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Abstract

Subadditivity is the key property which distinguishes the popular risk measures Value-

at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subaddi-

tivity of ES, some found in the literature and some not. One of the main objectives of

this paper is to provide a general guideline for instructors to teach the subadditivity of

ES in a course. We discuss the merits and suggest appropriate contexts for each proof.

With different proofs, different important properties of ES are revealed, such as its dual

representation, optimization properties, continuity, consistency with convex order, and

natural estimators.
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1 Introduction

In a course on Quantitative Risk Management, an instructor inevitably has to discuss Value-

at-Risk (VaR) and Expected Shortfall (ES) as the two standard risk measures to determine

capital requirements for a financial institution. The reader is referred to Embrechts et al.

(2014) for recent extensive debates on “VaR versus ES in banking regulation” as well as McNeil

et al. (2015) for broader background material.
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Following Artzner et al. (1999), the key property that distinguishes any coherent risk mea-

sure, such as ES, from VaR is subadditivity. More precisely, a subadditive risk measure ρ satisfies

that for any two risks X and Y , ρ(X+Y ) ≤ ρ(X)+ρ(Y ) always holds. This property is closely

related to questions on portfolio diversification and risk aggregation; more detailed theory and

financial interpretation of subadditivity can be found in Delbaen (2012)1. Note that here, and

throughout the paper, losses are accounted for as positive values.

Despite its relevance, it is somewhat surprising that many academics and risk professionals

do not know explicitly how to prove that ES is subadditive, although they are all aware of

the validity of the statement. In most of the main-stream textbooks used in actuarial science,

quantitative finance, or quantitative risk management, a proof of this property is either (i)

split into several disconnected parts, (ii) reliant on advanced results in modern probability or

statistics, (iii) too mathematically involved for a typically broad class of students attracted to

a course in the above fields, or (iv) even skipped.

Indeed, we shall see that the subadditivity of ES is not a trivial property; it relates to

the dependence structure between random variables. Some mathematical proofs found in the

literature can be quite involved. In view of the growing importance of ES for regulation (see

recent regulatory documents BCBS (2012, 2013, 2014) and IAIS (2014)), it is clear to the authors

that concise proofs of this property should be clearly conveyed to academics and practitioners

in the quantitative fields of finance and risk management. Moreover, different proofs reveal

different properties of ES, each with their own specific relevance for practice.

We first introduce some basic notation. Let (Ω,F ,P) be an atomless probability space2

Throughout, all random variables are defined on (Ω,F ,P) and all probability measures are

defined on (Ω,F). Let L0 be the set of all random variables, L1 the set of all integrable

random variables and L∞ the set of all (essentially) bounded random variables; for a definition

of essential supremum, see for instance Billingsley (1995, p.241).

For p ∈ (0, 1), the two risk measures VaRp : L0 → R and ESp : L0 → R∪ {+∞} are defined

as

VaRp(X) = inf{x ∈ R : P(X ≤ x) ≥ p}, X ∈ L0,

1Subadditivity as a desirable property of risk measures is also sometimes contested; see for instance Dhaene

et al. (2008) and Cont et al. (2010).
2A probability space is atomless if there exists a U[0, 1]-distributed random variable in this space. The desired

result in this paper holds also in a discrete probability space since one can naturally extend a discrete probability

space to an atomless one.
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and

ESp(X) =
1

1− p

∫ 1

p

VaRq(X)dq, X ∈ L0.

The main objective is to provide a variety of proofs of the following theorem.

Theorem 1.1. For p ∈ (0, 1), ESp is subadditive on L0. That is,

ESp(X + Y ) ≤ ESp(X) + ESp(Y ) (1.1)

for all X, Y ∈ L0 and p ∈ (0, 1).

Remark 1.1. Of course, in practice ESp is only used on L1, but (1.1) is trivially true if the

right-hand side is infinite; this is reflected in the R ∪ {+∞} above in the definition of ESp.

Remark 1.2. Throughout the literature there is no unanimity when it comes to definitions and

notation for specific risk measures. We already stressed that losses in our case always correspond

to positive values. Also, ES is known under different names, occasionally with slight differences

in the definitions, including T(ail)VaR, C(onditional)VaR, A(verage)VaR and CTE(Conditional

Tail Expectation). Acerbi and Tasche (2002) contains a study on the equivalence of the above

concepts with slightly different definitions.

