
MATH10282 Introduction to Statistics

Semester 2, 2020/2021

Examples Class 3: R Session

Introduction

In this second R session we will see how we can generate commonly used sequences of numbers, calculate various
summary statistics and also how to create some simple graphical displays. All the data sets required are in the
course website https://minerva.it.manchester.ac.uk/~saralees/intro.html

The functions rep and seq

The function rep

This is used to replicate values in a vector x, which is one of the arguments of the function. Its usage is:

rep(x, ...)

where x is a vector of values to be replicated and ... denotes further optional arguments which may be used.
These include:

� times - a vector giving the number of times to repeat elements of x. If times is of length length(x), then
ith element of x is repeated times[i] times. If times is of length 1, the whole vector is repeated. The
default is times=1.

� length.out - this is a non-negative integer which gives the desired length of the output vector.

� each - is a non-negative integer. Each element of x is repeated each times. The default value is 1.

Some examples of its use are:

> x<-c(3, 22, 5, 7)

> rep(x, times=2)

[1] 3 22 5 7 3 22 5 7

> rep(x, times=c(1, 2, 2 ,3))

[1] 3 22 22 5 5 7 7 7

> rep(x, length.out=8)

[1] 3 22 5 7 3 22 5 7

> rep(x, each=3)

[1] 3 3 3 22 22 22 5 5 5 7 7 7

>

>

> rep(1:3, times=2)

[1] 1 2 3 1 2 3

> rep(1:3, each=2)

[1] 1 1 2 2 3 3

> rep(1:3, times=c(1:3))

[1] 1 2 2 3 3 3

>

>

> rep(c("A", "B"), times=c(2,3))

[1] "A" "A" "B" "B" "B"

1

https://minerva.it.manchester.ac.uk/~saralees/intro.html

The function seq

This is used to generate regular sequences of numbers. Its form of use is seq(...), where ... denotes optional
arguments which may be used. These include:

� from, to - these are the start and end values of the sequence.

� by - a number which gives the increment of the sequence.

� length.out - a non-negative integer giving the desired length of the sequence.

� along.with - take the length of the sequence from the length of this argument.

Some examples of its use are:

> seq(from=2, to=8, by=2)

[1] 2 4 6 8

> seq(from=2, to=8, by=3)

[1] 2 5 8

> seq(from=2, to=8, by=3.5)

[1] 2.0 5.5

> seq(from=5, to=2, by=-0.5)

[1] 5.0 4.5 4.0 3.5 3.0 2.5 2.0

> seq(from=2, to=8, length.out=6)

[1] 2.0 3.2 4.4 5.6 6.8 8.0

>

>

> z=c(1:5)

> seq(from=4, to=14, along.with=z)

[1] 4.0 6.5 9.0 11.5 14.0

>

>

> 1:4 # note that for successive integers we

do not need to use seq

[1] 1 2 3 4

> 4:1

[1] 4 3 2 1

Simple summary statistics

(i) The mean and median. If we have data in a vector x then the commands mean(x) and median(x)

calculate the mean and median, of the data in x, respectively.

(ii) The variance and standard deviation. For data in a vector x, we can calculate the variance and standard
deviation using the functions var(x) and sd(x), respectively.

(iii) Five number summary. We can use the quantile function as described in the lectures, i.e. quantile(x,

probs=c(0, 0.25, 0.5, 0.75, 1), type=6) will produce estimates based on using r = p× (n + 1).

However, using type=7 in this function is the default R method for this and other quantile estimation
functions. This corresponds to using r = p× (n− 1) + 1.

2

Use of the function summary(x) calculates the five number summary and also the sample mean. The results
are printed out with labels indicating what each value is. The quantiles are estimated here using the method
type=7.

Another alternative is to use the function fivenum(x) which results in a vector of length 5 containing the
sample mininimum, Q̂(0.25), Q̂(0.5), Q̂(0.75) and sample maximum, in that order. Here the quantiles are
estimated using another different methodology.

(iii) We can illustrate these functions on the Moses data.

> moses<-read.table(file="https://minerva.it.manchester.ac.uk/~saralees/moses.txt",

header=TRUE)

> names(moses)

[1] "time"

> t<-moses$time # copy the data into vector t for convenience

> mean(t)

[1] 48.52844

> median(t)

[1] 48.54

> var(t)

[1] 0.5354976

> sd(t)

[1] 0.731777

> fns<-fivenum(t) # store the five number summary in the vector fns

> fns

[1] 47.02 47.95 48.54 49.00 50.19

> iqr<-fns[4]-fns[2] # this calculates the iqr for the moses data

> iqr

[1] 1.05

>

> summary(t)

Min. 1st Qu. Median Mean 3rd Qu. Max.

