$\begin{array}{c} {\rm MATH10282~Introduction~to~Statistics} \\ {\rm Semester~2,~2018/19} \\ {\rm Solutions~to~coursework~assignment~using~R} \end{array}$

The data for this question are contained in https://minerva.it.manchester.ac.uk/~saralees/data.txt. The data consist of daily closing stock prices of the company Coca Cola.

(a)	Read the data into R as	
	<pre>z=scan("https://minerva.it.manchester.ac.uk/~saralees/data.txt",] x=z\$a</pre>	list(a=0))
	\times will contain the data.	[1]
(b)	Use the following R command	
	x=diff(log(x))	
		[1]
(c)	Use the following R command	
	<pre>hist(x,xlab="Log returns",ylab="Histogram and fitted PDF", main="",freq=F,xlim=c(-0.15,0.1),ylim=c(0,30))</pre>	
	You will get the plot	

Figure 1: The histogram.

The shape is symmetric. But the tails appear heavier than that of a normal distribution. So, a normal distribution may not be an appropriate choice.

[1]

(d) An appropriate distribution to fit is the scaled Student' t distribution given by the PDF

$$f(x) = \frac{K(\nu)}{\sigma} \left[1 + \frac{(x-\mu)^2}{\sigma^2 \nu} \right]^{-(1+\nu)/2}$$

for $-\infty < x < \infty$, $-\infty < \mu < \infty$, $\sigma > 0$ and $\nu > 0$, where $K(\nu) = \sqrt{\nu} B(\nu/2, 1/2)$ and $B(\cdot, \cdot)$ denotes the beta function defined by

$$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt.$$

There are several R packages which contain functions for computing this distribution. One R package is metRology. Install the package using

install.packages("metRology")
library("metRology")

Now use the following R commands to fit the distribution

```
est=fitdist(x,dist="t.scaled",start=c(1,0,1))
est
```

You will get the output

Fitting of the distribution 't.scaled' by maximum likelihood Parameters:

```
estimate Std. Error
```

- 1 3.0448663048 0.2139152343
- 2 -0.0002416764 0.0002051701
- 3 0.0084289210 0.0002197112

The MLEs of ν , μ and σ are 3.0449, -0.0002 and 0.0084, respectively.

[5]

(e) You can superimpose the fitted PDF on top of the histogram by using the following R commands

```
hist(x,xlab="Log returns",ylab="Histogram and fitted PDF",
    main="",freq=F,xlim=c(-0.15,0.1),ylim=c(0,30))
par(new=TRUE)
plot(seq(-0.15,0.1,0.001),fitted,type="l",xlim=c(-0.15,0.1),
    ylim=c(0,30),xlab="",ylab="")
```

You will get the plot

Figure 2: The histogram and the fitted PDF of the scaled Student't t distribution.

The fitted PDF captures the histogram well especially at its tails.

[1]

(f) The following R commands will perform the Kolmogorov Smirnov test:

```
p1=est$estimate[1]
p2=est$estimate[2]
p3=est$estimate[3]
ks.test(x,"pt.scaled",p1,p2,p3)
```

You will get the following output

One-sample Kolmogorov-Smirnov test

```
data: x
D = 0.012522, p-value = 0.8254
alternative hypothesis: two-sided
Warning message:
In ks.test(x, "pt.scaled", p1, p2, p3) :
  ties should not be present for the Kolmogorov-Smirnov test
```

Since the p-value is well above 0.05 the distribution does an adequate fit. [1] [Total 10 marks]