MATH10282 Introduction to Statistics Semester 2, 2019/2020 Example Sheet 8 - solutions

1. (i) Observe that

$$E(\hat{\mu}_1) = E\left(\frac{X_1 + X_2 + X_3}{3}\right) = \frac{1}{3} \left[E(X_1) + E(X_2) + E(X_3)\right]$$
$$= (1/3)(3\mu) = \mu.$$

Hence $\hat{\mu}_1$ is unbiased.

$$\begin{split} \mathbf{E}(\hat{\mu}_2) &= \mathbf{E}\left(\frac{X_1 + 2X_2 + X_3}{4}\right) = \frac{1}{4} \left[\mathbf{E}(X_1) + 2 \,\mathbf{E}(X_2) + \mathbf{E}(X_3)\right] \\ &= (1/4)(4\mu) = \mu \,. \end{split}$$

Hence $\hat{\mu}_2$ is unbiased.

(ii) Note that

$$\operatorname{Var}(\hat{\mu}_1) = \operatorname{Var}\left(\frac{X_1 + X_2 + X_3}{3}\right)$$
$$= \frac{1}{9} [\operatorname{Var} X_1 + \operatorname{Var} X_2 + \operatorname{Var} X_3] \qquad \text{by independence}$$
$$= \frac{\sigma^2}{3}.$$

Moreover

$$\operatorname{Var}(\hat{\mu}_2) = \operatorname{Var}\left(\frac{X_1 + 2X_2 + X_3}{4}\right)$$
$$= \frac{1}{16} [\operatorname{Var} X_1 + 4 \operatorname{Var} X_2 + \operatorname{Var} X_3] \qquad \text{by independence}$$
$$= \frac{3\sigma^2}{8}.$$

We prefer to use $\hat{\mu}_1$ in practice, as $\operatorname{Var} \hat{\mu}_1 < \operatorname{Var} \hat{\mu}_2$.

- (iii) The sampling distributions are $\hat{\mu}_1 \sim N(\mu, \sigma^2/3), \, \hat{\mu}_2 \sim N(\mu, 3\sigma^2/8).$
- **2.** Note that $\bar{X}_1 \sim N(\mu, \sigma^2/n_1)$ and $\bar{X}_2 \sim N(\mu, \sigma^2/n_2)$. For the estimator $\hat{\mu} = a\bar{X}_1 + (1-a)\bar{X}_2$, we have

$$E(\hat{\mu}) = a E(\bar{X}_1) + (1-a) E(\bar{X}_2) = a\mu + (1-a)\mu = \mu.$$

Thus $bias(\hat{\mu}) = E(\hat{\mu}) - \mu = \mu - \mu = 0$. For the variance, note

$$\operatorname{Var}(\hat{\mu}) = a^{2} \operatorname{Var}(\bar{X}_{1}) + (1-a)^{2} \operatorname{Var}(\bar{X}_{2})$$
$$= \frac{a^{2} \sigma^{2}}{n_{1}} + \frac{(1-a)^{2} \sigma^{2}}{n_{2}}.$$

Differentiating with respect to a and setting equal to zero, we find

$$\frac{d\operatorname{Var}(\hat{\mu})}{da} = \frac{2a\sigma^2}{n_1} - \frac{2(1-a)\sigma^2}{n_2} = 0.$$

Multiplying both sides by n_1n_2 ,

$$2a\sigma^2 n_2 - 2(1-a)\sigma^2 n_1 = 0$$

$$a(2n_2\sigma^2 + 2n_1\sigma^2) = 2\sigma^2 n_1$$

$$a = \frac{2\sigma^2 n_1}{2n_2\sigma^2 + 2n_1\sigma^2} = \frac{n_1}{n_1 + n_2}$$

Checking the second derivatives,

$$\frac{d^2 \operatorname{Var}(\hat{\mu})}{da^2} = \frac{2\sigma^2}{n_1} + \frac{2\sigma^2}{n_2} > 0$$

Therefore $a = n_1/(n_1 + n_2)$ minimizes $\operatorname{Var}(\hat{\mu})$.

3. X_1, \ldots, X_n is a random sample from the distribution with p.d.f.

$$f(x) = \begin{cases} e^{-(x-\delta)}, & x > \delta \\ 0, & \text{otherwise}. \end{cases}$$

(i)

$$E(\bar{X}_n) = E(X_1) = \int_{\delta}^{\infty} x e^{-(x-\delta)} dx$$
$$= \left[-x e^{-(x-\delta)} \right]_{x=\delta}^{x=\infty} + \int_{\delta}^{\infty} 1 \times e^{-(x-\delta)} dx$$

using integration by parts

$$= \delta + \left[-e^{-(x-\delta)} \right]_{x=\delta}^{x=\infty} = 1 + \delta \neq \delta$$

Thus \bar{X}_n is biased for δ .

