
MATH10282 Introduction to Statistics

Semester 2, 2019/2020

Example Sheet 6 - Solutions

1. (i) Assuming that each passenger has the same probability of showing up,
and each passenger shows up or not independently of all other passengers,
then Y ∼ Bi(n, p) with n = 267 and p = 1 − 0.06 = 0.94. In this case,
E(Y ) = np = 250.98 and Var(Y ) = np(1− p) = 15.0588.

(ii) Recall from the notes that the normal approximation is valid if

n ≥ 9 max

{
1− p
p

,
p

1− p

}
.

In this case, 9p/(1 − p) = 141 and 9(1 − p)/p = 0.57 and n = 267. Thus
the normal approximation is valid.

(iii) Using a continuity correction, the approximate probability that between
248 and 255 passengers show up is

P(248 ≤ Y ≤ 255) ≈ P (247.5 ≤ X ≤ 255.5)

where X ∼ N(250.98, 15.0588)

= P

(
247.5− 250.98√

15.0588
≤ Z ≤ 255.5− 250.98√

15.0588

)
, Z ∼ N(0, 1)

= Φ(1.165)− Φ(−0.897)

= 0.8780− 0.1849 = 0.6931 .

However, if more than 255 passengers arrive then the plane will take off
full and the remaining passengers will be transferred to another flight. The
probability that the flight takes off with between 248 and 255 passengers
is therefore

P (Y ≥ 248) ≈ P (X ≥ 247.5) = 1− P(X ≤ 247.5)

≈ 1− Φ(−0.897) = 0.8151 .

(iv) The probability that there will be a seat for all passengers who show up is

P(Y ≤ 255) ≈ P(X ≤ 255.5) = P

(
Z ≤ 255.5− 250.98√

15.0588

)
= Φ(1.165) = 0.8780

(v) The desired probability is equal to

P(0.93 ≤ Y/267 ≤ 0.94) .
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Note that the distribution of Y/267 is approximately normal with mean
250.98/267 = 0.94 and variance Var(Y/267) = Var(Y )/(267)2 = 0.94 ×
0.06/267 = 0.000211236. Thus the above probability is approximately

Φ

(
0.94− 0.94√
0.000211236

)
− Φ

(
0.93− 0.94√
0.000211236

)
= Φ(0)− Φ(−0.6880)

= 0.5− 0.2457 = 0.2543.

2. (i) Since n ≥ 9 max{ p
1−p ,

1−p
p }, we have that both

n ≥ 9

(
1− p
p

)
(∗) and n ≥ 9

(
p

1− p

)
(∗∗) .

Note also that

n− np√
np(1− p)

=
n√
n

(1− p)√
1− p

=
√
n

√
1− p
p

(†) .

Taking square roots of (∗∗), we have that
√
n ≥ 3

√
p

1−p . Substituting this

into (†) we have

n− np√
np(1− p)

≥ 3

√
p

1− p

√
1− p
p

= 3 ,

thus the first statement is proved. Similarly,

−np√
np(1− p)

= −
√
n

√
p

1− p
(††)

Taking square roots of (∗) and multiplying by −1 (which reverses the in-

equality sign), we have −
√
n ≤ −3

√
1−p
p . Substituting this into (††), we

have
−np√
np(1− p)

≤ −3

√
1− p
p

√
p

1− p
= −3 .

This proves the second statement.

(ii)

P(0 ≤ Y ≤ n) = P

(
−np√
np(1− p)

≤ Y − np√
np(1− p)

≤ n− np√
np(1− p)

)

= P

(
−np√
np(1− p)

≤ Z ≤ n− np√
np(1− p)

)
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By part (i), if n ≥ 9 max{ p
1−p ,

1−p
p } then −np√

np(1−p)
≤ −3 and n−np√

np(1−p)
≥ 3.

Hence,

P(0 ≤ Y ≤ n) = P

(
−np√
np(1− p)

≤ Z ≤ n− np√
np(1− p)

)
≥ P(−3 ≤ Z ≤ 3) (If you are not sure why, draw a picture!)