47.02 47.96 48.54 48.53 48.99 50.19

>

> moses_q7=quantile(moses$time, probs=c(0, 0.25, 0.5,

0.75, 1), type=7)

> moses_q7

0% 25% 50% 75% 100%

47.0200 47.9575 48.5400 48.9950 50.1900

>

>

> moses_q6=quantile(moses$time, probs=c(0, 0.25, 0.5,

0.75, 1), type=6)

> moses_q6

0% 25% 50% 75% 100%

47.0200 47.9475 48.5400 49.0000 50.1900

3

Graphical displays of data

By default, R has just one graphics window open, called device 2, when producing a plot. When a new plot is
produced later in the session the existing active device 2 is closed down and then reopened containing the new
plot. The previous plot is not saved but the command(s) that produced it may be recovered by using the up and
down arrow keys to scroll through your command history. You can save any plot by firstly clicking on the graphics
window, using the menu command File→Save As, and then choosing the file format you want. You will then be
asked to choose a filename and folder location to save to. Such plots can later be copied and pasted into a Word
document if required.

On Windows, if you wish to record all the plots you produce then use:

> windows(record=T)

By default they will be saved in device 2 and can be scrolled through using the Page Up and Page Down keys.
Closing the active graphics window will lose all your plots though. On Macintosh, by default the last ten plots are
saved in the default device. These can be scrolled through using Cmd+←, Cmd+→.

You can open a new active device as follows. The new graphics device number will be one more than the
largest existing device number.

> dev.new()

You can choose which graphics window to view by selecting it from the Windows drop down menu at the top of
the R GUI. The command

> dev.set(3)

would make device 3 the active device, provided it already exists and then you can choose to view it from the
Windows menu. The command

> dev.off(3)

closes down the specified device number. The command graphics.off() closes down all current graphics devices.
This may all sound a little complicated at first. My advice is to just use the default device 2 where possible.

Plots may be permanently saved as described above, or be recovered by editing the command history. Recording
your plotting history using windows(record=T) can be very useful.

The bar chart for discrete data

In an opinion poll from May 2015, the following preferences were counted: Conservatives 369, Labour 314, Liberal
Democrat 75, UKIP 118, Other 124. We firstly create the data then tabulate the results and produce a bar chart
as follows:

> poll <-rep(c("Conservative", "Labour", "Lib Dem", "UKIP", "Other"),

times=c(369, 314, 75, 118, 124))

> poll <-factor(poll)

> table(poll)

poll

Conservative Labour Lib Dem Other UKIP

369 314 75 124 118

> plot(poll)

You can add your own title using the main="..." optional argument in the plot command.

4

The histogram for continuous data

For data in a vector x the simplest way to create a histogram is by using the command hist(x). For the Moses
data the following command produces a frequency histogram, with R automatically choosing the number of bins
(here 7), the bin width (here 2.5), and the origin:

> t<-moses$time

> hist(t)

For a density histogram we use the option freq=F. By default, freq=T, which produces a frequency histogram.1

If we also want to change the number of bins we use the option breaks as follows:

> hist(t, freq=F, breaks=14)

which doubles the number of bins to 14. You should notice that the resulting histogram is now much noisier than
before. Try reducing the number of bins to 4 and note the form of the resulting histogram. Try other numbers of
bins and note the differences between the histograms. Which number of bins do you think works best?

Now try completely specifying the bins using the breaks option to specify the mesh, e.g.

> hist(t, freq=F, breaks=seq(from=47.0, to=51.0, by=0.4))

> hist(t, freq=F, breaks=seq(from=46.8, to=50.8, by=0.4))

For these two histograms the bin width of 0.4 is the same but the origin differs by 0.2. Note the differences in the
two plots.

In practice, it is usually best to start with the default bins option (i.e. do not use breaks) and then refine
the number and/or their location if appropriate to obtain a ‘better’ histogram. Some degree of exploring different
numbers of bins is generally a good idea.

You can add a title using the main="..." option.

The box plot for continuous data

To produce a box plot for the data in a vector x use the command boxplot(x).
Suppose that x contains observations from two (or more) different groups. If we have a factor vector grp listing

the group to which each observation belongs, then we can produce side by side box plots for the different groups
using the command boxplot(x~grp, data=" "), where data= specifies the data frame from which the variables
x and grp should be taken.

For example,

> t<-moses$time

> boxplot(t)

produces a boxplot for the Moses data. You can change the label on the y-axis using the command ylab="..."

> runners<-read.table(file="https://minerva.it.manchester.ac.uk/~saralees/runners_group.txt",

header=T)

> names(runners)

[1] "pmol" "group"

> runners

pmol group

1 29.6 1

1Recall from Chapter 2 that a density histogram based on bins B1, . . . BK of width h has Hist(x) = vk
nh

for x ∈ Bk, where vk
is the number of observations in Bk. A density histogram integrates to 1 (Proposition 2.1). A frequency histogram instead has
Hist(f)(x) = vk

h
, and so it integrates to n.

