process leading to

ruin	 The problem and its solution will be formulated as conditional limit

theorems in terms of the conditional probability measures P �u� as de�ned in

��	���	 We give a short review of the sample path description obtainable and

contrast ruin under a small and large claim regime	 These results will also

give us asymptotic expressions for the ruin probability in �nite time� i	e	


�u� T �  P


sup

��t�T
R�t� � u

�
 P ���u� � T � � � � T �� �

In our presentation we follow Asmussen ��� in the Cram�er�Lundberg case

and Asmussen and Kl�uppelberg ���� in the subexponential case	 Those readers

who want to study the mathematical methods in detail should consult these

papers or the monograph by Asmussen ����	


���� The Cram�er	Lundberg Case

Throughout this section we assume that the assumptions of the Cram�er�

Lundberg Theorem �	�	� hold	 This means in particular that X has a moment

generating function which is �nite in some neighbourhood of the origin and

that the Lundberg exponent� i	e	 the solution of the equation
R�
� e�xF �x�dx  

c��� exists	 Moreover� we assume
R�
�

xe�xF �x�dx ��	 Theorem �	�	� then
gives us the approximation


�u� � Ce��u � u	� � ��	���

where C is a positive constant depending on the parameters of the risk

process	

Consider the moment generating function of Z  X � cY �

'�s�  EesZ �
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for appropriate s�values	 The Lundberg exponent � is the unique positive

solution of the equation '�s�  � and� by the net pro�t condition� '����  

���c��� � �	 Notice that '��s� � � in a neighbourhood of the origin� '�s� is

strictly convex and hence '���� � �	 For an illustration of ' see Figure �	�	�	

0 nu

1

Figure 	
�
� A typical example of �s� with the Lundberg coe�cient ��

LetHZ denote the df of Z  X � cY 	 The corresponding Esscher transformed

or exponentially tilted df is given by

H��x�  

Z x

��

e�ydHZ�y� � x � R �

Since Ee�Z  �� the df H� is proper with positive �nite meanZ �

��

xdH��x�  

Z �

��

xe�xdHZ�x�  '���� � � � ��	���

Following Feller ������ p	 ��� we call a random walk with increment df H�

associated	 The main idea for dealing with the sample paths of R �with neg�

ative drift� under the condition ��u� � � now consists of switching to an

associated random walk �with positive drift�	 Write � eZk� for an iid sequence
with df H� 	 Observe that

P �u��Z� � x�� � � � � Zn � xn�

 P �Z� � x�� � � � � Zn � xn�M � u��P �M � u�

 
�

P �M � u�

Z x�

��

� � �
Z xn

��

P �M � u� y� � � � � � yn�

dHZ�y�� � � � dHZ�yn�
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�


�u�

Z x�

��

� � �
Z xn

��


�u� y� � � � � � yn�dHZ�y�� � � � dHZ�yn�

�
Z x�

��

� � �
Z xn

��

e��y��			�yn�dHZ�y�� � � � dHZ�yn� ��	���

 H��x�� � � �H��xn�

 P � eZ� � x�� � � � � eZn � xn� �

In ��	��� we used the ruin estimate ��	���� as u	 �� combined with domi�
nated convergence	 The latter is justi�ed by a two�sided bound on 
�u� using

both ��	��� and ��	��	 This calculation shows that the distribution of the

random walk �Rn� and of R� given that ruin occurs in �nite time� is closely

related to the distribution of the associated random walk	

This intuitive argument is further supported by the following facts� let

Hn be the empirical df of the sample Z�� � � � � Zn� i	e	

Hn�x�  
�

n

nX
k��

IfZk�xg � x � R � ��	���

An application of the Glivenko�Cantelli theorem �Example �	�	� yields that

sup
x�R

jHn�x��HZ�x�j 	 � a�s�

This changes completely if ruin occurs and n is replaced by the ruin times

��u�� the following result indicates that the increment df HZ of the random

walk �Rn�� conditioned on the event that ruin occurs� is close to H� � the

increment df of the asscociated random walk	

Proposition 
���� The following relation holds as u	�	

sup
x�R

		H��u��x��H��x�
			 � in P �u��probability� �

Remark� �� Let A and Au be rvs	 Here and in what follows we write Au 	 A

in P �u��probability if

lim
u��

P �u��jAu �Aj � ��  � � � � � �

Analogously convergence in P �u��distribution of a sequence of random vec�

tors Au 	 A as u 	 �� as used in Theorem �	�	� below� is de�ned as

E�u�f�Au� 	 Ef�A� for every bounded� continuous functional f � see also

Appendix A�	 �

The following quantities describe the ruin event� the level R���u��� of the
process R just before ruin� the level R���u�� at the ruin time� the excess
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R���u���u over u by R at the ruin time and the size R���u�� �R���u��� of
the claim causing ruin	 For u	� their asymptotic distributional behaviour

is described below	

Theorem 
���� �Ruin in the Cram�er�Lundberg case�

The following relations hold for u	�	

�a� supt�����	

				R�t��u����u�
� '���� t

					 � in P �u��probability�

�b�
��u�� u�'����p

us���
	 N in P �u��distribution�

where N is a standard normal rv and s��� is a quantity involving the

Lundberg exponent and certain moments of X�

�c� The quantities R���u���u� u�R���u��� and R���u���R���u��� con�
verge jointly in P �u��distribution to a non�degenerate limit distribution�

Moreover� ��u� and R���u�� � u are asymptotically independent� �

Remarks� �� The above results �a� and �b� indicate that a sample path of R

leading to ruin has locally a linear drift with slope '���� � � just before ruin

happens	 Notice that this is in contrast to the global picture where the drift

of R is negative	 This is due to the close relationship between the sequences

�Zk� and � eZk� for which E eZk  '���� � �� see ��	���	 The link of these two

sequences has been indicated above	 The precise description of this relation�

ship would lead us too far� we refer to Asmussen ���� where also Proposition

�	�	 is taken from	

�� Part �c� implies in particular that all these quantities converge to �nite

limits	 This is in contrast to the behaviour of the claim leading to ruin in the

heavy�tailed case� see Theorem �	�	�	 �

For completeness� we conclude this section with some results on the ruin

probability in �nite time	 Recall that the ruin probability for the interval

��� T � is given by


�u� T �  P


inf

��t�T
U�t� � �

�
� ��	���

Approximations to 
�u� T � may for instance be derived from FCLTs	 In Ex�

ample �	�	�� a di�usion approximation to 
�u� T � was presented	 It is based

on a FCLT for the total claim amount process �S�t��	 Alternatively� Propo�

sition �	�	� can be exploited	

Corollary 
���� �Ruin in �nite time in the Cram�er�Lundberg case�

lim
u��

sup
��T��

				e�u
�u� T �� C�


T � u�'����

s���
p
u

�				  � � ��	���
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Here C is the same constant as in ������� � denotes the standard normal df�

and s��� is a deterministic scaling factor involving the Lundberg exponent

and certain moments of the claim size distribution�

Proof� First note that by the de�nition of P �u�

P �u����u� � T �  
�u� T ��
�u� �

Hence

sup
��T��

			e�u
�u� T �� CP �u����u� � T �
			

 sup
��T��

e�u
�u� T �

				�� C

e�u
�u�

				 �
The right�hand side tends to � as u	� since 
�u� T � � 
�u� and

expf�ug
�u�	 C by ��	���	 Since weak convergence to a continuous

limit implies uniform convergence of the dfs the result follows from Theo�

rem �	�	��b�	 �

Remark� � The limit relation ��	��� suggests as approximation of the ruin

probability in �nite time


�u� T � � Ce��u�


T � u�'����

s���
p
u

�
� ��	��

This approximation has to be treated with care� since no rate of convergence

is given the remainder term in this limit relation may be larger than the

term to be approximated	 Further re�nements and higher order approxima�

tions are to be found in Asmussen ����	 �

We may summarise the situation under the Cram�er�Lundberg regime as fol�

lows�

The behaviour of the sample path of R just before ruin occurs is

as if the increment distribution changed from HZ to H� � and the

main dramatic feature we see in the sample path is a change of

drift causing ruin	 The intuitive picture is that rare events leading

to ruin occur as a consequence of a build�up of claims which locally

force the underlying random walk to behave like a random walk

with positive drift	 The increment distribution of such a random

walk is given by the Esscher transformed df H� 	
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���� The Large Claim Case

In contrast to the Cram�er�Lundberg case� under a large claim regime rare

events causing ruin happen out of the blue	 The process evolves in its �typi�

cal
 way up to the ruin time	 Then ruin occurs as a consequence of one single

large claim	

Recall the de�nition of a subexponential df F �F � S��
P �X� & � � �&Xn � x� � P �max�X�� � � � � Xn� � x� � x	� � ��	���

for n � �� see ��	���	 In Chapter � various estimates of the ruin probability

�u� for heavy�tailed F were presented	 In particular� we may conclude from

Theorem �	�	� that FI � S implies


�u� � 	

�� 	
F I�u�  

�

c� �

Z �

u

F �y�dy � u	� � ��	���

Below we want to give answers to the following questions� given that ruin

occurs in �nite time�

�a� How big is the claim leading to ruin


�b� What is the asymptotic distribution of the ruin time


�c� What does �the process evolves in its typical way up to the ruin time


actually mean


A �rst indicator of the fact that the risk process evolves typically up to

the ruin time is provided by the behaviour of the empirical df Hn of the

increments Zn of the embedded discrete skeleton random walk Rn� see ��	���	

Proposition 
���� Under the conditions of Theorem �����

sup
x�R

		H��u��x��HZ�x�
			 � in P �u��probability� �

Compare this result with Proposition �	�	 in the Cram�er�Lundberg case�

there the limit of H��u� turns out to be the Esscher transformed df H� 	

For a precise description of the ruin event itself we consider the P �u��

distribution of the following quantities �see Figure �	�	� for an illustration��

�a� �Z�u�  R���u��� � the level of R just before ruin�

�b� V �u�  R���u�� � the level of R at the ruin time� and

�c� V �u�� u � the excess over u by R at the ruin time	

Again we may use the regenerative structure of the process R	 The negative

drift of R ensures that there are with probability one only �nitely many

ladder points	 Let

K�u�  inffk � N � R����k�� � ug �
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with inf �  �� denote the ladder index causing ruin	 The increments

Vn  R����n�� � R����n � ��� are iid and P ����V� � x�  FI �x� by Propo�

sition �	�	��a�	 Then

P �K�u�  n�

 P �K�u�  n � ��u� ���

 P ����n� ���P �V� & � � �& Vn�� � u � V� & � � �& Vn � u j���n� ���

 P ����n� ��� pn�u� �
A justi�cation of the following arguments is given in the proof of Lemma �	�

in Asmussen and Kl�uppelberg ����� the crucial assumption used is subexpo�

nentiality of FI implying that ��	��� holds for the Vn with respect to P ����

pn�u� � P
�
max�V�� � � � � Vn��� � u � max�V�� � � � � Vn� � u

			���n� ���
� P �Vn � u j ���n�� ���n� �� ���

 P ����V� � u�  F I�u� � u	� �

Also notice that for 	 as in ��	����

P ����n� ���  P


max

k�������n
����k�� ���k � ��� ��

�
 Pn������ ���  	n � ��	���

Combining ��	������	���� we conclude that

P �u��K�u�  n�  
P �K�u�  n� ��u� ���


�u�

� 	nF I�u�


�u�

	 ��� 	�	n�� � ��	���

i	e	 the number of ladder segments until ruin has asymptotically a geometric

distribution with parameter �� 		

The path �S�t��t������u�� can be decomposed into K�u� ladder segments�

where K�u� is asymptotically geometric as in ��	���� the �rst K�u�� � seg�
ments are all �typical
 as described in Proposition �	�	�	 However� the last

segment leading to ruin behaves di�erently	 Ruin is caused by one single large

claim	 Therefore one may expect that classical extreme value theory enters

for describing the ruin event	
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Figure 	
�
	 Idealised sample path leading to ruin�

Subexponential distributions are heavy�tailed in the sense that their

tails decrease to � more slowly than any exponential tail� see Lemma �	�	�	

Their tails can be regularly varying� but also the lognormal and heavy�tailed

Weibull distributions are subexponential	 This implies that subexponential

distributions may belong to the maximum domain of attraction of the Fr�echet

distribution �� �see Section �	�	�� or of the Gumbel distribution � �see Ex�

ample �	�	���	 We distinguish between these two cases	

Let �Z�u�� V �u�� be a random vector having the same P �u��distribution

as ��R���u���� R���u���	 The following result describes the sample path up
to ruin and the ruin event itself	

Theorem 
���� �Ruin in the subexponential case�

Assume that either F I � R���� for � � ����� or FI � MDA��� � S �this
corresponds to �  � below�� and let a�u�  

R�
u

F �x�dx�F �u�� Then

sup
t�����	

				R�t��u����u�
& c��� 	�t

					 � ��	���

and

�a�u���� �c��� 	���u� � Z�u� � V �u�� u�	 �Z� � Z� � V��
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as u	� in P �u��distribution� The rvs V� and Z� are both generalised Pareto

distributed with

P �V� � v �Z� � z�  G��v & z� � v� z � � � ��	��

where

G��x�  

�
�� & � x����� � � � ����� �
e�x � �  � �

��	��

�

Remarks� �� Recall from Remark � after Proposition �	�	�� that convergence

in P �u��distribution of a sequence of random vectors Au 	 A as u 	 � is

de�ned as E�u�f�Au�	 Ef�A� for every bounded� continuous functional f 	

�� The generalised Pareto distribution appears as limit law for the normalised

excesses of an iid sequence over high thresholds� see Section �		 This is sim�

ilar to Theorem �	�	�� where the excess V �u�� u of the process R over the

threshold u has a similar limit behaviour	

�� Relation ��	��� intuitively supports the statement that the process evolves

�typically
 up to time ��u� because R�t��t
a�s�	 �c�� � 	�  � � c � � by

the SLLN	 Also notice that Z�u����u� 	 c�� � 	� in P �u��probability	 This

again indicates �typical
 behaviour until ruin occurs	

� The above theorem should be compared with Theorem �	�	�	 Notice in

particular that� in the Cram�er�Lundberg case� the excesses V �u� � u con�

verge weakly to a non�degenerate limit� while in the subexponential case the

excesses tend to �	 Notice that the normalising function a�u� is the mean

excess function which tends to in�nity for subexponential FI � see Exam�

ple �	�	�	 The claim causing ruin starts at a �typical
 level� then shoots all

the way up� crosses the high level u and even shoots over this high level by

a very large amount	

�� Equation ��	�� should be compared with ��	���	 Although the last lad�

der segment has completely di�erent probabilistic properties than the other

ones� the excess V �u� � u of R at the time of ruin and the level Z�u� of R

immediately before ruin occurs show a similar probabilistic relation for u  �

and in the limit for u	�	 �

From Theorem �	�	� we immediately obtain for all � � �����
Z�u� & V �u�� u

a�u�
	 Z� & V� in P �u��distribution �

This yields information about the size R���u���R���u���  V �u�&Z�u� of

the claim causing ruin	
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Corollary 
����� �Size of the claim causing ruin in the subexponential case�

�a� Assume that F I � R���� for � � ����� � Then a�u� � �u and

lim
u��

P �u�


V �u� & Z�u�

u
� x

�
 


� &

�

�


�� �

x

��
x���� � x � � �

�b� Assume that FI � MDA��� � S � Then a�u�  
R�
u F �x�dx�F �u� and

lim
u��

P �u�


V �u� & Z�u�� u

a�u�
� x

�
 �� & x�e�x � x � � �

�

We conclude with some results on the ruin probability in �nite time� given

by ��	��� for the interval ��� T �	 Since


�u� T ��
�u�  P ���u� � T j ��u� ���  P �u����u� � T � �

the following can be derived from Theorem �	�	�	

Corollary 
����� �Ruin in �nite time in the subexponential case�

�a� Assume that F I � R���� for � � ����� � Then a�u� � �u and

lim
u��


�u� uT �


�u�
 �� �� & c��� 	�T ����� �

�b� Assume that FI � MDA��� � S � Then a�u�  
R�
u F �x�dx�F �u� and

lim
u��


�u� a�u�T �


�u�
 �� e�c�����T �

�

We can summarise the situation under the subexponential regime as follows�

The behaviour of the sample path of R just before ruin happens

appears completely normal� it looks exactly as any sample path

for which ruin never occurs	 Ruin then happens out of the blue�

caused by a single large claim	 It is so large that� in order to obtain

a �nite non�degenerate limit of the excess of R over the threshold

u� we have to normalise by a function which tends to �	
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Notes and Comments

Notice that the problems discussed above have similarities with the estima�

tion of VaR �ruin say� and the shortfall �the excess of the claim causing ruin�

as discussed in Example �	�	�	

Some early exposition of approximations to the ruin probability in �nite

time is to be found in Cram�er ���� and Segerdahl ����� who �rst derived

approximation ��	��	 Later results exploit the di�usion approximation of the

total claim amount process as a useful tool� see Iglehart ����� and Grandell

����� and also Example �	�	��	 A systematic approach with respect to FCLTs

for R and ���u�� is provided by Asmussen ���� see in particular his Corol�

lary �	�	 Because of the small claim regime� the underlying limit processes

are Gaussian	 New ideas by Siegmund ����� from sequential analysis led to

re�nements and new variants	

The above results are closely related to large deviations	 In the context

of insurance risk models� they have been studied by Martin�L�of �������

Djehiche ����� Slud and Hoesman ����� and Barndor��Nielsen and Schmidli

���	 All this refers to the small claim regime	 See also Section �	� for a review

of large deviation results in the heavy�tailed case	

The results of Section �	�	� were derived in Asmussen ��� � the heavy�

tailed case is treated in Asmussen and Kl�uppelberg ����	 Extending re�

sults of Asmussen� Fl(e�Henriksen and Kl�uppelberg ���� and Asmussen and

Kl�uppelberg ����� an extremal event analysis for the Markov�modulated risk

model was carried out by Asmussen and H(jgaard ����	

The conditional limit theorems above have been applied to the e�cient

simulation of ruin probabilities� in the light�tailed case by Asmussen ���� and

in the heavy�tailed case by Asmussen and Binswanger ����	

��� Perpetuities and ARCH Processes

Random recurrence equations have been used in various �elds of applied

probability �to name a few references� Kesten ����� and Vervaat ����� were

very stimulating papers in this �eld� the monograph by Brandt� Franken and

Lisek ����� the overview paper by Embrechts and Goldie ������	 In particular�

ARCH and GARCH processes �see also Section �	� for some remarks on the

topic� are given by stochastic recurrence equations	 They serve as special

exchange rate or log�return models with stochastic volatility and are very

popular in econometrics	 A �ood of papers has been published on ARCH and

related models� mainly in the context of statistics	 See for instance the recent

review paper by Shephard ����� and references therein	
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Our interest in these models arose from the fact that ARCH processes with

light�tailed input �i	e	 Gaussian innovations� are indeed heavy�tailed �i	e	

Pareto�like� time series	 This was �rst observed in ���� by Kesten �����	 It is

the aim of this section to explain where the heavy tails come from and to study

the behaviour of the maxima of an ARCH��� sequence	 In our presentation

we follow Goldie ����� and de Haan et al	 ����� who treat solutions of general

recurrence equations and their extremal behaviour� respectively	


���� Stochastic Recurrence Equations and Perpetuities

In �nance and insurance applications we are often confronted with two con�

trary phenomena� accumulating and discounting	 It is the aim of this section

to shed some light on discrete time accumulation and discounting techniques

which are closely linked to stochastic recurrence equations	 In what follows

we introduce two basic concepts in those equations	

Example 
���� �Accumulation and perpetuities�

Suppose you invest at times �� �� �� � � � one unit �say� #�� in a bond with

interest rate � � ��� ��	 What is the accumulated value Yt at time t of the

interest payments made at times �� � � � � t for t � �� assuming Y�  � " Simple

calculation shows that

Y�  � � Y�  � & �� & �� � Y�  � & �� & �� & �� & ��� � � � � �

In particular� we observe that Yt and Yt�� are linked by the recursion

Yt  � & �� & ��Yt�� � t � N � ��	��

Now assume that the interest rate � depends on time t	 The recursion ��	��

can immediately be modi�ed�

Yt  �& �� & �t�Yt�� � t � N �

yielding

Y�  � � Y�  � & �� & ��� � Y�  � & �� & ��� & �� & ����� & ��� � � � � �

We can also imagine a more complicated situation� assume that the interest

rate � and the invested amount A are time dependent	 Setting Bt  � & �t�

this leads to the recursion

Yt  At &BtYt�� � t � N � ��	��

or explicitly
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Y�  Y�B� &A� �

Y�  Y�B�B� &A�B� &A� �

Y
  Y�B�B�B
 &A�B�B
 &A�B
 &A
 � � � � �

and in general �by convention�
Ql��
j�l aj  � and

Pl��
j�l aj  ��

Yt  Y�

tY
j��

Bj &

tX
m��

Am

tY
j�m��

Bj � t � N � ��	�

If Y�� At� Bt are rvs� ��	�� is called a �forward� stochastic recurrence equation

or a �forward� stochastic di�erence equation	 The word �forward
 is related

to the fact that� starting from an initial value Y�� we successively apply the

random a�ne mappings �t�x�  At & Btx such that Yt  �t�Yt���	 The

latter relation is also called an �outer iteration
� see for instance Embrechts

and Goldie �����	

In the insurance context� �Yt� as given by ��	� can be interpreted as the

value of a perpetuity� the payments At are made at the beginning of each

period and the accumulated payments Yt�� are subject to interest	 The name

�perpetuity
 comes from �perpetual payment streams
 and recently gained

some popularity in the literature on stochastic recurrence equations	 In the

form ��	�� �Yt� is referred to as a perpetuity�due	 Gerber ������ Section �	��

gives a brief introduction to perpetuities from a life insurance point of view	

See also Dufresne ����� ���� and the references therein for applications in

insurance� mainly to pension funding	 An introduction within the realm of

�nance is for instance to be found in Brealey and Myers ����� p	 ��� see also

Geman and Yor �����	 More background is to be found in the recent paper

by Goldie and Gr�ubel �����	 �

Example 
���� �Discounting�

The reverse problem to accumulation is discounting	 Suppose payments of

one unit are made at times �� �� �� � � �	 Given the interest rate � � ��� ��� the
discounted value at time � of those payments� made till time t� is

Ut  � & �� & ���� & �� & ���� & � � �& �� & ���t � t � N �

Allowing for time�dependent interest rates � and payments A� and setting

Ct  �� & �t�
��� we obtain in a similar fashion

Ut  A�� &A��C� &A�
C�C� & � � �&A�tC� � � �Ct�� & U�C� � � �Ct

 

tX
m��

A�m

m��Y
j��

Cj & U�

tY
j��

Cj � t � N � ��	��
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�The value U�� which may be viewed as the �nal �time t� down�payment� is

unimportant when we are interested in the behaviour of Ut for large t	 Under

weak assumptions� the last term in ��	�� can be shown to converge to zero

a	s	� see the proof of Proposition �		��b� below	� If we assume that U�� �A
�
t��

�Ct� are sequences of rvs� ��	�� can be written using a so�called �backward�

stochastic recurrence equation or a �backward� stochastic di�erence equation	

For the interpretation of ��	�� as an �inner iteration
 of random a�ne maps

see Embrechts and Goldie �����	

A glance at ��	�� and ��	� convinces us that the structure of the discounted

and accumulated sequences �Ut� and �Yt� is very similar	 This also concerns

the distribution of these rvs� assume Y� is independent of the iid sequence

��At� Bt��t�� and U� is independent of the iid sequence ��A
�
t� Ct��t��	 Observe

that for every t � N�
Y�� ��Ak� Bk���k�t

�
d
 

�
Y�� ��At�k��� Bt�k������k�t

�
�

implying that

Yt  Y�

tY
j��

Bj &
tX

m��

Am

tY
j�m��

Bj

d
 Y�

tY
j��

Bj &

tX
m��

Am

m��Y
j��

Bj �

Immediately� if Y�
d
 U� and �A�� B��

d
 �A��� C��� then Ut

d
 Yt	 �

Throughout this section we assume that Y� is independent of the iid sequence

��At� Bt��t��� We also write for convenience �A�B�  �A�� B��� In what

follows we are concerned with properties of the perpetuity sequence �Yt�

de�ned by ��	�	 It follows from the discussion in Example �		� that every

statement about the distribution of Yt is also about the distribution of Ut
de�ned by ��	��	 The question we want to answer is

Which assumptions on �A�B� and Y� guarantee convergence of �Yt� in

distribution� and what are the properties of the limit distribution


The answer can be found in Vervaat ������ see also Kesten �����	

Proposition 
���� �Distribution and moments of perpetuities�

Let �Yt� be the stochastic process de�ned by ���� and assume that

E ln� jAj �� and �� � E ln jBj � � � ��	��
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�a� Yt
d	 Y for some rv Y and Y satis�es the identity in law

Y
d
 A&BY � ��	��

where Y and �A�B� are independent�

�b� Equation ����� has a solution� unique in distribution� which is given by

Y
d
 

�X
m��

Am

m��Y
j��

Bj � ��	��

The rhs of ����� converges absolutely with probability ��

�c� If we choose Y�
d
 Y as in ������ then the process �Yt�t�� is strictly

stationary�

Now assume the moment conditions

EjAjp �� and EjBjp � � for some p � ����� �

�d� Then EjY jp ��� and the series in ����� converges in pth mean�

�e� If EjY�jp ��� then �Yt� converges to Y in pth mean� and in particular

EjYtjp 	 EjY jp as t	��

�f� The moments EY m are uniquely determined by the equations

EY m  
mX
k��


m

k

�
E

�
BkAm�k

�
EY k � m  �� � � � � �p� � ��	��

where �p� denotes the integer part of p�

Proof� �a� The existence of the weak limit of �Yt� is shown in part �b� below	

Then it is immediate that

�At� Bt� Yt���
d	 �A�B� Y �

with �A�B� and Y independent	 This and the continuous mapping theorem

prove �a�	

�b� Iterating equation ��	�� yields

Yt  Y�

tY
j��

Bj &

tX
m��

Am

tY
j�m��

Bj � t � � � ��	���

We write Yt�Y��  Yt when we want to emphasize the dependence on the

initial value Y�	 Starting with di�erent Y
�
� and Y ��

� � we obtain

Yt�Y
�
��� Yt�Y

��
� �  �Y

�
� � Y ��

� �

tY
j��

Bj � t � N � ��	���
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The SLLN and ��	�� imply

�

t

tX
j��

ln jBj j a�s�	 E ln jBj � � � ��	���

Hence

			 tY
j��

Bj

			  exp
���

tX
j��

ln jBj j
#$% a�s�	 � �

From this and ��	��� we conclude� that if Yt�Y��
d	 Y for some Y�� then the

latter relation holds for any initial value Y�	 In particular� if there is a Y such

that Yt
d	 Y and Y�

d
 Y is independent of �At� Bt�t��� then Yt�Y��

d
 Y �

and therefore Y in ��	�� is unique in distribution	 Thus it remains to show

that �Yt� converges in distribution to Y given by ��	��	

Set Y �
�  � and

Y �
t  

tX
m��

Am

m��Y
j��

Bj � t � N � ��	���

Then

Yt
d
 Y �

t & Y�

tY
j��

Bj �

which immediately follows from the discussion in Example �		�	 Note that

the Y �
t are the partial sums of the in�nite series in ��	��	 So a su�cient

condition for Y �
t to converge in distribution is a	s	 convergence of the series

��	��	 Now� by the SLLN ��	���� and since m�� ln� jAmj a�s�	 � �this is also a

consequence of the SLLN and of ��	����

			Am

m��Y
j��

Bj

			 � exp
���m

�� �

m
ln� jAmj& �

m

m��X
j��

ln jBj j

A#$% � e�am

for some a � ��� jE ln jBjj� and su�ciently large m� with probability �	 Hence
the rhs in ��	�� converges almost surely	 This proves �b�	

The proof of �c� follows from the special structure of the process �Yt� for any

vector �Yt� � � � � Yt�h� for t� h � N� by a straightforward generalisation of the

following argument� by ��	�� we obtain for any t � N

�Yt� Yt���  �Yt� At�� &Bt��Yt� ��	��

d
 �Y�� A� &B�Y��  �Y�� Y�� �
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Figure 	
�
� Log�returns of the exchange rate �US��UK� January 	� �����May
	�� ��� �top� left� and the corresponding sample autocorrelations of this time se�
ries �top� right�� of its absolute values �bottom� left� and of its squares �bottom�
right�� The dotted lines indicate the 
�! asymptotic con
dence band for the sample
autocorrelations of iid Gaussian rvs�

�d� For any rv Z set kZkp  �EjZjp���p	 Since kAkp �� and kBkp � �� an

application of Jensen�s inequality ensures that ��	��� and hence Proposition

�		��a���c� hold	 Moreover�

EkY kp �
�X
t��

'''At

t��Y
j��

Bj

'''
p
 kAkp

�X
t��

kBkt��
p �� �

Hence EjY jp �� and the series in ��	�� converges in pth mean	

�e� Y �
t as de�ned in ��	��� converges a	s	 to the rhs of ��	��	 By �a���c� and

dominated convergence� EjY �
t jp 	 EjY jp	 Thus� for Y�  � a	s	� EjYtjp 	

EjY jp � using Yt���
d
 Y �

t 	 For general Y� it follows from ��	��� that

EjYt�Y��� Yt���jp � �EjBjp�tEjY�jp 	 � � t	� �

�f� From ��	�� we conclude that ��	�� holds� whenever the occurring ex�

pectations exist� in particular for m  �� � � � � �p�	 The equations determine
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Figure 	
�
� Simulated sample path of an ARCH��� process with parameters � �
������� and � � ��
 � ����� the estimated parameters for the data of Figure ������
and the corresponding sample autocorrelations of this time series �top� right�� of its
absolute values �bottom� left� and of its squares �bottom� right�� The dotted lines
indicate the 
�! asymptotic con
dence band for the sample autocorrelations of iid
Gaussian rvs�

EY m successively for m  �� � � � � �p�� the coe�cient EBm of EY m on the rhs

satis�es

jEBmj � EjBjm � � �

since q�� lnEjBjq is a convex function in q on ��� p� with non�positive values

at the endpoints	 �


���� Basic Properties of ARCH Processes

In Chapter � we suggested linear processes for modelling �nancial data	 They

may be appropriate as a �rst approximation� but often do not capture the

more detailed structure of �nancial data	 Such data often exhibit the following

features�

�a� Almost no correlation in the data	

�b� Volatility changes in time	
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�c� Data are heavy�tailed	

�d� High correlation of the squares and absolute values of the data	

�e� High threshold exceedances appear in clusters	

Some of these features are not captured by linear processes	 Various models

have been introduced aiming at properties �a���e�	 This section is devoted

to one particular class of such models	 In ����� Engle ����� introduced the

AutoRegressive Conditionally Heteroscedastic process of order p �ARCH�p��

for p � N 	 This class was extended by Bollerslev ���� who suggested an al�

ternative and more �exible dependence structure for describing log�returns�

the generalised ARCH or GARCH�p� q� model �p� q � N�	 It is de�ned by the

equations

Xt  �tZt � t � N � ��	���

where �Zt� is a sequence of iid standard normal rvs and �t obeys the relation

��
t  � &

pX
i��

�iX
�
t�i &

qX
j��

�j�
�
t�j � t � N � ��	���

with �xed non�negative constants �� �i and �j 	 Notice that �Xt� is a Gaussian

mixture model	 In contrast to linear processes such as ARMA models� where

the noise is additive� here the noise �Zt� appears multiplicatively	 The vari�

ance ��
t of Xt� conditionally on the past observations� is given by the

GARCH�p� q� equation ��	���	 Thus the conditional variance ��
t depends lin�

early on the past via the earlier squared log�returns X�
t�i for i  �� � � � � p and

the conditional variances ��
t�j for j  �� � � � � q	 It means that high volatility

may result from large absolute log�returns jXt�ij or from large volatility �t�j
in preceding time periods	

Fitting these models to �nancial data has been a major issue of economet�

rics during recent years	 However� this is not the topic of this section and we

refer to the book by Harvey ������ the review papers by Bollerslev ����� Shep�

hard ������ and the vast amount of references therein� see also Section �	�	

Another book in this context� also containing interesting case studies� is Tay�

lor �����	 A textbook treatment on the statistical analysis of �nancial time

series� including various sections on �G�ARCH processes is Mills ���	

We �tted an ARCH��� process to the exchange rates presented in Figure

�			 We obtained parameter estimators b�  ������� and b�  ��� � ���� by

standard maximum likelihood estimation	 Figure �		� shows a simulated

sample path of an ARCH��� process with the estimated parameter values	

We concentrate� however� rather on probabilistic properties implicated

by �a���e� above� and in particular we study the upper tail of the one�

dimensional marginal distribution	 The extremes of certain stationary se�

quences are particularly tractable by the methods presented in Sections 	�
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�	� and �	�	 The behaviour of the ARCH��� process in its extremes is also

well understood and might serve as an indicator of the features of the more

general class of GARCH�p� q� models� see Section �		�	

For q  � and p  �� ��	��� and ��	��� reduce to the ARCH��� process�

which is de�ned by the equations

Xt  
q

� & �X�
t�� Zt � t � N � ��	���

for some initial rv X� independent of �Zt�� parameters � � � and � � �	

It is a Markov process� given by the explicit autoregressive structure ��	���	

By construction� Xt�� and Zt are independent for every t � N� and Xt are

mean�zero� uncorrelated rvs provided EX�
� ��	

For deriving probabilistic properties of the ARCH��� process we will make

extensive use of the fact that the squared ARCH��� process �X�
t � satis�es the

stochastic recurrence equations

X�
t  �� & �X�

t���Z
�
t  At &BtX

�
t�� � t � N � ��	���

where

�At� Bt�  ��Z
�
t � �Z

�
t � � t � N � ��	���

Assuming that X� is independent of �Zt� and setting Yt  X�
t � we are im�

mediately in the framework of Section �		�	 We intend to apply Proposition

�		� to the sequence �X�
t �	 This requires a check of the assumptions of that

result	 The following elementary lemma serves that purpose	 In combination

with Proposition �		� it will become the key to the results in Sections �		�

and �		�	

Lemma 
���� For a standard normal rv Z and � � ��� �e��� where � �
������ is Euler�s constant� de�ne

h�u�  E��Z��u � u � � �
Then

h�u�  
����up

�
�


u&

�

�

�
� u � � � ��	���

The function h is strictly convex in u� and there exists a unique solution

'  '��� � � to the equation h�u�  �� Moreover�

'���

���
� � � � � ��� �� �
 � � �  � �

� � � � � ��� �e�� �
��	���

and
E

�
��Z��� ln��Z��

 
� � and E

�
ln��Z��

 
� � � ��	���
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0 kappa

1

Figure 	
�
� One possible situation for h�u� as described in Lemma �����

Proof� Notice �rst that h���  � for all �	 Furthermore� h has derivatives of

all orders	 In particular�

h��u�  E
�
��Z��u ln��Z��

 
��	���

h���u�  E
�
��Z��u�ln��Z����

 
� � � ��	��

��	��� implies that

h����  E�ln��Z���  ln�&E lnZ�

 ln���� & � �� �� ��� �
�
� �  ln����� � � � ln �

 ln�� ln �� � � �

��	���

for � � � � �e�� where � is Euler�s constant	 ��	�� implies that h is strictly

convex on R� 	 By symmetry of the normal density and partial integration�

we obtain

h�u�  E
�
�Z�

�u
 

�up
��

Z �

��

x�ue�x
���dx

 
�up
��
�

Z �

�

��y�u����e�ydy

 
����up

�
�


u&

�

�

�
�

giving ��	���	 Furthermore�

h�u� � E���Z��uIf�Z���g� � �uP ��Z� � ��	� � u	� �

The latter fact� together with h���  � and convexity of h implies that there

exists a unique ' � � such that h�'�  �	 Furthermore� h��'� � �� giving
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together with ��	��� and ��	��� the inequalities ��	���	 Since h���  �� ��	���

follows by a monotonicity argument	 �

The value '  '��� is crucial for the tail behaviour of the marginal distribu�

tion� the existence of moments and the extremal behaviour of the ARCH���

process	 The equation h�u�  � cannot be solved explicitly� but numerical

solutions can be found in Table �		�	

� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	�

' ��	� 	�� �	�� �	�� �	�� �	� 	� 	�� 	�� 	��� 	���

Table 
���
 Values of '  '��� for � � ��� �e���
Now we are well prepared to apply Proposition �		� to �X�

t �	

Theorem 
���� �Properties of the squared ARCH��� process�

Let �Xt� be an ARCH��� process given by ��	��� for �xed � � � and � �
��� �e��� where � is Euler�s constant� and assume that X� is independent of