- (ii) $\operatorname{bias}(\bar{X}_n) = 1 + \delta \delta = 1$. The bias remains constant as $n \to \infty$.
- (iii) The alternative estimator $\hat{\delta} = \bar{X}_n 1$ is unbiased for δ , since

$$E(\hat{\delta}) = E(\bar{X}_n - 1) = (1 + \delta) - 1 = \delta$$

4. (i)

$$L(p) = \prod_{i=1}^{5} {3 \choose x_i} p^{x_i} (1-p)^{3-x_i}$$
$$= p^{\sum_{i=1}^{5} x_i} (1-p)^{15-\sum_{i=1}^{5} x_i} \prod_{i=1}^{5} {3 \choose x_i}$$

(ii) The given data is $x_1 = 1$, $x_2 = 3$, $x_3 = 2$, $x_4 = 2$, $x_5 = 3$. Hence $\sum_{i=1}^{5} x_i = 11$ and $\prod_{i=1}^{5} {3 \choose x_i} = 3 \times 1 \times 3 \times 3 \times 1 = 27$.

p	L(p)
0.5	$27(0.5)^{11}(0.5)^4 = 8.24 \times 10^{-4}$ $27(0.6)^{11}(0.4)^4 = 2.51 \times 10^{-3}$ $27(0.7)^{11}(0.3)^4 = 4.32 \times 10^{-3}$ $27(0.8)^{11}(0.2)^4 = 3.71 \times 10^{-3}$
0.6	$27(0.6)^{11}(0.4)^4 = 2.51 \times 10^{-3}$
0.7	$27(0.7)^{11}(0.3)^4 = 4.32 \times 10^{-3}$
0.8	$27(0.8)^{11}(0.2)^4 = 3.71 \times 10^{-3}$

The value of p which maximizes L(p) out of the set $\{0.5, 0.6, 0.7, 0.8\}$ is p = 0.7. We would choose this value to be the maximum likelihood estimate of p in this case.

5. (i) The data x_1, \ldots, x_n were obtained by random sampling from a Geom(p) distribution. The probability mass function for this distribution is

$$p(x) = (1-p)^{x-1}p, \qquad x = 1, 2, 3, \dots$$

Hence, by independence of the observations, the likelihood function is

$$L(p) = \prod_{i=1}^{n} p(x_i) = \prod_{i=1}^{n} (1-p)^{x_i-1} p_i$$
$$= (1-p)^{\sum_{i=1}^{n} x_i - n} p^n.$$

The log-likelihood is

$$\ell(p) = \left(\sum_{i=1}^{n} x_i - n\right) \log(1-p) + n \log p.$$

(ii) Differentiating the log-likelihood,

$$\frac{d\ell}{dp}\bigg|_{p=\hat{p}} = -\frac{\sum_{i=1}^{n} x_i - n}{1 - \hat{p}} + \frac{n}{\hat{p}} = 0$$
$$\hat{p}\left(\sum_{i=1}^{n} x_i - n\right) = n(1 - \hat{p})$$
$$\hat{p}\sum_{i=1}^{n} x_i = n$$

Hence $\hat{p} = n / \sum_{i=1}^{n} x_i = 1/\bar{x}$. Checking the second derivatives,

$$\left. \frac{d^2\ell}{dp^2} \right|_{p=\hat{p}} = -\frac{\sum_{i=1}^n x_i - n}{(1-\hat{p})^2} - \frac{n}{\hat{p}^2}.$$

As $x_i \ge 1$, for i = 1, 2, ..., we have that $\sum_{i=1}^n x_i \ge n$ and so the second derivative is negative. Hence $\hat{p} = 1/\bar{x}$ does indeed maximize the likelihood.

- 6. From the sample, we calculate $\bar{x} = 11.48$. Also, n = 10, $\sigma = 0.8$ is known, and the measurements are normally distributed.
 - (i) For a 95% confidence interval, set $\alpha = 0.05$. In this case, to find $z_{1-\alpha/2} = z_{0.975}$ note that $\Phi(z_{0.975}) = 0.975$, i.e. $z_{0.975}$ is the 0.975 quantile of a N(0,1) distribution. From tables/R, $z_{0.975} = 1.96$. The end points of the 95% confidence interval are

$$\bar{x} \pm \frac{z_{1-\alpha/2} \sigma}{\sqrt{n}} = 11.48 \pm 1.96 \times 0.8/\sqrt{10}$$
.

Hence the 95% confidence interval for the mean PCB level of the fish is (10.99, 11.98).

(ii) For a 99% confidence interval, set $\alpha = 0.01$. Here $z_{1-\alpha/2} = z_{0.995}$ satisfies $\Phi(z_{0.995}) = 0.995$, i.e. $z_{0.995}$ is the 0.995 quantile of a N(0, 1) distribution. From tables/R, $z_{0.995} = 2.576$. The end points of the 99% CI are

$$\bar{x} \pm \frac{z_{1-\alpha/2} \sigma}{\sqrt{n}} = 11.48 \pm 2.576 \times 0.8/\sqrt{10} \,,$$

i.e. the 99% confidence interval for the mean PCB level of the fish is (10.83, 12.13).

7. (i) For a 95% confidence interval, we have $z_{1-\alpha/2} = z_{0.975} = \Phi^{-1}(0.975) = 1.96$. The end points of the 95% confidence interval are

$$\bar{x} \pm \frac{z_{1-\alpha/2} \sigma}{\sqrt{n}} = 100.8 \pm 1.96 \times 3.4/\sqrt{9}.$$

Hence a 95% confidence interval for the mean lifetime is (98.58, 103.02).

(ii) For a 98% confidence interval, $z_{1-\alpha/2} = z_{0.99} = \Phi^{-1}(0.99) = 2.3263$. Thus the end points of the 98% CI are

$$100.8 \pm 2.3263 \times 3.4/\sqrt{9}$$
.

Hence the 98% confidence interval for the mean lifetime is (98.16, 103.44). Note that as we increase the confidence level, the width of the resulting confidence interval increases.