7: THE NEYMAN-PEARSON LEMMA

Suppose we are testing a simple null hypothesis $H_0: \theta = \theta'$ against a simple alternative $H_1: \theta = \theta''$, where θ is the parameter of interest, and θ' , θ'' are particular values of θ . We are given a random sample (X_1, \ldots, X_n) which are *iid*, each with the p.d.f. $f(x; \theta)$.

A p.d.f. for a random variable X, as defined by Hogg and Craig, p. 39, is either the probability density function (if X is a continuous random variable) or the probability mass function f(x)=Pr(X=x)(if X is a discrete random variable). This definition is not the standard one, however, as the term p.d.f. is usually reserved for the density of a continuous random variable. Also note that Hogg and Craig are assuming that X is either discrete or continuous, even though there are other possibilities.

We are going to reject H_0 if $(X_1, \ldots, X_n) \in C$, where *C* is a region of the *n*-dimensional sample space called the **critical region.** This specifies a test. We say that the critical region *C* has **size** α if the probability of a Type I error is α :

$$Pr[(X_1,\ldots,X_n) \in C;H_0] = \alpha .$$

We call *C* a **best critical region** of size α if it has size α , and

$$Pr[(X_1, \ldots, X_n) \in C; H_1] \ge Pr[(X_1, \ldots, X_n) \in A; H_1]$$

for every subset *A* of the sample space for which $Pr[(X_1, \ldots, X_n) \in A; H_0] = \alpha$. Thus, the power of the test associated with the best critical region *C* is at least as great as the power of the test associated with any other critical region *A* of size α .

• The Neyman-Pearson Lemma provides us with a way of finding a best critical region.

The joint p.d.f. of X_1, \ldots, X_n , evaluated at the observed values x_1, \ldots, x_n is called the **likeli**-

hood function,

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$$

We often think of $L(\theta)$ as a function of θ alone,

although it clearly depends on the data as well.

Define the **likelihood ratio** as $L(\theta')/L(\theta'')$. Informally, we can think of this as measuring the plausibility of H_0 relative to H_1 . Therefore, if the likelihood ratio is sufficiently small, we might be inclined to reject H_0 . Example 1, p. 396 of Hogg and Craig shows that for a binomial random variable with n = 5, the best critical region for testing a simple null versus a simple alternative involving the probability θ of success is the one for which $L(\theta')/L(\theta'') \le k$, where k is some constant chosen to ensure that the test has level α . The Neyman-Pearson Lemma asserts that, in general a best critical region can be found by finding the ndimensional points in the sample space for which the likelihood ratio is smaller than some constant.

The Neyman-Pearson Lemma: If k > 0 and C is a subset of the sample space such that

$$L(\theta')/L(\theta'') \le k$$
 for all $(x_1, \ldots, x_n) \in C$ (a)

$$L(\theta')/L(\theta'') \ge k$$
 for all $(x_1, \ldots, x_n) \in C^*$ (b)

$$\alpha = Pr[(X_1, X_2, \dots, X_n) \in C; H_0]$$
 (c)

where C^* is the complement of *C*, then *C* is a best critical region of size α for testing the simple hypothesis $H_0: \theta = \theta'$ against the alternative simple hypothesis $H_1: \theta = \theta''$. **Proof:** Suppose for simplicity that the random variables X_1, \ldots, X_n are continuous. (If they were discrete, the proof would be the same, except that integrals would be replaced by sums). Let $X = (X_1, \ldots, X_n)$. For any region R of n-dimensional space, we will denote the probability that $X \in R$ by $\int_R L(\theta)$, where theta is the true value R

of the parameter. The full notation, omitted to save space, would be

$$Pr[X \in R; \theta] = \int \cdots_{R} \int L(\theta; x_1, \dots, x_n) dx_1 \cdots dx_n$$

We need to prove that if A is another critical region of size α , then the power of the test associated with C is at least as great as the power of the test associated with A, or in the present notation, that

$$\int_{A} L(\theta'') \le \int_{C} L(\theta'') \quad . \tag{1}$$

Suppose $X \in A^* \cap C$. Then $X \in C$, so by (a),

$$\int_{A^{*} \cap C} L(\theta'') \ge \frac{1}{k} \int_{A^{*} \cap C} L(\theta') \quad . \tag{2}$$

Next, suppose $X \in A \cap C^*$. Then $X \in C^*$, so by (b),

$$\int_{A \cap C^*} L(\theta'') \le \frac{1}{k} \int_{A \cap C^*} L(\theta') \quad . \tag{3}$$

We now establish (1), thereby completing the proof.

$$\int_{A} L(\theta'') = \left[\int_{A \cap C} L(\theta'') \right] + \int_{A \cap C^{*}} L(\theta'')$$
$$= \left[\int_{C} L(\theta'') - \int_{A^{*} \cap C} L(\theta'') \right] + \int_{A \cap C^{*}} L(\theta'')$$

$$\leq \int_{C} L(\theta'') - \frac{1}{k} \int_{A^{*} \cap C} L(\theta') + \frac{1}{k} \int_{A \cap C^{*}} L(\theta') \quad (See (2), (3))$$

$$\left[-\frac{1}{k} \int_{A \cap C} L(\theta') + \frac{1}{k} \int_{A \cap C} L(\theta') \right] \quad (Add \ Zero)$$

$$= \int_{C} L(\theta'') - \frac{1}{k} \int_{C} L(\theta') + \frac{1}{k} \int_{A} L(\theta') \quad (Collect \ Terms)$$

$$= \int_{C} L(\theta'') - \frac{\alpha}{k} + \frac{\alpha}{k}$$

(Since both *C* and *A* have size α)

$$= \int_{C} L(\theta'')$$

•

Eg: Suppose X_1, \ldots, X_n are *iid* $N(\theta, 1)$, and we want to test $H_0: \theta = \theta'$ versus $H_1: \theta = \theta''$, where $\theta'' > \theta'$. According to the *z*-test, we should reject H_0 if $Z = \sqrt{n} (\overline{X} - \theta')$ is large, or equivalently if \overline{X} is large. We can now use the Neyman-Pearson Lemma to show that the *z*-test is best. The likelihood function is

$$L(\theta) = (2\pi)^{-n/2} \exp\{-\sum_{i=1}^{n} (x_i - \theta)^2/2\}.$$

According to the Neyman-Pearson Lemma, a best critical region is given by the set of (x_1, \ldots, x_n) such that $L(\theta')/L(\theta'') \le k_1$, or equivalently, such that $\frac{1}{n} \log [L(\theta'')/L(\theta')] \ge k_2$. But

$$-10 - \frac{1}{n} \log \left[L(\theta'')/L(\theta') \right] = \frac{1}{n} \sum_{i=1}^{n} \left[(x_i - \theta')^2 / 2 - (x_i - \theta'')^2 / 2 \right]$$

$$=\frac{1}{2n}\sum_{i=1}^{n} [(x_i^2 - 2\theta' x_i + {\theta'}^2) - (x_i^2 - 2\theta'' x_i + {\theta''}^2)]$$

$$= \frac{1}{2n} \sum_{i=1}^{n} [2(\theta'' - \theta') x_i + \theta'^2 - \theta''^2]$$

$$= (\theta^{\prime\prime} - \theta^{\prime}) \overline{x} + \frac{1}{2} \left[\theta^{\prime 2} - \theta^{\prime\prime 2} \right] .$$

So the best test rejects H_0 when $\overline{x} \ge k$, where k is a constant. But this is exactly the form of the rejection region for the *z*-test. Therefore, the *z*-test is best.