�Zt��

�a� The process �Xt� is strictly stationary if

X�
�

d
 �

�X
m��

Z�
m

m��Y
j��

�
�Z�

j

�
� ��	���

Moreover� every strictly stationary ARCH��� process �Xt� has marginal

distribution

Xt
d
 jX�j r� �

with X�
� satisfying ������� and r� is a Bernoulli rv with P �r�  ���  ����

independent of jX�j�
�b� Assume that �Xt� is strictly stationary and write X  X�� Z  Z�� Let

' be the unique positive solution of the equation h�u�  E��Z��u  ��

Then E�X��u �� for � � u � '� Denote by p the largest integer strictly

less than '� Then for m  �� � � � � p�

EX�m  ���E��Z��m���EZ�m
m��X
k��


m

k

�
�k�m�kEX�k �� �

��	���

Proof� �a� Set Yt  X�
t � At  �Z�

t and Bt  �Z�
t 	 By ��	���� E ln

� jAj ��
and E ln jBj � �	 An application of Proposition �		� yields that �Yt� is

strictly stationary with unique marginal distribution ��	���	 An argument

similar to ��	�� proves that �Xt� is also strictly stationary	
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Now assume that �Xt� is strictly stationary	 Then� by Proposition �		�� X
�
�

necessarily satis�es ��	���	 Since Xt is symmetric� we have the identity in law

Xt
d
 jXtj r�

for a symmetric Bernoulli rv r� independent of Xt	 This concludes the proof

of �a�	

�b� By Lemma �		�� the function h�u� is strictly convex and satis�es h���  

h�'�  �	 Hence h�u� � � for � � u � '	 According to Proposition �		��d�f��

E�X��u � � for u � ' and X� d
 �� & �X��Z�	 Then ��	��� follows from

��	��	 �

Corollary 
����� Let �Xt� be a stationary ARCH��� process with parame�

ters � � � and � � ��� ��� Then the following relations hold	

�a� EX�  ����� ���

�b� If �� � ���� then EX� �� and corr
�
X�
t � X

�
�

�
 �t for all t � N�

Proof� �a� Choose m  � in ��	���	 Then from h���  � � ��

EX�  ����E��Z�����  ���� h������  ����� �� �

�b� By Theorem �		�� EX� �� for � � �� � ���	 We obtain as in �a�

EX�  ��� ��EZ����EZ���� & ���EX��  
���

�� ���
� & �

�� �
�

Iterating the ARCH��� equation yields

EX�
tX

�
�  

��

�� �

t��X
k��

�k & �tEX�

 �EX��� & �tvar�X�� �

This concludes the proof	 �

Remarks� �� By now we have realised that � is a crucial parameter of the

ARCH��� process ��	����

	 for �  �� �Xt� is normal noise�

	 for � � ��� ��� �Xt� is stationary with �nite variance�

	 for � � � � �e� � �������� �Xt� is stationary with in�nite variance� see

Theorem �		��	
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Figure 	
�
�� Sample autocorrelation functions of two di�erent simulated sample
paths of an ARCH��� process with � � ��� The contrast between the two graphs in�
dicates that the sample autocorrelations do not converge in probability to constants�

�� We anticipate at this point that EX�  � for �� � ���	 This follows

from h���  � for �  ��
p
� � ����� together with ��	��� below	 In this case

the notion of autocorrelation does not make sense for the squared ARCH���

process	 Nevertheless� the sample autocorrelations e�X��t� are well de�ned for

X�
� � � � � � X

�
n	 In contrast to linear processes �see Theorems �	�	� and �	�	�� we

are not aware of a consistency result for e�X��t� which explains its behaviour

for large n	

�� For �� � ��� it is interesting to observe that the squared ARCH��� process

has the same autocorrelation structure as an AR��� processXt  �Xt��&Zt�

t � Z� see Figure �		��	 For �� � ��� this is no longer true� see Figures �		��
and �		��	 �

In the following result we describe the tail of the marginal distribution of an

ARCH��� process	 It gives a precise meaning to the statement �light�tailed

input causes heavy�tailed output
� a fact already observed by Kesten ����� in

the general context of stochastic recurrence equations	 The renewal argument

given below is due to Goldie ����� who also calculated the precise constant

��	���	 Theorem �		�� opens the door to extreme value theory for ARCH���

processes� see Section �		�	 Goldie proved the following result for general

perpetuity models as introduced in Section �		�	 For simplicity we restrict

ourselves to the ARCH��� case	 A special property of the normal law �spread�

out� allows us to shorten the renewal reasoning in Goldie ����� for the speci�c

case we deal with	

Theorem 
����� �The tail behaviour of an ARCH��� process�

Let �Xt� be a stationary ARCH��� process with parameters � � � and � �
��� �e��� where � is Euler�s constant� Let ' � � be the unique positive solution

of the equation h�u�  �� Then
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P �X � x� � c

�
x��� � x	� � ��	���

where

c  
E

�
��� & �X��� � ��X�����Z���

 
'E ���Z��� ln��Z���

� ����� � ��	���

for a standard normal rv Z� independent of X  X��

Before we can prove this result we have to ensure that the constant ��	��� is

well de�ned	 Indeed� its numerator is the expected di�erence of two quantities

each of which having in�nite expectation	

Lemma 
����� Under the assumptions of Theorem �������

� � E
�
�� & �X��� � ��X���

 
�� � ��	���

Proof� For ' � � the function �� & �x��� � ��x��� is bounded away from
� and �	 Thus ��	��� follows	 For ' � �� the function f�z�  z� is strictly

convex on R and hence

�'��x����� � �� & �x��� � ��x��� � �'�� & �x����� �

This implies that

� � �'E���X������ � E
�
�� & �X��� � ��X���

 
�

� �'E��� & �X������ �

the last expression being �nite by Proposition �		��b�	 �

We also need the following elementary tool	 Notice that this statement is

trivial if EY � ��	
Lemma 
����� Let X � Y a	s	 be non�negative rvs� ThenZ �

�

�P �X � t�� P �Y � t�� t���dt  ���E
�
X� � Y �

 
� � � � �

for the rhs �nite or in�nite�

Proof�

�

Z �

�

�P �X � t�� P �Y � t�� t���dt  �

Z �

�

P �Y � t � X�t���dt

 �E

Z X

Y

t���dt

 E
�
X� � Y �

 
� �
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Figure 	
�
�� Sample path of the ARCH��� process Xt �
p
���X�

t�� � ���Zt
and the sample autocorrelations of the corresponding squared ARCH process �top�
and a sample path of the AR��� process Xt � ���Xt���Zt and its sample autocor�
relations �bottom��
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Figure 	
�
�� Sample path of the ARCH��� process Xt �
p
��
X�

t�� � ���Zt
and the sample autocorrelations of the corresponding squared ARCH process �top�
and a sample path of the AR��� process Xt � ��
Xt���Zt and its sample autocor�
relations �bottom��
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Figure 	
�
�� Simulated sample path of an ARCH��� process with parameter � �
��� and the corresponding sample autocorrelations of this time series �top� right��
of its absolute values �bottom� left� and of its squares �bottom� right�� The dotted
lines indicate the 
�! asymptotic con
dence band for the sample autocorrelations
of iid Gaussian rvs�

Proof of Theorem 
������ Both the denominator and the numerator in

��	��� are positive in view of ��	��� and ��	���	 Hence c � �����	
We proceed with the proof of ��	���	 De�ne the random walk �Sn� generated

by the iid sequence �ln��Z�
t ���

S�  � � Sn  

nX
t��

ln��Z�
t � and ��  � � �n  eSn  

nY
t��

��Z�
t � � ��	���

Consider the telescoping sum

P �X� � ex�� P
�
X� �n � ex

�
 

n��X
k��

�
P

�
X� �k � ex

�� P
�
X��k�� � ex

��
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n��X
k��

�
E

�
P

�
X��k � ex

		 �k

� �E
�
P

�
�Z�

k�� X
� �k � ex

		 �k

� �

 
n��X
k��

Z
R

�
P

�
X� � ex�y

�� P
�
�Z�X� � ex�y

��
dP �Sk � y� �

Introduce the measures �n by

d�n�x�  

nX
k��

e�xdP �Sk � x� � n � N � ��	���

and de�ne

g�x�  e�x
�
P

�
X� � ex

�� P
�
�Z� X� � ex

��
� x � R �

�n�x�  e�xP
�
X��n � ex

�
� x � R � n � N �

and

r�x�  e�xP �X� � ex� �

Notice that X�
t � �Z�

tX
�
t�� a	s	� and hence g is non�negative	 Now we obtain

r�x�  e�xP �X� � ex�

 e�x
n��X
k��

Z
R

�
P

�
X� � ex�y

�� P
�
�Z�X� � ex�y

��
dP �Sk � y� & �n�x�

 

Z
R

e��x�y�
�
P

�
X� � ex�y

�� P
�
�Z�X� � ex�y

��
e�y

n��X
k��

dP �Sk � y� & �n�x�

 

Z
R

g�x� y�d�n���y� & �n�x�

 g � �n���x� & �n�x� � ��	���

For the proof of ��	��� one needs to study the behaviour of r�x� as x 	 �	
For this reason we will apply the key renewal theorem in a similar fashion to

that in the proof of the Cram�er�Lundberg theorem �Theorem �	�	��	

De�ne the measure � by

d��x�  e�xdP
�
ln��Z�� � x

�
�

Notice that� by de�nition of '�
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Z
R

d��x�  

Z
R

e�xdP
�
ln��Z�� � x

�
 E��Z���  � �

Hence � de�nes a probability measure on R �obviously not lattice� with mean

�see ��	����

���  E
�
��Z��� ln��Z��

 
� � �

Let � be the renewal measure corresponding to �� i	e	

d��x�  

�X
k��

d�k��x�  

�X
k��

e�xdP �Sk � x� �

Notice that �n  
Pn

k�� �
k� for n � N� where �n is de�ned in ��	���	

From Lemmas �		�� and �		� we conclude that

g is integrable� it is bounded and limx�� g�x�  �	 ��	��

Since ��� � �� the renewal measure � has the property

g � ��x� �� � x � R �

Moreover�

g � �n���x� 
 g � ��x� � x � R � ��	���

Furthermore� by ��	���� E ln��Z�� � �	 Thus the random walk �Sn� has a

negative drift and

lim
x��

�n�x�  lim
x��

e�xP �X�eSn � ex�  �

for every x � R	 This together with ��	��� and ��	��� implies that r satis�es

r�x�  lim
x��

�g � �n���x� & �n�x��  g � ��x� � x � R �

The function g satis�es ��	�� and � is absolutely continuous	 The latter two

facts allow us to apply Satz �	�	� in Alsmeyer ���� which in turn� together

with Lemma �		�� leads to the relation

lim
x��

r�x�  
�

���

Z
R

g�y�dy  
�

���'
E

�
��� & �X��� � ��X�����Z���

 
 c

with c as in ��	���	 Hence by the de�nition of r we conclude that P �X� � x�

� cx��� and by symmetry of X�

P �X � x�  
�

�
P �X� � x�� � c

�
x��� � x	� � �

Remark� � The literature on ARCH and its various generalisations abounds
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Figure 	
�
�	 The Hill estimator� see Section ���	� for the data from Figure �����
�top� and for the ARCH��� sequence of Figure ����� �bottom�� For the latter we
obtain from Table ����� the value  � ������ hence the tail index � � ���� which
is indicated by a straight line� See also Theorem �����	�

with often vague statements on stationarity� moment conditions and tail be�

haviour	 We therefore consider it important to prove Theorem �		�� in detail�

especially as the main ideas for the Pareto asymptotics were made clear some

time ago in Kesten �����	 In the latter paper it was stressed that �see ��	����

X�
�

d
 

�X
m��

�
�Z�

m

�m��Y
j��

�
�Z�

j

�
has a tail comparable to that of

�!
m��

�
�Z�

m

�m��Y
j��

�
�Z�

j

�
 

�!
m��

�
�Z�

m

�
eSm�� �

and the tail of the latter quantity is determined in part by maxn�� Sn	 Since

Sn has a negative expectation� results for the distribution of a random walk

with negative drift by means of defective renewal theory apply �cf	 Feller

������ Section XII	�� Example c�� giving the Pareto�like tails of X 	 �


���� Extremes of ARCH Processes

In this section we investigate the extremal behaviour of an ARCH��� process

�Xt� with parameters � � � and � � ��� �e��� where � is Euler�s constant	

Recall from ��	��� that P �X � x� � cx�����	 In the case that �Xt� is
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an iid sequence such that X�
d
 X � we conclude from Theorem �	�	� that

X � MDA�����	 In particular�

lim
n��

P
�
n������� Mn � x

�
 exp

n
� c

�
x���

o
� ��	���

where� as usual� Mn  max�X�� � � � � Xn�	 It is now natural to ask�

Does the strictly stationary ARCH��� process have similar extremal

behaviour as an iid sequence with the same marginal distribution


A full answer to this question was given in de Haan et al	 ������ where also

the case of general perpetuities was discussed	

As in the previous sections� it is convenient �rst to study the extremes of

the squared ARCH��� process �X�
t �	 The following result is based on a funda�

mental theorem by Rootz�en ����� on maxima of strictly stationary sequences�

an application of which depends on the veri�cation of the condition D�un�

for un  xn����� cf	 Section 		 The ARCH��� process is strong mixing �see

Diebolt and Guegan ������ which entails D�un�	

Recall from Chapter � the basic notions of point process theory� and

from Section �	� the de�nition and interpretation of the extremal index of

a stationary sequence	 As in the previous sections we write X  X� and

Z  Z�	

Theorem 
����� �The extremes of a squared ARCH��� process�

Let �X�
t � be a stationary squared ARCH��� process and M

���
n  

max�X�
� � � � � � X

�
n�� Then

lim
n��

P �n����M ���
n � x�  expf�c  ���x��g � x � � � ��	���

where ' is the positive solution of the equation E��Z��u  �� c is de�ned by

��	��� and

 ���  '

Z �

�

P

�
max
n��

nY
t��

��Z�
t � � y��

�
y����dy � ��	���

For x � �� let

N ���
n ���  

nX
i��

�n��i���IfX�
i
�xn���g

be the point process of exceedances of the threshold xn��� by X�
� � � � � � X

�
n�

Then

N ���
n

d	 N ��� � n	� �

in Mp���� ���� where N ��� is a compound Poisson process with intensity

c ���x�� and cluster probabilities
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�
���
k  

 
���
k �  

���
k��

 ���
� k � N � ��	���

where

 
���
k  '

Z �

�

P

�
card

�
n � N �

nY
t��

��Z�
t � � y��

�
 k � �

�
y����dy �

In particular�  
���
�   ���� �

Remarks� �� Recall from Section �	� the de�nition of the extremal index of

a strictly stationary sequence	 A comparison of ��	��� and ��	��� shows that

 ��� is nothing but the extremal index of the squared ARCH��� process	

�� An alternative expression for  
���
k can be obtained in terms of the random

walk

S�  � � Sn  
nX
t��

ln��Z�
t � ��	���

which played a crucial role in proving the tail estimate of Theorem �		��	

Write

�  T� � T� � T� � � � �
for the ordered values of the sequence �Sn�	 Naturally� T�  supn�� Sn ��
a	s	 since �Sn� is a random walk with negative drift� see ��	���	 We observe

that

card

�
n � N �

nY
t��

��Z�
t � � y��

�
 

�X
n��

IfSn�� ln yg  k � �

if and only if

Tk�� � � ln y and Tk � � ln y �
This implies that

 
���
k  '

Z �

�

�P �Tk�� � � ln y�� P �Tk � � ln y�� y����dy

 

Z �

�

�P �expf'Tk��g � y�� P �expf'Tkg � y�� dy ��	���

 E �exp f'min�Tk��� ��g � exp f'min�Tk� ��g� �

In particular�  ���   
���
�  ��E expf'min�T�� ��g� Plugging the values  ���k

into formula ��	���� one can then calculate the cluster probabilities �
���
k 	 �

With Theorem �		�� we have the extremes of �X�
t �� hence of �jXtj� under

control� but how can we use this knowledge for the extremes of the ARCH
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process itself" We observe by the symmetry and iid properties of �Zt� that

�jXtj� and �rt�  �sign�Xt��  �sign�Zt�� are mutually independent and

�Xt�  �rtjXtj� � ��	���

where P �r�  ���  ���	 Hence the partial maxima of �Xt� and of �rtjXtj�
have the same distribution	 Thus� in order to study exceedances of the high

level threshold u � � by �Xt�� we may try to use the known result for �jXtj��
but we would have to rule out exceedances of the form fXt � �ug	 This is
the basic idea of the derivation given below	 For the formulation of the main

result on the extremes of an ARCH��� process we also need the probability

generating function of the cluster probabilities ��
���
k � de�ned in ��	����

�����u�  

�X
k��

�
���
k uk �

Theorem 
����� �The extremes of an ARCH��� process�

Let �Xt� be a stationary ARCH��� process� Then

lim
n��

P
�
n�������Mn � x

�
 exp

n
�c ���

�
�����������

�
x���

o
� ��	���

Further� for x � � let

Nn���  
nX
i��

�n��i���IfXi�xn������g

be the point process of exceedances of the threshold xn������ by X�� � � � � Xn�

Then

Nn
d	 N � n	� �

in Mp���� ���� where N is a compound Poisson process with intensity c x���

and cluster probabilities

�k  
�
�����������

��� �X
m�k


m

k

�
����
m ��m � k � N� � ��	��

Remark� �� A comparison with ��	��� shows that   � ����� �����������

is the extremal index of the process �Xt�	 �

Sketch of the proof� We restrict ourselves to explain how the moment

generating function occurs in the limit distribution of the maxima	 For more

details see de Haan et al	 �����	

Set un  xn������ for x � �� let N
���
n be the point process of the exceedances

of u�n by X�
� � � � � � X

�
n and let � � �� � �� � � � � � n be the times when the
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Figure 	
�
�� Simulated sample path of an ARCH��� process with parameters � �
��� �top� and � � ��
 �bottom�� In both cases � � �� We conclude from the two
graphs that clusters of large values become more prominent for larger values of ��
This is in accordance with Table ����	�� the extremal index � � ���� becomes the
smaller the larger � is� Small values of � indicate that there is more dependence in
the data� see Section ����

exceedances occur	 Now we use the ideas of the discussion before Theorem

�		��� in particular ��	����
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�� �� Special Topics

where N ��� is the limit compound Poisson process given in Theorem �		��

with x replaced by x�	 Hence we may write

N ���  

�X
k��

�k��k �

where the iid cluster sizes �k are independent of the points �k of the under�

lying homogeneous Poisson process eN ��� with intensity e�  c ���x���	 We

also write
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Conditioning on the Poisson process eN ���� the rhs in ��	��� can be trans�
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Inserting e�  c ���x��� gives ��	���	 �

In the rest of this section we try to answer the question�

Given that � and � are known� is there an easy way of calculating� at least

approximately� the quantities  ��� and  
���
k 


An answer is o�ered by the following lemma	

Lemma 
����� Let E� be an exponential rv with parameter '� independent

of the random walk �Sn� de�ned by ��	���� Then
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max
n��

nX
t��

ln��Z�
t � � � ln y

�
y����dy

 '

Z �

�

P

�
max
n��

nY
t��

��Z�
t � � y��

�
y����dy

 ��  ��� �

This proves ��	���	 Using the argument in Remark � above� the proof of ��	���

is similar	 �

This lemma suggests simulating independent replications of �Sn� and� inde�

pendently� exponential rvs E�� and then counting the events fSn � �E�g
for each replication separately	 Since the random walk has negative drift�

the number of such exceedances is �nite with probability �	 Practical prob�

lems �for instance how long one has to run the random walk and how many

replications are necessary� are discussed in de Haan et al	 �����	

Based on these considerations� natural estimators for  ��� and  
���
k are

b ���  �� �

N

NX
i��

I�
maxn�� S

�i�
n ��E

�i�
�

� �

b ���
k  

�

N

NX
i��

IAik
�

where

Aik  

�
�X
n��

IGi  k � �
�

� Gi  
n
S�i�
n � �E�i�

�

o
�
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and ��S
�i�
n �� E

�i�
� � are N iid replications of ��Sn�� E��	 The corresponding  �

and ��quantities for the ARCH��� process can now be calculated from ��	���

and ��	��	 This idea has been used to generate Table �		�� taken from

de Haan et al	 �����	 It is based on N  ���� Monte�Carlo simulations of

��Sn�� E��� each with maximal length n  ���� of the random walk Sn	

� b b�� b�� b�
 b�� b��
�	� �	��� �	��� �	��� �	��� �	��� �	���

�	� �	��� �	�� �	�� �	�� �	��� �	���

�	� �	��� �	� �	�� �	��� �	��� �	���

�	� �	��� �	�� �	��� �	�� �	��� �	���

�	� �	��� �	��� �	��� �	��� �	�� �	���

�	�� �	��� �	��� �	��� �	��� �	�� �	���

�	�� �	��� �	��� �	��� �	��� �	�� �	���

Table 
����� The estimated extremal index  and the cluster probabilities

�k of the ARCH��� process depending on the parameter ��

For the data of Figure �		 we estimated b�  ���	 Hence we can read

o� the estimators b  ����� and �b�k�k�N immediately from Table �		��	

In Section �	�	� we present other methods for estimating  	 They are also

applied to the data used for Figure �			

Notes and Comments

A recent paper on perpetuities mainly looking at light�tailed behaviour is

Goldie and Gr�ubel ������ their work is partly motivated by probabilistic se�

lection algorithms in the style of quicksort and by shot�noise processes with

exponentially decaying after�e�ect	 A nice summary of the basic extreme

value theory for ARCH processes is to be found in Borkovec ����	 The lit�

erature on ARCH�type processes is huge and the most important survey

papers and relevant textbooks were already mentioned at the beginning of

Section �		�	 Recently� within the �nance community the search for alterna�

tive models from the large ARCH family has been spurred by the increasing

availability of high�frequency data	 New names have appeared on the ARCH�

�rmament� one example is the HARCH process as a model for heterogeneous

volatilities	 For a description of the latter see M�uller et al	 ����	 The pro�

ceedings ����� contain a wealth of material on the econometric modelling of

high�frequency data	 A further extension of the GARCH�p� q� model is the

so�called ARCH�in�mean or ARCH�M model� see Kallsen and Taqqu ������

where also an option pricing formula in ARCH�type models can be found	
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The work on extremes of Markov chains with applications to random

recurrence equations has been extended by Perfekt ����	

In order to calculate �or approximate�  ��� from equation ��	��� the dis�

tribution of the maximum of a random walk is required	 This is a problem

well�studied in risk theory for estimating the Lundberg exponent� see Chap�

ter �	 Alternatives to the simulation method leading to Table �		�� exist	

A numerical method based on the fast Fourier transform has been suggested

by Gr�ubel ����� and applied to the estimation of  ��� by Hooghiemstra and

Meester �����	

��
 On the Longest Success�Run

The following story is told in R�ev�esz �����	 It concerns a teaching experiment

of T	 Varga related to success�runs in a coin tossing sequence	

A class of school children is divided into two sections� In one of the sections

each child is given a coin which they throw two hundred times� recording the

resulting head and tail sequence on a piece of paper� In the other section the

children do not receive coins� but are told instead that they should try to write

down a �random� head and tail sequence of length two hundred� Collecting

these slips of paper� he then tries to subdivide them into their original groups�

Most of the times he succeeds quite well� His secret is that he had observed

that in a randomly produced sequence of length two hundred� there are� say�

head runs of length seven� On the other hand� he had also observed that most

of those children who were to write down an imaginary random sequence are

usually afraid of writing down runs of longer than four� Hence� in order to

�nd the slips coming from the coin tossing group� he simply selects the ones

which contain runs longer than �ve�

The experiment led T	 Varga to ask�

What is the length of the longest run of pure heads in n Bernoulli trials


The second story along the same lines comes from a discussion with an am�

ateur gambler on the topic of the game of roulette	 He claimed that to�

gether with friends �gambling colleagues� they had recorded the outcome of

all roulette games for a particular casino over a period of three years	 Obvi�

ously� they were after a pattern they could then use to beat the system	 He

told us that one evening they recorded �� times red in a row� Clearly this

was at the odds with the assumption of randomness in roulette� Or is it not"

Both examples above concern the question of the longest sequence of

consecutive successes in a dichotomous experiment	 Below we give a mathe�

matical analysis of the problem	
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We consider a very simple model� the rvs X�X�� X�� � � � are iid Bernoulli

with success probability p� i	e	

P �X  ��  p � P �X  ��  q  �� p �

for some p � ��� ��	 A run of �s of length j in X�� � � � � Xn is de�ned as a

subsequence �Xi��� � � � � Xi�j� of �X�� � � � � Xn� such that

Xi  � � Xi��  � � �  Xi�j  � � Xi�j��  � �

where we formally set X�  Xn��  �	 We try to answer the following

question�

How long is the longest run of �s in X�� � � � � Xn


An alternative formulation is given via the random walk �Sn� generated by

�Xn��
S�  � � Sn  X� & � � �&Xn �

Let

In�j�  max
��i�n�j

�Si�j � Si� � � � j � n �

and Zn be the largest integer such that In�Zn�  Zn	 Then Zn is the length

of the longest run of �s in X�� � � � � Xn	

Example 
���� �Longest run in insurance�

Let Yi be iid rvs denoting the claim sizes in a speci�c portfolio� and u � � a
given threshold	 Introduce the Bernoulli rvs

Xi  IfYi�ug � i � � �
with success probability p  P �Y� � u�	 The longest run of �s in the Bernoulli

sequence �Xi� corresponds to the longest consecutive sequence of exceedances

of the threshold u	 Instead of these particular Xi we could consider any se�

quence of Bernoulli rvs of the form �IfXi�Ag� for any Borel set A	 A typical

example would be to take the layer A  �D�� D�� as in the reinsurance Ex�

ample �	�	�	 �

Example 
���� �Longest run in �nance�

The standard Cox�Ross�Rubinstein model in �nance assumes that risky as�

sets either go up with probability p or down with probability �� p	 The

resulting binomial tree model serves as a skeleton for many of the more ad�

vanced models including the Black�Scholes model	 A run of �s in this set�up

would correspond to consecutive increases in the price of the risky asset	 For

a description of these standard models in �nance see Baxter and Rennie �����

Cox and Rubinstein ������ Du�e ������ Hull ���� or Karatzas and Shreve

�����	 �



��� On the Longest Success�Run ���

In the following we collect some useful facts about the length of runs of �s in

a sequence of iid rvs	 We start with a precise distributional result	

Example 
���� �The precise distribution of Zn for a symmetric random

walk�

A symmetric random walk corresponds to p  ���	 Sz�ekely and Tusn�ady

������ see R�ev�esz ����� p	 ��� gave the precise distribution for the largest

integer Zn such that Zn  In�Zn� for a symmetric random walk� by combi�

natorial methods	 For each j  �� � � � � n�

P �Zn � j�  
�

�n

n��X
i��

iX
k��

����k

i

k

�
n� kj

i� �
�
� ��	���

Formula ��	��� is of restricted value since only for small n can it be applied

in a reasonable way	 The computer time to evaluate formula ��	��� increases

dramatically with n	 Also� numerical approximations of the binomial terms

via Stirling�s formula or other methods do not give satisfactory answers	 �

In the rest of this section we apply asymptotic methods to describe the growth

of Zn as n	�	


���� The Total Variation Distance to a Poisson Distribution

Since the random walk �Sn� consists of binomial rvs a Poisson approximation

argument seems appropriate	 The following can be found in Barbour� Holst

and Janson ���� pp	 ����	 These authors apply the celebrated Stein�

Chen method to derive bounds on the total variation distance between the

law FWj of

Wj  

nX
i��

IfXi���Xi���			�Xi�j���Xi�j����g

and the Poisson distribution with parameter

�  nq�pj  EWj �

Notice thatWj counts all runs of �s with length j	 The total variation distance

between two distributions F� and F� on the non�negative integers is given

by

dTV �F�� F��  sup
A�N�

			F��A�� F��A�
			  �

�

�X
k��

			F��fkg�� F��fkg�
			 �

In particular� an upper bound for dTV �FWj � P oi ���� provides also an estimate

of the individual distances
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				P �Wj  k�� e��
�k

k�

				 � k � � �

The following is formula ��	�� on p	 � in Barbour et al	 ����

dTV
�
FWj � P oi�nq�pj�

� � ���j � ��q & ��qpj � n � �j & � �

Thus� in particular�

sup
k��

				P �Wj  k�� e��
�k

k�

				
 sup

k��

				P �
There are precisely k runs of length j

�� e��
�k

k�

				
� ���j � ��q & ��qpj � ��	���

This estimate provides useful information when the rhs ���j � ��q & ��qpj is
small compared with the Poisson probabilities on the lhs	

Example 
���� �Continuation of Example �	�	��

In Example �	�	� we considered the largest number of consecutive exceedances

of a threshold u by iid rvs Yi	 If we increase the threshold u  un with n in

such a way that

nP �Y� � un�  npn 	 � � ����� �
then the Poisson approximation of Proposition �	�	� yields

P �max �Y�� � � � � Yn� � un�	 e�� � ��	���

Set

Xi  IfYi�ung � i  �� �� � � � �

where we suppress the dependence of the Xi on n	 From ��	��� we see that

for k � �
P �Wj  k�

 P �There are precisely k consecutive exceedances of un of length j

by Y�� � � � � Yn�j���

 exp
����� & o����pj��

� �
�pj��

�k
�� & o����

k�
&O

�
pj

�
 exp

��� j�� & o����n�j��
� �

� jn�j��
�k
�� & o����

k�
&O

�
n�j

�
 O

�
n�j��

�
� j � � � n	� �
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This result might be surprising at the �rst sight	 However� it tells us only that

the probability of a �xed number of runs of �s in X�� � � � � Xn�j�� with the

same length j � � is negligible for large n	 Notice that we can also evaluate

the probability P �Wj  ��� i	e	 the probability that there are no consecutive

exceedances of un of length j by Y�� � � � � Yn�j��	 It is not di�cult to see that

P �Wj  ��  � &O
�
n�j

�
� j � � � P �W�  ��  e�� & o��� �

which is an interesting complement to ��	���	

If we assume that �  npjn converges to a positive constant then ��	��� gives

a reasonable approximation by a Poi��� law� with rate of convergence n��	

A Poisson approximation to the distribution of Wj for pn 	 � can also

be obtained by point process methods� see Chapter �	 Introduce the point

processes

Nn���  
nX
i��

�n��i���IfYi�un �Yi���un�����Yi�j�un �Yi�j���ung
� n � � �

on the state space E  ��� ��	 We suppress the dependence of Nn on j	 Notice

that Nn is very close in spirit to the point process of exceedances used in

extreme value theory� see Section �	�	 Similar methods also apply here to

show that Nn converges to a Poisson random measure	 We have

fNn��� ��  kg  fWj  kg � k � � �

which links Nn with Wj 	 Assume that np
j
n 	 � � R� 	 Then it is not di�cult

to verify that

ENn�a� b�	 � �b� a� � P �Nn�B�  ��	 e�� � n	� �

for any � � a � b � �� any �nite union B of disjoint intervals �c� d� � ��� ��	
Hence� by Kallenberg�s theorem �Theorem �	�	���

Nn
d	 N in Mp���� ��� �

where N is a homogeneous Poisson process on ��� �� with intensity � 	 Hence

P �Nn��� ��  k�  P �Wj  k�	 e��
�k

k�
� k � � �

in particular dTV �FWj � P oi����	 �	 The latter follows from Sche��e�s lemma�

see Williams ����� Section �	��	 �
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���� The Almost Sure Behaviour

Erd�os and R�enyi ������ see also R�enyi ������ proved a result on the a	s	 growth

of the length of the longest run of �s in a random walk�

Theorem 
���� �A	s	 growth of the length Zn of the longest run of �s�

For every �xed p � ��� ���

lim
n��

Zn
lnn

 
�

� ln p a�s� ��	���

�

Below we indicate how this result can be proved by classical limit theory	

Thus the longest run of �s is roughly of the order � lnn� ln p� so it in�
creases very slowly with n� see Table �	�	��	 It is natural to ask where the

logarithmic normalisation in the SLLN ��	��� comes from	 The basic idea is

the following� write

L�  min fn � � � Xn  �g � and for k � ��

Lk  min fn � n � L� & � � �& Lk�� � Xn  �g � �L� & � � �& Lk��� �

Since the Xn are iid we conclude from the Markov property of �Sn� that the

Ln are iid positive rvs	 It is not di�cult to see that

P �L�  k�  qpk�� � k � � �

Thus L� has a geometric distribution	 By construction� the values Li � � � �
are the lengths of the runs of �s and the rv

N�n�  card

�
m �

mX
i��

Li � n

�
counts the number of zeros among X�� � � � � Xn	 Hence it is binomial with

parameters �n� q�	 Thus� in order to determine the length of the longest run

of �s in X�� � � � � Xn� we have to study maxima of iid geometric rvs along

a randomly indexed sequence	 Indeed�

max
i�N�n�

Li � � � Zn � max
i�N�n���

Li � � � ��	���

For the proof of Theorem �	�	� we need the following auxiliary result	

Proposition 
���� �Characterisation of minimal and maximal a	s	 growth

of maxima of geometric rvs�

Let dn be positive integers such that dn 
 ��
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�a� The relation

P


max
i�n

Li � dn i	o	

�
 � or �

holds according as
�X
n��

pdn �� or  � �

�b� Suppose in addition that npdn 	�� Then

P


max
i�n

Li � dn i	o	

�
 � or �

according as

�X
n��

pdn exp
��npdn

�
�� or  � �

Moreover� if lim infn�� npdn �� then

P


max
i�n

Li � dn i	o	

�
 � �

�c� �a� and �b� remain valid if n is everywhere replaced by �nc�� where �x� de�

notes the integer part of x and c is a positive constant�

Proof� The �rst part immediately follows from Theorem �	�	� since P �L� �

dn�  pdn 	 The second part follows from Theorem �	�	�� the assumptions

P �L� � dn�	 � and nP �L� � dn�  npdn 	�
are satis�ed	 For the third part� one has to modify the proofs of Theo�

rems �	�	� and �	�	� step by step along the subsequence ��nc��	 This goes

through without major di�culties	 �

Remarks� �� The restriction to integer sequences �dn� is natural since we

are dealing with integer�valued rvs and events of the form�
max
i�n

Li � x

�
 

�
max
i�n

Li � �x�
�

�

Here� and in the rest of this discussion� �x� denotes as usual the integer part

of x� and we shall also use fxg for the fractional part x� �x� of x	 The latter
notation does not mean fractional part when delimiting the argument of a

function� Thus expfxg is just ex as usual	
�� In Example �	�	� we studied the a	s	 behaviour of maxima of rvs with

exponential tails of the form P �X � x� � Ke�ax	 Unfortunately� that theory

is not directly applicable to �Ln�� but has to be modi�ed	 The reason is that
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 	
�
� A random sequence of 

� values of �s and �s� Both values occur
with the same chance� The longest run of �s has length ��� This is in agreement
with Table �������
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P �L� � x�  P �L� � �x��  p�x	  px�fxg � ��	���

Thus the relation P �L� � x� � px does not hold as x	�	 �

The proof of Theorem �	�	� is now a consequence of Proposition �	�	� and of

relation ��	���	 However� there is still a minor problem� from Proposition �	�	�

we get only

max
i�n

Li� lnn
a�s�	 ��� ln p � ��	��

Thus we have to replace n by the random index N�n� or by N�n� & �� but

this does not provide any di�culties by virtue of Lemma �	�	� and the fact

that �N�n�� can be interpreted as a renewal counting process observed at

integer instants of time� hence N�n��n
a�s�	 q� see Theorem �	�	��	

Applying similar techniques one can prove results more precise than The�

orem �	�	�	 Results of the following type can be found in Erd�os and R�ev�esz

������ Guibas and Odlyzko ������ Deheuvels ����� �who proved more subtle

theorems on the a	s	 behaviour of Zn as well as on the a	s	 behaviour of the

kth longest run of �s in X�� � � � � Xn� or in Gordon et al	 �����	 The latter also

showed results about the length of runs of �s that are interrupted by a given

number of �s	 As in Section �	� we use the notation

ln� x  x � ln� x  max��� lnx� � lnk x  max ��� lnk�� x� � x � � � k � � �

Let furthermore �x� denote the integer part of x	

Theorem 
���
 �Almost sure behaviour of the length of the longest run

of �s�

�a� For each r � N the following relations hold	

P


Zn �

�
ln��nq� & � � �& lnr�nq� & � lnr�nq�

� ln p
�

i	o	

�

 