= Φ(3)− Φ(−3) = 2Φ(3)− 1 = 0.9973.

Thus, as claimed, P(0 ≤ Y ≤ n) ≥ 0.9973 if n ≥ 9 max{ p
1−p ,

1−p
p }.

(iii) Rule-of-thumb: approximation is valid if n ≥ 9 max
{

p
1−p ,

1−p
p

}
. If p = 0.1

then we need

n ≥ 9 max

{
0.1

0.9
,
0.9

1

}
= 9 max

{
1

9
, 9

}
= 9× 9 = 81 .

If n = 100, then we need

100 ≥ 9

(
1− p
p

)
and 100 ≥ 9

(
p

1− p

)
⇐⇒ 109p ≥ 9 and 100 ≥ 109p

⇐⇒ p ∈
[

9

109
,
100

109

]
≈ [0.0826, 0.9174] .

3. (i) X̄25 ∼ N(112, 12
2

25 ), i.e. N(112, 5.76).

(ii) P(X25 > 115) = 1− Φ
(
115−112√

5.76

)
= 1− Φ(1.25) = 1− 0.944 = 0.1056.

(iii) Observe that

P(−1 + µ < X̄25 < µ+ 1) = P

(
−1√
5.76

<
X̄25 − µ√

5.76
<

1√
5.76

)
= Φ(0.417)− Φ(−0.417)

= 0.6617− 0.3383 = 0.3234.

4. Let X1, . . . , X10 be an independent random sample from N(20, 3), and Y1, . . . , Y15
be an independent random sample from the same distribution, independent of
the first sample. We require P(|X̄10 − Ȳ15| > 0.3). Observe

P(|X̄10 − Ȳ15| > 0.3) = 1− P(|X̄10 − Ȳ15| < 0.3)

= 1− P(−0.3 < X̄10 − Ȳ15 < 0.3) .
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Note that X̄10 ∼ N(20, 3/10) and Ȳ15 ∼ N(20, 3/15) independently, so that

X̄10 − Ȳ15 ∼ N
(

0,
3

10
+

3

15

)
∼ N(0, 1/2)

Thus the required probability is

1− Φ

(
0.3− 0√

1/2

)
+ Φ

(
−0.3− 0√

1/2

)
= 1− Φ(0.424) + Φ(−0.424)

= 1− 0.6642 + 0.3358 = 0.6716.

5. Let X be the number of voters supporting Candidate A in the first sample,
and let Y be the number supporting Candidate A in the second sample. Then
X ∼ Bi(200, 0.65) and Y ∼ Bi(200, 0.65) independently.

We require

P

(∣∣∣∣ X200
− Y

200

∣∣∣∣ < 0.1

)
= P

(
−0.1 <

X

200
− Y

200
< 0.1

)
.

Now, using the normal approximation to the binomial distribution, we have that
X
200 ∼ N(0.65, 0.65×0.35200 ) approximately and Y

200 ∼ N(0.65, 0.65×0.35200 ) approxi-
mately. X and Y are also independent. Thus we have that, approximately,

X

200
− Y

200
∼ N

(
0.65− 0.65,

0.65× 0.35

200
+

0.65× 0.35

200

)
.

∼ N(0, 0.002275)

Thus the required probability is approximately

Φ

(
0.1√

0.002275

)
− Φ

(
−0.1√

0.002275

)
= Φ(2.097)− Φ(−2.097)

= 0.9820− 0.0180 = 0.9640 .

6. (i) Let X1, . . . , Xn be an independent sample from a Po(λ) distribution, with
λ unknown. Consider λ̂ = X̄n. We have

E(λ̂) = E(X̄n) =
nλ

n
= λ .

Var(λ̂) = Var(X̄n) =
nλ

n2
=
λ

n
.