5

2 25.1 1

3 15.5 1

4 29.6 1

5 24.1 1

6 37.8 1

7 20.2 1

8 21.9 1

9 14.2 1

10 34.6 1

11 46.2 1

12 66.0 2

13 72.0 2

14 79.0 2

15 84.0 2

16 102.0 2

17 110.0 2

18 123.0 2

19 144.0 2

20 162.0 2

21 169.0 2

22 414.0 2

> boxplot(pmol~group, data=runners)

Use help(boxplot) to explore the many other optional arguments.
Note that it is possible to extract interesting subsets of rows from a data set using logical vectors. For example,

we can use the following code to extract the rows corresponding to runners with endorphin concentration greater
than 100 pmol/l:

> highconc <- (runners$pmol > 100)

> runnersHi <- subset(runners, subset = highconc)

> runnersHi

pmol group

16 102 Collapsed

17 110 Collapsed

18 123 Collapsed

19 144 Collapsed

20 162 Collapsed

21 169 Collapsed

22 414 Collapsed

Note that after subsetting some factors may have unused levels, e.g. in the subset here, the level Successful is
not used.

> summary(runnersHi$group)

Collapsed Successful

7 0

Sometimes it is helpful for further analysis to remove unused levels from consideration, as follows:

> runnersHi <- droplevels(runnersHi)

> summary(runnersHi$group)

Collapsed

7

6

Scatter plots and curves

The plot command is very flexible and useful. One of its simplest uses is for creating scatter plots:

> x <- 0:5

> plot(x=x, y=x^2)

Another is for drawing curves specifed by pairs of (x, y) co-ordinates, e.g.:

> x <- seq(from=0, to=5, length=100)

> plot(x=x, y=x^2, type="l", col=2)

The col argument adds colour. Other curves can be added to the same axes as follows:

> lines(x=x,y=x^3, col=4)

Saving your R session

You can save the contents of your current workspace, i.e. all active objects but not plots, by using the menu item
‘File’→‘Save Workspace’. You will then be asked to choose a filename. Add the extension .RData to the filename
you specify. Your command history can also be saved using ‘File’→‘Save History’ and then specifying a filename
with the .Rhistory extension.

At a later date you can resume this saved session by opening R and choosing ‘File’→‘Load Workspace’ and
then ‘File’→‘Load History’. In both cases you select the appropriate previously saved files.

Exercises

(i) The data are in the file https://minerva.it.manchester.ac.uk/~saralees/simdat1.txt which comprises
two columns: the first contains case numbers and the second the data. The first row of the file contains the
variable name for each column. These data are n = 100 observations simulated from a particular parametric
distribution.

Explore these data in R using a range of summary statistics, as well as a histogram and box plot. Suggest
a suitable parametric family from which the data could have arisen. What might be intuitively sensible
estimates of any unknown parameters?

(ii) The data for this exercise are in the file https://minerva.it.manchester.ac.uk/~saralees/geyser.txt

which comprises three columns headed day, duration and interval. We consider only the duration data
in the second column, which correspond to the durations of n = 222 eruptions of the Old Faithful Geyser in
Yellowstone National Park in the USA.

Explore these data in R using summary statistics, a histogram and box plot. What are the main features of
the shape of the empirical distribution of the data? Do you think a single summary measure of location is
adequate for these data? How might you summarise the location of these data?

(iii) The data are in the file https://minerva.it.manchester.ac.uk/~saralees/anorexia.txt comprising of
four columns: case, postwt, prewt and treatment. These data consist of the weights, in kg, of girls receiving
three different kinds of anorexia treatment over a fixed period of time. The controls (group 1) received the
standard treatment, the second group (coded as 2) received cognitive behavioural treatment and the third
group (coded as 3) received family therapy. The weight of each girl was measured before and after treatment
and these are denoted prewt and postwt, respectively in the data file.

The objective is to compare the effects of the three treatments. To facilitate this, create a new variable
recording the change in weight for each girl:

7

https://minerva.it.manchester.ac.uk/~saralees/simdat1.txt
https://minerva.it.manchester.ac.uk/~saralees/geyser.txt
https://minerva.it.manchester.ac.uk/~saralees/anorexia.txt

> dwt <- postwt-prewt

Additional vectors containing the differences for each treatment group on its own, can be constructed, for
example, via:

> std.dwt <- dwt[treatment==1]

which in this case will create a vector called std.dwt containing the dwt values for those receiving treatment
1.

Use summary statistics, histograms and box plots to explore differences between the effects of the three
treatments. Which treatment (if any) do you conclude works best and which (if any) is the least effective?

8