�
� if � � � �

� if � � � �

�b� For each � � ��

P


Zn �

�
ln�nq�� ln
�nq�� �

� ln p
�
� � i	o	

�
 �

and

P


Zn �

�
ln�nq�� ln
�nq�

� ln p
�
& � i	o	

�
 � �
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Proof� For �xed r � �� c � � and small � write

bn��� c�  

�
ln��nc� & ln��nc� & � � �& lnr�nc� & � lnr�nc�

� ln p
�
�

Then it is easily checked that

�X
n��

pbn���c� �� or  �

according as � � � or � � �	 Hence� by Proposition �	�	��

P


max
i��nc	

Li � � � bn��� c� i	o	

�
 � or  � ��	���

according as � � � or � � �	 Since N�n��n a�s�	 q it follows that� for each small

�xed � � � and for large n� with probability ��

n��� ��q � N�n� � n�� & ��q � � � ��	���

Also notice that� for large n�

bn����� q�� & ��� � bn��� q� � ��	���

Having ��	���� ��	��� and ��	��� in mind we obtain

P


max

i�n�����q
Li � � � bn����� �� & ��q� i	o	

�
� P �Zn � bn��� q� i	o	� �

This together with ��	��� proves the �rst part of the theorem for � � �	 For

� � � one may proceed in a similar way	

We proceed similarly in the second part	 For � � � set ��  ln�� & ��	 Write�

for � � �� c � � and large n�

b�n��� c�  

�
ln�nc�� ln
�nc�� �

� ln p
�
 

�
ln�nc�� ln��� & ��� ln��nc��

� ln p
�

and �fractional part�

zn  

�
ln�nc�� ln
�nc�� �

� ln p
�

�

Then by ��	���� for large n�

pb
�
n���c� exp

n
��nc� pb�n���c�

o
 

ln��nc�

nc
�� & ��� p�zn exp

�
� �nc�

nc
ln��nc��� & ��� p�zn

�

� const
ln� n

n�lnn���������
�
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But the latter sequence is summable� and it follows from Proposition �	�	�

that

P


max
i�nc

Li � b�n��� c� i	o	

�
 � � ��	���

Similarly� let

b��n�c�  

�
ln�nc�� ln
�nc�

� ln p
�
& �

and

z�n  

�
ln�nc�� ln
�nc�

� ln p
�

�

Then

pb
��
n�c� exp

n
��nc� pb��n�c�

o
 

ln��nc�

nc
p��z

�
n exp

�
� �nc�

nc
ln��nc� p

��z�n

�

� const
ln� n

n lnn
�

The latter sequence is not summable and hence� because of Proposition �	�	��

P


max
i�nc

Li � b��n�c� i	o	

�
 � �

It remains to switch to the random index sequence �N�n��	 We proceed as

in the �rst part of the proof� choose � � � small and ��� � � such that for

large n�

ln�nq�� ln
�nq�� �

� ln p � ln�nq��� ���� ln
�nq��� ���� ���

� ln p �

Then� by ��	����

P �Zn � b�n��� q�� � i	o	� � P


max

i�n�����q
Li � b�n��

��� ��� ��q� i	o	

�
 � �

One can similarly proceed with the sequences �b��n�c��� but we omit details	

This proves the second statement of the theorem 	 �

These results show the very subtle a	s	 behaviour of the length of the longest

run of �s	 We can deduce the following statement�
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Figure 	
�
� Three simulated sample paths of the length Zn of the longest run of �s
in a random walk� For comparison the curves �solid lines� of lnn� ln � �middle�� �n
�bottom� and �n �top� are drawn� see ��������

Corollary 
����� For every �xed � � � and r � N� with probability � the

length of the longest run of �s in X�� � � � � Xn falls for large n into the interval

�	n� �n�� where

	n  

�
ln�nq�� ln
�nq�� �

� ln p
�
� � �

�n  

�
ln�nq� & � � �& lnr�nq� & � lnr�nq�

� ln p
�
�

��	���

�

In Table �	�	�� we compare the a	s	 growth rate for Zn� i	e	 � lnn� ln p� with
the lower and upper bounds in ��	���	 We choose p  ��� and r  �� �  �����

and the particular bounds

	n  

�
ln�n���� ln
�n���� �����

ln �

�
� � �

�n  

�
ln�n��� & ln��n��� & ����� ln
�n���

ln �

�
�

��	����
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n lnn� ln � �n �n
�� ���� � �
�� ���� � �
��� ���� � �
��� ��� � �
��� ��� � 

��� �
� � 

��� ��
� � ��
�� 
��� � ��
���� 
�
�  ��
���� �����  ��
���� ���
� � ��
���� ����� 
 ��
����� ����� �� ��
����� ����� �� �

������ ����� �� ��
������� �
�
� �� ��

Table 	
�
�� Almost sure bounds �n and �n with � � ����� and r � �� see ��������
for the longest run Zn of �s in a random walk�


���� The Distributional Behaviour

From Example �	�	� we learnt that the maxima of geometric rvs do not

have a limit distribution whatever the centring and normalising constants	

However� the tail of the geometric distribution is very close to the tail of the

exponential law	 To be precise�

L� � � d
 �E���� ln p�� ��	����

for a standard exponential rv E�� �x� again stands for the integer part of x	

This is easily seen�

qpk  P �L� � �  k�  pk � pk��

 P �E� � �k�� ln p�� �k & ���� ln p���

 P ��E���� ln p��  k� �

Let now �En� be iid standard exponential rvs	 We know from Example �	�	�

that

max �E�� � � � � En�� lnn d	 � � ��	����

where ��x�  e�e
�x

� x � R� stands for the Gumbel distribution	 Having

��	��� in mind we may also hope that the distribution of Zn is not too far

away from the Gumbel distribution	
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Figure 	
�
�� The longest run of �s �dotted line� generated by the indicators
IfYn
	g for 
nancial data�
Top� the underlying time series �Yn� consists of � ��� daily log�returns �closing
data� of the German stock index DAX� July �� ���� � August 	�� �����
Bottom� the underlying time series �Yn� consists of 
�� daily log�returns �closing
data� of the Japanese stock index NIKKEI� February 		� ���� � August �� �����
The longest runs Zn exhibit a behaviour similar to the longest runs in a random walk
with p � ���� For comparison� in each 
gure the solid curves of lnn� ln � �middle��
�n �bottom� and �n �top� are drawn� see �������� using an estimated p � ����
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Theorem 
����� �Asymptotic distributional behaviour of the length of the

longest run of �s�

Let Y be a rv with the Gumbel distribution �� Then

sup
k�Z

				P 
Zn �

�
ln�nq�

� ln p
�
� k

�
� P

�
Y

� ln p &
�
ln�nq�

� ln p
��
� k

�					 � �

Here fxg denotes the fractional part of x and �x� its integer part�

Proof� From ��	���� and Lemma �	�	� we may conclude that

maxi�N�n� Ei

� ln p � lnN�n�� ln p
d	 Y

� ln p � ��	����

given that an Anscombe condition holds and Y has distribution �	 But this

can be seen by the following arguments�

P


max

n�����q�m�n�����q

				maxi�m
Ei � lnm

�
�


max
i�nq

Ei � ln��nq��
�				 � �

�

� P


max

i�n�����q
Ei � max

i�n�����q
Ei � ���

�
& I�������


ln


�n�� & ��q�

�n��� ��q�

��
 p� & p� �

say	 The quantity p� is equal to � for � small and n large	 Moreover�

p�  P


max

n�����q�i�n�����q
Ei � max

i�n�����q
Ei � ���

�

 P


max

i��n�����q	��n�����q	
E�
i � ln��n�� & ��q�� �n��� ��q��

� max
i��n�����q	

Ei � ln��n��� ��q��

� ���� ln

�n�� & ��q�� �n��� ��q�

�n��� ��q�

��
�

where �E�
i� is an independent copy of �Ei�	 In view of ��	����� we see that p�

converges to

P �Y� � Y� � ���� ln������� ����

for iid Yi with a common Gumbel distribution	 Now� the rhs in the latter

limit probability can be made arbitrarily small by choosing � su�ciently

small	 Hence an Anscombe condition holds	 Since N�n��n
a�s�	 q we may now

replace the expression lnN�n���� ln p� in relation ��	���� by ln�nq���� ln p�	
Because � is continuous we immediately obtain from ��	���� that
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sup
t

				P 
maxi�N�n� Ei

� ln p � ln�nq�� ln p � t

�
� P


Y

� ln p � t

�					 � �

This implies that

sup
t

				P �
maxi�N�n� Ei

� ln p
�
�

�
ln�nq�

� ln p
�
� t

�

�P

�
Y

� ln p &
�
ln�nq�

� ln p
��
� t

�				
 sup

t

				P 
max
i�N�n�

�
Ei

� ln p
�
�

�
ln�nq�

� ln p
�
� t

�

�P

�
Y

� ln p &
�
ln�nq�

� ln p
��
� t

�				 	 � �

Since the quantities involved in the latter limit relation are integer�valued

the supremum over all real t reduces to the supremum over the integers	

This allows us to complete the proof of the theorem in view of representation

��	���� and inequality ��	���	 �

A version of this result was proved in Gordon et al	 ����� who also derived

bounds on the expectation and the variance of Zn	

From Theorem �	�	�� we may conclude the following about the asymptotic

distributional behaviour of Zn�

P �Zn � k & �ln�nq���� ln p���

 P

�
Y

� ln p &
�
ln�nq�

� ln p
��

� k

�
& o���

 P


Y

� ln p &
�
ln�nq�

� ln p
�

� k & �

�
& o���

 P


Y � �k & ���� ln p��

�
ln�nq�

� ln p
�
�� ln p�

�
& o���

 exp
n
�pk���fln�nq���� ln p�g

o
& o���

for all integers k � �� �ln�nq���� ln p��	 In particular� for k positive�

P


Zn  k &

�
ln�nq�

� ln p
��
� qpk�fln�nq���� ln p�g �
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Notes and Comments

The question about the longest run of �s and related problems have at�

tracted much attention in the literature	 Applications lie not only in extreme

value theory� �nance and insurance but also in molecular biology �longest

matching sequences in two DNA strings�� pattern recognition �longest repet�

itive patterns in random sequences� and many other �elds	 A few relevant

references are Arratia and Waterman ����� Gordon� Schilling and Waterman

������ Guibas and Odlyzko ������ Karlin and Ost �����	 A paper on the longest

success�run in the context of insurance and �nance is Binswanger and Em�

brechts ����	

The problem of the longest run of �s is closely related to the question

about the order of magnitude of the increments of a general random walk

�Sn�	 We noted that a convenient tool to describe the order of the increments

is given by

In�j�  max
��i�n�j

�Si�j � Si� � � � j � n �

For the particular case of iid Bernoulli rvs with success probability p � ��� ��
we may conclude from Section �	�	� that

lim
n��

In

�h
lnn
� ln p

i�
h

lnn
� ln p

i  � a�s�

This result already shows the typical order of the increments for a general

random walk	 Now assume that EX  � and that X has moment generating

function

M�h�  EehX �

Let

h�  supfh �M�h� ��g � �
and de�ne the number c  c�	� by

e���c  inf
h

e�h�M�h� � 	 � � � ��	���

It is easy to see that if h� � � then the in�mum lies striclty between � and

�� so that c is positive	

The following is a classical result due to Erd�os and R�enyi ������

Theorem 
����� �Erd�os�R�enyi SLLN for the increments of a random walk�

The relation

lim
n��

In ��c lnn��

�c lnn�
 	 a�s�

holds for each
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	 �
�
M ��h�

M�h�
� � � h � h�

�
�

Here c  c�	� is given by equation ��	���� �

Numerous generalisations and extensions of the Erd�os�R�enyi SLLN have been

proved	 They depend very much on large deviation techniques �therefore the

existence of the moment generating function� see Sections �	� and �	�� and on

generalisations of classical renewal theory	 Results of iterated logarithm type�

see Section �	�� have been shown for the largest increments In�bn� for var�

ious sequences bn 
 �	 We refer to work by Cs�org+o and Steinebach �����
Deheuvels ������ Deheuvels and Devroye ������ Deheuvels and Steinebach

����� ����� Steinebach ����� and the references therein	

��� Some Results on Large Deviations

In Section �	� we touched on the question of large deviation probabilities for

sums Sn  X� & � � � &Xn of iid rvs Xn	 In the present section we intend to

give some results in this direction as a preliminary step towards dealing with

reinsurance treaties in Section �	�	

A large deviation probability is an asymptotic evaluation of P �Sn � xn�

for a given sequence xn 	�� where �xn� is such that P �Sn � xn�  o���	 Or�

alternatively� it can be understood as an asymptotic evaluation of P �Sn � x�

uniformly over some x�region depending on n� where now the region is such

that P �Sn � xn�  o��� uniformly over it	 Thus large deviation probabilities

tell us about the probability that Sn exceeds a large threshold value x or xn	

When dealing with extremal events it is of particular interest to get analytic

expressions or estimates for those probabilities	

In this section we consider precise large deviations	 This means we evaluate

the probability P �Sn � x� to at least the accuracy P �Sn � x� � an�x� for an

explicit sequence of positive functions or numbers �an�	 This is in contrast to

rough large deviations which are evaluations to the accuracy lnP �Sn � x� �
bn for some explicit sequence �bn�	

In Section �	� we learnt about two types of precise large deviation results	

The �rst� Cram�er�s theorem �Theorem �	�	��� tells us about the validity of

the normal approximation to the df of the sums Sn under the very strong

condition that the moment generating function

M�h�  EehX ��	����

exists in a neighbourhood of the origin	 In particular� if var�X�  � then
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P �Sn � n � x�  �
�
x�
p
n��� & o���

�
� ��	����

P �Sn � n � �x�  �
�
x�
p
n��� & o���

�
�

uniformly for x  o�n���	 This result is of restricted use for the purposes of

insurance and �nance in view of the condition on the exponential moments

of X 	 However� precise large deviation results under the existence of the

moment generating function are more the rule than the exception	 Under

that condition several theorems about the order of P �Sn � n � x� have been

proved in the critical region where x is of the same order as ESn  n	 Final

results are due to Bahadur and Rao ���� and Petrov ���� ��� see Petrov

����� Bucklew ����	 For completeness and in order to get an impression of the

di�culty of the problem we state here Petrov�s theorem	 Recall the notion of

a lattice�distributed rv X � there exist d � � and a � R such that

�X
k���

P �X  kd& a�  � � ��	����

We call the largest possible d in ��	���� the maximal step of the df F 	

Theorem 
���� �Petrov�s theorem on precise large deviations under an ex�

ponential moment condition�

Suppose that the moment generating function M � see ��	����� exists in

a neighbourhood of the origin� Let

b  sup

�
h �

Z �

�

ehx dF �x� ��
�

�

and h  h�x� be the unique solution of the equation

m�h�  
M ��h�

M�h�
 x �

Set

���h�  m��h� � a�  lim
h
b

m�h� �

and assume a� �nite�

�a� Suppose F is non�lattice� Then

P �Sn � n � x�  
expfn�lnM�h�� hx�g

h��h�
p
��n

�� & o����

uniformly for x � ��n� �a� � ��n��
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�b� Suppose F is lattice with maximal step d� see ��	����� Then

P �Sn � n � x�  
d exp fn�lnM�h�� hx�g
��h�

p
��n ��� e�dh�


� &O


�

n

��
�

uniformly for x � ��n� �a� � ��n�� �

The very formulation of these results shows that it is not an easy matter to

apply them in a given situation	 In particular� solving the equation m�h�  x

is in general troublesome	 Basically� the same problems occur as for deter�

mining the Lundberg exponent in risk theory� see De�nition �	�	�	

Since we emphasise problems related to heavy tails we also want to give

some idea about precise large deviations in that case	 We gained a �rst im�

pression from Heyde�s theorem for a symmetric F in the domain of attraction

of an 	�stable law with 	 � �� i	e	 F � R��� as discussed in Theorem �	�	�	

There we found that the condition nF �xn�	 � implies the relation

P �Sn � xn�  nF �xn��� & o����  P �Mn � xn� � ��	����

where� as usual� Mn denotes the maximum of the �rst n values of the Xi	

This is the typical relation that we can expect in the general case of regularly

varying tails	 Notice that the F with regularly varying tails form a subclass

of the subexponential distributions� see Section �	�� which are de�ned by the

relation

P �Sn � x�  P �Mn � x� �� & o����

for every �xed n � �� as x	�	 Thus ��	���� is just an extension of the
latter limit relation to the case when both x and n tend to in�nity	 It again

shows the dominating role of the maximum term over the sum of iid rvs	

Relation ��	���� remains valid for a wider class of distributions	 This is

exempli�ed by the following theorem which is due to A	 Nagaev ���� ���� an

independent probabilistic proof of the relation ��	���� below has been given

by S	 Nagaev ���	

Theorem 
���� �Precise large deviations with regularly varying tails� I�

Suppose that F � R�� for some 	 � �� EjX j��� �� for some � � � and

that var�X�  �� Then

P �Sn � n � x�  �


xp
n

�
�� & o���� & nF �x��� & o����

uniformly for x � pn� In particular�

P �Sn � n � x�  �


xp
n

�
�� & o����
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for
p
n � x � a�n lnn���� and a �

p
	� �� and

P �Sn � n � x�  nF �x��� & o����  P �Mn � x� ��	����

for x � a�n lnn���� and a �
p
	� �� �

Finally� we give here a uni�ed result for F � R�� for any 	 � �	

Theorem 
���� �Precise large deviations with regularly varying tails� II�

Suppose that F � R�� for some 	 � �� Then for every �xed � � ��

P �Sn � n � x�  nF �x��� & o����

uniformly for x � �n� �

For 	 � � this result is due to Heyde ����� ���� ����� for 	 � � it was proved by

A	 Nagaev� as already mentioned	 A uni�ed approach for regularly varying F

�and more general classes of tails� has been given by Cline and Hsing �����	

Cline and Hsing ����� proved a result of type

P �Sn � x� � P �Mn � x�

uniformly for certain x�regions� for F of extended regular variation� i	e	

c�
 � lim inf
x��

F �cx�

F �x�
� lim sup

x��

F �cx�

F �x�
� c��

for some � � 	 � � �� and every c � �	 They also extend their results
to certain randomly indexed sums and maxima	 Precise large deviation

problems for other subexponential distributions� for example of the type

F �x�  expf�L�x�x�g for a slowly varying L and 	 � ��� ��� have also been
treated	 They depend very much on the x�region and on the particular form

of F 	 They are not so easily formulated as Theorems �	�	� and �	�	�	 The

most complete picture about precise large deviations for subexponential dis�

tributions can be found in Pinelis ������ in the more recent survey paper by

Rozovski ����� and in the monograph Vinogradov �����	

Precise large deviations for random sums with heavy tails are our next

goal	 We will point out in Section �	� how probabilities of precise large devi�

ations occur in a natural way in problems related to reinsurance treaties	 We

restrict ourselves to the compound process

S�t�  

N�t�X
i��

Xi � t � � �

where Xn are iid non�negative� non�degenerate rvs independent of the count�

ing process �N�t��t��	 We extend the standard compound Poisson process in



��� �� Special Topics

the sense that� for every t� the rv N�t� is Poisson� but its mean value is not

necessarily of the form �t for a constant intensity � � �	 This makes sense

in the context of insurance futures �see Section �	�� where N�t� can be large

due to �high density arrival times
� i	e	 even in small intervals ��� t� the mean

value EN�t� is huge	 In this sense� �S�t�� may be considered as a process

indexed by the �operational time
 EN�t� which increases to in�nity when t

increases	

Recall that

�t�  ES�t�   EN�t� �

The following is analogous to Theorem �	�	��

Theorem 
���� �Precise large deviations for random sums with regularly

varying tails�

Suppose that �S�t��t�� is a compound process where �N�t��t�� are Poisson rvs

such that EN�t� 	 � as t 	 t� for some t� � ������ and X is a�s� non�

negative and non�degenerate� Moreover� F � R�� for some 	 � �� Then

P �S�t�� �t� � x�  EN�t�F �x��� & o���� � ��	����

uniformly for x � �EN�t�� for every �xed � � � as t	 t�� �

A proof of this result is given in Kl�uppelberg and Mikosch �����	 Note that

the rhs in ��	���� is of the same order as P �MN�t� � x� as t	 t�	

Notes and Comments

Rough large deviations are widely applied in physics and mathematics� see

for instance the books by Dembo and Zeitouni ����� and Deuschel and Strook

������ and for an introductory level Bucklew ����	 In that context� it is mostly

supposed that the random objects considered �not necessarily sums� have

a moment generating function �nite in some neighbourhood of the origin	

This is motivated by Cram�er�s result �see Theorem �	�	�� and by its various

generalisations and extensions	 There does not exist so much literature for

subexponential distributions	 A survey of precise large deviation results was

provided by S	 Nagaev ��� with many useful precise large deviation esti�

mates and an extensive reference list	 More recent accounts are the papers

by Doney ������ Pinelis ����� and Rozovski ����� mentioned previously� see

also the monograph Vinogradov �����	 Gantert ����� considers rough large

deviations for sums of rvs which are subexponential� constitute a stationary

ergodic sequence and satisfy certain mixing conditions	

Large deviation techniques in the context of insurance are not uncom�

mon� see for instance Asmussen and Kl�uppelberg ���� and Kl�uppelberg and
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Mikosch ����� in the heavy�tailed case� and Djehiche ����� Martin�L�of ���

Slud and Hoesman ����� under exponential moment conditions	 These papers

mainly emphasise relations between estimates of ruin probabilities and large

deviation results	

�� Reinsurance Treaties


���� Introduction

Extreme value theory has an important role to play in the pricing of rein�

surance contracts� especially in the area of contracts for single events or few

events� involving high layers	 The prime example is the CatXL reinsurance

treaty which corresponds in �nancial option theory to a bull spread with

the market loss ratio assuming the role of the underlying	 The discussion on

CatXL below is taken from Sigma ������ p	 �	

In catastrophe reinsurance� the dominant type of reinsurance treaty is the

�Catastrophe Excess�of�Loss Cover per Event� � or CatXL for short� In

contrast to the proportional reinsurance treaty� in which the reinsurer shares

in equal parts in the premiums written and the claims incurred by the pri�

mary insurers� with the non�proportional treaty the reinsurer pays only from

a contractually agreed amount of loss �deductible� up to a de�ned maximum

�exit point�� The losses considered here are those which are attributable to spe�

ci�c occurrences �mainly natural events like windstorm� earthquake etc� � � �

but in certain cases also con�agration or strike and riot� and occur within

a contractually agreed period of time� Both loss amounts which do not reach

the lower limit and those exceeding the upper limit must be borne by the pri�

mary insurer� The span between the deductible and the exit point is called the

�cover� or �line��

The need for extreme value theory modelling becomes clear when discussing

the so�called reference loss � the de�nition below is again taken from Sigma

������ p	 �����	

The reference loss is a value which corresponds to a major loss which insur�

ance companies with average capitalisation should take as a basis for deciding

on the level of CatXL cover they require� The reference losses chosen are such

that they are rare but nevertheless possible� For European markets� a realistic

windstorm loss scenario was chosen for each market� while for markets at risk

from hurricanes a loss event with a return period of ��� years was chosen�

For the earthquake reference losses� return periods of ��� years �in countries

prone to high seismic activity�� ��� years �in countries prone to moderate
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Figure 	
�
� Example of an XL cover�

seismic activity� and � ��� years �in countries with low seismic activity� were

assumed�

The reference loss with a predetermined return period can be read o� from

the so�called loss frequency curve of the relevant portfolio	 In the language

of Section �	�	� estimation of the reference loss corresponding to a t�year

event comes down to but  bF���� t��� �

Here bF stands for the estimated claim size distribution �in the Sigma�

language above� the loss�frequency curve�	 The methodology discussed in

Section �	� turns out to be particularly useful for estimating these high

quantiles in CatXL contracts	 Also the contract�speci�c calculation of the

deductible� the exit point and the resulting premium can be based in part

on extreme value theory	 We emphasise �in part
 here� indeed� in the deter�

mination of premiums many more market factors and alternative techniques

enter	 Important examples of the latter are simulation methodology and the

analysis of stress scenarios	 Also for single event large claims it is paramount

to estimate �mostly by non�stochastic means� the total exposure� i	e	 the cost

of the total loss of a system to be insured	

An ever recurring theme� or indeed question� is�

In the event of disastrous natural events�

have primary insurers bought su�cient cover


Or equivalently�
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How do the estimated reference losses compare with a contract�s exit point


And indeed�

If more cover is needed�

where does the necessary risk capital come from


The new word appearing on the market is securitisation of risk	 To stay in line

with the above discussion� we brie�y discuss below just one of the �nance in�

dustry�s answers to the last question� CAT futures and PCS options	 In �����

the Chicago Board of Trade �CBOT� launched catastrophe �CAT� futures	

They can be viewed as o�ering an alternative to the CatXL treaties discussed

above	 From the simplest perspective a futures contract is an agreement be�

tween two parties to make a particular exchange at a particular future date	

For example� a future contract made on June �� could call for the purchasing

agent to pay #��� the futures price� on September �� in exchange for an

ounce of gold delivered on September ��	 The last few lines were taken from

Du�e �����	 If in the example above we would change �an ounce of gold
 to

�an insurer�s loss ratio
� then we would come close to the de�nition of CAT

futures	 The main problem in CBOT�s product design was the construction

of the underlying� i	e	 the equivalent of the gold price say	 For that reason�

pools of insurance companies were created� allowing for a broad data base

on losses within the home�owners market	 Companies were mainly pooled on

a geographical basis	 From such a pool the industry�s loss ratio �losses over

premiums� was constructed	 This stochastic process de�ned the underlying

on which various derivatives �like futures and options� can be constructed	 If

the time to maturity is T say� then the settlement value V �T � of the CAT

futures was put at

V �T �  #�� ����min

Sp�T �

Pp�T �
� �

�
� ��	����

where Sp�T � stands for the pool�s loss process and Pp�T � the �deterministic�

premiums covering the losses over the period ��� T �	 The exact construction of

Sp�T �� i	e	 of the losses� is more involved as a clear distinction has to be made

between actual versus reserved losses and between date of occurrence versus

settlement date of the claims	 Typically� the �rst three months �event quarter�

of the contract would de�ne the claim occurrence period� the next three

months �runo� quarter� were added to allow for claim settlement	 By the end

of these � months �reporting period� one would hope that a high percentage

������$� of the claims were indeed settled	 The value V �T � would then be

made available in a �rst interim report shortly after the end of the reporting

period	 The �nal report for this particular future would be published during

the th month after the reporting period	 For further details we refer the
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reader to the various publications now available on these products	 See for

instance CBOT ����� ����	 A very readable introduction is Albrecht� K�onig

and Schradin ���	 In order to see how a particular home�owner insurer can

use these futures as a hedging instrument� denote by Si�t�� respectively Pi�t��

the insurer�s loss process� respectively premium function	 By way of example�

suppose the futures are at present trading at a loss ratio of �	�� i	e	 a ��$

loss ratio for the pool	 The insurer interested in having a loss ratio of �� $ at

maturity T can achieve this by buying now ni  Pi�T ���� ��� futures at the

quoted loss ratio of �	�	 For simplicity� we assume that all losses have been

settled by the end of the reporting period	 It is not di�cult to adjust the

argument when we have a ��� ��� ��$ settlement quota� say	 The insurer�s

�wealth
 at maturity T then becomes�

Pi�T �� Si�T � & �gain or losses from futures transactions


 Pi�T �� Si�T � &

�
ni � �� ����min


Sp�T �

Pp�T �
� �

�
� ni � �� ���� ���

�

 Pi�T �

�
��� ���� &


min


Sp�T �

Pp�T �
� �

�
� Si�T �

Pi�T �

��
 Pi�T � ��� &�i�p�T �� �

If �i�p�T �  �� i	e	 the insurer�s loss ratio corresponds exactly to the pool�s

ratio� then his!her loss ratio Si�T ��Pi�T � at maturity is exactly ��$	 De�

pending on the value of �i�p�T �� more or less futures will have to be bought

in order to achieve the required hedge	

Though novel in construction� the contracts were not really a success	

Various reasons can be given for this�

	 time di�erence� quarterly futures based on a three months claim period

versus standard year�contracts in the reinsurance industry�

	 information on prices came very slowly and was incomplete�

	 danger of adverse selection and moral hazard�

	 who constitutes the secondary market� i	e	 who sells these futures"

As CAT futures come close to being a so�called beta�zero asset� i	e	 nearly

uncorrelated with other assets� they should be the Holy Grail of any portfolio

manager	 That they were not perceived like that was mainly due to the

very slow �ow of information on the futures prices	 Rather than the futures

themselves� options traded better� especially the call option spreads where

insurers would �or could� appear on both sides of the transaction� i	e	 as

buyer as well as seller	 The CBOT has reacted to the market�s criticism and

launched its new generation of so�called PCS options which are designed
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to counter the most obvious defects of the CAT futures	 For a discussion of

these options see CBOT �����	 Schradin and M�oller ����� o�er a very readable

introduction	

Before we turn to the mathematical analysis of some of the products

discussed above� consider the yearly data on California loss ratios �in $� for

earthquake insurance given in Table �	�	�	

���� ��	 ���� �	� ���� �	� ���� ���	�

���� � ���� �	� ��� �	� ���� �	�

���� �	� ���� �	� ���� �	� ���� ��	�

��� �	 ���� �	� ���� �	� ���� ��	�

���� � ���� �	� ���� ��	� ���� �	�

���� � ���� � ���� ��	�

Table 
���� Yearly loss ratios �in $� for earthquake insurance in California�

On the basis of these data�

How would one predict the loss ratio for ����


The answer came indeed one year later

��� ����	����

The event that had happened in ��� was the Northridge earthquake	 These

data from the California Department of Insurance �Insurance Information

Institute�� are taken from Ja�ee and Russell �����	 In the latter paper an

excellent discussion on insurance of catastrophic events is to be found	 At this

point we would like to repeat a statement made in the Reader Guidelines	

�Though not providing the risk manager with the �nal product he or she can

use for monitoring risk on a global scale� we will provide that manager with

stochastic methodology needed for the construction of various components of

such a global tool	
 The next section should be viewed with this statement

in mind	


���� Probabilistic Analysis

In this section we investigate some of the standard reinsurance treaties using

the techniques from extreme value theory and �uctuation theory for random

walks provided in this book	 Throughout the individual claim sizes Xn are

iid non�negative� non�degenerate with common df F � independent of the

number N�t� of claims occurring up to time t	 The latter rvs are supposed

to be Poisson�distributed� but they need not necessarily constitute a Poisson

process	 The total claim amount of an insurance portfolio is then given by

the process
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S�t�  

N�t�X
i��

Xi � t � � �

Throughout we suppose that   EX� exists and we also write

X  X� � �t�  ES�t�  EN�t� � t � � �
We are particularly interested in heavy�tailed dfs F which are more realistic

models for claims in the context of reinsurance	

Example 
���� �CAT futures�

Recall from ��	���� that the settlement value V �T � of the CAT futures at

maturity T equals

V �T �  #�� ����min

S�T �

P �T �
� �

�

 #�� ����

S�T �

P �T �
�max


S�T �

P �T �
� �� �

��
�

For notational convenience we have dropped the su�x p referring to the pool	

The last equality represents V �T � as a long position in the pool�s loss ratio

and a short position in a European call written on the loss ratio with strike �

and maturity T 	 Hence in principle one should be able to price these futures

using the standard theory of no�arbitrage pricing� i	e	 the value V �t� at time t

of the contingent claim V �T � equals

V �t�  EQ
h
e�r�T�t� V �T �

			Fti � � � t � T �

where r stands for the risk�free interest rate� and �Ft�t����T 	 is an increasing
family of ��algebras ��ltration� such that Ft describes the information avail�
able up to time t	 The measure Q appearing mysteriously as an index denotes

the equivalent martingale measure which� since the paper by Harrison and

Pliska ������ enters all pricing models in �nance	 To be a bit more precise

we assume� as is usual in stochastic �nance� that the underlying process is

de�ned on a probability space�
��F � �Ft���t�T � P

�
�

and the process �S�t�� is assumed to be adapted to �Ft�� i	e	 for all t� S�t�
is Ft�measurable	 The measure Q is equivalent to P so that �S�t�� becomes

a Q�martingale	 Within this framework� we could consider the pricing prob�

lem as being solved	 In the case of CAT futures� this is however far from

the truth � This whole set�up does work well for instance if �S�t�� follows

a geometric Brownian motion	 We know however that the underlying claim
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process is usually modelled by a compound Poisson� compound mixed Poisson

or even compound doubly stochastic �or Cox� process	 In these cases� mainly

due to the random jumps corresponding to the individual claim sizes� the

market based on �S�t�� is incomplete and therefore allows for in�nitely many

equivalent martingale measures� which one to choose" The interested reader

wanting to learn more about this should consult Delbaen and Haezendonck

����� for general �re�insurance contracts and Meister ��� more in particular

for the CAT futures	 From a more pragmatic� and indeed actuarial point of

view it is de�nitely worthwhile to calculate the distributional properties of

V �T � under the so�called physical measure P 	 This is exactly what is done

below	

In general� P �t� can be taken as a loaded version of the mean value �t��

thus

P �t�  c �t� � t � � �
for some constant c � �� but we require only c � �	 For evaluating the futures

contract under the physical measure P it is of particular interest to determine

E�V �T ��  E

�
#�������


S�T �

P �T �
�max


S�T �

P �T �
� �� �

���
�

Since

E


S�T �

P �T �

�
 

�T �

c�T �
 
�

c
�

it remains to calculate

Emax


S�T �

P �T �
� �� �

�
 E


S�T �

P �T �
� �

��

�

It is one objective of this section to give an asymptotic expression for this

value� but also for the variance of V �T �	 For this reason we will exploit

a large deviation result for S�t� as provided by Theorem �	�		 Since T is in

general �small
 �for instance three months � �� days�� but N�T � is �large
 it
makes sense to speak about high density data and to generalise the Cram�er�

Lundberg model in so far as to require only that EN�t� becomes large with

increasing time	 �

Example 
���� �Reinsurance treaties of random walk type�

In this example we assume throughout that �S�t�� is given by the Cram�er�

Lundberg model driven by a homogeneous Poisson process �N�t�� with con�

stant intensity � � �	

Three common types of reinsurance treaties are the following�

Proportional reinsurance� This is a common form of reinsurance for claims
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of �moderate
 size	 Here simply a fraction p � ��� �� of each claim �hence the
pth fraction of the whole portfolio� is covered by the reinsurer	 Thus the rein�

surer pays for the amount R��t�  pS�t� whatever the size of the claims	

Stop	loss reinsurance� The reinsurer covers losses in the portfolio exceed�

ing a well de�ned limit K� the so�called ceding company�s retention level	

This means that the reinsurer pays for R��t�  �S�t��K��	 This type of

reinsurance is useful for protecting the company against insolvency due to

excessive claims on the coverage	

Excess	of	loss reinsurance� The reinsurance company pays for all indi�

vidual losses in excess of some limit D� i	e	 it coversR
�t�  
PN�t�

i�� �Xi �D��	

The limit D has various names in the di�erent branches of insurance	 In life

insurance� it is called the ceding company�s retention level	 In non�life insur�

ance� where the size of loss is unknown in advance� D is called deductible	 The

reinsurer may in reality not insure the whole risk exceeding some limit D but

rather buy a layer of reinsurance corresponding to coverage of claims in the

interval �D�� D��	 This can be done directly or by itself obtaining reinsurance

from another reinsurer	 The typical example of the CatXL was discussed in

Section �	�	�� see Figure �	�	� for an example with perhaps D�  � million

and D�  � million Swiss francs	

It is an important question to value the losses R�� R�� R
 by probabilistic

means	 For example� it is of interest to estimate the probabilities

P �R��t� � x�

 P
�
S�t�� �t� � p��x� �t�

�
� ��	����

P �R��t� � x�

 P
�
�S�t��K�� � x

�
 P �S�t��K � x� �

 P �S�t�� �t� � x&K � �t�� ��	����

P �R
�t� � x�

 P

��N�t�X
i��

�Xi �D�
�

� x


A ��	���

 P

��N�t�X
i��

�Xi �D�� � �E�X �D��t � x� �E�X �D��t


A �
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A mathematical study of these probabilities is important especially for large

values of x	 Typically� x and K in ��	���� depend on t and indeed may be of

the same order as �t�	

We could apply the CLT to estimate the probabilities ��	�������	���� given

var�X� ��	 For example� Theorem �	�	�� with

xt�c�  p
�
�t� & c

p
�t �var�X� & ��

�
� c � R �

yields

P �R��t� � xt�c��	 ��c� �

where � denotes the standard normal df	 Thus the CLT provides an answer

only in a relatively small xt�band of the order
p
t around the mean value �t�	

If x is of the critical order t� i	e	 of the same order as the mean value �t�� or

even larger� large deviation results are the appropriate tools	

In the context of stop�loss reinsurance it is also of interest to study the

quantities

E


S�t�

P �t�
�K

��

and var


S�t�

P �t�
�K

��

��	����

for a �xed positive constant K and with the premium income P �t�  c�t�

for some constant c � �	 Notice that S�t��P �t� is just the loss ratio at time t

which is compared with a �xed limit K	 Probabilities of large deviations will

also help to evaluate quantities like ��	����	 �

The main tool for dealing with the problems mentioned in Examples �	�	�

and �	�	 is the large deviation result of Theorem �	�		 Under the assumption

F � R�� for some 	 � � the relation

P �S�t�� �t� � y� � EN�t�F �y�  EN�t�P �X � y� ��	����

holds uniformly for y � ��t� for every positive � � �� provided EN�t�	�
as t 	 t� � �����	 This formula immediately yields approximations to the
probabilities ��	�������	��� when x is of the same order as �t�	 For example�

consider the situation of ��	���� with yt�c�  c�t� for some c � p	 Then

P �R��t� � yt�c�� � �tF
��
p��c� ���t�� �

i	e	 P �R��t� � yt�c�� � R���� and therefore this probability is not negligible

even for large t	

Both quantities in ��	���� can be rewritten in a such way that asymptotic

analysis becomes fairly straightforward	 Thus
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E


