
MATH10282 Introduction to Statistics

Semester 2, 2019/2020

Example Sheet 2 - Solutions

1. Only method (iii) is likely to lead to a representative sample. All the other
methods are likely only to sample a restricted part of the population and lead
to bias.

2. (i) No, because passengers on a luxury cruise liner are not likely to be a
cross-section of the population. They will likely tend to be more affluent
individuals who can afford to spend more than average on a vacation.

(ii) No, because people earning different amounts may be less likely to answer.
For example, the rich may not want to answer for privacy or security
reasons, while the poor may be embarrassed to answer. Unless we can
guarantee that all surveys are returned and answered honestly the sample
may not be representative. Also it may be harder to locate wealthy
individuals, or poor individuals who are not employed, in which case the
questionnaires were less likely to reach those people.

(iii) No. Here the wording of the question (describing the practice as ‘unfair’)
may bias the responses. A more neutral wording should be used.

3. The population is comprised of the values {2,3,6,8,11}, all equally likely.

(i) The population mean is given by

µ =
1

5
(2 + 3 + 6 + 8 + 11) =

30

5
= 6 .

(ii) First note that X1 is equally likely to take value 2, 3, 6, 8 or 11. Thus,

E(X1) =
∑
x

xpX(x) =
1

5
(2 + 3 + 6 + 8 + 11) = 6

E(X2
1 ) =

∑
x

x2pX(x) =
1

5
(22 + 32 + 62 + 82 + 112) =

234

5
.

Hence,

Var(X1) = E(X2
1 )− E(X1)2 =

234

5
− 62 =

234− 180

5
=

54

5
= 10.8 .

(iii) The possible (ordered) samples of size two that can be drawn with re-
placement are as follows:

(2,2) (2,3) (2,6) (2,8) (2,11)
(3,2) (3,3) (3,6) (3,8) (3,11)
(6,2) (6,3) (6,6) (6,8) (6,11)
(8,2) (8,3) (8,6) (8,8) (8,11)
(11,2) (11,3) (11,6) (11,8) (11,11)
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The corresponding sample means are:

2.0 2.5 4.0 5.0 6.5
2.5 3.0 4.5 5.5 7.0
4.0 4.5 6.0 7.0 8.5
5.0 5.5 7.0 8.0 9.5
6.5 7.0 8.5 9.5 11.0

The sampling distribution of X̄ is thus as follows:

x̄ 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0 6.5

P(X̄ = x̄) 1/25 2/25 1/25 2/25 2/25 2/25 2/25 1/25 2/25

x̄ 7.0 8.0 8.5 9.5 11.0

P(X̄ = x̄) 4/25 1/25 2/25 2/25 1/25

We can compute the expectation and variance of X̄ using the following:

E(X̄) =
∑
x̄∈RX̄

x̄P(X̄ = x̄) = 6

E(X̄2) =
∑
x̄∈RX̄

x̄2 P(X̄ = x̄) = 41.4

Var(X̄) = E(X̄2)− E(X̄)2 = 41.4− 36 = 5.4.

These calculations can be checked by hand using a calculator, or more
quickly using R:

> xbar <- c( 2, 2.5, 3, 4, 4.5, 5, 5.5, 6,

6.5, 7, 8, 8.5, 9.5, 11)

> prob <- (1/25)*c(1,2,1,2,2,2,2,1,2,4,1,2,2,1)

> sum(xbar*prob)

[1] 6

> sum(xbar^2 * prob) - 6^2

[1] 5.4

Theorem 1.4 states that if X1, . . . , Xn are i.i.d., then E(X̄) = µ and
Var(X̄) = σ2/n. Under sampling with replacement, X1, . . . , Xn are i.i.d.,
and so the above calculations agree with this general theory.

4. The 10 possible samples of size two drawn without replacement are:

(2,3) (2,6) (2,8) (2,11) (3,6) (3,8) (3,11) (6,8) (6,11) (8,11)

Note that now, for example, the selection (2,3) and (3,2) are considered the
same. The corresponding sample means are: 2.5, 4.0, 5.0, 6.5, 4.5, 5.5, 7.0,
7.0, 8.5, 9.5 so that the sampling distribution of X̄ is:

x̄ 2.5 4.0 4.5 5.0 5.5 6.5 7.0 8.5 9.5

P(X̄ = x̄) 1/10 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10
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We can compute the expectation and variance of X̄ under sampling without
replacement as follows

E(X̄) =
∑
x̄∈RX̄

x̄P(X̄ = x̄) = 6

E(X̄2) =
∑
x̄∈RX̄

x̄2 P(X̄ = x̄) = 40.05

Var(X̄) = E(X̄2)− E(X̄)2 = 40.5− 36 = 4.05.

These calculations can be checked quickly using R:

> xbar <- c(2.5,4,4.5,5,5.5,6.5,7,8.5,9.5)

> probs <- (1/10) * c(1,1,1,1,1,1,2,1,1)

> sum(xbar*probs)

[1] 6

> sum(xbar^2*probs) - 6^2

[1] 4.05

The variance is smaller when sampling without replacement is used (4.05
rather than 5.4).