By the CLT, λ̂ = X̄n ∼ N(λ, λ/n) approximately for large n.
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(ii) Note that X̄100 ∼ N(36, 36/100) approximately, and so

P(35.0 < X̄100 < 37.0) ≈ Φ

(
37− 36

0.6

)
− Φ

(
35− 36

0.6

)
= Φ(1.667)− Φ(−1.667)

= 0.9522− 0.0478 = 0.9044 .

7. Let X1, . . . , X10 be a random sample from N(48, 36). Let

S2 =
1

9

10∑
i=1

(Xi − X̄)2

be the sample variance. We have that

9× S2

36
∼ χ2(9) .

(i) Observe that

P(25 ≤ S2 ≤ 60) = P

(
9× 25

36
≤ 9× S2

36
≤ 9× 60

36

)
= FY (15)− FY (6.25) = 0.9090− 0.2853 = 0.6237

where FY is the c.d.f. of a χ2(9) random variable. Note that the χ2

probabilities have been computed using R via pchisq(15, df=9) etc.

(ii) We require n such that P(S2 > 20) = 0.9, i.e. such that

P

(
(n− 1)S2

36
>

(n− 1)× 20

36

)
= 0.9 .

This is equivalent to 1 − FY (0.555 × (n − 1)) = 0.9, or alternatively
FY (0.555× (n− 1)) = 0.1 where Y ∼ χ2(n− 1).

By trial and error, we find that

when n− 1 = 12 , FY (0.555× (n− 1)) = 0.1208

when n− 1 = 13 , FY (0.555× (n− 1)) = 0.1093

when n− 1 = 14 , FY (0.555× (n− 1)) = 0.0990

Therefore choose n − 1 = 14, i.e. n = 15, as the probability 0.0990 is
closest to 0.1.

8. Let X1, . . . , Xn be a random sample of size n from a population with mean µ = 0
and variance σ2 which is unknown. We have

σ̂2 = k
n∑

i=1

X2
i .
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We know E(Xi) = 0 and Var(Xi) = σ2, for i = 1, . . . , n. Moreover, Var(Xi) =
E(X2

i )− E(Xi)
2 = E(X2

i ). Thus,

E(σ̂2) = k

n∑
i=1

E(X2
i ) = knσ2 .

Hence E(σ̂2) = knσ2, which equals σ2 when k = 1/n. If X1, . . . , Xn ∼ N(0, σ2),
the estimator σ̂2 can be scaled to give a random variable with a χ2 distribution:

nσ̂2

σ2
∼ χ2(n) .

9. X1, . . . , Xn are a random sample from U(0, θ). We have that E(Xi) = θ/2, so

E(kX̄n) = kE(X̄) = kE(X) = kθ/2 .

Hence, kX̄ is unbiased for θ if k = 2. Note also that σ2 = Var(Xi) = θ2/12, e.g.
using properties given in the notes on common distributions. Thus,

Var(θ̂) = Var(2X̄n) = 4σ2/n = 4θ2/(12n) = θ2/(3n) .

As n→∞, Var(θ̂)→ 0.

10. X1, . . . , Xn are a random sample from Bi(m, p), and

p̂ =
X̄n + 1

n+ 2
.

By linearity of expectations, we have that

E(p̂) =
E(X̄n) + 1

n+ 2
=
mp+ 1

n+ 2
.

Hence the bias is given by

bias(p̂) = E(p̂)− p =
mp+ 1

n+ 2
− p

=
mp+ 1− np− 2p

n+ 2

=
1− p(n+ 2−m)

n+ 2

As n → ∞, bias(p̂) → −p, because 1
n+2 → 0 and n+2−m

n+2 → 1 as n → ∞ (note
that m is fixed in value). The variance is

Var(p̂) =
1

(n+ 2)2
Var(X̄n)

=
mp(1− p)
n(n+ 2)2

→ 0 as n→∞ .

Hence for large n, the estimator p̂ is in fact very highly concentrated around the
wrong value. Thus we would not recommend the use of this estimator.
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