S�t�

c�t�
�K

��

 E


S�t�

c�t�
�K

�
IfS�t���c��t���K��g

 

Z �

�

P


S�t�

c�t�
�K � x

�
dx

 
�

c�t�

Z �

�Kc�����t�

P �S�t�� �t� � x� dx � ��	����

where c� K are positive constants such that

�  Kc� � � � �

Also�

var


S�t�

c�t�
�K

��

 var


S�t�

c�t�
�K

�
IfS�t���c��t���K��g

 

Z �

�

P


S�t�

c�t�
�K �

p
x

�
dx�

Z �

�

P


S�t�

c�t�
�K � x

�
dx

��

 
�

c�t�

Z �

���t�


x

c�t�
� �

c

�
P �S�t�� �t� � x� dx ��	����

�
�

�

c�t�

Z �

���t�

P �S�t�� �t� � x� dx

��

�

This solves the corresponding problems for the expectation and the variance

of the futures price �see Example �	�	�� and of the stop�loss reinsurance treaty

�see Example �	�	�	 Since relation ��	���� holds uniformly for x � ��t��

given EN�t�	�� a straightforward analytic argument applied to ��	����
and ��	���� yields

E


S�t�

c�t�
�K

��

� �

c

Z �

��EN�t�

F �y� dy �

given 	 � �� and that
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var


S�t�

c�t�
�K

��

� �

c

Z �

��EN�t�


x

cEN�t�
� �

c

�
F �x� dx �

�
�

c

Z �

��EN�t�

F �x� dx

��

� �

c

Z �

��EN�t�


x

cEN�t�
� �

c

�
F �x� dx �

given 	 � �	 Notice that the conditions 	 � � and 	 � � guarantee the ex�

istence of the expectation and of the variance of �S�t��c�t��K��� respec�

tively	 Using Karamata�s theorem �Theorem A�	�� we obtain the following

approximations�

E


S�t�

c�t�
�K

��

� �EN�t�

c�	� ��F ��EN�t�� � ��	����

var


S�t�

c�t�
�K

��

� ���EN�t�

c��	 � ���	� ��F ��EN�t�� � ��	����

Example 
���� �Insurance futures� continuation of Example �	�	��

In the context of insurance futures it may be of interest to consider a high

density model for �S�t��� over the �xed period of time to maturity T �or

better said until the end of the event period� many claims may enter into

the pool so that EN�T � will be large	 The latter can be modelled by Poisson

rvs N�t� such that EN�t�	� as t	 T 	 For every t � ��� T �� consider

V �t�  #�� ����min


S�t�

c�t�
� �

�
�

Clearly� the notation V �t� above should not be confused with the no�arbitrage

value as de�ned in Example �	�	�	 From the relations ��	���� and ��	���� one

can then derive the following asymptotic expressions for EV �t� and var�V �t���

assume �  �K � �  �c� � � � and set

eV �t�  V �t��#������  
S�t�

c�t�
�


S�t�

c�t�
� �

��

�

If 	 � � then

E�eV �t��  �
c


�� �� & o����

�EN�t�

	� � F ��EN�t��

�
� ��	����

If 	 � � then

var�eV �t��  �

c�


EX�

�EN�t�
� �� & o����

���EN�t�

�	� �� F ��EN�t��

�
� ��	����
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The evaluation of ��	���� with the help of ��	���� does not cause di�culties	

Next we derive ��	����	 Observe that by ��	���� and ��	�����

var�eV �t��
 E eV ��t�� �E eV �t���
 E


S�t�

c�t�

��

&E

�
S�t�

c�t�
� �

��
��

� �E S�t�

c�t�


S�t�

c�t�
� �

��

��E eV �t���
 E


S�t�

c�t�

��

�E

�
S�t�

c�t�
� �

��
��

� E


S�t�

c�t�
� �

��

� �E eV �t���
 var


S�t�

c�t�

�
� var


S�t�

c�t�
� �

��

��
�
E


S�t�

c�t�
� �

��
��

� �
c
�E


S�t�

c�t�
� �

��

 
EX�

c��EN�t�
� �� & o����

���EN�t�

c��	� �� F ��EN�t�� �
�

Whereas large deviations seem to be the right instrument for dealing with the

treaties and futures of Examples �	�	� and �	�	� extreme value theory is very

much involved in handling the following problems related to reinsurance	 In

an insurance portfolio we consider the iid claims X�� � � � � XN�t� which occur

up to time t	 We study the randomly indexed ordered sample

XN�t��N�t� � � � � � X��N�t� �

Recall that �N�t�� is independent of �Xn�� and throughout we will assume

that �N�t�� constitutes a homogeneous Poisson process with constant inten�

sity � � �	

Example 
���� �Distribution of the number of claims in a layer and of the

kth largest claim�

We will touch on two important questions in reinsurance	 The �rst one is

How many claims can occur in a layer �D�� D�� or �D���� up to time t


This means we are interested in the quantity

Bt�A�  

N�t�X
i��

IfXi�Ag
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for some Borel set A	 Conditional on N�t�� Bt�A� is binomially distributed

with success probability F �A�  P �X � A�	 Hence

P �Bt�A�  l�

 

�X
k��

P �Bt�A�  ljN�t�  k�P �N�t�  k�

 e��t
�X
k�l


k

l

�
�F �A��l

�
F �A�

�k�l� ��t�k
k�

� ��	����

This solves our �rst problem	 Indeed� depending on the type of layer� we can

estimate F �A� and F �A� for instance with methods discussed in Chapter �	

However� if we assume that the limits of the layer increase with time we can

apply a Poisson approximation to these probabilities	 For example� assume

that the layer boundaries form a sequence �Dn� such that nF �Dn� 	 � for

some � � R� 	 Then by Theorem �	�	�

N�n�X
i��

IfXi�Dng
d	 Poi���� �

In particular�

P

��N�n�X
i��

IfXi�Dng  l


A	 e���
����l

l�
�

Next we ask

What do we know about the size of the largest claims


In Proposition 	�	� we learnt about the distribution of the kth largest order

statistic Xk�n in a sample of n iid rvs� namely

P �Xk�n � x�  

k��X
r��


n

r

�
F
r
�x�Fn�r�x� � ��	���

Again conditioning on N�t� we get an analogous formula for Xk�N�t��

P
�
Xk�N�t� � x

�
 

�X
l��

P �Xk�l � xjN�t�  l�P �N�t�  l�

 e��t
�X
l�k

P �Xk�l � xjN�t�  l�
��t�l

l�
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 e��t
�X
l�k

�
k��X
r��


l

r

�
F
r
�x�F l�r�x�

�
��t�l

l�

 e��t
k��X
r��

��F �x�t�r

r�

�X
l�r

��tF �x��l�r

�l � r��

 e��tF �x�
k��X
r��

�
�F �x�t

�r
r�

� ��	����

In comparing formulae ��	��� and ��	����� we see that ��	��� is the prob�

ability that a binomial rv with parameters F �x� and n does not exceed k�

whereas ��	���� is the probability that a Poisson rv with parameter �tF �x�

does not exceed k	

Formula ��	���� can also be generalised for a �nite vector of upper order

statistics	 Exact calculations� though feasible� quickly become tedious	 An

asymptotic estimate may therefore be useful	 We apply the results of Sec�

tion 	�	 Since N�t��t
a�s�	 � for the homogeneous Poisson process �N�t�� we

are in the framework of Theorem 	�	�	 Therefore assume that F � MDA�H�
for an extreme value distribution H � i	e	 there exist cn � � and dn � R such

that

c��
n �Mn � dn�

d	 H � ��	����

where Mn  max�X�� � � � � Xn�	 Then� for every k � ��

P
�
c��
n

�
Xk�N�n� � dn

� � x
�	 �k

�� lnH��x�
�
� x � R �

where �k denotes the incomplete Gamma function

�k�x�  
�

�k � ���
Z �

x

e�ttk�� dt � x � � �

The following approximation for the df of Xk�N�n� is obtained�

P
�
Xk�N�n� � u

� � �k


� lnH�


u� dn

cn

��
� �

In order to exemplify further the usefulness of extreme value theory as pre�

sented in the previous chapters� we consider some more reinsurance treaties

which are de�ned via the upper order statistics of a random sample	

Example 
���� �Reinsurance treaties of extreme value type�

Largest claims reinsurance� At the time when the contract is underwritten

�i	e	 at t  �� the reinsurance company guarantees that the k largest claims

in the time frame ��� t� will be covered	 For example� the company will cover
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the �� largest annual claims in a portfolio over a period of � years� say	

This means that one has to study the quantity

R��t�  

kX
i��

Xi�N�t�

either for a �xed k or for a k which grows su�ciently slowly with t	

ECOMOR reinsurance �Exc�edent du co�ut moyen relatif�� This form

of a treaty can be considered as an excess�of�loss reinsurance �see Exam�

ple �	�	� with a random deductible which is determined by the kth largest

claim in the portfolio	 This means that the reinsurer covers the claim amount

R��t�  

N�t�X
i��

�
Xi�N�t� �Xk�N�t�

��
 

k��X
i��

Xi�N�t� � �k � ��Xk�N�t�

for a �xed number k � �	 The link to extreme value theory is again immediate	
Moreover� �k � ���R� looks very much like Hill�s estimator for the index of

a regularly varying tail� see Section �		�	

The quantities R��t� and R��t� are functions of the k upper order statistics

in a randomly indexed sample� a theory for which was given in Section 	�	

Thus we can calculate the limit distribution of R� for every �xed k� assume

that ��	���� is satis�ed for appropriate constants cn� dn and an extreme value

distribution H 	 From Theorem 	�	 we know that�
c��
n

�
Xi�N�n� � dn

��
i�������k

d	 �Y
�i�
� �i�������k �

where �Y
���
� � � � � � Y

�k�
� � denotes the k�dimensional extremal variate corre�

sponding to the extreme value distribution H�	 Arguments as in Section 	��

see for instance the proof of Corollary 	�	��� yield

c��
n R��n�  c��

n

�
k��X
i��

Xi�N�n� � �k � ��Xk�N�n�

�

d	
k��X
i��

i
�
Y

�i�
� � Y

�i���
�

�
for k � �	 Now suppose that F � MDA��� where ��x�  expf� expf�xgg
denotes the Gumbel distribution	 Calculation shows that

�Y
���
� � � � � � Y

�k�
� �

d
 �Y

���
� & ln�� � � � � Y

�k�
� & ln�� � ��	����

Hence
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c��
n R��n�

d	
k��X
i��

i
�
Y

�i�
� � Y

�i���
�

�
d
 

k��X
i��

Ei ��	����

for iid standard exponential rvs Ei� where ��	���� follows from Corol�

lary 	�	��	 Hence the limit in ��	���� has a � �k � �� �� distribution	
Such a nice formula does not exist for F � MDA���� where for some 	 � ��

���x�  expf�x��g denotes the Frech�et distribution	 However� a straight�
forward calculation shows that the following relation holds�

Y
���
� � � � � � Y

�k�
�

�
d
 

�
����Y

���
� � � � � � ����Y

�k�
�

�
�

so that the joint density of �Y
���
� � � � � � Y

�k�
� � can be used to derive the limit

distribution of R��n�	 This� however� will in general lead to complicated nu�

merical integration problems	

The same remark also applies to the limit distribution of the quantities R��n��

where for every �xed k � �

c��
n �R��n�� kdn�  c��

n

kX
i��

�
Xi�N�n� � dn

�
d	

kX
i��

Y
�i�
� � ��	����

In the case F � MDA��� we can give an explicit� though complicated formula
for the limit distribution ��	����	 Recall from Example 	�	�� that

�Ei�n � lnn�i�������k

d	 �Y �i��i�������k � n	� �

where �Ei�n� denote the order statistics of a sample of size n from iid standard

exponential rvs Ei	 From Example 	�	�� we also know that

�Ei�n�i�������n

d
 

�� nX
j�i

j��Ej


A
i�������n

�

Hence
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kX
i��

�Ei�n � lnn� d
 

kX
i��

nX
j�i

j��Ej � k lnn

 

kX
j��

Ej � k ln k & k

nX
j�k��

j��Ej � k�lnn� ln k�

 

kX
j��

Ej � k ln k & k

nX
j�k��

j���Ej � �� & o���

d	
kX
j��

Ej � k ln k & k
�X

j�k��

j���Ej � ��

d
 

kX
i��

Y
�i�
� �

The in�nite series on the rhs converges since

var

�
�X

i�k��

j���Ej � ��
�
 

�X
i�k��

j�� � k�� � k 	� �

Now� recalling ��	����� we �nally obtain the formula

kX
i��

Y
�i�
�

d
 

kX
i��

Y �i� & k ln�

d
 

kX
j��

Ej � k ln�k��� & k
�X

j�k��

j���Ej � �� �

For small k the distribution of this limit rv can be derived by simulations

of iid standard exponential rvs	 For larger k an asymptotic theory seems

appropriate	 �

Notes and Comments

In the large deviation approach to insurance futures and reinsurance treaties

we have closely followed Kl�uppelberg and Mikosch �����	 Kremer ���� gives

the representation of reinsurance treaties in terms of order statistics	 Teugels

����� covers this topic in a set of lecture notes	 Beirlant and Teugels ����� see

also the references therein� give some asymptotic theory for the quantities R�

related to ECOMOR treaties	 They assume that the number of order statis�

tics k increases as t	� and that F is either in the maximum domain of
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attraction of the Fr�echet or of the Gumbel law	 Notice that some asymptotic

results for R� can already be derived from the theory of Hill estimation as

provided in Section �		�	 Various authors have contributed to the pricing of

CAT futures� an early discussion is Cox and Schwebach �����	 A model based

on integrated geometric Brownian motion with or without a Poisson compo�

nent with �xed jump sizes was proposed by Cummins and Geman ���� ����	

Because of the geometric Brownian motion assumption� the latter papers use

the valuation theory of Asian options	 The precise model assumptions �i	e	

�xed claim sizes� render the model complete and hence allow for unique no�

arbitrage pricing	 An approach based on marked point processes is discussed

in Aase ���	 In Aase and /degaard ��� various models are empirically tested	

Meister ��� discusses in detail the equivalent martingale construction for the

underlying risk processes� he derives various pricing formulae within a utility

and general equilibrium framework	 A summary of the latter work is to be

found in Embrechts and Meister �����	 See also Buhr and Carri)ere ����� for

a related approach	 Chichilnisky ����� discusses the important issue of hedg�

ing and Chichilnisky and Heal ���� o�er a new related �nancial instrument	

Various papers on the subject of securitisation of insurance risk are published

in Cox �����	 The general issue of comparing and contrasting actuarial versus

�nancial pricing of insurance is summarized in Embrechts �����	 This paper

also contains various references for further reading	 An interesting paper to

start with concerning reinsurance in arbitrage�free markets is Sondermann

�����	 Delbaen and Haezendonck ����� give the relevant martingale theory in

order to embed premium calculation principles for risk processes in a no�

arbitrage framework	 The more actuarial approach to pricing in �nance is

beautifully summarized in Gerber and Shiu �����	 The latter paper singles

out the so�called Esscher premium principle when it comes to arbitrage pric�

ing of products in the intersection of insurance and �nance	 We encountered

the Esscher transform in our discussion of the Crame�r�Lundberg theorem�

see Theorem �	�	�� and also in our analysis of the path and claim leading to

ruin� see Section �	�	�	 The Esscher transform appeared as an exponentially

tilted df	 The notion can be generalised to processes and indeed turns out to

be useful in a much wider context	 For a generalisation to conditional Ess�

cher transforms for semi�martingales and their applications to �nance see for

instance B�uhlmann et al	 ����� 	 The discrete time case is treated more in

detail in B�uhlmann et al	 ����	

In the near future we will see a large increase in the number as well as

diversity of �re�insurance products based on ideas coming from �nance �the

CAT futures are such an example�	 Further examples from the latter family

are the so�called catastrophe�linked bonds for which the payout is contingent
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on the occurrence of speci�c catastrophic events	 For instance� one buys today

a bond at #�� say� if during the next two years no well�de�ned catastrophe

occurs� then the bond repays at #���� if one catastrophe occurs� only #���

and in the case of two� #�� say	 A similar bond can be constructed where the

repayment value is contingent on the size of speci�c catastrophic losses	 It is

clear that the pricing of such and similar products very much depends on our

understanding of the modelling of the underlying extremal events	 Extreme

value theory will de�nitely o�er a key set of relevant tools	

��� Stable Processes

In Section �	 we learnt about a particular stable process� the 	�stable mo�

tion	 It occurs in a natural way as the weak limit of �properly normalised

and centred� partial sum processes �
P�nt	

i�� Xi�t�� for iid rvs Xi	 In the spe�

cial case when X� has a �nite variance� Brownian motion �Bt�t�� is the limit

process	 The central role of Brownian motion and� more generally� of Gaussian

processes in probability theory is uncontested	 Thus they �nd applications

not only in martingale theory and stochastic analysis� but also in insurance

and stochastic �nance	 For a �nancial engineer� it is to an increasing extent

more important to know about Brownian motion and It'o�s lemma than to

wear a dark suit and a tie	

Geometric Brownian motion �expfct& �Btg�t�� for constants c� � is be�

lieved to be an elementary model for returns	 However� a glance at any real

�nancial data set makes it clear that geometric Brownian motion is a very

poor approximation to reality	 It does not explain changing volatility� or

jumps	 Therefore� attempts have been made to move away from this simple

model	 For example� in�nitely divisible processes �Brownian motion is one of

them� are under discussion �see for instance Barndor��Nielsen ��� �� and

Eberlein and Keller ������	 	�Stable motion is also in�nitely divisible	 Apart

from any drift� it is a pure jump process and its marginal distributions have

an in�nite variance	 As such it is a candidate for modelling real phenomena

with erratic behaviour	 	�Stable processes allow for generalisations and ex�

tensions in many ways	 They are mathematical models as attractive as the

Gaussian processes	 This has been proved convincingly in the recent books

by Janicki and Weron ���� and Samorodnitsky and Taqqu �����	

It is our intention now to give a short introduction to the topic of sta�

ble processes	 We do this for the following two reasons� �	 We believe that

stable processes constitute an important class of stochastic processes with

the potential for wide applications in modelling extremal events	 �	 They

are not very familiar �if not even unknown� to the applied worker	 Even in
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circles where they are known there is a lot of suspicion about the in�nite

variance of these processes� which is considered something extraordinary	 �It

took �� years before the role of Brownian motion was fully recognised in

�nance	� Books like Mittnik and Rachev ���� will certainly contribute to

wider applications of stable processes in �nance and insurance	


�
�� Stable Random Vectors

By virtue of Kolmogorov�s consistency theorem �see for instance Billings�

ley ������ the distribution of a stochastic process �Xt�t�T is determined by its

self�consistent family of �nite�dimensional distributions� i	e	 the distributions

of the random vectors

�Xt� � � � � � Xtd� � t�� � � � � td � T � d � � � ��	����

This is also the point to start with	 We restrict ourselves to symmetric

processes which means that the distribution of the vector ��	���� does not

change when the latter is multiplied by ��	 We use the abbreviation s	s

�symmetric 	�stable� and assume that 	 � �� the case 	  � corresponds to

the Gaussian processes	

Recall �see Section �	�� that an s	s rv X has chf

EeitX  e�cjtj
�

� t � R �

for some c � � �a scaling parameter� and some 	 � ��� ��	 For completeness we
will also admit the parameter choice c  � which corresponds to a �degenerate

stable distribution
	 For iid symmetric X�X�� X� this is equivalent to

a�X� & a�X�
d
 X �ja�j� & ja�j����� � a�� a� � R �

Stable random vectors are de�ned in a similar fashion�

Denition 
�
�� �s	s random vector�

The random vector X �the distribution F of X� with values in Rd is s	s for

some 	 � ��� �� if it has chf

Eei�t�X�  exp

�
�

Z
Sd��

j�t�y�j�dms�y�

�
� t � R

d � ��	����

Here ��� �� denotes the usual scalar product in Rd and ms is a symmetric �i�e�

ms�A�  ms��A�� �nite measure on the Borel sets of the unit sphere

Sd��  

�
s  �s�� � � � � sd� � ksk  

q
s�� & � � �& s�d  �

�
of Rd � It is called the spectral measure of the random vector X �of its distri�

bution F � and ��	���� is the corresponding spectral representation� �
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Remarks� �� The spectral measure ms in ��	���� is unique on Sd�� for

	 � �	

�� The spectral representation ��	���� yields immediately the following� let

X� X�� X� be iid s	s in Rd and a�� a� � R	 Then

Eei�t�a�X��a�X��  Eei�t�a�X� Eei�t�a�X�

 exp

�
� �ja�j� & ja�j��

Z
Sd��

j�t�y�j�dms�y�

�
 E exp

n
i
�
t�X �ja�j� & ja�j�����

�o
� t � R

d �

Hence

a�X� & a�X�
d
 X �ja�j� & ja�j����� � a�� a� � R �

For symmetric X� the latter can be shown to be equivalent to the de�ning

spectral representation ��	���� for an s	s random vector	 �

Example 
�
�� �Independent s	s rvs constitute an s	s random vector�

Assume X  �X�� � � � � Xd� is a vector of independent s	s rvs�

EeitXj  expf�cj jtj�g � t � R � j  �� � � � � d �

Then� for every t  �t�� � � � � td� � Rd �

Eei�t�X�  

dY
j��

EeitjXj  

dY
j��

expf�cj jtj j�g  exp
����

dX
j��

cj jtj j�
#$% �

De�ne the jth unit vector ej  �eji�i�������d by

eji  

�
� i  j �

� i � j �
i  �� � � � � d �

Then

Eei�t�X�  exp

����
dX

j��

j�ej� t�j� cj

#$%
 exp

�Z
Sd��

j�y� t�j�dems�y�

�
�

where ems is the symmetrised version of the discrete measure

ms  

dX
j��

cj�ej
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��x denotes Dirac measure concentrated in x� on the unit sphere Sd�� of Rd 	

Conversely� it can easily be seen that an s	s random vector in Rd with spec�

tral measurems concentrated on the set of vectors fe�� � � � � ed��e�� � � � ��edg
has necessarily independent s	s components	 �

Example 
�
�� �Subgaussian stable vector�

Let A be an 	���stable positive rv	 It is well known �see Samorodnitsky and

Taqqu ������ Proposition �	�	��� that A has Laplace transform

Ee�sA  expf�cs���g � s � � �
for some c � �	 In the following we assume wlog that c  �	 Recall that a nor�

mal N��� ���� rv N has chf

EeitN  expf���t�g � t � R �

Assume A and N are independent and de�ne

X  A���N � ��	����

Then

EeitX  E
�
E

�
eitA

���N
			A��

 E exp
��A��t�

�
 expf�j�j�jtj�g � t � R �

i	e	 X is s	s� and every s	s rv X has representation ��	����	 This is the moti�

vation for the following multivariate generalisation� assumeN  �N�� � � � � Nd�

is mean�zero Gaussian in Rd given by its chf

Eei�t�N�  exp
��t�Rt� � t � R

d �

where the vectors t are understood as columns and  stands for transpose	
Moreover�

�R  � �rij�i�j�������d  �cov �Ni� Nj��i�j�������d

is the covariance matrix of N	 If N and A are independent then X  A���N

is called subgaussian	 It has chf

Eei�t�X�  EeiA
����t�N�

 E
�
E

�
eiA

����t�N�
			A��

 E exp
��At�Rt�

 exp
n
� 		t�Rt		���o

 exp

������
						

dX
i�j��

titjrij

						
���

#�$�% � t � R
d �
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which can be shown to be the chf of an s	s random vector �it su�ces to prove

that every linear combination of components of a subgaussian vector is s	s�

see Proposition �	�	� in Samorodnitsky and Taqqu ������ this follows from the

chf above�	 If N has iid N��� ���� components the chf of X is particularly

simple�

Eei�t�X�  exp

������j�j�
						
dX

j��

t�j

						
���

#�$�%
 exp f�j�j�ktk�g � t � R

d � ��	����

For example� let d  �� 	  � in ��	����	 Then we obtain

Eei�t�X�  exp

�
�j�j

q
t�� & t��

�
� t � R

� �

which is the chf of the two�dimensional isotropic Cauchy law	 It has density

fX �x�� x��  
j�j

�� �x�� & x�� & ���

��

� x�� x� � R �

The meaning of the word �isotropic
 will become clear by the arguments

given below	

The s	s distribution with spectral representation ��	���� corresponds to

a spectral measure ms which� up to a constant multiple� is Lebesgue measure

on Sd��	 We verify this for d  �	 Write t in polar coordinates�

t  


t�
t�

�
 r


cos�t
sin�t

�
� r  

q
t�� & t�� �

Then we have

r�
Z ��

�

j cos�j� d�  r�
Z ��

�

jcos ��� �t�j� d�

 r�
Z ��

�

jcos�t cos�& sin�t sin�j� d�

 

Z ��

�

				
r cos�t
r sin�t

�
�


cos�

sin�

��				� d�

 

Z ��

�

				
t�
t�

�
�


cos�

sin�

��				� d� �

In a similar way� one can proceed in Rd � using spherical coordinates	
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Notice that the distribution of a subgaussian X is invariant under rotations

�isotropic�� let O be an orthogonal matrix �O�  O���	 The vector OX is

the vector X after a rotation in Rd 	 Then

Eei�t�X�  exp f�j�j�ktk�g  exp
n
�j�j� ''O�t

''�o  Eei�t�OX� � t � R
d �

since
ktk�  t�t  t�

�
OO�

�
t  

�
O�t

�� �
O�t

�
 

''O�t
''� � �


�
�� Symmetric Stable Processes

Now we are in the position to de�ne an s	s process�

Denition 
�
�� �s	s process�

A stochastic process �Xt�t�T is called s	s if all its �nite�dimensional dis�

tributions are s	s� i�e� the random vectors ��	���� are s	s in the sense of

De�nition ������ �

From the de�nition of an s	s process �Xt�t�T it follows that all linear com�

binations

dX
i��

aiXti � �ai�i�������d � R
d � �ti�i�������d � T d � d � � �

are s	s	 The converse is also true as it follows from Theorem �	�	� in

Samorodnitsky and Taqqu �����	

Example 
�
�� �s	s motion�

In Section �	 we learnt about 	�stable motion as a process with independent�

stationary 	�stable increments	 s	s motion is a special 	�stable process with

symmetric 	�stable �nite�dimensional distributions� it is a process �Xt�t��

satisfying the conditions

	 X�  �a�s�

	 �Xt� has independent increments� Xt� �Xt� � � � � � Xtd �Xtd��
are indepen�

dent for every choice of � � t� � � � � � td �� and d � �	
	 Xt �Xs

d
 Xt�s� t � s� and Xt is s	s for every t � �	

Notice that for t� � � � � � td� by virtue of the stationary� independent incre�

ments�

�Xt� � � � � � Xtd�

d
 

�
Z�t

���
� � Z�t

���
� & Z� �t� � t��

��� � � � � �

Z�t
���
� & Z� �t� � t��

��� & � � �& Zd �td � td���
���

�
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for iid s	s Zi such that Z�
d
 X�	 In particular� for all c � �

�Xct� � � � � � Xctd�
d
 c��� �Xt� � � � � � Xtd� �

This property is called ��	�self�similarity of the process �Xt� �see Section

�	� for more information on self�similarity�	 Notice that Brownian motion is

����self�similar and the Cauchy �i	e	 s�s� motion is ��self�similar	 �


�
�� Stable Integrals

Many stable processes of interest have a stochastic�integral representation

with respect to a stable random measure	 This is similar to the Gaussian

case	 As for Gaussian processes� there exist di�erent ways of de�ning stable

integrals	 We prefer here a constructive approach to the topic	

First we introduce the notion of an 	�stable random measure with respect

to which we will integrate	 It is in general not a signed measure since it can

have in�nite variation	 We again restrict ourselves to the symmetric �s	s�

case	

Denition 
�
�� �	�Stable random measure�

Let �E� E �mc� be a measure space� i�e� E is a ��algebra of subsets of E and mc

is a measure on E� A set function M on E is called an s	s random measure

with control measure mc if the following conditions are satis�ed	

�a� For every A � E with mc�A� ��� M�A� is an s	s rv with chf

EeitM�A�  exp f�mc�A�jtj�g � t � R �

�b� For disjoint A�� � � � � Ad � E with
Pd

i�� mc�Ai� ��� the rvs M�A��� � � � �

M�Ad� are independent�

�c� For disjoint A�� A�� � � � � E with
P�

i�� mc�Ai� �� the relation

M

�
��
i��

Ai

�
 

�X
i��

M �Ai� a�s�

holds� �

Remarks� �� For our purposes� E will be a subset of the real line equipped

with the corresponding ��algebra of the Borel sets	

�� Motivated by the de�ning properties �b� and �c�� M is also called an

independently scattered ��additive set function	

�� The existence of an s	s random measure has to be proved	 One way is

to apply Kolmogorov�s consistency theorem �see for instance Billingsley �����
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since M can be considered as an s	s process indexed by the sets A � E with
�nite mc�measure	 It is easy to see that the rhs in �c� is a	s	 convergent	

As a series of independent terms it converges a	s	 if and only if it converges

in distribution �see Dudley ������ Section �	�	� on p	 ����	 And it converges

weakly to the distribution with chf

�Y
k��

E expfitM�Ak�g  
�Y
k��

exp f�mc�Ak�jtj�g

 exp

�
�jtj�

�X
k��

mc�Ak�

�
�

�

Example 
�
�� �s	s motion as an s	s random measure�

Assume that M is an s	s random measure on � ������ ���������mc � where

�������� denotes the ��algebra of the Borel sets in ����� andmc is Lebesgue

control measure	 De�ne

Xt  M���� t�� � � � t �� �

By de�nition of an s	s random measure� Xt
d
 t���X� and �Xt�t�� has sta�

tionary� independent increments	 Thus �Xt�t�� is an s	s motion	 �

Now we want to construct an s	s integral	 We start with a simple function

as integrand�

fn  

nX
j��

cjIAj � ��	���

where A�� � � � � An � E is a disjoint partition of E and c�� � � � � cn are arbitrary

real numbers	 Then immediatelyZ
E

jfn�x�j� dmc�x�  

nX
j��

jcj j�mc �Aj� �

We require that the rhs is �nite� i	e	 fn � L��E� E �mc�	 For such a function

we de�ne the stochastic integral

I �fn�  

Z
E

fn�x� dM�x�  

nX
j��

cjM �Aj� �

Using the independence of the M�Aj�� the chf of I�fn� is easily evaluated�
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EeitI�fn�

 
nY
j��

EeitcjM�Aj�

 exp

����jtj�
nX
j��

jcj j�mc �Aj�

#$%
 exp

�
�jtj�

Z
E

jfn�x�j� dmc�x�

�
� ��	����

Hence I�fn� is s	s� and therefore the notion s	s or 	�stable integral is

justifed	

Every measurable real�valued function f on �E� E � can be approximated
by simple functions fn as de�ned in ��	��� which� in addition� satisfy the

conditions jfnj � jf j and fn 	 f mc�a	s	 Samorodnitsky and Taqqu ������

p	 ���� give a particular construction for fn	 If f � L��E� E �mc� then also

fn �L��E� E �mc� for all n� and dominated convergence yieldsZ
E

jfn�x�� fm�x�j� dmc�x�	 � � n�m	� � ��	����

Z
E

jfn�x�� f�x�j� dmc�x�	 � � n	� �

Since it is always possible to �nd a disjoint partition �Aj� of E jointly for fn
and fm� we can write� for n � m�

fk  
X
j

c
�k�
j IAj � k  n�m �

Hence I�fn � fm�  I�fn�� I�fm� and by ��	���� and ��	���� we may con�

clude that

Eeit�I�fn��I�fm��  exp

�
�jtj�

Z
E

jfn�x� � fm�x�j� dmc�x�

�
	 � � t � R �

This proves that �I�fn�� is a Cauchy sequence with respect to convergence

in probability and hence it converges in probability to a limit rv which we

denote by

I�f�  

Z
E

f�x� dM�x�

and which we call the stochastic integral of f with respect to M or an s	s

integral	 The limit I�f� is independent of the choice of the approximating

simple functions �fn�	 �If there is another approximating sequence �gn�� one
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can construct a joint sequence �hn� from elements of �fn� and �gn� which is

again Cauchy and has a unique limit I�f�	�

In the following we give some simple properties of the stochastic integralsR
E
f�x� dM�x�	

Proposition 
�
�
 �Elementary properties of s	s integrals�

Assume f� f�� f�� � � � � L��E� E �mc��

�a� I�f� is s	s with chf

EeitI�f�  exp

�
�jtj�

Z
E

jf�x�j� dmc�x�

�
� t � R �

�b� I�f� is linear� i�e� for every a�� a� � R�Z
E

�a�f��x� & a�f��x�� dM�x�  a�

Z
E

f��x� dM�x�&a�

Z
E

f��x� dM�x� �

�c� The relation I�fn�
P	 I�f� holds if and only ifZ
E

jfn�x� � f�x�j� dmc�x�	 � �

Proof� From ��	���� we know that �a� holds for a simple function fn	 For

general f � �a� follows from ��	���� and from the continuity theorem for chfs

since I�fn�
P	 I�f� for the simple functions fn used in the de�nition of I�f�	

�b� is immediate for simple functions f�� f�	 For general f�� f� let f
�n�
� �

f
�n�
� be simple functions as used for the de�nition of I�f��� I�f��	 Then

I�f
�n�
i �

P	 I�fi�� i  �� �� and �b� follows by �rst applying �b� to f
�n�
i � i  �� ��

and then by passing to the limit as n	�	
�c� Notice that

Eeit�I�fn��I�f��  exp

�
�jtj�

Z
E

jfn�x� � f�x�j� dmc�x�

�
� t � R �

A necessary and su�cient condition for I�fn�
P	 I�f� is that E expfit�I�f��

I�fn��g 	 � for all t� but this means that
R
E
jfn�x� � f�x�j� dmc�x�	 �	 �

Proposition 
�
�� For every f�� � � � � fd � L��E� E �mc�� the random vector

Jd  �I�f��� � � � � I�fd�� is s	s�

Proof� We have the chf
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Eei�t�Jd�  E exp