[The (non-examinable) theory in lectures stated that under sampling without

replacement E(X̄) = µ and Var(X̄) = σ2

n
N−n
N−1 . Here the f.p.c. is

N−n
N−1 = 5−2

5−1 =

0.75, and f.p.c. × σ2

n = 0.75 × 5.4 = 4.05, which is the same as the value
of Var(X̄) calculated above. Thus the example calculations agree with the
general theory.]

5. (i) The population is {3, 7, 9, 11, 15}. The population mean is µ = (1/5)(3 +
7 + 9 + 11 + 15) = 9. Observe that

N∑
j=1

v2
j = (9 + 49 + 81 + 121 + 225) = 485 ,

and so σ2 = 1
N

∑N
j=1 v

2
j − µ2 = 485/5− 81 = 97− 81 = 16.

(ii) The set of possible samples of size three that can be drawn without
replacement is:

(3,7,9) (3,7,11) (3,7,15) (3,9,11) (3,9,15) (3,11,15)
(7,9,11) (7,9,15) (7,11,15)
(9,11,15)

Each of the above samples has probability 1/10 of being selected. The
corresponding sample means are:
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19/3 21/3 25/3 23/3 27/3 29/3
27/3 31/3 33/3
35/3

Thus the mean of the sampling distribution of X̄ is

E(X̄) =
19 + 21 + 25 + 23 + 27 + 29 + 27 + 31 + 33 + 35

3× 10
= 9 .

This agrees with the theory, which states that E(X̄) = µ. To calculate
the variance of the sampling distribution note that

E(X̄2) =
192 + 212 + 252 + 232 + 272 + 292 + 272 + 312 + 332 + 352

32 × 10

=
7530

90
≈ 83.667 ,

and so

Var(X̄) = E(X̄2)− (E X̄)2 ≈ 83.667− 81 = 2.667 .

(iii) The sample medians Q̂(0.5) corresponding to the above samples are:

7 7 7 9 9 11
9 9 11
11

Each of these occurs with probability 1/10. The mean of this sampling
distribution is

E(Q̂(0.5)) =
7 + 7 + 7 + 9 + 9 + 11 + 9 + 9 + 11 + 11

10
= 9 .

To compute the variance, note

E([Q̂(0.5)]2) =
72 + 72 + 72 + 92 + 92 + 112 + 92 + 92 + 112 + 112

10

=
834

10
= 83.4 ,

and so

Var(Q̂(0.5)) = E([Q̂(0.5)]2)− (E Q̂(0.5))2 = 83.4− 81 = 2.4 .

(iv) In this scenario, both sampling distributions have a mean equal to the
population mean µ = 9.0. The sampling variance of the sample means is
slightly higher than that for the sample medians.
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6. Since X1, . . . , X10 are assumed to be a random sample from U [0, 1], they are
identically and independently distributed. Hence we may use Theorem 1.4
with n = 10 to show that

E(X̄) = µ =

∫ ∞
−∞

xfX(x)dx

Var(X̄) = σ2/10 = Var(X1)/10 .

Note from MATH10141 Probability I that the p.d.f. of a U [0, 1] random vari-
able is

fX(x) =

{
1 if x ∈ [0, 1]

0 otherwise

and so

µ =

∫ ∞
−∞

xfX(x)dx =

∫ 0

−∞
xfX(x)dx+

∫ 1

0
xfX(x)dx+

∫ ∞
1

xfX(x)dx

=

∫ 0

−∞
x× 0dx+

∫ 1

0
x× 1dx+

∫ ∞
1

x× 0dx

=

∫ 1

0
xdx =

[
x2

2

]1

0

= 1/2 .

To find the variance, note that

E(X2
1 ) =

∫ ∞
−∞

x2fX(x)dx =

∫ 1

0
x2dx =

[
x3

3

]1

0

= 1/3

and so σ2 = Var(X1) = E(X2
1 )− E(X1)2 = 1/3− (1/2)2 = 1/(12). Hence

Var(X̄) = σ2/10 =
1

120
.

7. If X1, . . . , X6 ∼ Po(λ) then

P(X1 = x1, X2 = x2, X3 = x3, X4 = x4, X5 = x5, X6 = x6)

=
6∏
i=1

P (Xi = xi) by independence

=

6∏
i=1

λxie−λ

xi!
=
λ
∑
xie−6λ∏6
i=1 xi!

.

Note that (x1, x2, x3, x4, x5, x6) = (9, 13, 6, 8, 10, 13) and so
∑6

i=1 xi = 59.

For λ = 10, we have

P(X1 = 9, X2 = 13, X3 = 6, X4 = 8, X5 = 10, X6 = 13)

=
1059e−6×10

9! 13! 6! 8! 10! 13!
= 5.907× 10−7 .
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For λ = 12, we have

P(X1 = 9, X2 = 13, X3 = 6, X4 = 8, X5 = 10, X6 = 13)

=
1259e−6×12

9! 13! 6! 8! 10! 13!
= 1.704× 10−7 .

These can be evaluated quickly in R via

> prod( dpois(x=c(9,13,6,8,10,13),lambda=10) )

[1] 5.907332e-07

> prod( dpois(x=c(9,13,6,8,10,13),lambda=12) )

[1] 1.70432e-07

The value λ = 10 makes the joint probability of the observed data larger.

6


