MATH10282 Introduction to Statistics Semester 2, 2019/20 Solutions to the R Coursework assignment

Year	Life expectancy of men	Life expectancy of women
1920	53.6	54.6
1930	58.1	61.6
1940	60.8	65.2
1950	65.6	71.1
1960	66.6	73.1
1970	67.1	74.7
1980	70.0	77.5
1990	71.8	78.8

The data for this question are contained in the following table:

The data are life expectancy of men and women by year.

(a) The commands

x=c(53.6, 58.1, 60.8, 65.6, 66.6, 67.1, 70.0, 71.8) c(min(x),median(x),mean(x),max(x),sd(x))

give the following

Minimum = 53.60, Median = 66.10, Mean = 64.20, Maximum = 71.80, SD = 6.195159

(b) The commands

y=c(54.6, 61.6, 65.2, 71.1, 73.1, 74.7, 77.5, 78.8) c(min(y),median(y),mean(y),max(y),sd(y))

give the following

Minimum = 54.60, Median = 72.10, Mean = 69.58, Maximum = 78.80, SD = 8.416947

[1]

[1]

- (c) The minimum, median, mean, maximum and standard deviation all appear to be larger for women. [1]
- (d) The command

boxplot(x,y,names=c("Men","Women"),ylab="Life expectancy")

gives

Figure 1: The boxplots of the life expectancies of men and women.

The boxplots show that the median, quartiles and the inter quartile range are larger for women. [1]

(e) The estimates of the two parameters of the normal distribution are

$$\widehat{\mu} = \frac{1}{8} \sum_{i=1}^{8} x_i = 64.20$$

and

$$\hat{\sigma} = \sqrt{\frac{1}{8} \sum_{i=1}^{8} (x_i - \hat{\mu})^2} = 5.795041.$$

The command

ks.test(x,"pnorm",64.2,5.795041)

gives the output

One-sample Kolmogorov-Smirnov test

```
data: x
D = 0.22045, p-value = 0.7571
alternative hypothesis: two-sided
```

Hence, the fit of the normal distribution is adequate.

(f) The estimates of the two parameters of the normal distribution are

$$\widehat{\mu} = \frac{1}{8} \sum_{i=1}^{8} y_i = 69.575$$

and

$$\hat{\sigma} = \sqrt{\frac{1}{8} \sum_{i=1}^{8} (y_i - \hat{\mu})^2} = 7.873333.$$

The command

ks.test(y,"pnorm",69.575,7.873333)

gives the output

```
One-sample Kolmogorov-Smirnov test
```

data: y
D = 0.20179, p-value = 0.841
alternative hypothesis: two-sided

Hence, the fit of the normal distribution is adequate.

[1]

(g) The following commands

```
up <-mean(x)-mean(y)+qnorm(0.975)*sqrt(var(x)/8+var(y)/8)
low <-mean(x)-mean(y)-qnorm(0.975)*sqrt(var(x)/8+var(y)/8)
```

give the 95% confidence interval as [-12.61709, 1.867093]. Since this interval does contain zero, the mean life expectancies of men and women are not significantly different. [2]

(h) The following commands

give the output

Figure 2: Life expectancies of men and women versus year.

Life expectancies for women are consistently larger. Life expectancies generally increase with year. The increase appears more sharper for women. [2]

[Total 10 marks]