���i

dX
j��

tjI�fj�

#$%
 exp

����
Z
E

						
dX

j��

tjfj�x�

						
�

dmc�x�

#$%
 exp

������
Z
E�

							
Pd

j�� tjfj�x��Pd
j�� f

�
j �x�

����

							
��� dX

j��

f�
j �x�


A���

dmc�x�

#�$�% �

where E�  fx � E �
Pd

j�� f
�
j �x� � �g	 Introducing the new coordinates

gj  gj�x�  
fj�x��Pd

j�� f
�
j �x�

����
� j  �� � � � � d �

on Sd�� we can write

Eei�t�Jd�  exp

����
Z
Sd��

						
dX

j��

tjgj

						
�

dem�g�
#$% �

where

em�A�  Z
g���A�

�� dX
j��

f�
j �x�


A���

dmc�x� � �

Proposition 
�
��� The rvs I�f�� and I�f�� are independent if and only if

f��x�f��x�  � mc � a�e� ��	����

Sketch of the proof� Using chfs� one has to show that

EeitI�f��f��  exp

�
�jtj�

Z
E

jf��x� & f��x�j� dmc�x�

�

 exp

�
�jtj�

Z
E

jf��x�j� dmc�x� &

Z
E

jf��x�j� dmc�x�

��
 EeitI�f��EeitI�f�� � t � R �

This means that one has to prove thatZ
E

jf��x� & f��x�j� dmc�x�  

Z
E

jf��x�j� dmc�x� &

Z
E

jf��x�j� dmc�x� �

��	����
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If f� and f� have disjoint supports as assumed by ��	����� ��	���� is imme�

diate	 For the converse we refer to Samorodnitsky and Taqqu ������ Theo�

rem �	�	�	 �

Remark� � It should be mentioned that the above construction of an

s	s�stable integral also works in the Gaussian case when 	  �	 But

notice that then E expfitI�f�g  expf�t� RE f��x�dmc�x�g� i	e	 I�f� is

N��� �
R
E
f��x�dmc�x��	 Thus one can de�ne a Gaussian stochastic integral

with respect to a s�s random measure via only the variances of the rvs I�f��

which is standard in that case	 �


�
�� Examples

In this section we consider some more examples of stable processes	 In

most cases we will make use of the representation as s	s integrals with re�

spect to an s	s random measure	 For the reader who is not interested in

the construction of such an integral as given in Section �	�	�� it is conve�

nient to think of
R
E
f�x� dM�x� for some E � R as a discrete sum of typeP

j f�xj���M��xj��� xj �� for a �nite partition x� � x� � � � � � xn of elements

of E� where the rvs M��xj��� xj �� are independent s	s with chfs

E expfitM��xj��� xj ��g  exp f�jtj� �mc �xj��mc �xj����g
for a non�decreasing� right�continuous function mc on R	

Example 
�
��� �s	s motion�

Let

Xt  

Z �

�

I����t	�x� dM�x�  

Z t

�

dM�x� � t � � �
whereM is an s	s random measure on R with Lebesgue control measuremc	

Thus

Eeit�Xs��Xs��  exp f�jtj� �s� � s��g � s� � s� � t � R � ��	����

By de�nition of an s	s random measure� the increments

Xsi �Xsi��  

Z si

si��

dM�x� � � � s� � � � � � sd ��

are independent and� in view of ��	����� also stationary	

In a similar way� we can introduce s	s noise�

Yt  

Z t��

t

dM�x�  M�t& ���M�t� � t � Z �

i	e	 �Yt�t�Z are iid s	s with chf EeisY�  e�jsj
�

� s � R	 �
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Example 
�
��� �s	s linear process or moving average process�

In Chapter � we considered the linear or in�nite moving average process

Xt  

�X
j���


t�jZj  

�X
j���


jZt�j � t � Z � ��	���

where �Zt�t�Z are iid s	s innovations or noise variables and �
j�j�Z are

real coe�cients satisfying a certain summability condition	 By the ��series

theorem �for instance Petrov ����� p	 �����

�X
j���

j
j j� �� ��	���

can be seen to be a necessary and su�cient condition for the a	s	 convergence

of the series ��	���	 The latter condition is for instance satis�ed for every

causal� invertible ARMA process driven by �Zt� �see for instance Brockwell

and Davis ���� or Example �	�	��	 Notice that Xt can be written as a sto�

chastic integral

Xt  

Z �

��


�t� x� dM�x� � t � R � ��	���

where


�y�  
j � y � �j� j & �� � j � Z �

and M is an s	s random measure with Lebesgue control measure mc on R	

Condition ��	��� means thatZ
R

j
�x�j� dx �� � ��	���

which is needed for a proper de�nition of the integral ��	���	 More gener�

ally� any s	s process �Xt�t�R de�ned by ��	��� with a function 
 satisfying

��	��� is called a moving average process	 It is a strictly stationary process

�see Appendix A�	�� since

E exp

���i

dX
j��

sjXtj�h

#$%
 exp

����
Z
R

						
dX

j��

sj
�tj & h� x�

						
�

dx

#$%
 exp

����
Z
R

						
dX

j��

sj
�tj � x�

						
�

dx

#$%
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 E exp

���i

dX
j��

sjXtj

#$% � s� t � R
d � h � R � �

Example 
�
��� �s	s Ornstein�Uhlenbeck process�

Autoregressive processes are among the most popular stationary processes

in time series analysis	 A causal� invertible autoregressive process of order �

�AR��� process� is de�ned via the di�erence equations

Xt  �Xt�� & Zt � t � Z �

for some � � ���� ��	 Assume that �Zt�t�Z is iid s	s noise	 Then �Xt� has

the series representation

Xt  

�X
j��

�jZt�j  

tX
j���

�t�jZj � t � Z �

which is a moving average process in the sense of Example �	�	��	 A con�

tinuous time version of an AR��� process can be de�ned via the integral

representation

Xt  

Z t

��

e���t�x� dM�x� � t � R � ��	��

for a positive constant � � �	 In view of the discussion in Example �	�	���

this is a well de�ned s	s moving average process with


�x�  e��xI������x� � x � R �

The stationary process ��	�� is called an s	s Ornstein�Uhlenbeck process	

If M stands for Brownian motion and the integral in ��	�� is interpreted

in the It'o sense� �Xt� de�nes one of the important Gaussian processes� an

Ornstein�Uhlenbeck process	 �

Example 
�
��� �s	s bridge�

Let �Bt�t�����	 denote Brownian motion	 Recall that the Gaussian process

Xt  Bt � tB� on ��� �� de�nes a Brownian bridge �see for instance Revuz and

Yor �����	 It is the weak limit of the uniform empirical process �for instance

Billingsley ����� Pollard ���� or Shorack and Wellner ������� but it is also

closely related to the weak limit of integrated periodogram processes �see for

instance Anderson ����� Grenander and Rosenblatt ����� or Kl�uppelberg and

Mikosch ������ in time series analysis	 See also the Notes and Comments in

Section �		

An alternative de�nition of a Brownian bridge is given by the in�nite series
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Figure 	
	
�� Visualisation of the �bridge� processes �Yt� given by the series
������� �top� and �Xt� by the formula ������� �middle�� seven sample paths for
� � ���� The sample paths of �Yt� are basically slightly perturbated sine curves� the
regular sine shape of some of the paths is because of the dominating in�uence of
a very large value Zi� On the other hand� �Xt� inherits the jump process charac�
ter of ����stable motion� For comparison� 
ve realisations of the Brownian bridge
�bottom��
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Yt  

p
�

�

�X
k��

sin�k�t�

k
Zk � � � t � � � ��	���

for iid standard normal rvs Zt	 This is a particular case of the L�evy�Ciesielski

representation of a Brownian bridge �see for instance Hida ������	

For the de�nition of an 	�stable bridge we may proceed in similar ways� let

��t�t�����	 be an s	s motion	 Then

Xt  �t � t�� � t � ��� �� � ��	���

is a natural de�nition of an 	�stable bridge	 Since ��t� is a pure jump process�

�Xt� inherits this property and X�  X�  � a	s	 Except for the latter fact�

the Brownian bridge and an s	s bridge for 	 � � do not have very much

in common	 For example� the Brownian bridge has a	s	 continuous sample

paths	

Alternatively� we can de�ne an 	�stable bridge via the series ��	��� with Zt
iid s	s rvs	 For 	 � ��� �� this process is well de�ned� but it is not for 	 � �	
Indeed� if it were de�ned for 	 � �� we would have that

Yt
d
 

p
�

�
Z�

�
�X
k��

				 sin�k�t�k

				�
����

but the series on the rhs diverges in general	 The process �Yt� occurs in

a natural way as the weak limit of a certain integrated periodogram process

�see Kl�uppelberg and Mikosch ������	 It has a	s	 continuous sample paths and

Y�  Y�  � a	s	� two properties which it shares with the Brownian bridge	 �

Example 
�
��� �Fractional s	s processes and noises�

Fractional Brownian motion and fractional Brownian noise have gained some

popularity as processes with a close relation to so�called long�range depen�

dence or long memory processes	

Standard fractional Brownian motion has representation as a stochastic in�

tegral

B
�H�
t  c�H�

Z
R

h�
�t� x��

�H���� � ���x���H����
i
dM�x� � t � R �

where M is Brownian motion on R and the integral has to be interpreted in

the It'o sense	 The paramter H is taken from the interval ��� ��	 Alternatively�

a Gaussian mean�zero process on R with covariance function

cov
�
B

�H�
t� � B

�H�
t�

�
 
�

�

n
jt�j�H & jt�j�H � jt� � t�j�H

o
var

�
B

�H�
�

�
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is called fractional Brownian motion	 For H  ��� we get Brownian motion	

Using for instance the covariance function we can easily check that the scaling

property �
B

�H�
ct� � � � � � B

�H�
ctd

�
d
 cH

�
B

�H�
t� � � � � � B

�H�
td

�
holds for every choice of real �ti�� c � � and d � �� i	e	 fractional Brownian
motion is an H�self�similar process �see Section �	��	 Moreover� fractional

Brownian motion is the only non�degenerate Gaussian self�similar process

with stationary increments	

If we de�ne the increment process

Z
�H�
t  B

�H�
t�� �B

�H�
t � t � Z �

we thus obtain a stationary Gaussian process� called fractional Brownian

noise	 For H  ���� �Z
�H�
t � is iid Gaussian noise	 For ��� � H � ��

cov �Z�� Zt� � ct��H��� � t	� �

for some constant c � �	 Thus the sequence �cov�Z�� Zt��t�� is not summable�

it decreases to zero very slowly and is therefore referred to as indicating

long memory or long�range dependence	 This is in contrast for instance to

Gaussian ARMA processes where the covariance function decreases to zero

exponentially fast	 Another interesting feature which has stimulated recent

research is the fact that Gaussian fractional noise with H � ��� does not
satisfy the classical CLT	 Indeed� for H � ��� the normalisation nH is re�

quired for weak convergence of the centred cumulative sums	 This was �rst

oberserved by Hurst ���� �therefore the symbolH for the �Hurst coe�cient
�

who discovered empirically that cumulative yearly �ows of the river Nile have

a magnitude of order n��� instead of the expected �from the CLT� n���	 Man�

delbrot �see for instance ���� ���� popularised the idea of long memory

and proposed fractional Brownian motion for modelling it	 In the frequency

domain of time series analysis �see Section �	�� long�range dependence is

characterised by the fact that the spectral density of �Z
�H�
t � for ��� � H � �

has a singularity �a spike� at zero	 This is in contrast to classical time se�

ries where the spectral density is usually a smooth function �for instance for

ARMA processes�	 Recall from Theorem �	�	 the spectral representation of

a stationary sequence	 From it we may conclude the following� a singularity

of the spectral density implies that the underlying time series has �random�

cycles of arbitrary length	 Mandelbrot called the latter behaviour �Joseph ef�

fect
 since the biblical Joseph was able to predict the long sequence of seven

good and bad harvests in the ancient Egypt	

One can also de�ne �long�range dependence
 in the s	s case� but certainly
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not via the covariance function because the second moments of the marginal

distributions do not exist	 An example of an s	s H�self�similar process is

given by the integrals

X
�H�
t  

Z
R

h�
�t� x��

�H���� � �
��x���H����

i
dM�x� � t � R �

where M is an s	s random measure with Lebesgue control measure and

� � H � �	 For H  ��	 the process is formally interpreted as s	s motion	

The s	s process so de�ned is called linear fractional stable motion	 It is

a process with stationary increments� but for s	s processes the subclass of

self�similar processes does not consist only of these fractional motions	 The

corresponding fractional s	s noise can be de�ned as

Y
�H�
t  X

�H�
t�� �X

�H�
t � t � Z �

For H  ��	 it is formally interpreted as s	s noise� whereas for H � ���	� ��
and � � 	 � �� in analogy to fractal Brownian noise� it is considered as

a process with �long�range dependence
	 Mandelbrot also coined the word

�Noah e�ect
 for extremal events and related heavy�tailed phenomena	 The

biblical Noah survived an enormous �ood during which he and his family

stayed for a very long time on a boat	 In this sense� 	�stable fractional noise

is a process that enjoys both the Joseph and the Noah e�ect	 �

Example 
�
��� �s	s harmonisable processes�

Every nice �i	e	 continuous in probability� stationary Gaussian process has

a representation of the form

Xt  

Z
R

eitx dM�x� � ��	���

where M is a �complex�valued� Gaussian random measure	 A process of the

form ��	��� is called harmonisable	 The stochastic integrals ��	��� with an

s	s random measure M do not represent the whole class of s	s stationary

processes �see Rosinski ������	 Nevertheless� the class of harmonisable s	s

processes deserves some attention	 An s	s harmonisable� stationary process

is usually de�ned as the real part of a stochastic integral
R
R
eitx dM�x� for

an s	s complex�valued random measure	 To avoid this di�culty we just give

here the chf of a �nite vector of values of such a process �Xt�t�R �the totality

of these chfs determines the �nite�dimensional distributions of the process��

E exp

���i
dX

j��

sjXtj

#$%
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 exp

����
Z
R

						
dX

j��

eitjxsj

						
�

dmc�x�

#$% ��	���

 exp

��������
Z
R

							
�� dX
j��

sj cos�tjx�


A�

&

�� dX
j��

sj sin �tjx�


A�
							
���

dmc�x�

#��$��%
 exp

����
Z
R

						
dX

j�k��

sjsk cos��tj � tk�x�

						
�

dmc�x�

#$% � t � s � R
d �

where mc is a �nite measure on R	 This can formally be interpreted as the

chf of the vector Z
R

eit�x dM�x� � � � � �

Z
R

eitdx dM�x�

�
with respect to an s	s random measure M with control measure mc	 The

stationarity of the process �Xt� is easily seen since we can replace eitjx in

��	��� by ei�tj�h�x� j  �� � � � � d for every real h	

The s	s harmonisable� stationary processes have gained a certain popular�

ity in the theory of stochastic processes since they allow one to introduce

a pseudo spectral distribution whose theory very much parallels the corre�

sponding L� spectral analysis� see also the Notes and Comments in Sec�

tion �	�	 �

Notes and Comments

In the lattter sections we have brie�y introduced s	s random vectors�

processes and integrals and considered some particular examples	 From the

computer graphs of the corresponding sample paths it is immediate that sta�

ble processes are models for real phenomena with large �uctuations and big

jumps	 This makes them attractive for modelling extremal events	

The marginal distributions of an s	s process are s	s� hence EjXtj�  �
�except for the cases Xt  � a	s	�� in particular� �Xt� is an in�nite variance

process with heavy tails of the form P �Xt � x� � ctx
��� x	� �see Sec�

tion �	��� for some constant ct	 This tail behaviour is preserved under several

operations acting on an s	s process �Xt�t�T 	

For example� it is immediate from the de�nition of an s	s vector via its

chf that any linear combination
Pd

i�� aiXti for t � T d and a � Rd is s	s	

A similar statement can be made for an in�nite series
P�

i�� aiXti � provided

that the latter series is well de�ned	
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Products of independent s	s rvs have also been studied and extensions of

these results exist for quadratic and multilinear forms in independent s	s rvs	

The latter results are also used to de�ne multiple stochastic intergrals with

respect to stable randommeasures	 For an account of that theory see Kwapie�n

and Woyczy�nski ���� and the literature cited therein	 Heavy tails are also

typical for all such structures derived from s	s processes	 For example� if

X�Y are iid s	s then

P �XY � x� � c x�� lnx � x	� �

�see Rosinski and Woyczy�nski ������ which shows that XY is still in the

domain of attraction of an 	�stable law �see Section �	��	

It is surprising that the order statistics of an s	s random vector have the

same tail behaviour as any of its components	 To be more precise� assume

that

�X�� � � � � Xn�
d
 

Z
E

f� dM�x�� � � � �

Z
E

fndM�x�

�
��	���

where f�� � � � � fn � L��E� E �mc� and M is an s	s random measure with con�

trol measure mc	 Such an integral representation always exists for any s	s

random vector and appropriate functions �fi�� see Theorem �	�	� in Samorod�

nitsky and Taqqu �����	 The following is due to Samorodnitsky ������

Theorem 
�
��
 �Tail behaviour of the order statistics of an s	s sample�

Let Xn�n � � � � � X��n denote the order statistics of the s	s vector

�X�� � � � � Xn� with integral representation ��	��� and let jX jn�n � � � � �
jX j��n be the order statistics of �jX�j� � � � � jXnj�� Then the relations

P �Xk�n � x� � x��
�

�
C�

Z
E

�
�h�k �

� & �h�k �
�
�
dmc � x	� �

P �jX jk�n � x� � x��C�

Z
E

h�kdmc � x	� �

hold� where C� is a positive constant� hk�x� is the kth largest among the

jfi�x�j� and h�k �x� the kth largest among the f�i �x�� for i  �� � � � � n� �

A recent overview of results for suprema of 	�stable continuous time processes

is given in Samorodnitsky and Taqqu �����	

The latter book is an encyclopaedic source on stable and self�similar

processes� containing a wealth of theoretical results	 The monograph by Jan�

icki and Weron ���� is devoted to stable processes and simulations of their

sample paths	 They also treat problems in the simulation of stable processes

and the numerical solution of stochastic di�erential equations driven by stable

processes	 Mittnik and Rachev ���� consider applications of stable models
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in �nance �their notion of �stability
 is much wider than the one introduced

in Section �	��	

Discussion about the importance of stable distributions and processes for

applications is still going on	 Theoretically� they are much better understood

than �� or even �� years ago� as the above mentioned monographs show�

but they are nevertheless quite di�cult objects to deal with	 In particular�

the dependence of the stable laws on several parameters and the particu�

larly unpleasant behaviour of statistical estimators of 	 �see the discussion in

Chapter �� have scared many people away from working with stable processes	

On the other hand� there is an increasing interest in such processes� as the

great variety of the published literature shows �see for instance not only the

list of references in the books mentioned above� but also the references in

Chapter ��	 Stable processes seem to be the right model wherever a real phe�

nomenon with very large �uctuations occurs	 Thus it is not surprising that

stable processes have been applied in the �nancial context	 However� mul�

tivariate stable distributions have also found their way into the modelling

of earthquakes �see Kagan ������ Kagan and Vere�Jones ������ and related

insurance questions �see Kagan ������	

Long memory processes such as the various forms of fractional noise �see

Example �	�	��� are by now well studied	 There seems to be empirical evi�

dence that certain �nancial time series �for instance exchange rates� exhibit

long memory� see for instance Cheung ����� for some empirical studies� and

the references cited therein	 An introduction to long memory processes �in

particular fractional ARIMA processes� is provided in Brockwell and Davis

����� Section ��	�	 Samorodnitsky and Taqqu ����� touch on the problem

of in�nite variance long memory processes	 Beran ���� deals with statistical

estimation techniques for data exhibiting long memory	

��� Self�Similarity

A �self�similar
 structure is one that looks roughly the same on a small or

on a large scale	 For example� share prices of stock when plotted against time

have very much the same shape on a yearly� monthly� weekly� yes even on

a daily basis	 The same happens if we study a snow �ake under the micro�

scope and change the scale� we will always see a similar structure	 Di�erent

parts of a tree �branches� foliage� look self�similar	 Segments of coastline of

a particular country repeat their patterns on a smaller scale	 So we will not be

surprised to discover the �Italian boot
 in Norway or anywhere else hundreds

of times� but on a much smaller scale and always with slight deviations from

the original shape	 Networks of tributaries of a big river are believed to be
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self�similar	 This example also highlights the possible use of self�similarity� if

we knew the right scaling factor we could� for example� extrapolate from the

water �ow through a given territory to the water �ow through any other part

of the network	 If we knew about the development of a price on a small time

scale� we could use self�similarity to extrapolate ��predict
� by re�scaling to

a longer or shorter interval of time	 That is actually what we want to under�

stand under this notion� changes of scale in �time
 determine in a speci�c

way a change of scale in �space
� for instance the values of a price	 From

these examples we can also see what the limits of the method are� in reality

it does not make sense to extrapolate into �too long
 or �too short
 intervals

of �time
 or �space
	 In other words� one has to be careful about the scaling

factor in order to avoid results which are physically impossible	

In the context of stochastic processes� self�similarity has a very precise

meaning	 It describes scale invariance of the underlying distribution of the

process� rather than of its sample paths�

Denition 
���� �Self�similar stochastic process�

The real�valued stochastic process �Xt�t�T with index set T � fR�R� � �����g
is said to be self�similar with index H � � �H�ss� if its �nite�dimensional

distributions satisfy the relation

�Xat� � � � � � Xatm�
d
 aH �Xt� � � � � � Xtm� ��	����

for any choice of values t�� � � � � tm � T� a � �� �

Remarks� �� Notice that ��	���� indeed means �scale�invariance
 of the

�nite�dimensional distributions of �Xt�	 It does not imply this property for

the sample paths	 Therefore� pictures trying to explain self�similarity by

zooming in and out on one sample path� are by de�nition misleading	

�� If we interpret t as �time
 and Xt as �space
 then ��	���� tells us that

every change of time scale a � � corresponds to a change of space scale aH 	

The bigger H � the more dramatic the change of the space coordinate	

�� Self�similarity is convenient for simulations� a sample path of �Xt� on ��� ��

multiplied by aH and a re�scaling of the time axis by a immediately provide

a sample path on ��� a� for any a � �	

� Notice that

Xa�
d
 aHX� � a � � �

Hence X�  � a	s	 �

Example 
���� �Gaussian self�similar process�

Consider a Gaussian self�similar process �Xt�t��� i	e	 its �nite�dimensional
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distributions are Gaussian and satisfy ��	����	 Gaussian processes are uni�

quely determined via their mean value function

m�t�  EXt

and their covariance function

C�s� t�  cov �Xs� Xt� �

If �Xt� is H�ss� then

m�t�  tHEX�

and

C�s� t�  E ��Xt �m�t�� �Xs �m�s���

 E
��
Xs�t�s� �m�s�t�s��

�
�Xs �m�s��

 
 E

�
sH

�
Xt�s �m�t�s�

�
sH �X� �m����

 
 s�HC�t�s� �� � s � � �

Conversely� every H�ss Gaussian process �Xt�t�� is determined by a power

function m�t�  c tH for a constant c and by an H�homogeneous non�

negative de�nite function C�s� t�  s�HC�t�s� ��� s � �	 �

In the sense of De�nition �	�	� we have already discussed two typical examples

of self�similar processes� namely Brownian motion and 	�stable motion� see

Section �	 and Example �	�	�	 They occurred as weak limits of normalised

and centred iid sum processes	 A general result of Lamperti ���� states that

every self�similar process can be obtained as a weak limit of certain nor�

malised sum processes	

Example 
���� �Brownian motion�

We consider Brownian motion �Bt�t��� see De�nition �		�	 For a Gaussian

process with independent� stationary increments �see De�nition �		�� we

immediately have the relation

�Bat� � � � � � Batm�
d
 a��� �Bt� � � � � � Btm� �

Thus Brownian motion is �!��ss	 Alternatively� �!��self�similarity of Brown�

ian motion follows from Example �	�	� since

m�t�  � tH  � � C�s� t�  min�s� t�  smin��� t�s� � s � � �

hence H  ���	
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Figure 	
�
� Visualisation of geometric Brownian motion� 
ve sample paths of
the process Xt � expf����Btg�

Brownian motion is an important stochastic process in the context of insur�

ance and �nance	 In insurance� it is used as an approximation to the total

claim amount process �see Section �	�� and in order to calculate the prob�

ability of ruin in �nite time �the so�called �di�usion approximation
�� see

Grandell ����� for an extensive discussion� and also Example �	�	��	 In ��

nance� increments of Brownian motion are employed as a surrogate for the

�noise
 of the market	 In his famous paper� Bachelier ���� proposed Brownian

motion as an appropriate model for prices	 More recently� the Black�Scholes�

Merton model for returns �see Du�e ������ is based on the It'o stochastic

di�erential equation �SDE�

dXt  cXt dt& �Xt dBt � t � � � ��	����

with constants c and � � �	 This simple SDE has the unique strong solution

Xt  X� exp

�
c� �

�
��

�
t& �Bt

�
� t � � �

which process is called geometric Brownian motion	 It is not self�similar�

but the underlying �!��self�similarity of Brownian motion creates similar

patterns of returns or prices on a large or small scale	 As already discussed in

Section �	�� relative returns in the time interval ��n � ����n�� are roughly

of the form

�nX  
Xn� �X�n����

X�n����

� ln


� &

Xn� �X�n����

X�n����

�
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 lnXn� � lnX�n����

 


c� �

�
��

�
�& �

�
Bn� �B�n����

�
� n � � �

Hence observations of �nX should roughly look like Gaussian white noise	

This� as we have already stressed on various occasions� is never the case for

real data	 There are too many large �uctuations in the time series ��nX��

and therefore the model ��	���� has to be treated with care	 In particular� it is

not reasonable to use the self�similarity of �Bt� to get information ��predict
�

�Xt� in too short or too long time intervals	

Nevertheless� Brownian motion as limit process is an unavoidable tool in

insurance and �nance when it is understood as a mathematical model with

the natural limitations that are often obvious from the context	 �

Example 
���� �	�stable motion�

In Section �	 and in Example �	�	� we introduced 	�stable motion ��t�t�� as

a process with independent� stationary 	�stable increments for some 	 � �	
For 	  �� ��t� is just Brownian motion� a process with a	s	 continuous sam�

ple paths	 For 	 � �� ��t� is a pure jump process	 As a consequence of

Lemma �		�� the �nite�dimensional distributions of an 	�stable motion sat�

isfy the relation

��at� � � � � � �atm�
d
 a��� ��t� � � � � � �tm� �

Thus ��t� is ��	�ss	

We established in Section �	 that ��t� is a limit process of an iid sum process

where in the case 	 � � each summand has in�nite variance	 Hence 	�stable

motion can be taken as an approximation to the total claim amount process

when large claims are present in the portfolio� see for instance Furrer� Michna

and Weron ����	 In �nance� certain attempts have been made to replace

Brownian motion in the SDE ��	���� by an 	�stable motion� see Rachev and

Samorodnitsky ����� and Mittnik and Rachev ����	 It is believed that� to

some extent� such a model would explain the large jumps which evidently oc�

cur in prices and which are caused by dramatic political or economic events	

Rachev and Samorodnitsky ����� provide a Black�Scholes type pricing for�

mula for this situation which� however� seems di�cult to evaluate for prac�

tical purposes	 A general theory of stochastic integration with respect to

	�stable motion �see Kwapie�n and Woyczy�nski ����� Samorodnitsky and

Taqqu ������ and with respect to much more general processes exists �see for

instance Chung and Williams ������ Protter �����	 For example� the simple

SDE without drift
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Figure 	
�
� Numerical solution to the SDE dXt � �����Xt�d�t� X	 � � with
driving s���s process ��t�� The top 
gure clearly visualises the jumps in the sample
paths of �Xt� which is a consequence of the jumps of the driving process� The bottom

gure indicates that Xt may become negative when time goes by� This is in contrast
to geometric Brownian motion� see Figure ������

dXt  cXtdt& �Xt� d�t � � � � � c � R � t � ��� T � � ��	����

has solution

Xt  X�e
ct

Y
��s�t

�� & ���s� ��	����

 X�e
ct lim

���

Y
��s�t�j��sj��

�� & ���s� � t � ��� T � �

Here ��s  �s � �s� for a cadlag version of the process ��s�	 Almost all sam�

ple paths of ��s� have countably many jumps so that the product in ��	���� is

meaningful	 The solution ��	���� can be de�ned as a limit in probability� see

Protter ����	 But it can also be interpreted pathwise as a so�called product

integral� see Dudley and Norvai*sa �����	 This implies in particular that
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Xt  X�e
ct lim
n��

nY
i��

�
� & ���iT�n � ��i���T�n�

�
�

This formula is convenient for numerical simulations of the solution to the

SDE ��	����	 Relation ��	���� and Figure �	�	� make clear that� in comparison

with the Brownian case� solutions to SDE driven by 	�stable motions are of

a completely di�erent nature	 In particular� since ��s can be both negative

or positive� the �price process
 in ��	���� can also assume negative values

which may not be very desirable	 It is proved in Mikosch and Norvai*sa ����

that the process �Xt� in ��	���� with X� � � a	s	 changes its sign in�nitely
often	 The instants of time when the change happens form the points of a

Poisson process	 �

In what follows we give a simple characterisation of self�similar processes

via stationarity	 For that reason� recall the de�nition of a strictly stationary

process from Section 	 or Appendix A�	�	 The following result is due to

Lamperti ����	

Theorem 
���� �Relation of H�self�similarity to stationarity�

If �Xt�t�� is H�ss then

Yt  e�HtXet � t � R �

is stationary� Conversely� if �Yt�t�R is stationary� then

Xt  tHYln t � t � � �

is H�ss�

Proof� Let �Xt� be H�ss	 Then any linear combination of the Yti�h satis�es

mX
i��

aiYti�h  

mX
i��

aie
�tiHe�HhXexpfti�hg

d
 

mX
i��

aie
�tiHXexpftig

 

mX
i��

aiYti

for any real ai� ti and h	 Thus� by employing the Cram�er�Wold device �see

Appendix A�	��� we �nd that the �nite�dimensional distributions of �Yt� are

invariant under shifts of time� hence �Yt� must be stationary	

Now if �Yt�t�R is stationary then� for all positive a and ti�
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mX
i��

aiXati  

mX
i��

ai�ati�
HYln�ati�

 aH
mX
i��

ait
H
i Yln a�ln ti

d
 aH

mX
i��

ait
H
i Yln ti

 aH
mX
i��

aiXti �

and an application of the Cram�er�Wold device completes the proof that

�Xt�t�� is H�ss	 �

This theorem makes clear that self�similarity is very closely related to sta�

tionarity� a logarithmic time transform translates shift invariance of the sta�

tionary process into scale invariance of the self�similar process	

Example 
���
 �Ornstein�Uhlenbeck process�

From Example �	�	� we know that Brownian motion is ����ss	 From Theo�

rem �	�	� we conclude that

Yt  e����tBexpftg � t � R �

is a stationary process	 It is clearly a Gaussian process� as a scaled and time�

transformed Brownian motion	 A check for stationarity in the Gaussian case

requires only the constancy of the mean value function m�t�  EYt and shift

invariance of the covariance function C�s� t�  E��Ys � m�s���Yt � m�t���	

Indeed�

m�t�  � �

C�s� t�  e�����t�s�cov
�
Bexpfsg� Bexpftg

�
 e�����t�s�min

�
es� et

�
 e����jt�sj �

The process �Yt�t�R is one of the well�studied Gaussian processes	 It is called

an Ornstein�Uhlenbeck process	 It is characterised as a mean�zero Gaussian

process with covariance function C given above	 Alternatively� an Ornstein�

Uhlenbeck process is the solution to an It'o SDE with additive Brownian noise	

Also notice that we can de�ne an Ornstein�Uhlenbeck process via stochastic

integrals� see Example �	�	��	

Analogously� if ��t� is s	s then
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Yt  e�t�� �expftg � t � R �

de�nes a stationary ��	�ss process� an s	s Ornstein�Uhlenbeck process	 Its

representation via stochastic integrals was mentioned in Example �	�	��	 �

Brownian motion and 	�stable motion are two examples of self�similar

processes with completely di�erent sample path behaviour	 Though the sam�

ple paths of Brownian motion oscillate wildly� they are a	s	 continuous�

whereas almost every sample path of 	�stable motion� for 	 � �� has count�

ably many jumps	 Moreover� H�ss processes with H � ��� �� do not have
di�erentiable sample paths� the proof below is taken from Mandelbrot and

van Ness ����	

Proposition 
���� �Non�di�erentiability of self�similar processes	�

Suppose �Xt� is H�ss with H � ��� ��� Then for every �xed t��

lim sup
t�t�

jXt �Xt� j
t� t�

 � �

i�e� sample paths of H�ss processes are nowhere di�erentiable with probabil�

ity ��

Proof� Without loss of generality we choose t�  �	 Let �tn� be a sequence

such that tn � �	 Then� by H�self�similarity�

P


lim
n��

sup
��s�tn

				Xs

s

				 � x

�
 lim

n��
P


sup

��s�tn

				Xs

s

				 � x

�

� lim sup
n��

P

				Xtn

tn

				 � x

�
 lim sup

n��
P

�
tH��
n jX�j � x

�
 � � x � � �

Hence� with probability �� limn��Xtn�tn does not exist for any sequence

tn � �	 �

H�ss processes with stationary increments �H�sssi processes� are of partic�

ular interest	 They satisfy the relation

�Xt��h �Xh� � � � � Xtm�h �Xh�
d
 �Xt� � � � � � Xtm�

for all possible choices of h� t�� � � � � tm	 For example� Brownian motion and 	�

stable motion� by de�nition� have stationary �and independent� increments�

see De�nitions �		� and �		�	 The class of the Gaussian H�sssi processes is

relatively small	 For the following result see Samorodnitsky and Taqqu ������

Lemma �	�	�	
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Proposition 
����� Suppose �Xt�t�R is a �nite variance H�sssi process�

Then

� � H � � � cov �Xs� Xt�  
�

�

�jsj�H & jtj�H � js� tj�H�
var �X�� �

Moreover�
EXt  � if � � H � � �

Xt  tX� a�s� if H  � �

�

The �nite�dimensional distributions of GaussianH�sssi processes are unique�

ly determined by their mean�value and covariance functions	 Hence every H�

sssi Gaussian process has necessarily the mean value and covariance function

as given by Proposition �	�	��� and these functions determine the only possi�

ble Gaussian H�sssi processes	 A Gaussian H�sssi process is called fractional

Brownian motion� see also Example �	�	��	 A critical discussion on the use

of fractional Brownian motion in mathematical �nance is given by Rogers

����	 In particular� if H  ��� and var�X��  � then we obtain a standard

Brownian motion	

There exist non�Gaussian �nite variance H�sssi processes� see Taqqu

����� ��� or Major ���	 Among the in�nite variance H�sssi processes are

the 	�stable ones with 	 � � of particular interest� see also Example �	�	��	

In contrast to the Gaussian case� the property of H�sssi does not typically

determine the �nite�dimensional distributions	

Notes and Comments

Self�similarity as given by De�nition �	�	� is due to Mandelbrot� see for in�

stance Mandelbrot and van Ness ����� Lamperti ���� uses a slightly more

general notion	 An extensive and mathematically rigorous discussion �which

is more the exeption than the rule� has been provided by Samorodnitsky

and Taqqu ������ see also Taqqu ����� ���	 A more philosophical treatment

of the topic can be found in many articles by Mandelbrot� we refer to his

monograph ����	 There exist many entertaining and educational books on

self�similarity and related topics� see for instance Schroeder �����	
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In the following we will provide some basic tools which are used throughout

the book	 All rvs and stochastic processes are assumed to be de�ned on

a common probability space ���F � P �	

We commence with elementary results on the convergence of rvs and of

probability distributions	

A� Modes of Convergence

The following theory can be found for instance in Billingsley ����� Feller ������

Karr ����� or Lo)eve ����	

We introduce the main modes of convergence for a sequence of rvs

A�A�� A�� � � �	 The corresponding de�nitions for processes can be derived by

the subsequence principle	 This means� for example� the following� let �At�t��

be a real�valued stochastic process	 Then At 	 A �in some mode of conver�

gence� as t	� means that Atn 	 A �in the same mode� as n	� for

every sequence �tn�n�� of real numbers such that tn 
 �	

A��� Convergence in Distribution

Denition A��� We say that �An� converges in distribution or converges

weakly to the rv A �An
d	 A� if for all bounded� continuous functions f the

relation

Ef �An�	 Ef�A�� n	� �

holds� �
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Although weak convergence is convergence of the underlying probability mea�

sures we prefer the notation An
d	 A instead of symbols for corresponding

measures	 However� for convenience we sometimes write An
d	 FA where FA

is the distribution or probability measure of A	 We use the same symbol both

for the distribution and for the df of a rv	

Weak convergence can be described by the dfs FAn and FA of An and A�

respectively� An
d	 A holds if and only if for all continuity points y of the

df FA the relation

FAn�y�	 FA�y�� n	� � �A	��

is satis�ed	 Moreover� if FA is continuous then �A	�� can even be strenghtened

to uniform convergence�

sup
x
jFAn�x�� FA�x�j 	 �� n	� �

Weak convergence is metrizable� i	e	 there exists a metric ��G�H� which is

de�ned on the space of all dfs or distributions on ���F � such that An
d	 A

if and only if ��FAn � FA� 	 �	 A well�known metric for this purpose is the

L�evy metric�

�L�F�G�  inff� � � � �x � R� F �x� ��� � � G�x� � F �x& �� & �g �

A��� Convergence in Probability

Denition A��� We say that �An� converges in probability to the rv A

�An
P	 A� if for all positive � the relation

P �jAn �Aj � ��	 �� n	� �

holds� �

Convergence in probability implies convergence in distribution	 The converse

is true if and only if A  a a	s	 for some constant a	

The relation An
P	� has to be interpreted as ��An

P	 �	

Convergence in probability is metrizable	 An appropriate metric is given

by

��X�Y �  E
jX � Y j

� & jX � Y j �

Hence An
P	 A if and only if

E
jAn �Aj

� & jAn �Aj 	 � � n	� �
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In a metric space S the convergence an 	 a for elements a� a�� a�� � � � is equiv�

alent to the subsequence principle� every subsequence �ank� contains a sub�

sequence �ankj � which converges to a	 Hence An
P	 A if and only if every

subsequence �Ank � contains a subsequence �Ankj
� which converges in proba�

bility to A	

A��� Almost Sure Convergence

Denition A��� We say that �An� converges almost surely �a	s	� or with

probability � to the rv A �An
a�s�	 A� if for P�almost all � � � the relation

An���	 A���� n	� �

holds� �

This means that

P �An 	 A�  P �f� � An���	 A���g�  � �
Convergence with probability � is equivalent to the relation

sup
k�n

jAk �Aj P	 � �

Hence convergence with probability � implies convergence in probability�

hence convergence in distribution	

The relation An
a�s�	 � has to be interpreted as ��An

a�s�	 �	

There exist sequences of rvs �An� such that An
P	 A but not An

a�s�	 A	

For example� the necessary and su�cient conditions for the WLLN and the

SLLN are di�erent� see Section �	�	 However� if An
P	 A then Ank

a�s�	 A for

a subsequence �nk�	

Recalling the subsequence principle for convergence in probability this

means that An
P	 A if and only if every subsequence �Ank � contains a subse�

quence �Ankj
� such that Ankj

a�s�	 A	 Hence a�s� convergence is not metrizable�

A��� Lp	Convergence

Denition A��� Let p � �� We say that �An� converges in Lp or in pth

mean to A �An
Lp	 A� if EjAnjp �� and EjAjp �� and

E jAn �Ajp 	 �� n	� � �

By Markov�s inequality� P �jAn � Aj � �� � ��pEjAn � Ajp for positive p

and �	 Thus An
Lp	 A implies that An

P	 A	 The converse is in general not

true	

Convergence in Lp is metrizable by the metric

��X�Y �  �EjX � Y jp���max���p� �
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A��� Convergence to Types

For two rvs X and Y �and� more generally� for two random elements X�Y

assuming values in a measurable space� we write

X
d
 Y

if X�Y have the same distribution	

We say thatX and Y �and the corresponding distributions and dfs� belong

to the same type or are of the same type if there exist constants a � R and

b � � such that

X
d
 bY & a �

The following result is a particularly important tool for weak convergence	

It tells us that the limit law of a sequence of rvs is uniquely determined up

to changes of location and scale	 For a proof see for instance Gnedenko and

Kolmogorov ������ Petrov ���� ��� or Resnick �����	

Theorem A��� �Convergence to types theorem�

Let A�B�A�� A�� � � � be rvs and bn � �� �n � � and an� 	n � R be constants�

Suppose that

b��
n �An � an�

d	 A �

Then the relation

���
n �An � 	n�

d	 B �A	��

holds if and only if

lim
n��

bn��n  b � ����� � lim
n��

�an � 	n� ��n  a � R � �A	��

If �A	�� holds then B
d
 bA& a and a� b are the unique constants for which

this holds�

When �A	�� holds� A is non�degenerate if and only if b � �� and then A and

B belong to the same type� �

It is immediate from �A	�� that the constants an and bn are uniquely deter�

mined only up to the asymptotic relation �A	��	

A��� Convergence of Generalised Inverse Functions

For a non�decreasing function h on R we de�ne the generalised inverse of h

as

h��q�  inffx � R � h�x� � qg �
We use the convention that inf �  �	 Then h� is left�continuous	
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Proposition A��� �Properties of a generalised inverse function�

If h is right�continuous� then the following properties hold�

�a� h�x� � q �� h��q� � x�

�b� h�x� � q �� h��q� � x�

�c� h�x�� � q � h�x�� �� x� � h��q� � x��

�d� h�h��q�� � q for all t � ��� �� � with equality for h continuous�

�e� h��h�x�� � x for all x � R � with equality for h increasing�

�f� h is continuous �� h� is increasing�

�g� h is increasing �� h� is continuous�

�h� If X is a rv with df h� then P �h��h�X�� � X�  �� �

Proposition A��� �Convergence of generalised inverse functions�

Let h� h�� h�� � � � be non�decreasing functions such that lim
n��

hn�x�  h�x� for

every continuity point of h� Then lim
n��

h�n �y�  h��y� for every continuity

point y of h�� �

Proofs of these results and more theory on generalised inverse functions can

be found in Resnick ������ Section �	�	

A� Weak Convergence in Metric Spaces

The following theory on weak convergence in metric spaces can be found in

Billingsley ���� or Pollard ����	 More details about stochastic processes are

given in any textbook on the topic� see for instance Gikhman and Skorokhod

����� or Resnick �����	

We deal with weak convergence in general metric spaces	 For applica�

tions we are mainly interested in four particular types of spaces� Rd � C ��� ���

D ��� ��� D ����� and Mp	 The theory for the spaces C �a� b�� D �a� b� for a � b

is completely analogous to C ��� ��� D ��� �� and therefore omitted	 The space

D ����� must be treated with care� see Pollard ���� and Lindvall ����	 The
spaces C and D are appropriate in order to deal with weak convergence of

stochastic processes	 The space Mp is needed to de�ne weak convergence of

point processes	

A��� Preliminaries about Stochastic Processes

Recall that a stochastic process �Yt�t�T is a family of rvs with indices taken

from the set T 	 For our purposes� T is usually a �nite or in�nite continuous

interval on the real axis or a discrete set such as Z or N	 Thus a stochastic
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process �Yt���� is a function of two variables� of the �time
 t � T and the

random outcome �	 A stochastic process is commonly supposed to be jointly

measurable as a function of � and t	 For �xed �� �Yt����t�T is called a re�

alisation� a trajectory or a sample path of the process	 For �xed t� Yt��� is

just a random variable	 For any �nite set ft�� � � � � tdg � T � the probability

measure of the random vector

�Yt� � � � � � Ytd�

is called a �nite�dimensional distribution of the process	 The totality of the

�nite�dimensional distributions of a process determines under general condi�

tions �as given byKolmogorov�s consistency theorem� see for instance Billings�

ley ����� Appendix II� the distribution of the process� i	e	 the probabilities

P
��

� � �Yt����t�T � B
��

for appropriate sets B of functions de�ned on T 	 In most cases of interest

treated in this book� Y assumes values in a metric function space� and B

belongs to the ��algebra generated by the open sets	 This is the ��algebra of

the Borel sets�

A stochastic process is called Gaussian if all its �nite�dimensional distri�

butions are multivariate normal� The distribution of a d�dimensional non�

degenerate multivariate normal vector X with covariance matrix $ and

mean  is given by its density� see for instance Tong �������
����d det$

�����
exp

�
��
�
�x� �

T
$�� �x� �

�
� x � R

d �

The distribution of a Gaussian stochastic process is determined by its �nor�

mal� �nite�dimensional distributions	 Hence it is determined by its mean�

value and covariance function	 In particular� Brownian motion �Bt� as in�

troduced in Section �	 is uniquely determined via its covariance function

cov�Bs� Bt�  min�s� t� and by the fact that EBt  � for all t	

A stochastic process is called 	�stable for some 	 � ��� �� if all its �nite�
dimensional distributions are 	�stable	 The notions of a Gaussian and of

a ��stable process are identical	 For a de�nition of the �nite�dimensional dis�

tributions we restrict ourselves to a d�dimensional symmetric 	�stable �s	s�

process �Yt� �see De�nition �	�	��� the random vector Yd  �Yt� � � � � � Ytd� is

s	s �i	e	 a �nite�dimensional distribution of the s	s process �Yt�� for some

	 � � if it has chf

E exp fi �x�Yd�g  exp
�
�

Z
Sd��

j �x�y� j� dms�y�

�
� x � R

d �
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where Sd�� denotes the unit sphere in Rd �with respect to Euclidean metric�

and ms is a symmetric measure on the Borel sets of S
d��	 For 	 � � the

measure ms uniquely determines the distribution of Yd	 We refer to Section

�	� for more information on stable processes	

A process �Yt�t�T � T  Z or T  R� is stationary in the wide sense or

simply stationary if its mean value function is a constant and if the covariance

function cov�Ys� Yt� is only a function of jt� sj	 It is called strictly stationary
if its �nite�dimensional distributions are invariant under shifts of time� i	e	

the �nite�dimensional distributions for any instants of time ft�� � � � � tdg � T

are the same as for ft� & h� � � � � td & hg � T for any h	

A��� The Spaces C ��� �� and D ��� ��

The spaces C ��� �� and D ��� �� are appropriate function spaces for weak con�

vergence of stochastic processes	 We commence with the space C ��� �� of

continuous� real�valued functions on ��� ��	 It is always supposed that C ��� ��

is equipped with the supremum norm �sup�norm�	 for x � C ��� ���

kxk  sup
��t��

jx�t�j �

It generates the uniform metric on C ��� ��	 We also assume that C ��� �� is

endowed with the ��algebra of the Borel sets which is generated by the open

sets in C ��� ��	

Example A��� Let X�� � � � � Xn be iid rvs with mean  and ��nite� variance

�� � �	 Set

S�  �� Sk  X� & � � �&Xk � k  �� � � � � n � �A	�

Then the process �Sn�t����t�� de�ned by

Sn�t�  

���
�

�
p
n
�Sk �  k� if t  k�n � k  �� � � � � n �

linearly interpolated otherwise�

has continuous sample paths	 It is a process which is fundamental for the

FCLT �see Section �	� since Sn��� converges weakly to Brownian motion	 The
sample paths of the limit process are a	s	 continuous� i	e	 Brownian motion

assumes values in C ��� ��	 �

The space D ��� �� consists of the cadlag �continue )a droite� limites )a gauche�

functions on ��� ��� i	e	 all real�valued functions x on ��� �� such that

�a� limt
t� x�t� exists for every t� � ��� ��� i	e	 x has limits from the left	
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�b� limt�t� x�t�  x�t�� for every t� � ��� ��� i	e	 x is continuous from the

right	

In particular� C ��� �� � D ��� ��	

Example A��� Let X�� � � � � Xn be iid rvs with mean  and ��nite� variance

�� � �	 We de�ne S�� � � � � Sn as in �A	�	 Then the process

eSn�t�  �

�
p
n

�
S�nt	 �  �nt�

�
� � � t � � �

has cadlag sample paths on ��� ��	 It is a fundamental process for the FCLT

�see Section �	�� it converges weakly to Brownian motion on ��� ��	 In contrast

to eSn���� the limit process has continuous sample paths with probability �	�
The space D ��� �� can be equipped with di�erent metrics in order to metrize

weak convergence of stochastic processes with cadlag sample paths	 Sko�

rokhod ���� introduced some of these metrics	 Therefore the space D is

also referred to as Skorokhod space	

Let � be the class of functions h � ��� ��	 ��� �� that are continuous and

increasing and such that h���  � and h���  �	 Note that these conditions

imply that h is a bicontinuous bijection from ��� �� onto ��� ��	

Denition A��� �J��convergence�

The functions xn � D ��� �� converge to x � D ��� �� in the J��sense if for

every n there exists hn � � such that

sup
��t��

jhn�t�� tj 	 � � n	� � �A	��

and

sup
��t��

jxn�t�� x �hn�t��j 	 � � n	� � �A	��

�

Note that conditions �A	�� and �A	�� reduce to uniform convergence when

we can choose hn�t�  t for every n	

Condition �A	�� means that we are allowed to make a transformation hn
of �real time
 t on the interval ��� �� but these transformations are asymp�

totically �negligible
	 Condition �A	�� measures the �distance in space
 be�

tween x in the �transformed time
 hn�t� and xn in the �real time
 t	 Thus

the notion of uniform convergence is weakened by allowing for small pertur�

bations at the �time scale
	

The space D ��� �� can be equipped with a metric d�x� y� which metrizes

J��convergence	 Then D ��� �� is a separable metric space	 For example� we

can choose the Skorokhod metric
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d����x� y�  inf
h�	

max

�
sup

��t��
jh�t�� tj � sup

��t��
jx�t�� y�h�t��j

�
� �A	��

However� this metric does not ensure completeness� i	e	 Cauchy sequences

do not necessarily converge	 Fortunately� there exists an equivalent metric d�

on D ��� �� �i	e	 there exists a bicontinuous bijection between �D ��� ��� d� and

�D ��� ��� d��� which makes it into a complete metric space	 In particular� any

of these two metrics generates the same open sets such that the ��algebras

of the Borel sets �which are generated by the open sets� are identical	 In this

book we refer to d� as the J��metric	

A��� The Skorokhod Space D �����

For practical purposes �for instance when dealing with weak convergence in

extreme value theory� it is important to work on the whole positive real

line and not on a �nite interval	 This calls for the de�nition of the space

D ����� of cadlag functions on ����� �cadlag is de�ned in the same way as
in Section A�	��	 Convergence in D ����� is not an easy matter but it can
fortunately be relaxed to convergence in the spaces D �a� b� equipped with the

Skorokod metrics da�b �see �A	�� for the de�nition of d����	 We refer to Lindval

����� Whitt ����� Pollard ���� or Resnick ����� for a detailed treatment	

We construct a metric d�x� y� on D ����� such that

d �xn� x��	 �

for x�� x�� � � � � D ����� if and only if for any continuity points � � a � b ��
of x�

da�b �ra�bxn� ra�bx��	 � �

where ra�bx denotes the restriction of the cadlag function x on ����� to the
interval �a� b�	 Such a metric is given by

d�x� y�  

Z �

s��

Z �

t��

e�t �ds�t �rs�tx� rs�ty� � �� dt ds � �A	��

Equipped with this metric� D ����� is a complete metric space	

A��� Weak Convergence

In Section A�	� we already introduced the notion of weak convergence for

sequences of ordinary rvs	 We will slightly modify that de�nition to de�ne

weak convergence in a general metric space	
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Denition A��� �Weak convergence in a metric space�

Let K be a space with metric � and suppose that K is endowed with the

��algebra generated by the open subsets with respect to �� Moreover� let

A�A�� A�� � � � be random elements assuming values in K� The sequence �An�

converges weakly to A �An
d	 A� if for every bounded� continuous� real�valued

function f on K the relation

Ef �An�	 Ef�A� � n	� � �A	��

holds� �

�a� If we specify K  R then we have weak convergence as introduced in

Section A�	�	

�b� If we set K  C ��� �� and equip K with the sup�norm then we obtain

weak convergence of stochastic processes with a	s	 continuous sample

paths on ��� ��	

�c� If we de�ne K  D ��� �� for K equipped with the J��metric then we

obtain weak convergence of stochastic processes with cadlag sample paths

on ��� ��	

�d� If we specify K  D ����� for K equipped with the metric d�x� y� in

�A	�� we obtain convergence of stochastic processes with cadlag sample

paths on �����	 By construction of the metric d�x� y� one can show that
weak convergence in D ����� is equivalent to weak convergence of the
restrictions of the stochastic processes to any compact interval �a� b�� i	e	

to convergence in D �a� b� for any a � b	

By �A	��� the crucial di�erence between weak convergence in C ��� �� and in

D ��� �� is determined by the bounded� real�valued functions f on ��� �� that

are continuous with respect to the uniform or with respect to the J��metric�

respectively	 Note that these are di�erent classes of functions�

We mention an elegant version of weak convergence in D ��� �� under the

assumptions that the limiting process has continuous sample paths with prob�

ability ��

Theorem A��� Suppose that the stochastic processes Y�� Y�� � � � on ��� ��

have cadlag sample paths� i�e� they assume values in D ��� ��� and that the

stochastic process Y has continuous sample paths on ��� �� with probability ��

i�e� it assumes values in C ��� ��� Assume that Yn
d	 Y in D ��� �� equipped

with the J��metric and with the ��algebra generated by the open sets� Then

Yn
d	 Y in D ��� �� equipped with the sup�norm and with the ��algebra gen�

erated by the open balls� �
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This theorem applies� for example� if the limit process is Brownian motion

on ��� ��	 This theorem suggests that the ��algebra of the Borel sets with

respect to the J��metric and the ��algebra generated by the open balls with

respect to the uniform metric are di�erent for D 	 This is unfortunately true�

and one needs then a slight modi�cation of the de�niton of weak convergence

�A	�� as well	 The interested reader is referred to Chapter V in Pollard ����	

A��� The Continuous Mapping Theorem

The importance of weak convergence in metric spaces is increased by the so�

called continuous mapping theorem	 It means� roughly speaking� that weak

convergence of a sequence of random elements in a metric space is preserved

under continuous mappings�

Theorem A��� �Continuous mapping theorem�

Let h be a mapping from the metric space K to the metric space K � �both

equipped with the corresponding ��algebras of Borel sets generated by the open

subsets�� Suppose that An
d	 A in K and denote by PA the distribution of A�

Then h�An�
d	 h�A� in the space K �� provided that the set of discontinuities

of h has PA�measure zero� �

Example A��� �Slutsky arguments�

Let �An�� �Bn� be two sequences of rvs such that �An� Bn�
d	 �A�B�	 Then

Theorem A�	� ensures that An &Bn
d	 A&B� AnBn

d	 AB etc	 Moreover�

if An
P	 a for constant a and h is continuous at a then h�An�

P	 h�a�	

The continuous mapping theorem for rational functions is called Slutsky�s

theorem	 It states� in particular� that� if An
d	 A and an 	 a� bn 	 b for

constants a� b� an� bn� then anAn& bn
d	 aA& b� and if An

d	 A� an 	 a and

Bn
P	 �� then anAn &Bn

d	 aA	 �

Example A��
 �Cram�er�Wold device�

Let �A
�i�
n �� i  �� � � � � k� be sequences of real�valued rvs such that

�A���
n � � � � � A�k�

n �
d	 �A���� � � � � A�k��

for rvs A���� � � � � A�k�	 Then the continuous mapping theorem implies that

c�A
���
n & � � �& ckA

�k�
n

d	 c�A
��� & � � �& ckA

�k�

for any real numbers c�� � � � � ck	 The converse is also true as a consequence

of the continuity theorem for chfs	 This rule is also called the Cram�er�Wold

device	 �
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Example A��� The continuous mapping theorem has important conse�

quences for the convergence of stochastic processes� suppose that Y� Y�� Y�� � � �

are stochastic processes on ��� �� which assume values in C ��� �� or D ��� ��

equipped with the natural metrics	 Then Yn
d	 Y implies convergence of the

�nite�dimensional distributions� i	e	 for any d and any � � t� � � � � � td � ��

�Yn �t�� � � � � � Yn �td��
d	 �Y �t�� � � � � � Y �td�� �

provided that

P �Y is continuous at t�� � � � � td�  � �

In particular� weak convergence of the sum processes in Examples A�	�

and A�	� to Brownian motion implies convergence of the corresponding �nite�

dimensional distributions to those of Brownian motion	 We mention that con�

vergence of the �nite�dimensional distributions is in general not su�cient for

the weak convergence of stochastic processes	 Indeed� one still needs a tighness

argument for the converging processes	 This ensures that during the whole

limiting process the probability mass of the stochastic processes does not dis�

appear from �good
 �i	e	 compact� sets	

An application of the continuous mapping theorem with the continuous supre�

mum and in�mum functionals yields the following�

sup
��t��

Yn�t�
d	 sup

��t��
Y �t� � inf

��t��
Yn�t�

d	 inf
��t��

Y �t� �

Analogous relations hold with Yn and Y replaced by jYnj and jY j	
If Yn and Y are cadlag on ����� then inft�� Yn�t� does not in general con�

verge weakly to inft�� Y �t�� because the in�mum functional on ����� is not
continuous	 For example�

xn�t�  

�
� if t � n �

�� if t � n �

is an element of D ����� and d�xn� x��	 � for x�  �	 However�

inf
t��

xn�t�  �� �	 inf
t��

x��t�  � � �

A��� Weak Convergence of Point Processes

Recall from Section �	�	� the de�nition of a point process with state space

E	 Throughout� E is a subset of a compacti�ed �nite�dimensional Euclidean

space equipped with the corresponding Borel ��algebra E 	 A point process
N assumes point measures as values	 The space of all point measures on E is

denoted by Mp�E�	 It is equipped with the ��algebraMp�E� which consists
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of all sets of the form fm � Mp�E� � m�A� � Bg for A � E and any Borel
set B � ������ i	e	 it is the smallest ��algebra making the maps m	 m�A�

measurable for all A � E 	
We equip Mp�E� with an appropriate �the vague� metric so that it be�

comes a complete metric space	 This will then allow us to de�ne weak con�

vergence in Mp�E� in the sense of De�nition A�		

Denition A���� �De�nition of vague convergence�

Let � �� �� � � � be measures in Mp�E�� The sequence of measures �n� con�

verges vaguely to the measure  �we write n
v	 � ifZ

E

g�x�n�dx�	
Z
E

g�x��dx�

for all g � C�
K�E�� the set of all continuous� non�negative functions g with

compact support� �

Recall that the real�valued function g on E has compact support if there

exists a compact set K � E such that g�x�  � on Kc� the complement of

K	

Note that this kind of convergence is very similar to the notion of weak

convergence of probability measures on metric spaces	 However� if the n are

probability measures on E and n
v	  then it is not guaranteed that the limit

measure  is a probability measure on E or that there is weak convergence
at all	

Example A���� Suppose E  R	 Choose n  �n ��n is the Dirac measure

concentrated at n� and   �� the null measure	 We see immediately that �n�

does not converge weakly at all	 On the other hand� for any g � C�
K�R�Z

R

g�x�n�dx�  g�n�  �  

Z
R

g�x��dx�

for su�ciently large n� i	e	 n
v	 	 �

For practical purposes� the following criterion is of great value �see Proposi�

tion �	�� in Resnick ������	 Recall that a set in a metric space is relatively

compact if it has compact closure	

Proposition A���� �Criterion for vague convergence�

The following are equivalent	

�a� n
v	  as n	��

�b� For every relatively compact set B � E such that �!B�  � the relation

lim
n��

n�B�  �B�

holds �!B is the boundary of B�� �
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Remark� Proposition A�	�� is our main tool for checking vague conver�

gence	 In particular� if E � R then it su�ces for n
v	  to show that

n�a� b�	 �a� b� for all intervals �a� b� with a� b not being atoms of 	 See

also Remark  in Section �	�	 �

There exists a metric dv�� �� which metrizes vague convergence in Mp�E�

and which makesMp�E� a complete� separable metric space	 We avoid de�n�

ing this metric because it is not essential for us	

Now one can de�ne weak convergence of point processes in the sense of

De�nition A�	� but it is then not clear what it actually means	 In Section �	�

Nn
d	 N is de�ned as convergence of the �nite�dimensional distributions for

all PN�stochastic continuity sets	 This is an intuitive de�nition� and we want

to understand weak convergence of point processes in this sense	 In the case

of point processes� weak convergence is indeed equivalent to convergence of

the �nite�dimensional distributions	

For a rigorous treatment of weak convergence of point processes we refer

to Daley and Vere�Jones ������ Kallenberg ������ Matthes� Kerstan and Mecke

��� or Resnick �����	

A� Regular Variation and Subexponentiality

A��� Basic Results on Regular Variation

Asymptotic estimates are omnipresent in insurance mathematics and math�

ematical �nance	 In many cases transforms �Laplace� Fourier� Mellin� play

a crucial role	 This opens the door to classical Abel�Tauber theory	 Starting

with the pioneering work by Karamata ����� and imported into probability

theory mainly through Feller ������ the theory of regular variation has now

obtained the status of �standard knowledge
 for any probabilist or statisti�

cian	 Below we summarise some of the main results� relevant for our appli�

cations	 Everything we discuss� and indeed much more� is to be found in the

encyclopaedic volume on the subject by Bingham� Goldie and Teugels ����	

Denition A��� �Regular variation in Karamata�s sense�

�a� A positive� Lebesgue measurable function L on ����� is slowly varying
at � �we write L � R�� if

lim
x��

L�tx�

L�x�
 � � t � � � �A	���

�b� A positive� Lebesgue measurable function h on ����� is regularly varying
at � of index 	 � R �we write h � R�� if
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lim
x��

h�tx�

h�x�
 t� � t � � � �A	���

�

Remarks� �� Under �a� and �b� above� we have de�ned regular variation

at in�nity� i	e	 for x	�	 Similarly one can de�ne regular variation at zero
replacing x	� by x	 �� or at any positive a	 Indeed� regular variation

of h at a � � is de�ned as regular variation at �in�nity� for the function

ha�x�  h�a � x���	 For example� in Theorem �	�	�� the maximum domain

of attraction of the Weibull distribution is characterised via regular variation

of the tails at a �nite point	 In cases where the distinction is important�

we shall speak about regular variation at a	 Whenever from the context the

meaning is clear� we shall just refer to regular variation	

�� Condition �A	��� can be relaxed in various ways� the most important

specifying only that the limit exists and is positive� rather than that it has the

functional form t�	 Indeed� if we suppose that in �A	��� the limit exists for all

t � � and equals %�t� say� then it immediately follows that %�st�  %�s�%�t�

and hence %�t�  t� for some 	 � R	

�� Typical examples of slowly varying functions are positive constants or func�

tions converging to a positive constant� logarithms and iterated logarithms	

For instance for all real 	 the functions

x� � x� ln�� & x� � �x ln�� & x��� � x� ln�ln�e& x��

are regularly varying at � with index 		 The following examples are not

regularly varying

� & sinx � e�ln���x�	 �

where ��� stands for integer part	 In Theorem A�	� below we give a general

representation of regularly varying functions	 It is perhaps interesting to note

that a slowly varying function L may exhibit in�nite oscillation in that it can

happen that

lim inf
x��

L�x�  � and lim sup
x��

L�x�  � �

An example is given by

L�x�  exp
n
�ln�� & x����� cos

�
�ln�� & x�����

�o
� �

An important result is the fact that convergence in �A	��� is uniform on each

compact subset of �����	
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Theorem A��� �Uniform convergence theorem for regularly varying func�

tions�

If h � R� �in the case 	 � �� assuming h bounded on each interval ��� x��

x � ��� then for � � a � b ���

lim
x��

h�tx�

h�x�
 t� � uniformly in t

�a� on each �a� b� if 	  ��

�b� on each ��� b� if 	 � ��

�c� on each �a��� if 	 � �� �

A further important result concerns the representation of regularly varying

functions	

Theorem A��� �Representation theorem for regularly varying functions�

If h � R� for some 	 � R� then

h�x�  c�x� exp

�Z x

z

��u�

u
du

�
� x � z � �A	���

for some z � � where c and � are measurable functions� c�x�	 c� � ������
��x�	 	 as x	�� The converse implication also holds� �

An immediate consequence from �A	��� is

Corollary A��� If h � R� for some 	 � �� then as x	��

h�x�	
� � if 	 � � �

� if 	 � � �

�

In applications the following question is of importance	

Suppose h � R�� Can one �nd a smooth function h� � R� so that

h�x� � h��x� as x	�


In the representation �A	��� we have a certain �exibility in constructing the

functions c and �	 By taking the function c for instance constant� we already

have a �partial� positive answer to the above question	 Much more can how�

ever be obtained as can be seen from the following result by Adamovi*c� see

Bingham et al	 ����� Proposition �	�		

Proposition A��� �Smooth versions of slow variation�

Suppose L � R�� then there exists L� � C� �the space of in�nitely dif�

ferentiable functions� so that L�x� � L��x� as x	�� If L is eventually

monotone� so is L�� �
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The following result of Karamata is often applicable	 It essentially says that

integrals of regularly varying functions are again regularly varying� or more

precisely� one can take the slowly varying function out of the integral	

Theorem A��� �Karamata�s theorem�

Let L � R� be locally bounded in �x���� for some x� � �� Then
�a� for 	 � ��� Z x

x�

t� L�t� dt � �	& ���� x���L�x� � x	� �

�b� for 	 � ���Z �

x

t� L�t� dt � ��	& ���� x���L�x� � x	� �

�

Remarks� � The result remains true for 	  �� in the sense that then
�

L�x�

Z x

x�

L�t�

t
dt	� � x	� �

and
R x
x�
�L�t��t�dt � R�	 If

R�
x�
�L�t��t�dt �� then

�

L�x�

Z �

x

L�t�

t
dt	� � x	� �

and
R�
x
�L�t��t�dt � R�	

�� The conclusions of Karamata�s theorem can alternatively be formulated

as follows	 Supppose h � R� for some 	 � R and h is locally bounded on

�x���� for some x� � �	 Then
�a�� for 	 � ���

lim
x��

R x
x�

h�t� dt

xh�x�
 

�

	& �
�

�b�� for 	 � ���
lim
x��

R�
x h�t� dt

xh�x�
 � �

	& �
�

Whenever 	 � �� and the limit relations in either �a�� or �b�� hold for some
positive function h� locally bounded on some interval �x����� x� � �� then
h � R�	 �

The following result is crucial for the di�erentiation of regularly varying func�

tions	
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Theorem A��� �Monotone density theorem�

Let U�x�  
R x
�
u�y� dy �or

R�
x

u�y� dy� where u is ultimately monotone �i�e�

u is monotone on �z��� for some z � ��� If

U�x� � cx� L�x� � x	� �

with c � �� 	 � R and L � R�� then

u�x� � c	x���L�x� � x	� �

For c  � the above relations are interpreted as U�x�  o�x�L�x�� and u�x�  

o�x���L�x��� �

For applications to probability theory conditions of the type F � R�� for

	 � �� where F is a df� are common� see for instance Chapters � and �	 Below
we have summarised some of the results which are useful for our purposes	

For proofs and further references see Bingham et al	 ����	

Proposition A��
 �Regular variation for tails of dfs�

Suppose F is a df with F �x� � � for all x � ��
�a� If the sequences �an� and �xn� satisfy an�an�� 	 �� xn 	�� and if for

some real function g and all � from a dense subset of ������
lim
n��

an F ��xn�  g��� � ����� �

then g���  ��� for some 	 � � and F is regularly varying�

�b� Suppose F is absolutely continuous with density f such that for some

	 � �� limx�� x f�x��F �x�  	� Then f � R���� and consequently F �
R���

�c� Suppose f � R���� for some 	 � �� Then limx�� x f�x��F �x�  	�

The latter statement also holds if F � R�� for some 	 � � and the den�

sity f is ultimately monotone�

�d� Suppose X is a non�negative rv with distribution tail F � R�� for some

	 � �� Then
EX
 � � if � � 	 �

EX
  � if � � 	 �

�e� Suppose F � R�� for some 	 � �� � � 	� Then

lim
x��

x
 F �x�R x
�
y
 dF �y�

 
� � 	

	
�

The converse also holds in the case that � � 	� If �  	 one can only

conclude that F �x�  o�x��L�x�� for some L � R��

�f� The following are equivalent	
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���
R x
� y� dF �y� � R��

��� F �x�  o
�
x��

R x
� y� dF �y�

�
� x	�� �

Remark� �� The statements �b�� �c�� �e� and �f� above are special cases of the

general version of Karamata�s theorem and the monotone density theorem	

For more general formulations of �e� and �f� see Bingham et al	 ����� p	 ���	

Relations �e� and �f� are important in the analysis of the domain of attraction

of stable laws� see for instance Corollary �	�	�	 �

The applicability of regular variation is further enhanced by Karamata�s

Tauberian theorem for Laplace�Stieltjes transforms	

Theorem A��� �Karamata�s Tauberian theorem�

Let U be a non�decreasing� right�continuous function de�ned on ������ If
L � R�� c � �� 	 � �� then the following are equivalent�

�a� U�x� � cx� L�x��� �� & 	� � x	��

�b� bu�s�  R�
� e�sx dU�x� � cs�� L���s� � s � ��

When c  �� �a� is to be interpreted as U�x�  o�x� L�x�� as x	�� simi�
larly for �b�� �

This is a remarkable result in that not only the power coe�cient 	 is pre�

served after taking Laplace�Stieltjes transforms but even the slowly varying

function L	 From either �a� or �b� in the case c � �� it follows that

�c� U�x� � bu���x��� �� & 	� � x	� �

A surprising result is that the converse �i	e	 �c� implies �a� and �b�� also holds	

This so�called Mercerian theorem is discussed in Bingham et al	 ����� p	 ��	

Various extensions of the above result exist� see for instance Bingham et al	

����� Theorems �	�	� and �	�	�	

Corollary A���� Suppose F is a df with Laplace�Stieltjes transform bf � For
� � 	 � � and L � R�� the following are equivalent�

�a� �� bf�s� � s� L���s� � s � ��
�b� F �x� � ���� ��� 	��x�� L�x� � x	�� �

For 	 � � see Theorem �	�	� in Bingham et al	 ����	
So far we have considered regular variation of positive functions on �����	

Various extensions exist including

	 regular variation on R or Rk �

	 regularly varying sequences�

	 rapid variation with index &� and ��	
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Of these possible generalisations we treat only those which are explicitly

needed in the book	

Denition A���� �Rapid variation�

A positive� Lebesgue measurable function h on ����� is rapidly varying with
index �� �we write h � R��� if

lim
x��

h�tx�

h�x�
 

�
� if t � � �

� if � � t � � �

�

An example of a function h � R�� is h�x�  e�x	 In the following theorem

we have summarised some of the main properties of R��	

Theorem A���� �Properties of functions of rapid variation�

�a� Suppose h � R�� is non�increasing� then for some z � � and all 	 � RZ �

z

t� h�t� dt �� �

and

lim
x��

x���h�x�R�
x

t� h�t� dt
 � � �A	���

If for some 	 � R�
R�
� t�h�t� dt �� and �A	��� holds� then h � R���

�b� If h � R��� then there exist functions c and � such that c�x� 	 c� �
������ ��x�	 �� as x	� and for some z � ��

h�x�  c�x� exp

�Z x

z

��u�

u
du

�
� x � z � �A	��

The converse also holds�

Proof� See de Haan ������ Theorems �	�	� and �	�	�	 �

Remarks� �� Suppose F � R��	 It then follows from Theorem A�	���a�

that all power moments of F are �nite and

lim
x��

R�
x

F �t� dt

xF �x�
 � �

The latter limit relationship characterises F � R��	

�� The classes R��� 	 � �� play a key role in Chapters � and �	 For in�

stance� the condition F � R�� characterises the maximum domain of attrac�

tion of the Fr�echet distribution ��� see Theorem �	�	�	 The class R�� enters

through the characterisation of the maximum domain of attraction of the
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Gumbel distribution� see for instance Proposition �	�	�	 In the latter case

the representation �A	�� is rewritten as

F �x�  c�x� exp

�Z x

z

du

a�u�

�
�

where a��x�	 � �a� being the density of a� assumed to exist�� see Theo�

rem �	�	�� for details	 �

Denition A���� �Regularly varying sequences�

A sequence �cn� of positive numbers is regularly varying of index 	 � R if

lim
n��

c�tn	

cn
 t� � t � � � �

Whenever �cn� is regularly varying with index 	� then c�x�  c�x	 belongs

to R�	 Through this property� most of the results of R� carry over to the

sequence case	 For details see Bingham et al	 ����� Section �	�	

Notes and Comments

The reader interested in the above results and further aspects of regular vari�

ation should consult Bingham et al	 ���� where also various generalisations

to dfs on R or Rk � together with higher�order theories� are discussed	 Fur�

ther interesting texts are de Haan ������ Geluk and de Haan ������ Resnick

����� and Seneta �����	 For the analysis of domain of attraction conditions

in extreme value theory especially the work by de Haan has been of great

importance	

A��� Properties of Subexponential Distributions

In Section �	� we have introduced the class S of subexponential distributions�
i	e	 F � S if F has support ����� and

lim
x��

Fn��x�

F �x�
 n � n � � � �A	���

Remark� Though subexponentiality is basically a condition on the df of

non�negative rvs� occasionally we need a version for real�valued rvs	 A df G

with support on ������ will be called subexponential on R if there exists

a subexponential df F such that F �x� � G�x� as x	�	 For an example
where this condition is needed see Section A�	�	 �

In Lemma �	�	 we proved that� for F � S� it su�ces to check �A	��� for
n  � or indeed
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lim sup
x��

F ���x�

F �x�
� � � �A	���

A slight generalisation of �A	��� is contained in the next result	

Lemma A���� �A su�cient condition for subexponentiality�

If there is an integer n � � such that

lim sup
x��

Fn��x�

F �x�
� n �

then F � S�
Proof� Observe that for arbitrary m � ��

F �m�����x�  Fm��x� &

Z x

�

F �x� t� dFm��t�

� Fm��x� & F �x� Fm��x� �

Dividing by F �x� and taking limsup�

lim sup
x��

F �m�����x��F �x� � lim sup
x��

Fm��x��F �x� & � �

Therefore� under the hypothesis of the lemma� lim supx�� F ���x��F �x� � ��
and an appeal to �A	��� completes the proof	 �

The following lemma is useful towards proving S�membership	
Lemma A���� �Closure of S under tail�equivalence�
Suppose F and G are dfs on ������ If F � S and

lim
x��

G�x�

F �x�
 c � ����� �

then G � S�
Proof� Suppose v � � �xed and x � �v� and X � Y independent rvs with df G	

Then

fX & Y � xg  fX � v�X & Y � xg � fY � v�X & Y � xg

� fv � X � x� v�X & y � xg � fY � v�X � x� vg �

where the above events are disjoint� hence
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G���x�

G�x�
 �

Z v

�

G�x � y�

G�x�
dG�y� &

Z x�v

v

G�x� v�

G�x�
dG�y�

&
G�x� v�

G�x�
G�v� �A	���

 I��x� v� & I��x� v� & I
�x� v� �

By Lemma �	�	��a�� I��x� v�	 �G�v�� I
�x� v�	 G�v� as x	�	 For � � �

there exists x�  x���� such that for all x � x��

c� � � G�x��F �x� � c& � �

Therefore for v � y � x� v� v large enough�

G�x� y��F �x� y� � c& � and F �x��G�x� � �c� ����	

Consequently�

I��x� v�

� c& �

c� �

Z x�v

v

F �x� y�

F �x�
dG�y�

 
c& �

c� �


F �x� v�

F �x�
G�v� � F �v�

F �x�
G�x� v� &

Z v

x�v

G�x� t�

F �x�
dF �t�

�

� c& �

c� �


F �x� v�

F �x�
G�v� � F �v�

G�x� v�

G�x�

G�x�

F �x�

& �c& ��

Z x�v

v

F �x � t�

F �x�
dF �t�

�

	 �c& �

c� �

�
F �v� c�G�v�� �c& �� ov���

�
� x	� �

where ov��� means limv�� ov���  �� the latter being a consequence of

F � S	 Therefore

lim sup
x��

G���x�

G�x�
� �G�v�� c& �

c� �

�
cF �v��G�v�� �c& �� ov���

�
&G�v�

	 � � v 	� �

hence G � S� because of �A	���	 �

An interesting result yielding a complete answer to S�membership for
absolutely continuous F with density f and hazard rate q�x�  f�x��F �x�

eventually decreasing to � is given in Pitman �����	
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Proposition A���� �A characterisation theorem for S�
Suppose F is absolutely continuous with density f and hazard rate q�x� even�

tually decreasing to �� Then

�a� F � S if and only if

lim
x��

Z x

�

ey q�x�f�y� dy  � � �A	���

�b� If the function x �	 expfx q�x�g f�x� is integrable on ����� then F � S�
Proof� Denote by Q�x�  

R x
� q�y� dy  � lnF �x� the associated hazard func�

tion	 Then

F ���x�

F �x�
� �  

Z x

�

F �x� y�

F �x�
dF �y�

 

Z x

�

eQ�x��Q�x�y��Q�y� q�y� dy �

Note that with this notation�Z x

�

ey q�x� f�y� dy  

Z x

�

ey q�x��Q�y� q�y� dy �

If q is not monotone over the whole range ������ there is an equivalent Q�

�i	e	 F� with F ��x� � F �x�� with a monotone derivative q�	 In view of

Lemma A�	�� we may therefore assume that q is decreasing over the whole

range	 Therefore

F ���x�

F �x�
� � �

Z x

�

ey q�x��Q�y� q�y� dy

�
Z x

�

e�Q�y� q�y� dy  F �x� �

From this it follows that the condition �A	��� is necessary for F � S	
In order to prove su�ciency� suppose that the condition �A	��� holds	 After

splitting the integral below over ��� x� into two integrals over ��� x��� and

�x��� x� and making a substitution in the second integral� we obtainZ x

�

eQ�x��Q�x�y��Q�y� q�y� dy

 

Z x��

�

eQ�x��Q�x�y��Q�y� q�y� dy

&

Z x��

�

eQ�x��Q�x�y��Q�y� q�x� y� dy

 I��x� & I��x� �
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It follows by the same monotonicity argument as above that I��x� � F �x���	

Moreover� for y � x�� and therefore x� y � x���

Q�x� �Q�x� y� � y q�x� y� � y q�x��� �

Therefore

F �x��� � I��x� �
Z x��

�

ey q�x����Q�y� q�y� dy �

and �A	��� implies that

lim
x��

I��x�  � � �A	���

The integrand in I��x� converges pointwise to f�y�  expf�Q�y�gq�y�	 Thus
we can reformulate �A	��� as �the integrand of I��x� converges in f�mean

to �
	 The integrand in I��x� converges pointwise to �� it is however every�

where bounded by the integrand of I��x�	 From this and an application of

Pratt�s lemma �see Pratt ������� it follows that limx�� I��x�  �	 Conse�

quently�

lim
x��

F ���x�

F �x�
� �  � �

i	e	 F � S� proving su�ciency of �A	��� and hence assertion �a�	
�b� The assertion follows immediately from Lebesgue�s dominated conver�

gence theorem� since q�x� � q�y� for y � x	 �

Applications of this result are given in Example �		�	

The following situation often occurs� suppose that in some probability

model there is an input rv with df F and an output rv with df G	 Assume

further that F and G are linked through some model dependent functional

relationship G  T �F � say	 In various cases one can show a result of the

following type	

The following are equivalent

�a� F is regularly varying�

�b� G is regularly varying	

Moreover� either �a� or �b� implies

�c� lim
x��

G�x��F �x�  c � �����	

�A	���

A key question is now

How far can one enlarge the class of regularly varying functions in �A	����

keeping the implications in force
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In several fairly general situations the answer is that one can replace regular

variation by subexponentiality� and that this is best possible� in that �c�

becomes equivalent to �a� and �b�	 This type of questions is known under the

name ofMercerian theorems � see Bingham et al	 ���� for a detailed discussion	

Example A���� �Regular variation for the compound Poisson df�

With applications to insurance in mind� we restrict the functional T above

to the compound Poisson type� i	e	 assume that for some � � ��

G�x�  e��
�X
k��

�k

k�
F k��x� � x � � � �A	���

which is the df of
PN

i�� Xi� where the Xi are iid with df F � independent of

the Poi��� rv N 	 Taking Laplace�Stieltjes transforms in �A	���� one obtains

bg�s�  e�����bf�s�� � s � � �

and hence

�� bg�s� � ���� bf�s�� � s � � � �A	���

In order to distinguish between regular variation at in�nity and at zero� we

denote the former by R� and the latter by R�	 Applying Corollary A�	��

and �A	���� one obtains for � � 	 � ��

G � R�
�� � �� bg � R�

� � lim
x��

�� bg���x�
G�x�

 � ��� 	�

� �� bf � R�
� � lim

x��

�� bg���x�
�� bf���x�  �

� F � R�
�� � lim

x��

�� bf���x�
F �x�

 � ��� 	� �

So �nally we obtain�

F � R�
�� � G � R�

�� � lim
x��

G�x�

F �x�
 � �

In order to go from � � 	 � � to arbitrary 	� one uses Theorem �	�	� in

Bingham et al	 ����	 We leave the details to the reader	 �

An answer to the question following �A	��� now crucially depends on the

following result due to Goldie� see Embrechts et al	 �����	

Proposition A���
 �Convolution root closure of S�
If Fn� � S for some positive integer n� then F � S�



A� Regular Variation and Subexponentiality �

Proof� Since Fn� � S we know by Lemma �	�	��a��

lim
x��

Fn��x� t�

Fn��x�
 � � �A	���

uniformly on compact t�sets	 Fix A � �	 We have for x � A

� &

�Z A

�

&

Z x

A

�
Fn��x� t�

Fn��x�
dFn��t�  

F �n��x�

Fn��x�
	 � � x	� �

By dominated convergence and �A	��� the �rst integral converges to Fn��A��

so that

lim
x��

Z x

A

Fn��x� t�

Fn��x�
dFn��t�  Fn��A�� �A	��

Fix u � � so that F �n�����u� � �	 Then for x � u�

Fn��x�  F �x� &

Z u

�

&

Z x

u

�
F �n�����x� t� dF �t�

 F �x� & J��x� & J��x� � �A	���

We show that given � � �� there exists x�  x��u� �� such that

J��x�

Fn��x�
� �� n�� &

�

�
� � x � x� �A	���

J��x�

Fn��x�
� Fn��u�

F �n�����u�
&
�

�
� � x � x� � �A	���

For �A	���� note that

J��x�

Fn��x�
� F �n�����x� u�

Fn��x�
F �u�

� F �n�����x� u�

F �n���n��x� u�

F �n���n��x� u�

Fn��x� u�

Fn��x� u�

Fn��x�
�

On the rhs� the �rst quotient has limsup at most ��n by Remark � after

Lemma �	�	� while the second quotient converges to n� � because Fn� � S	
Finally� the third quotient converges to � by �A	���	 Thus �A	��� follows	

For �A	���� on some probability space� let Sn��� Xn and S�n be independent

rvs with dfs F �n����� F and Fn� respectively� and let Sn  Sn�� &Xn	 Then
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F �n�����u� J��x� � F �n�����u�

Z x

u

Fn��x� t� dF �t�

 P �Sn�� � u� P �u � Xn � x � Xn & S�n�

 P �Sn�� � u � Xn � x � Xn & S�n�

� P �u � Sn � x& u � Sn & S�n � x�

 P �u � Sn � x � Sn & S�n� & P �x � Sn � x& u�

so that

F �n�����u� J��x�

Fn��x�
�

Z x

u

Fn��x � t�

Fn��x�
dFn��t� &

Fn��x� � Fn��x& u�

Fn��x�
�

The rhs converges to Fn��u� using �A	��� and �A	��	 Then �A	��� follows	

From �A	�����A	��� we �nd

lim inf
x��

F �x�

Fn��x�
� �� �

�� n��
�� Fn��u�

F �n�����u�
�

The rhs converges to ��n as u	�	 Thus lim supx�� Fn��x��F �x� � n	

Hence F � S� by Lemma A�	�	 �

We are now in the position to prove the following key result	

Theorem A���� �Subexponentiality and compound Poisson dfs�

Let G� F and � be related by �A	���� Then the following assertions are

equivalent�

�a� G � S�
�b� F � S�
�c� limx�� G�x��F �x�  ��

Proof� �b� � ��a� and �c��	 This follows as in the proof of Theorem �	�	�

from Lemma �	�	�� dominated convergence and Lemma A�	��	

�a� � �b�	 Assume in the �rst part of the proof that � � � � ln �	 Consider

the df

R�x�  
�
e� � ����

�X
k��

�k

k�
F k��x� � x � � �

Taking Laplace�Stieltjes transforms� for all s � ��

br�s�  e�bf�s� � �
e� � � �

so
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� bf�s�  ln �
�� �

�� e�
� br�s�� �

and since e� � � � � we have

� bf�s�  � �X
k��

�
�� e�

�k
k

br k�s� �
Inversion yields for all x � ��

�F �x�

R�x�
 �

�X
k��

�
�� e�

�k
k

Rk��x�

R�x�
� �A	���

Moreover� e�G�x�  �e� � ��R�x�� so G � S implies R � S	 Choose � � �

such that �e������&�� � �	 By Lemma �	�	��c�� there exists K  K��� ��
such that Rn��x��R�x� � K�� & ��n for all x � � and for all n	 Hence� using
dominated convergence in �A	���� we have

lim
x��

F �x�

R�x�
 

e� � �
� e�

�

so F � S by Lemma A�	��	
Consider now � � � arbitrary� hence there exists an integer "  "��� � � such

that ��" � ln �	 De�ne for x � ��

H�x�  e����
�X
k��

���"�k

k�
F k��x� �

so bh�s�  �
exp

n
��

�
�� bf�s��o����

 bg ����s� � s � � �

This implies G  H�� � S� giving H � S by virtue of Proposition A�	��	 The
�rst part of the proof �since ��" � ln �� gives F � S	
�c� � �b�	 For all x � ��

F ���x�  
�
����

�
e�

��G�x� � e��
X
k ���

�k

k�
F k��x�


A �

Dividing both sides by F �x�� we obtain

lim sup
x��

F ���x��F �x� � � �

so F � S by �A	���	 �

The same techniques as used in the above proof lead to the following more

general result	
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Theorem A���� �Subexponentiality and compound dfs�

Suppose �pn� is a probability measure on N� such that for some � � ��

�X
n��

pn�� & ��n �� �

and set

G�x�  

�X
n��

pn Fn��x� � x � � �

�a� If F � S� then G � S� and

lim
x��

G�x�

F �x�
 

�X
n��

n pn � �A	���

�b� Conversely� if �A	��� holds and there exists " � � such that p� � �� then

F � S�
Proof� �a� The same argument as given in the proof of Theorem �	�	� applies	

�b� For " �xed�

p�
F ���x�

F �x�
� G�x�

F �x�
�

�X
k��

pk
F k�x�

F �x�
& p�

F ��x�

F �x�
�

Hence by �A	��� and Fatou�s lemma� p� lim supx�� F ���x��F �x� � p�"� giv�

ing F � S because of p� � � and Lemma A�	�	 �

Theorem A�	�� generalises Theorem �	�	� because any compound geometric

distribution

G�x�  ��� 	�
�X
n��

	n Fn��x� � � � 	 � � � �A	���

can be written as a compound Poisson distribution	 Indeed� using Laplace�

Stieltjes transforms� bg�s�  ��� 	����� 	 bf�s��� which is of the compound
Poisson form bg�s�  expf����� bh�s��g� where �  ln������ 	�� and bh�s�  
���� ln��� 	 bf�s��	 In distributional form� this becomes

G�x�  e��
�X
n��

�n

n�
Hn��x� �

where

H�x�  ��ln��� 	����
�X
n��

	n

n
Fn��x� �

From these relationships� we easily obtain�
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Corollary A���� �Subexponentiality and compound geometric dfs�

Suppose � � 	 � �� and F and G are related as in �A	���� then the following

assertions are equivalent	

�a� F � S�
�b� G � S�
�c� limx�� G�x��F �x�  	���� 	�� �

Notes and Comments

The compound Poisson model �A	��� leads to one of the key examples of

the so�called in�nitely divisible distributions	 A df F is in�nitely divisible if

for all n � N � there exists a df Hn such that F  Hn�
n 	 The Laplace�Stieltjes

transform of an in�nitely divisible df F on ����� can be expressed �see Feller
������ p	 ��� as

bf�s�  exp��as� Z �

�

�
�� e�sx

�
d��x�

�
� s � � �

where a � � is constant and � is a Borel measure on ����� for which
������ �� and

R �

� x d��x� ��	 This is the so�called L�evy�Khinchin rep�
resentation theorem	 In Embrechts et al	 ����� the following generalisation of

Theorem �	�	� is proved	

Theorem A���� �In�nite divisibility and S�
For F in�nitely divisible on ����� with L�evy�Khinchin measure �� the fol�

lowing are equivalent�

�a� F � S�
�b� ���� x�������� � S�
�c� limx�� F �x����x���  �� �

A key step in the proof of the above result concerns the following question	

If F � G � S� does it always follow that the convolution F �G � S

The rather surprising answer to this question is

In general� NO�

The latter was shown by Leslie ����	 Necessary and su�cient conditions for

convolution closure are given in Embrechts and Goldie ����	 The main result

needed in the proof of Theorem A�	�� is the following �Embrechts et al	 ������

Proposition ��	
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Lemma A���� �Convolution in S�
Let H  F �G be the convolution of two dfs on ������ If G � S and F �x�  

o�G�x�� as x	�� then H � S� �

With respect to asymptotic properties of convolution tails� the papers by

Cline ����� ��� o�er a useful source of information	

In the discrete case� the following classes of dfs have been found to yield

various interesting results	

Denition A���� �Discrete subexponentiality�

Suppose �pn� de�nes a probability measure on N� � let p
��
n  

Pn
k�� pn�kpk be

the two�fold convolution of �pn�� Then �pn� � SD� if
�a� limn�� p��n �pn  � ���

�b� limn�� pn���pn  ��

The class SD is the class of discrete subexponential sequences	 �

Suppose �pn� is in�nitely divisible and bp�r�  P�
k�� pkr

k its generating func�

tion	 Then by the L�evy�Khinchin representation theorem

bp�z�  exp
�����

���� �X
j��

	j z
j


A#$% �

for some � � � and a probability measure �	j�	 The following result is the

discrete analogue to Theorem A�	��� or for that matter Theorem A�	�� �Em�

brechts and Hawkes ������	

Theorem A���� �Discrete in�nite divisibility and subexponentiality�

The following three statements are equivalent�

�a� �pn� � SD�
�b� �	n� � SD�
�c� limn�� pn�	n  � and limn�� 	n�	n��  �� �

See the above paper for applications and further references	

A recent survey paper on subexponentiality is Goldie and Kl�uppelberg

����	

A��� The Tail Behaviour of Weighted Sums of Heavy	Tailed

Random Variables

In this section we study the tail of the weighted sum
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X  

�X
j���


jZj

for iid Zj with common df F and real coe�cients 
j 	 The latter are chosen in

such a way that X is well de�ned as an a	s	 converging series	 The behaviour

of the tail P �X � x� as x	� is crucial for the extremal behaviour of linear

processes� see Section �	�	

Throughout we consider heavy�tailed dfs F 	 Assume �rst that F satis�es

the tail balance condition

F �x� � px��L�x� � F ��x�  qx��L�x� � x	� � �A	���

for some 	 � �� a slowly varying function L and p � ��� ��� q  �� p	 We also

suppose that

�X
j���

j
j j� �� for some � � � � min�	� �� � �A	���

Lemma A���� Assume that conditions �A���� and �A���� are satis�ed�

Then as x	��

P �X � x� � x��L�x�
�X

j���

j
j j�
�
pIf�j��g & qIf�j��g

�
� �A	���

Notice that �A	��� implies that every rv Zj contributes to the tail P �X � x�	

This contribution depends on the size and the sign of the weight 
j 	

Proof� We combine the arguments of Feller ������ p	 ���� �cf	 Lemma �	�	��

and Resnick ������ Lemma 	�	 First notice that �A	��� implies the absolute

a	s	 convergence of the in�nite series X 	 Write

Xm  
X
jjj�m


jZj � X �
m  X �Xm �

Observe that� for m � � and � � ��� ���

P �Xm � x�� & ���� P

�� X
jjj�m

j
jZj j � �x


A �A	��

� P �Xm � x�� & ���� P �X �
m � ��x�

� P �Xm � x�� & �� � X �
m � ��x�

� P �X � x�

� P �Xm � x��� ��� & P �X �
m � �x�
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� P �Xm � x��� ��� & P

�� X
jjj�m

j
jZj j � �x


A � �A	���

Lemma 	� in Resnick ����� implies that

lim
m��

lim
x��

P

�� X
jjj�m

j
jZj j � �x


A�
P �jZj � x�  lim

m��

X
jjj�m

j
j j�  � �

The latter relation and �A	��� �A	��� show that it su�ces to prove� for every

m � �� that

P �Xm � x� � x��L�x�
X
jjj�m

j
j j�
�
pIf�j��g & qIf�j��g

�
�

We restrict ourselves to two summands 
�Z� and 
�Z� with non�zero 
�� 
�

to demonstrate the method� the general case can be proved analogously	

As in the proof of Lemma �	�	� we have for � � ��� ���� that

f
�Z� & 
�Z� � xg

� f
�Z� � ��� ��xg � f
�Z� � ��� ��xg � f
�Z� � �x � 
�Z� � �xg �

Hence� by regular variation of the tails�

lim sup
x��

P �
�Z� & 
�Z� � x� �P �jZj � x�

�
�X
i��

j
ij�
�
pIf�i��g & qIf�i��g

�
��� ���� � �A	���

Moreover�

f
�Z� & 
�Z� � xg

 f
�Z� � x�� & �� � j
�Z�j � �xg � f
�Z� � x�� & �� � j
�Z�j � �xg �

Hence

lim inf
x��

P �
�Z� & 
�Z� � x� �P �jZj � x�

�
�X
i��

j
ij�
�
pIf�i��g & qIf�i��g

�
�� & ���� � �A	���

Letting � 	 � in �A	��� and �A	���� we see that the proof is complete	 �
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Next we consider F � MDA��� � S� where F � S is understood as subexpo�
nentiality on R� see the Remark in Appendix A�	�	 Then F is rapidly varying�

see Lemma �	�	�	 This means that

lim
x��

F �xt�

F �x�
 

�
� if t � � �

� if � � t � � �

In contrast to regularly varying tails we may expect in this case that the size

of the weights 
j has much more in�uence on the tail behaviour of X 	 As

before we assume a tail balance condition of the form

F �x� � p P �jZj � x� � F ��x� � q P �jZj � x� � x	� � �A	���

for some p � ��� ��� q  �� p	 Let 
j be real numbers such that

�X
j���

j
j j� �� for some � � ��� �� and maxj j
j j  � 	 �A	���

De�ne

k�  card fj � 
j  �g � k�  card fj � 
j  ��g �

The following is proved in Davis and Resnick ����� for more general classes

of dfs in MDA���	

Lemma A���� Assume F � MDA��� � S and that the conditions �A	���

and �A	��� are satis�ed� Then

P �X � x� � �
p k� & q k�

�
P �jZj � x� � x	� �

A comparison with Lemma A�	�� shows that in the subexponential case in

MDA��� only the summands 
jZj with 
j  �� �i	e	 the largest coe�cients�
have an in�uence on the tail P �X � x� as x	�	 This is in sharp contrast
to the regularly varying case� where every 
jZj makes some contribution	

Sketch of the proof� First assume that Z is non�negative	 The same de�

composition of X as in the proof of Lemma A�	�� yields X  Xm &X �
m for

every m � �	 Choose m � � such that P
jjj�m j
j j� � �	 We �rst show that

lim
x��

P �X �
m � x�

F �x�
 � � �A	��

Take x � �� then
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P �X �
m � x� � P

�� X
jjj�m

j
jZj j � x


A

� P

�� X
jjj�m

j
jZj j �
X
jjj�m

j
j j j
j j���
x


A

� P

�� �
jjj�m

n
jZj j � j
j j���

x
o
A

�
X
jjj�m

P
�
jZj � j
j j��� x

�
�

It follows that

P �X �
m � x�

F �x�
�

X
jjj�m

P
�
jZj � j
j j���

x
�

F �x�
� �A	��

In view of the rapid variation of F the relation

lim
x��

P
�
jZj � j
j j���

x
�

F �x�
 �

holds for every �xed jjj � m	 Thus �A	�� follows if we may interchangeP
jjj�m and limx�� in �A	��	 This is possible by the following argument	

Recall the Balkema�de Haan representation of F � MDA��� from Theo�

rem �	�	���

F �x�  c�x� exp

�
�

Z x

z

�

a�t�
dt

�
� z � x �� �

where c�x� is a measurable function satisfying c�x�	 c � � and a�x� is a pos�

itive� absolutely continuous function with density a��x� and limx
� a��x�  �	

Using this representation� it is shown in Proposition �	� of Davis and Resnick

����� that for any � � � and su�ciently large x�

F �x�t�

F �x�
� �� & ��


a�x�

x

����
t

���� t�

����

� � � t � � �

Hence� for some constant c� � ��

P
�
jZj � j
j j��� x

�
F �x�

� c� j
j j�������

a�x�

x

����

�
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Now choose � such that ��� ���� � �� implying that
P

jjj�m j
j j������� ��	
Applying in �A	�� the dominated convergence theorem and the fact that

limx�� x��a�x�  limx�� a��x�  �� we have proved that �A	�� holds	

Now we want to make use of a variant of Theorem �	� in Embrechts and

Goldie ������ see also Theorem � in Cline �����	

Lemma A���
 Let Y�� � � � � Ym be independent rvs and F � S� Assume

lim
x��

P �Yi � x�

F �x�
 ai � ����� � i  �� � � � �m �

Then

lim
x��

P �
Pm

i�� Yi�

F �x�
 

mX
i��

ai � �

Since F is rapidly varying we have for jjj � m� in view of the tail balance

condition �A	���� that

lim
x��

P �
jZ � x�

F �x�
 

�������
� if 
j  � �

� if j
j j � � �
qp�� if 
j  �� �

Now an application of Lemma A�	�� together with �A	�� proves that

lim
x��

P �X � x�

F �x�
 lim

x��

P �Xm &X �
m � x�

F �x�
 k� & qp��k� � �

A� Some Renewal Theory

Recall the set�up of Section �	�	� where for a given iid sequence of positive

rvs Y� Y�� Y�� � � � we de�ned the renewal counting process

N�t�  card fn � � � Y� & � � �& Yn � tg � t � � �

Often N�t� is interpreted as the number of renewals before time t in a replace�

ment experiment where the individual interarrival times Yk are iid with non�

defective �proper� df F such that F ��� � � andEY�  ��� � �	 The function
V �t�  EN�t� is called the renewal function	 It gives the expected number of

renewals in the interval ��� t�	 Proposition �	�	�� yields V �t��t	 �  ��EY�
as t	�	 This is known as the elementary renewal theorem	 The following

basic facts concerning V are easy to prove	 Before we formulate the result�

we would like to warn the reader that one has to be careful as regards the

interpretation of Lebesgue�Stieltjes integrals over �nite intervals	 This means
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one has to care about possible jumps of the df� with respect to which one

integrates� at the endpoints of the integration interval	 In this section� all

such integrals are taken over closed intervals	 For an extensive discussion on

this point and its consequences for renewal theory we refer to Section �	� in

Resnick �����	

Proposition A��� �Basic properties of the renewal function�

�a� V is a right�continuous� non�decreasing function�

�b� V �t�  
P�

n�� F
n��t� �� for all t � ��

�c� V �t� satis�es the renewal equation

V �t�  F ���t� &

Z t

�

V �t� x� dF �x� � t � � � �

If �N�t�� is a homogeneous Poisson process� then for all h � ��

V �t& h�� V �t�  �h	 Concerning the general case covered by the ele�

mentary renewal theorem� one may ask�

Does the approximation V �t& h�� V �t� � �h hold for large t


The answer to this question is YES and forms the content of a fundamental

theorem of applied probability	 Before its formulation� recall that a rv X

�respectively its df F � is said to be lattice if there exist a� d � � such thatP�
n�� P �X  a& nd�  �	 The largest d having this property is said to be

the maximal step of X �respectively F �	

Theorem A��� �Blackwell�s renewal theorem�

�a� If F is non�lattice� then for all h � ��

lim
t��

�V �t& h�� V �t��  �h �

�b� If F is lattice with maximal step d� then the same limit relation holds�

provided h is a multiple of d� �

Blackwell�s theorem can be restated as a weak convergence result	 Re�

call from Appendix A� the basic notions on weak convergence	 To any

renewal function V �t� one may associate a renewal measure V ��� via
V �a� b�  V �b�� V �a�� a� b � �	 V ��� may be extended to all Borel sets A on
�����	 In this set�up� Theorem A	��a� tells us that V �t & A� converges to

�jAj as t	�� where j � j stands for Lebesgue measure	 We may therefore
expect to have a result which approximates the integral of a nice function

with respect to V by the integral of that function with respect to �j � j	 This
is indeed true� It turns out that the property of �nice function
 is slightly

technical� the right notion is that of direct Riemann integrability as discussed
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for instance in Alsmeyer ���� p	 ��� Asmussen ����� p	 ���� or Resnick ������

Section �	��	�	 A su�cient condition for a function g to be directly Riemann

integrable is that g � �� g is non�increasing and Riemann integrable in

the ususal sense� i	e	
R�
�

g�t� dt ��	 Also di�erences of such functions are
directly Riemann integrable	 The following result is now key to a multitude

of applications	

Theorem A��� �Smith�s key renewal theorem�

Let ���  EY� �� and V �t�  EN�t� be the renewal function associated

with a non�lattice df F �

�a� If h is directly Riemann integrable� then

lim
t��

Z t

�

h�t� x� dV �x�  �

Z �

�

h�x� dx �

�b� Consider a renewal�type equation of the form

g�t�  h�t� &

Z t

�

g�t� x� dF �x� � t � � �

where h is locally bounded� Then the unique solution is given by

g�t�  

Z t

�

h�t� x� dV �x� � t � � �

Moreover� if h is directly Riemann integrable� then

lim
t��

g�t�  �

Z �

�

h�x� dx � �

Remarks� �� Theorem A	� was basic for proving the Cram�er�Lundberg

estimate for eventual ruin� see Theorem �	�	�	

�� Theorem A	� remains true if h is integrable and bounded on ����� with
limx�� h�x�  � and F is an absolutely continuous df	 This version was also

used for proving that the marginal distribution tail of a stationary ARCH���

process is Pareto�like� see Theorem �		��	 For a more general result along

these lines see Alsmeyer���� Theorem �	�	�	

�� A renewal process for which the interarrival times have a defective df F � i	e	

F ���  	 � �� is called transient or terminating	 We encountered an example

of such a process in Section �	�	�	 In this case� V ��� is a geometrically
distributed rv with parameter 	� hence the renewal process terminates with

probability �	

� Renewal processes are closely linked to so�called regenerative processes	

For such a stochastic process �Xt�t��� there exists a renewal process of times
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where the process X regenerates �probabilistically restarts itself� so that the

future after one of these regeneration times looks probabilistically exactly as

if the process just started at time �	 For a discussion of such processes we refer

to Resnick ������ Section �	�	�	 These ideas were also used in Section �	�	�	�

Notes and Comments

A summary of renewal theory is to be found in Feller �����	 More recent

accounts are Alsmeyer ���� Asmussen ����� Resnick ����� and Ross �����	 We

especially found Resnick ����� very informative	 Blackwell�s renewal theorem

has various proofs� ranging from purely analytic �using Tauberian theory� to

more probabilistic ones �such as Feller�s approach using ladder epochs and

variables�	 An appealing approach is by so�called coupling techniques	 The

main idea consists of proving the theorem �rst for an easy renewal func�

tion V � �the obvious candidate being the stationary renewal measure� and

then showing that V and V � are close in some sense	 This kind of technique

is becoming increasingly popular in applied probability� a recent survey is

given by Lindvall ���	 For a discussion on renewal theory in the in�nite

mean case start with Bingham et al	 ����� Section �	�	

Generalisations of Theorem A	� to weighted renewal measures of the

type
P�

n�� an Fn� together with various applications to risk theory are given

in Embrechts� Maejima and Omey ����� ���� and Embrechts� Maejima and

Teugels ����	
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Adjustment coe cient
� see Lundberg coe cient
Aggregate claim amount
� see total claim amount
Almost sure �a�s�� convergence ���
��stable
� see also stable
��stable distribution
� in R �
� in R

d ���
��stable motion 
�� ���
� Brownian motion ��
� and FCLT 
�
� as a random measure ���
� as a self�similar process ���
� simulation 
�
� as a stable process 
�� ���
Annual maxima method ��
Anscombe)s theorem ���
� Anscombe)s condition ���
� CLT for random sums ���
� � driven by a renewal counting

process ��
ARCH process �autoregressive
conditionally heteroscedastic� ��
�
���

� autocorrelations of a squared
ARCH��� process ���

� extremes ��� ��
� � extremal index ��
� � squared ARCH��� process ��
� perpetuities ���
� squared ARCH��� process ���
� � autocorrelations ���
� � moments ���
� � properties ���
� stochastic recurrence equations ���

� tails ��
ARMA di�erence equations ��
� with s�s innovations �

ARMA process �autoregressive moving
average� ��

� AR process ��
� as a linear process ��
� MA process ��
� parameter estimation �
�
� � LAD estimator �


� � M�estimator ���
� � Whittle estimator �
�
� � Yule�Walker estimator �


� with s�s innovations �

� spectral density ��
ARMACH process �autoregressive
moving average conditionally
heteroscedastic� ��


AR process �autoregressive� ��
� as an ARMA process ��
� as a linear process ��
a�s� �almost sure� almost surely�
Asymptotic expansion ��
� in the DA of a stable law ��
� Hermite polynomial ��
� for non�iid rvs ��
� and saddlepoint approximation �
Autocorrelation ��
� autocovariance ��
� estimation ���
� of a linear process ��
� sample autocorrelation ���
� of a sqared ARCH��� process ���
Autocovariance ��
� autocorrelation ��
� estimation ���
� Herglotz lemma �
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� of a linear process ��
� sample autocovariance ���
� of a squared ARCH��� process ���
Auxiliary function
� of a df in MDA��� ���
� mean excess function ���
� of a von Mises function ���

Benktander�type�I distribution ��
� maxima ��

� mean excess function �
�
Benktander�type�II distribution ��
� maxima ��

� mean excess function �
�
Berman)s condition ��
Berry�Ess�een theorem ��
� constant in the ��
� in the DA of a stable law ��
� non�iid case ��
� rate of convergence in the CLT ��
Beta distribution
� maxima ��
Black�Scholes formula ��
� geometric Brownian motion 
�� ��
Blackwell)s renewal theorem ���
Blocks method ��

Borel�Cantelli lemma ��

Brownian motion ��
� Black�Scholes formula ��
� di�usion approximation
� � and probability of ruin ��

� and Donsker invariance princi"
ple �FCLT� 
�

� geometric Brownian motion 
�� ��
� simulation 
�
Burr distribution ��
� maxima ���

C �space of continuous functions� ��
� supremum norm ��
C ��	 �� ��
Cadlag function �continue 'a droite�
limites 'a gauche� ��

� D ��
� Skorokhod space ��

CAT futures
� see insurance futures
Cauchy distribution �
� chf �

� maxima ���
� as a stable law �
Cauchy process
� see ��stable motion
Central limit problem �
Central limit theorem �CLT� �
� centring constants 

� conditions for 

� domain of attraction �DA� �
� domain of normal attraction
�DNA� ��

� FCLT ��
� Gaussian distribution �
� general CLT 

� for non�iid rvs ��
� normal distribution �
� normalising constants in DA and
DNA �

� for random sums ���� ���
� � driven by a renewal counting

process ��� ���
� re�nements ��
� � asymptotic expansion ��
� � Berry�Ess�een theorem ��
� � Edgeworth expansion ��
� � large deviations ��� �
�
� � rates of convergence ��
� � saddlepoint approximation �
� for renewal counting process ���
� stable distribution �
� and summability methods ��
� for weighted sums ��
Centring constants in the CLT 

Characteristic exponent � of a stable
law �

chf �characteristic function�
Claim arrival process ��
Claim size process ��
Claim times ��
Classical case in time series analysis
��

CLT �central limit theorem� �
Compound Poisson process 
�
� as a limit of the point process of
exceedances

� � for linear processes ��� ���
� � for ARCH��� processes ��
� as a point process ���
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� random sum 
�� ���
� total claim amount 
�
Continuous mapping theorem ���
� Cram�er�Wold device ���
� Slutsky)s theorem ���
� weak convergence ��

Convergence modes ���
� almost sure �a�s�� convergence ���
� convergence in distribution ���
� convergence in Lp ���
� convergence in probability ���
� convergence with probability
one ���

� J��convergence ���
� weak convergence
� � in R

d ���
� � in metric spaces ��

� vague convergence ���
Convergence to types theorem ���
Counting measure
� see point process
Counting process 

� renewal counting process ���
Cram�er�Lundberg condition �

� Lundberg coe cient ��
Cram�er�Lundberg model
� claim arrival process ��
� claim size process ��
� claim times ��
� inter�arrival times ��
Cram�er�Lundberg theorem
� � Cram�er�Lundberg condition �

� for large claims
� � for dominatedly varying tails ��
� � for regularly varying tails ��
� � for subexponential distributions ��
� net pro�t condition ��
� for small claims �

Cram�er)s series ��
Cram�er)s theorem ��
� Cram�er)s series ��
� large deviations ��� �
�
Cram�er�Wold device ���

D �function space of cadlag functi"
ons� ��

D ��	 �� ��
D ��	�� ��

DA �domain of attraction� �

DA��� �
DA�G�� �
Data
� BMW �

� ���� ���� ��

� Danish �re insurance ���� ���� ����
���� ���� ���

� DAX ���
� exchange rates ��
� ��
� industrial �re insurance ���� ����
���� ���

� river Nidd ���
� Vancouver sunshine ���
� water insurance ���� ��

Dekkers�Einmahl"de Haan estimator of
the shape parameter of a GEV ��


df �distribution function�
Di�usion approximation
� and FCLT ��

� � and Brownian motion ��

� and probability of ruin ��

Dirac measure ���
Direct Riemann integrability ��

Discounting ���
Discrete skeleton of a L�evy process ���
DNA �domain of normal attraction� ��
DNA��� ��
DNA�G�� ��
Domain of attraction �DA� �
� of an ��stable law �� � �� �
� characterisation �
� and the CLT �
� and DNA ��
� of a Gaussian �normal� distribution
�

� moments in �
Domain of normal attraction �DNA� ��
� of an ��stable law �� � �� ��
� characterisation ��
� and the CLT ��
� and DA ��
� of a Gaussian �normal� distribution
��

Dominated variation �

� Cram�er�Lundberg theorem ��
� and regular variation ���
� and subexponentiality ��
Donsker invariance principle 
�
� Brownian motion ��
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� FCLT 
�
� � for random sums ��

D�un� ���
� for Gaussian stationary sequence ��
D��un� ���
� for Gaussian stationary sequence ��

ECOMOR reinsurance ���
Edgeworth expansion
� see asymptotic expansion
Empirical df ���
� Glivenko�Cantelli theorem ��
Empirical quantile function ���
Erd%os�R�enyi law of large numbers �

Ergodic theorem ��
� and SLLN ��
� and Glivenko�Cantelli theorem ��
Erlang distribution
� maxima ��

Esscher transformed distribution ��
Exceedances
� Gumbel)s method of exceedances ���
� point process of exceedances ���
� � for ARCH��� process ��
� � for iid sequence ���
� � for linear process ��� ���
� � for strictly stationary sequence ���
� see also POT method
Excess
� �tting excesses over a threshold ���
� � see also POT method
Excess distribution function ���
� mean excess function ���� �
�
Excess�of�loss reinsurance �XL� ��

Exponential distribution
� maxima ���� ��

� � a�s� behaviour ��
� order statistics ���
� � and uniform order statistics ��

� spacings ���
Exponentially tilted distribution
� see Esscher transformed distribution
Extremal index ���
� of an ARCH process ��
� interpretation ���
� estimation
� � by the blocks method ��

� � by the runs method ���
� of a linear process ��

Extremal process �F�extremal
process� ���

� and coupling ���
� and embedding of maxima ���
� �nite�dimensional distributions ���
� as a function of PRM ���� ���
� and invariance principle for maxima
� � of iid sequence ���
� � of linear process ��
� �

� jump times ���
� and maxima
� � of iid sequence ���
� � of linear process ��� �

� and record times ���
Extremal rv
� see extreme value distribution
Extremal variate
� as weak limit of a vector of upper
order statistics

� � iid case ���
� � stationary case ���
Extreme value distribution ���
� generalised ���
� Jenkinson�von Mises representation
���

� MDA ���
� � of the Fr�echet distribution �� ���
� � of the Gumbel distribution � ���
� � of the Weibull distribution �� ���
� as weak limit of maxima of iid rvs
� � Fisher�Tippett�theorem ���
Extremes and sums ���

FCLT �functional limit theorem�

�� 
�

Finite�dimensional distributions
� Kolmogorov)s consistency theorem
���

� of a point process ���
� of a stochastic process ���
Fisher"Tippett theorem ���
Fractional stable process ���
� fractional noise ���
� and long memory ��
� self�similarity ���
Fr�echet distribution �� as extreme
value distribution ���

� extreme value theory for ARCH���
process ��



Index ��


� extreme value theory for linear
process with noise in MDA���� ���

� MDA���� ���
� spacings ���
Frequency domain
� see spectral analysis
Functional central limit theorem
�FCLT� 
�

� and ��stable motion 
�
� and Brownian motion ��
� in the DA of an ��stable law 
�
� Donsker invariance principle 
�
� for random sums driven by a renewal
counting process ��


� and simulation of ��stable motion 
�

Gamma distribution ��
GARCH process �generalised ARCH
process� ��


Gaussian �normal� distribution �
� chf �
� DA �
� DNA ��
� maxima ���� ��
� multivariate ���
� � density ���
� as stable law �
Gaussian process ���
� ��stable motion 
�
� Brownian bridge ���
� Brownian motion ��
� Ornstein�Uhlenbeck process ���� ���
� self�similar ���
Gaussian stationary sequence ���
� extreme value theory for ���
� � Berman)s condition ��
� � linear process ��
� � normal comparison lemma ���
Generalised extreme value distribution
�GEV� ���� ���

� characterisation of MDA ���
� estimation of the parameters ���
� � �tting annual maxima ��
� � maximum likelihood estimation ��
� � probability�weighted moments ���
� and GPD ���
� Jenkinson�von Mises representation
���

� moments ���

Generalised inverse of a monotone
function ���

� quantile function ���
Generalised Pareto distribution �GPD�
���

� �tting excesses over a threshold
�POT method� ���

� and GEV ���
� parameter estimation
� � maximum likelihood ���
� � MLE horror plot ��
� � probability weighted moments ���
� properties ���
� tail and quantile estimation ���
Geometric Brownian motion 
�� ��
Geometric distribution
� and longest success�run in a random
walk �
�

� maxima ���
� and return period ���
GEV �generalised extreme value
distribution� ���� ���

Glivenko�Cantelli theorem ��
GPD �generalised Pareto distribution�
���

Gumbel distribution � as extreme value
distribution ���

� extreme value theory for linear
process with noise in MDA���  S
�

� MDA��� ���
� order statistics �


� spacings ���
Gumbel)s method of exceedances ���

HARCH process �heterogeneous ARCH
process� ���

Harmonisable stable process ���
� and spectral density �
�
Hartman�Wintner LIL �
Hazard function	rate ��
Heavy�tailed distributions ��
� classes �

� regularly varying functions ���
� ruin theory ��
� subexponential distributions �
� ��
Heavy�tailed time series
� linear process ��� ��
� ARCH process ���
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Herglotz lemma �
Hermite polynomial ��
Heteroscedasticity ���
� ARCH process ��
� ���
� and stochastic volatility ��
Hill)s estimator ���
� asymptotic properties �
�� ���
� bias�variance trade�o� ���
Hill�plot ��

� Hill horror plot �
�
Homogeneous Poisson process 
� ��
Hurst coe cient ��

iid �independent and identically
distributed�

Index of regular variation ���
� Hill)s estimator ���
� other estimators ���
In�nitely divisible distribution ��
� and the CLT ��
� L�evy�Khinchin formula ���
� stable law as ��
� and subexponentiality ���
in�nitely often �i�o��
In�nitesimality ��
Initial capital in the risk process ��
Innovations of a linear process
� see noise
Insurance futures ���� ���
� and reinsurance treaties ���
Integrated tail distribution
� and Cram�er�Lundberg theory for
large claims ��

� � ruin�probability ��
� in MDA��� ��

� and subexponentiality ��

Intensity
� of Poisson process 

� of Poisson random measure ���
Inter�arrival times in the Cram�er�
Lundberg model ��

Invariance principle
� Donsker)s theorem �FCLT� 
�
� � Brownian motion ��
� for maxima
� � extremal process ���
� � for iid sequence ���
� � for linear process ��
� �

� stable 
�

Inverse Gaussian distribution �
i�o� �in�nitely often�

Jenkinson�von Mises representation of
the extreme value distributions ���

Joseph and Noah e�ect ��
J��convergence ���
� J��metric ���
� Skorokhod space ��

Jump times of maxima
� see record times

Kallenberg)s theorem for weak
convergence of point
processes to a PRM ���

� and simple point process ���
Karamata)s Tauberian theorem ��

Karamata)s theorem ��
Key renewal theorem ��

Kolmogorov)s consistency theorem ���
� �nite�dimensional distributions ���
Kolmogorov)s SLLN ��
Kurtosis ��

LAD estimator �


Ladder heights of a random walk ���
Laplace functional ���
� and Laplace transform ���
� of Poisson random measure ���
� and weak convergence of point
processes ���

Laplace�Stieltjes transform ��
Large claim condition
� see heavy�tailed distributions�
subexponential distributions

Large claim distributions ��
Large claim index ���
Large deviations ��� �
�
� Cram�er)s theorem ��
� � Cram�er)s series ��
� Heyde)s theorem in DA��� ��
� A� Nagaev)s theorem for rvs with
regularly varying tail ���

� for random sums ���
� and reinsurance treaties ���
� and saddlepoint approximation �
Largest claims reinsurance ���
��� law ��
Law of large numbers �LLN� ��
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Law of the iterated logarithm �LIL� �
� for dependent rvs �

� generalised �

� Hartman�Wintner LIL �
� for non�identically distributed rvs �

� one�sided �

� for renewal counting process ���
Leptokurtosis ��
L�evy�Khinchin formula ���
L�evy process 
�
lhs �left�hand side�
LIL �law of the iterated logarithm� �
Linear process ��
� ARMA process ��
� AR process ��
� autocorrelation ��
� autocovariance ��
� embedding point process
� � in MDA���� ���
� � in MDA���  S ��
� extreme value theory for ���
� � Gaussian noise ��
� � noise in MDA���� ���
� � noise in MDA���  S �
� exceedances
� � in MDA���� ��
� � in MDA���  S ���
� innovations ��
� MA process ��
� noise ��
� power transfer function ��
� with s�s innovations ��� ���
� spectral density ��
� stable ��� ���
� as a strictly stationary process ��
� transfer function ��
LLN �law of large numbers� ��
Loggamma distribution ��
� maxima ���
Lognormal distribution ��
� maxima ��� ��

Log�return ���
Longest success�run in a random walk
���

� a�s� behaviour ���
� distributional behaviour �
�
� precise distribution ���

� total variation distance to a Poisson
distribution ���

Long memory process ��
� long range dependence ��
� Joseph e�ect ��
Lundberg coe cient ��
� Cram�er�Lundberg condition �


MA process �moving average� ��
� as an ARMA process ��
� as a linear process ��
Marcinkiewicz�Zygmund SLLNs ��
� and ��� behaviour ��
� and maxima of iid rvs ��
� for random sums 


� � driven by a renewal counting

process ���
� for renewal counting process ���
Maxima
� of ARCH��� process ��
� a�s� behaviour ���
� � of exponential rvs ��
� � and Marcinkiewicz�Zygmund

SLLNs ��
� � maximal growth of maxima ��

� � minimal growth of maxima ��
� � of normal rvs ��
� � of uniform rvs ��
� and extremal process ���
� of iid rvs with distribution
� � Benktander�type�I ��

� � Benktander�type�II ��

� � beta ��
� � Burr ���
� � Cauchy ���
� � Erlang ��

� � exponential ���� ��
� ��
� � geometric ���
� � loggamma ���
� � lognormal ��� ��

� � negative binomial ��

� � normal ���� ��
� � Pareto ���
� � Poisson ���
� � uniform ��� ��
� � Weibull ���� ��
� ��

� invariance principle ���� ��
� �

� of a linear process
� � with noise in MDA���� ���
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� � with subexponential noise in
MDA��� �

� and minima� joint limit distribution
��� ���

� rates of convergence ���
� and records ���� ���
� and record times ���� ���
� of a stationary sequence
� � for ARCH��� process ��
� � under conditions D�un�� D

��un�
���� ���

� � for Gaussian sequence ��
� � for linear process ���
� and sums ���
Maximum domain of attraction �MDA�
of an extreme value distribution ���

� characterisation ���
� Fisher�Tippett theorem ���
� of the Fr�echet distribution ���
� � norming constants ���
� � and regular variation ���
� � summary ���
� � and tail�equivalence ���
� � von Mises condition ���
� of the generalised extreme value
distribution ���

� � characterisation ���
� of the Gumbel distribution ���
� � auxiliary function ���� ���
� � characterisation ���� ���
� � mean excess function ���
� � norming constants ���� ���
� � and rapid variation ���
� � rate of convergence ���
� � and subexponential distributions

��

� � summary ���
� � and tail�equivalence ���
� � von Mises function ���
� parameter estimation
� � Hill)s estimator ���
� � moment estimators �Dekkers�

Einmahl�de Haan� ��

� � Pickands)s estimator ���
� penultimate approximation ���
� tail�equivalence ��

� tail and quantile estimation ���
� of the Weibull distribution ���

� � norming constants ���
� � and regular variation ���
� � summary ���
� � and tail�equivalence ���
Maximum likelihood estimation
� � of the GEV ��
� � of the GPD ���
Max�stable distribution
� see extreme value distribution
MDA �maximum domain of attraction�
���

Mean excess function ���� �
�
� of the GPD ���
� elementary properties �
�
� empirical mean excess function �
�
� and MDA��� ���
Mean measure of PRM ��
M�estimator ���
Method of exceedances
� see Gumbel)s method of exceedances
Metric function spaces
� C � C ��	 �� ��
� cadlag function ��
� D � D ��	 �� ��
� D ��	�� ��

� Skorokhod space ��

� � J��metric ���
� weak convergence ��

Mill)s ratio ���
Minima
� joint limit distribution of maxima
and minima ��� ���

Mixed Poisson distribution	process �
� negative binomial distribution	pro"
cess ��

� over�dispersion ��
Monotone density theorem ���
Multiple point process ���
Multiplicity
� see multiple point process

Negative binomial distribution	process
� extremes ��

� total claim amount ��
Net pro�t condition ��
� Cram�er�Lundberg theorem �
� ���
��� ��

Noah e�ect
� see Joseph and Noah e�ect
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Noise variables of a linear process ��
Normal distribution
� see Gaussian distribution
Normalising constants in the CLT �
Norming constants for maxima
� estimation ���
� in MDA���� ���
� in MDA���� ���
� in MDA��� ���� ���
� � for von Mises function ���
� summary ���

Ordered sample
� see order statistics
Order statistics ���
� distribution of the kth upper order
statistic ���

� joint density of upper order statistics
���

� of exponential rvs ���
� extremal variate ���
� of the Gumbel distribution �


� and the Hill estimator �
�� ���
� limit distribution �
�� �
�
� Markov property ���
� randomly indexed ��
� simulation ��

� and spacings ���
� of a stable random vector ���
� of uniform rvs ��

Order statistics property of the Poisson
process ���

Ornstein�Uhlenbeck process ���
� as self�similar process ���
Over�dispersion ��

Parameter estimation
� for the GEV
� � maximum likelihood ��
� � probability�weighted moments ���
� for the GPD
� � maximum likelihood ���
� � probability�weighted moments ���
� under MDA conditions
� � Hill)s estimator ���
� � moment estimator �Dekkers�

Einmahl�de Haan� ��

� � Pickands)s estimator ���
Pareto distribution ��

� maxima ���
� generalised ���
Pareto�like distribution ���
Peaks over threshold �POT� method
� �tting excesses over a threshold ���
� and GPD ���
� tail and quantile estimation ���
Penultimate approximation ���
Periodogram ���
� limit distribution
� � in the classical L� case ��
� � in the s�s case ��

� power transfer function ��
� self�normalised periodogram ��

� smoothed periodogram �
�
� spectral density ��
Perpetuity ���
� distribution and moments ��
Peter and Paul distribution ��
Pickands)s estimator of the shape
parameter of a GEV ���

� asymptotic properties ���
Pickands�plot ���
��variation ���
Plotting position �
�
Point measure
� see point process
Point process ���
� distribution ���
� of exceedances ���� ��
� and extreme value theory
� � of ARCH��� process ��
� � of iid sequence ��
� � of linear process ���� �
� � and point process of exceedances

��
� �nite�dimensional distributions ���
� Laplace functional ���
� multiple ���
� Poisson random measure �PRM� ��
� simple ���
� state space ���
� vague convergence ���
� weak convergence ���
� � to a PRM ���
Point process of exceedances ���
� for an ARCH��� process ��
� for iid sequence ���
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� for linear process ��� ���
� for stationary sequence ���
Poisson process
� see Poisson random measure
Poisson random measure �PRM� ���
� compound Poisson process 
�� ���
� extremal process ���
� homogeneous Poisson process 
� ��
� intensity 
� ���
� Laplace functional ���
� mean measure ��
� mixed Poisson process �
� order statistics property ���
� point process of exceedances ��
� as a renewal counting process 

� transformed PRM ���
� weak convergence to a PRM ���� ���
POT �peaks over threshold� method
���

Power transfer function ��
� estimation ���
� � �nite variance case ��
� � periodogram ���
� � s�s case ��

� of a linear process ��
� and spectral density ��
PP�plot �probability plot� �
�
Premium income rate ��
PRM �Poisson random measure� ��
PRM��� ��
Probability plot �PP�plot� �
�
Probability of ruin
� see ruin probability
Probability�weighted moment
estimator

� for the GEV ���
� for the GPD ���
Process
� see stochastic process
Proportional reinsurance ��


QQ�plot �quantile plot� �
�
Quantile
� see quantile function
Quantile estimation
� for the GEV ���
� under MDA conditions ���
� POT method and GPD ���
Quantile function ���

Quantile plot �QQ�plot� �
�
Quantile transformation ���

Radon measure ��
Randomly indexed order statistics ���
� limit distribution ��
Random measure
� see point process
Random sums 
�� ���
� Anscombe)s theorem ���
� � for random sums driven by a

renewal counting process ��
� CLT ���� ���
� � for random sums driven by a

renewal counting process ��� ���
� compound Poisson process 
�
� Cram�er�Lundberg model ��
� FCLT
� � for random sums driven by a

renewal counting process ��

� general case 
�
� large deviations ���
� Marcinkiewicz�Zygmund SLLNs 


� � for random sums driven by a

renewal counting process ���
� mixed Poisson process �
� negative binomial process ��� ��

� driven by renewal counting process
���

� renewal model ��
� total claim amount ��
Random walk
� Erd%os�R�enyi law of large numbers
�


� �uctuations �� ���
� large deviations ��� �
�
� length of the longest success�run ���
� limit points �
Rapid variation ��
� Karamata-s theorem ��
� and MDA��� ���� ���
� properties ��
Rate of convergence in the CLT
� Berry�Ess�een theorem ��
� for DA of a stable law ��
Rate of convergence for maxima ���
Records ���
� as exploratory statistical tool ��
� frequency ��



Index ���

� moments of record counting process
��

� point process description ���
� and record times ���� ���
Record times ���
� and extremal process ���
� growth ��

� point process of ���
� � weak convergence to PRM ���
� and records ���� ���
Regular variation ���
� basic results ���
� and domains of attraction ���� ����
���

� and dominated variation �

� index ���
� Karamata)s Tauberian theorem ��

� Karamata)s theorem ��
� and maxima ���� ���
� monotone density theorem ���
� and rapid variation ��
� representation theorem ���
� sequences ��
� and slow variation ���
� smooth versions ���
� and subexponentiality ���
� for tails of weighted sums ���
� uniform convergence theorem ���
Reinsurance treaties ���
� of extreme value type ���
� � ECOMOR reinsurance ���
� � largest claims reinsurance ���
� insurance futures ���� ���
� of random walk type ��

� � excess�of�loss reinsurance �XL� ��

� � and large deviations ���� ���
� � proportional reinsurance ��

� � stop�loss reinsurance ��

Renewal counting process ���
� CLT ���
� LIL ���
� Marcinkiewicz�Zygmund SLLNs ���
� moments ���
� as point process ���
� �homogeneous� Poisson process 

� random sums driven by ���
Renewal function
� basic properties ���

Renewal model ��
Renewal theorem
� Blackwell)s ���
� elementary ���
� Smith)s key ��

Representation theorem for regularly
varying functions ���

Return
� see log�return
Return period ���
rhs �right�hand side�
Risk process
� discrete random walk skeleton ���
� initial capital ��
� moments ��
� premium income rate ��
� ruin probability ��
� ruin time ��
� safetey loading ��
� sample path leading to ruin
� � for large claims ���
� � for small claims ��
� total claim amount ��
Risk theory ��
Ruin probability
� in �nite time �with �nite horizon� ��
� � for large claims ���
� � for small claims ��
� � di�usion approximation ��

� in in�nite time �with in�nite horizon�
��

� � Cram�er�Lundberg theorem �
� ���
��� ��

� net pro�t condition ��
� safetey loading ��
� subexponential case �

Ruin problem ��
Ruin time ��
� for large claims ��
� for small claims ���
Runs method ���
rv �random variable�

S �
� ��
Saddlepoint approximation �
� and large deviations ��
Safety loading ��
s�s �symmetric ��stable� �
Sample autocorrelation ���



��� Index

� asymptotic normality for linear
process ���

� weak convergence in s�s case ���
Sample autocovariance ���
Sample df
� see empirical df
Sample path of a stochastic process
�trajectory� ���

SDE �stochastic di�erential equation�
��

Self�similar process ���
� ��stable
� � ��stable motion ���
� � Ornstein�Uhlenbeck process ����

���
� Gaussian ���
� � Brownian motion ���
� � Ornstein�Uhlenbeck process ����

���
� non�di�erentiability ��

� and stationarity ��
Simple point process ���
� Kallenberg)s theorem ���
Skewness parameter � of stable
distribution �

Skorokhod J��metric ���
Skorokhod space ��

� D � D ��	�� ��
� Skorokhod metric ��

SLLN �strong law of large numbers� ��
Slow variation ���
� and regular variation ���
� smooth versions ���
Slutsky)s theorem ���
� and continuous mapping theorem ���
Small claim condition
� see Cram�er�Lundberg condition
Small claim distributions ��
Smith)s key renewal theorem ��

� direct Riemann integrability ��

Smoothed periodogram �
�
� discrete weighted average estimator
�
�

Software on statistics of extremes ��
Spacings ���
� of exponential rvs ���
� of Fr�echet variables ���
� of Gumbel variables ���

� limit distribution
� � in MDA��� ���
� � in MDA���� ���
� of uniform rvs ��

Spectral analysis of a time series
� frequency domain ��
� spectral density ��
� spectral distribution ��
� spectral representation ��
Spectral density ��
� Herglotz lemma �
� of a linear process ��
� � of an ARMA process ��
� � estimation ���
� periodogram ���
� power tranfer function ��
� spectral distribution ��
Spectral distribution function
� see spectral distribution
Spectral distribution of a stationary
process ��

� spectral density ��
Spectral measure of a stable random
vector ���

Spectral representation �chf� of a stable
distribution

� in R �
� in R

d ���
Spectral representation of a stationary
process ��

� Herglotz lemma �
� process with orthogonal increments
��

� spectral density ��
� stochastic integral ��
Spitzer)s identity
� and ruin probability �
Stable bridge ���
Stable distribution
� � in R �
� � in R

d ���
� alternative ���
� Cauchy distribution �
� chf �
� and CLT �� 

� degenerate distribution �
� density �
� domain of attraction �DA� �
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� domain of normal attraction
�DNA� ��

� and FCLT 
�
� Gaussian distribution �
� as in�nitely divisible distribution ��
� inverse Gaussian distribution �
� as a limit law �
� moments �
� normal distribution �
� parameters �
� � characteristic exponent � �
� � skewness parameter � �
� positive stable �
� spectral representation �chf� �
� symmetric ��stable� s�s �
Stable integral ��
� elementary properties ���
Stable process 
�� ���� ���
� ��stable motion 
�� ���
� � Brownian motion ��
� � as a random measure ���
� bridge process ���
� � Brownian bridge ���
� fractional process ���
� � fractional noise ���
� � and long memory ��
� harmonisable process ���
� � and spectral density �
�
� linear process ��� ���
� Ornstein�Uhlenbeck process ���
� � as self�similar process ���
Stable random measure ��
� stable motion as ���
Stable random variable �
Stable random vector ���
� order statistics ���
� subgaussian ���
� spectral measure ���
Standard Brownian motion
� see Brownian motion
Standard extreme value distribution
� see extreme value distribution
State space of a point process ���
Stationary process ��

� spectral distribution ��
� spectral representation ��
� strictly stationary ��

� in the wide sense ��


Stationary sequence ��

� see also stationary process
� extreme value theory
� � for ARCH��� process ��
� � under conditions D� D� ���� ���
� � for Gaussian sequence ���
� � for linear process ���
� point process of exceedances
� � for ARCH��� process ��
� � under conditions D� D� ���
� � for linear process ��� ���
� time series analysis ��
Stochastic di�erence equation
� see stochastic recurrence equation
Stochastic di�erential equation �SDE�
��

� driven by ��stable motion ���
� Black�Scholes formula ��
� geometric Brownian motion 
�� ��
� numerical solution ���
� stochastic volatility ��
� volatility ��
Stochastic recurrence equation ���
Stochastic process
� ��stable motion 
�
� Brownian motion ��
� distribution ���
� � �nite�dimensional distributions ���
� � Kolmogorov)s consistency theorem

���
� Gaussian ���
� � Brownian bridge ���
� � Brownian motion ��
� � Ornstein�Uhlenbeck process ����

���
� harmonisable ���
� with stationary� independent
increments 
�

� L�evy process 
�
� linear ��
� � ARMA process ��
� � AR process ��
� � MA process ��
� � stable ��
� non�linear ���
� � ARCH process ��
� ���
� � ARMACH process ��

� � GARCH process ��
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� � HARCH process ���
� with orthogonal increments ��
� point process ���
� � PRM ��
� sample path ���
� self�similar ���
� � and stationarity ��
� stable ���
� � ��stable motion 
�
� � bridge process ���
� � linear process with s�s innovations

��
� � Ornstein�Uhlenbeck process ����

���
� stationary in the wide sense ��

� strictly stationary ��

� � linear process ��
� sum process �

� trajectory ���
Stochastic recurrence equation ���
Stochastic volatility ��
� and heteroscedasticity ���
Stop�loss reinsurance ��

Strictly stationary process ��

� linear process as ��
Strong law of large numbers �SLLN� ��
� for dependent rvs ��
� Erd%os�R�enyi LLN �

� ergodic theorem ��
� Feller)s SLLN ��
� � and ��� behaviour ��
� Glivenko�Cantelli theorem ��
� Heyde)s SLLN �

� � and ��� behaviour �

� Kolmogorov)s SLLN ��
� and ��� law ��
� Marcinkiewicz�Zygmund SLLNs ��
� � and ��� behaviour ��
� � and maxima of iid rvs ��
� � for random sums 

� ���
� for non�identically distributed rvs ���
��

� rates of convergence ��
� for renewal counting process ���
� and summability methods �

� for weighted sums �

Subexponential distribution �class S�
�
� ��

� characterisation theorem ��
� closure of S under asymptotic
equivalence ��

� and compound dfs ��� ���� ���
� convolution root closure ��
� Cram�er�Lundberg theory �

� discrete ���
� and dominated variation ��
� examples ��
� extreme value theory for linear
process

� � with noise in MDA���� ���
� � with noise in MDA���  S �
� and in�nite divisibility ���
� integrated tail distribution ��
� and MDA ��
� ���
� properties ��� ��
� and ruin probability �
� ��

� tails of weighted sums ���
� total claim amount ��
� weighted sums ���
Subgaussian random vector ���
Summability methods
� and CLT ��
� and SLLN �

� weighted sums �
� ��
Sums and extremes ���
Supremum norm ��
Symmetric ��stable �s�s� �

Tail�equivalence ��

� in MDA���� ���
� in MDA���� ���
� in MDA��� ���
Tail estimation
� see quantile estimation
Tail of weighted sums ���
Time domain
� in time series analysis ��
Time series
� classical L� case ��
� heavy�tailed ��� ��
� linear ��
� � AR process ��
� � ARMA process ��
� � MA process ��
� non�linear ���
� � ARCH process ��
� ���
� � ARMACH process ��
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� � GARCH process ��

� � and stochastic recurrence equations

���
Time series analysis ��
� classical L� case ��� ��
� frequency domain ��
� for heavy�tailed data ��
� Herglotz lemma �
� and SDE ���
� time domain ��
Total claim amount ��
� compound geometric process ���
� compound Poisson process 
�
� distribution ��
� negative binomial case ��
� random sums 
�� ���
� and risk process ��
� subexponential case ��
Total variation distance ���
Trajectory of a stochastic process
�sample path� ���

Transfer function
� see power tranfer function
Truncated ��stable rv ��
Truncated normal rv ��
t�year event
� see return period
Type of a rv
� see convergence to types theorem ���

Uniform convergence theorem for a
regularly varying function ���

Uniform distribution
� maxima ��
� � a�s� behaviour ��
� order statistics ��

� � and exponential order statistics ��

� spacings ��

Upper order statistics
� see order statistics

Vague convergence ���
� criterion ���
� and weak convergence of point
processes ���� ���

Volatility ��
� estimation ���
� and heteroscedasticity ���
� and stochastic volatility ��

Von Mises condition
� in MDA���� ���
� in MDA���� ���
� in MDA��� ���
� � and rapid variation ���
Von Mises function
� see von Mises condition

Weak convergence
� continuous mapping theorem ���
� � Cram�er�Wold device ���
� � Slutsky)s theorem ���
� convergence in distribution ���
� in a metric space ��

� for a sequence of rvs �convergence in
distribution� ���

Weak convergence of point processes
� criterion via Laplace functionals ���
� Kallenberg)s theorem ���
� to a PRM ���
Weak law of large numbers �WLLN� ��
� criterion ��
� non�necessity of �st moment ��
� rates of convergence �
Weibull distribution � as extreme value
distribution ���

� MDA��� ���
Weibull distribution as a heavy�tailed
distribution ��

� maxima ��

Weighted moment estimator
� see probability�weighted moment
estimator

Weighted sums
� CLT for ��
� SLLN for �

� tail for heavy�tailed distributions ���
Whittle estimator �
�
� asymptotic normality� L� case �
�
� weak convergence� s�s case �
�
� and Yule�Walker estimator �


Wiener process
� see Brownian motion
Wiener�Hopf theory
� and ruin probability ��
WLLN �weak law of large numbers� ��
wlog �without loss of generality�

Yule�Walker estimator �
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List of abbreviations and symbols

We have tried as much as possible to use uniquely de�ned abbreviations and

symbols	 In varous cases� however� symbols can have di�erent meanings in

di�erent sections	 The list below gives the most typical usage	 Commonly

used mathematical symbols are not explained	

Abbreviation or symbol Explanation Page

	 characteristic exponent of a stable distribution� ��

index of a regularly varying function ���

AR�p� autoregressive process of order p ���

ARCH�p� autoregressive conditionally heteroscedastic

process of order p ��

ARMA�p� q� autoregressive�moving average process

of order �p� q� ���

ARMACH autoregressive�moving average conditionally

heteroscedastic process ��

a	s	 almost sure� almost surely�

with probability �

B� Bt Brownian motion ��

C function space of continuous functions ���

C ��� ��� C �a� b� space of continuous function on ��� �� or �a� b� ���

card�A� cardinal number of the set A

chf characteristic function

C�
K�E� set of all continuous� non�negative

functions on E with compact support ���

CLT central limit theorem �

corr�X�Y � correlation between the rvs X and Y

cov�X�Y � covariance between the rvs X and Y

D class of dominatedly varying functions �

D cadlag function space �Skorokhod space�

D ��� ��� D ����� space of cadlag functions on ��� �� or ����� ���

DA domain of attraction �

DA�	� domain of attraction of an 	�stable law ��

DA�G�� domain of attraction of G� �

df distribution function

DNA domain of normal attraction ��

DNA�	� domain of normal attraction of an 	�stable law ��

DNA�G�� domain of normal attraction of G� ��

Ei exponential random variable

e�u� mean excess function ���
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�x Dirac measure ���

Exp��� exponential distribution with parameter ��

F �x�  �� e��x � x � �
F df and distribution of a rv

FA df and distribution of the rv or random

element A

FI integrated tail distribution�

FI�x�  ��
R x
� F �y�dy ��

Fn empirical �sample� df ���

Fu excess df ���

F��p� p�quantile of F � ���

quantile function of F ���

F�
n �p� empirical p�quantile ���

F tail of the df F � F  �� F

Fn� n�fold convolution of the df or distribution FbfX Laplace�Stieltjes transform of the rv X �bfX�s�  Ee�sX ��

G� distribution or df of an 	�stable distribution �

� gamma function � � �x�  
R�
� tx��e�tdt

� �a� b� gamma distribution with parameters a and b�

f�x�  ba�� �a����xa��e�bx � x � �
�a incomplete gamma function�

�a�x�  �� �a��
��

R�
x e�tta��dt � x � �

��h� autocovariance at lag h ��

GARCH generalised autoregressive�moving average

conditionally heteroscedastic process ��

GEV generalised extreme value distribution ���

GPD generalised Pareto distribution ���

G��
 generalised Pareto distribution with shape

parameter � and scale parameter � ���

H extreme value distribution ��

H� � H����� generalised extreme value distribution with

shape parameter �� location parameter  and

scale parameter 
 ���

H� generalised extreme value distribution ���

IA indicator function of the set �event� A

iid independent� identically distributed

In�A periodogram of the sequence �An� ���

L a class of heavy�tailed distributions �

� intensity parameter of Poisson process



��� Symbols

� Gumbel distribution� ��x�  expf�e�xg ���

lhs left�hand side

LIL law of the iterated logarithm ��

LLN law of large numbers ��

lnx logarithm with basis e

ln� x ln� x  max�ln x� ��

L�x� slowly varying function ��

MA�q� moving average process of order q ���

MDA maximum domain of attraction ���

MDA�H� MDA of the extreme value distribution H ���

med�X� median of X

Mn maximum of X�� � � � � Xn

Mp�E� space of point measures on E ���

 expectation of a rv�

mean measure of a PRM ���

A expectation of the rv A

N set of the positive integers

N� set of the non�negative integers

N�N�t�� Nt integer�valued rv or point process�

renewal counting process ��

N�� ���� N��$� Gaussian �normal� distribution

with mean  and variance ��

or covariance matrix $

N��� �� standard normal distribution

o��� a�x�  o�b�x�� as x	 x� means

that limx�x� a�x��b�x�  �

O��� a�x�  O�b�x�� as x	 x� means

that lim supx�x� ja�x��b�x�j ��
� � � � random outcome

���F � P � probability space

�X �t� chf of the rv X � �X�t�  EeitX

� standard normal distribution or df

�� Frechet distribution�

���x�  expf�x��g� 	 � � ���

Poi��� Poisson distribution with parameter ��

p�n�  e���n�n� � n � N�

PRM Poisson random measure ���

PRM�� Poisson random measure with mean measure  ���


j coe�cient of a linear process ���


�u� ruin probability in in�nite time �



Symbols ���


�u� T � ruin probability in �nite time T �


�z� transfer function of linear process ���

j
�z�j� power transfer function ���

�� Weibull distribution�

���x�  expf���x��g� 	 � � ���

�N Laplace functional of the point process N ���

R class of the dfs with regularly varying right tail �

R� class of the regularly varying functions

with index 	 ���

R�� class of the rapidly varying functions ���

R�R� real line

R� R�  �����
Rd d�dimensional Euclidean space

� safety loading ��

��h� autocorrelation at lag h ��

rhs right�hand side

rv random variable

S class of the subexponential distributions ��

S��� extension of the class S ��

s	s symmetric 	�stable ��

�� variance of a rv

��
A variance of the rv A

sign�a� sign of the real number a

SLLN strong law of large numbers ��

Sn cumulative sum of X�� � � � � Xn ��

ss self�similar ��

S�t� random sum� ��

total claim amount ��

u initial capital ��

u� un threshold value in extreme value theory

U�a� b� uniform random variable on �a� b�

U�t� risk process ��

U�t�  F���� t��� ���

var�X� variance of the rv X

WLLN weak law of large numbers ��

wlog without loss of generality

� shape parameter of the GEV and GPD ���

xF right endpoint of the df F ���

X��n maximum of X�� � � � � Xn ���

Xk�n kth largest order statistic ���



��� Symbols

Xn sample mean ��

Z set of the integers

� a�x� � b�x� as x	 x� means that

limx�x� a�x��b�x�  �

a�x� � � means a�x�  o���

� a�x� � b�x� as x	 x� means that

a�x� is approximately �roughly� of the same

order as b�x� as x	 x�	 It is only used

in a heuristic sense	

� a�x� � b�x� as x	 x� means that

� � lim infx�x� a�x��b�x�

� lim supx�x� a�x��b�x� ��
� convolution

k � k kxk norm of x
��� �x� integer part of x

f�g fxg fractional part of x
x� positive part of a number� x�  max��� x�

j � j Lebesgue measure of a set A� jAjW
i�I Ai

W
i�I Ai  supi�I AiV

i�I Ai

V
i�I Ai  inf i�I Ai

!B boundary of the set B

B closure of the set B

Bc complement of the set B
a�s�	 An

a�s�	 A� a	s	 convergence ���
d	 An

d	 A� convergence in distribution ���
J�	 An

J�	 A� J��convergence ���
Lp	 An

Lp	 A� convergence in Lp ���
P	 An

P	 A� convergence in probability ���
v	 n

v	 � vague convergence ���
d
 A

d
 B� A and B have the same distribution

For a measure � on Rd and intervals �a� b�� �a� b� etc	 we write ��a� b�  

���a� b��� ��a� b�  ���a� b�� etc	