In Section 2 we discuss some general issues and common basic lemmas related to the proofs of

Theorem 1.1 and in Section 3 we present seven proofs based on different techniques. Each proof

is self-contained, and when necessary, we refer to classic results in a respective field of study.

Although most of the intermediate results are known in the literature, we give an elementary

proof wherever possible so that our proofs can be directly used by an instructor.

With different proofs, we reveal different important properties of ES such as its dual rep-

resentation, optimization properties, continuity, consistency with convex order, and natural

estimators. We comment on merits of the proofs, and suggest appropriate contexts within

which to use them.

The class of spectral risk measures in Acerbi and Tasche (2002) can be written as a con-

tinuously weighted average of ES; see Wang et al. (1997) and Kusuoka (2001). Therefore, by

showing the subadditivity of ES, one directly obtains the subadditivity of any spectral risk

measures.

Remark 1.3. The question “who was the first to show that ES is subadditive?” has no definite

answer, since the introduction of ES came long after the theory of Choquet integrals (including
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ES as a special case) was established. An implicit result close to the subadditivity of ES in a

discrete probability space is Proposition 10.2.5 of Huber (1980), based on a lemma dating back

to Choquet (1953). The subadditivity theorem of Choquet integrals in a general probability

space is given in Chapter 6 of Denneberg (1994).

Throughout, denote (x)+ = max{x, 0} for x ∈ R. N is the set of positive integers. For a

random variable X, we denote by FX the distribution function or simply the distribution of

X (under P). Note that for p ∈ (0, 1), F−1X (p) = inf{x ∈ R : FX(x) ≥ p} = VaRp(X); both

the notation VaRp(X) and the notation F−1X (p) will be used whenever convenient; for detailed

properties of the latter, see Embrechts and Hofert (2013). All expectations (“E”) are considered

under P unless a superscript indicating another probability measure (“EQ”) is present.

2 General discussion

2.1 Basic properties and lemmas

In this section, we list some basic properties and short lemmas on random variables and

ES, which will be used across different proofs in Section 3. All the properties in this section

naturally appear in a quantitative course which covers VaR and ES, and hence they create no

extra burden in the teaching of such a course.

A risk measure ρ : L0 → R ∪ {+∞} is law-determined (or law-invariant) if ρ(X) = ρ(Y )

for any two identically distributed random variables X, Y ∈ L0; ρ is monotone if ρ(X) ≤ ρ(Y )

for X, Y ∈ L0, X ≤ Y almost surely; ρ is translation-invariant if ρ(X + c) = ρ(X) + c for all

X ∈ L0 and c ∈ R. For p ∈ (0, 1), it is straightforward to check that both the risk measures

VaRp and ESp are law-determined, monotone and translation-invariant. These properties will

be frequently used throughout the paper. The lemma below yields the foundation of many

results in probability theory, such as Sklar’s theorem in the study of copulas.

Lemma 2.1. For any random variable X, there exists a U[0, 1] random variable UX such that

X = F−1X (UX) almost surely.

Proof. This is a classic result; see Rüschendorf (2013, Proposition 1.3) where the construction

is referred to as distributional transform. We give the construction of UX below. If FX is

continuous, taking UX = FX(X) would suffice. Generally, let V be a U[0, 1] random variable
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independent of X, and write

UX = FX(X−) + V (FX(X)− FX(X−)),

where FX(x−) denotes the left-limit of the function FX at x ∈ R. The interested reader can

check that UX is U[0, 1]-distributed and X = F−1X (UX) almost surely.

Throughout the rest of the paper, for any random variable X, let UX be a U[0, 1] random

variable such that X = F−1X (UX). The two lemmas below give basic ES formulas in terms of

VaR. Note that Lemma 2.3 is based on Lemma 2.2, which is further based on Lemma 2.1. For

each proof in Section 3, we will indicate whether any of the Lemmas 2.1-2.3 is required.

Lemma 2.2. For p ∈ (0, 1) and X ∈ L1,

ESp(X) = VaRp(X) +
1

1− p
E[(X − VaRp(X))+].

Proof. By direct calculation,

ESp(X) =
1

1− p

∫ 1

p

F−1X (q)dq

= F−1X (p) +
1

1− p

∫ 1

p

(F−1X (q)− F−1X (p))dq

= VaRp(X) +
1

1− p
E[(F−1X (UX)− VaRp(X))+]

= VaRp(X) +
1

1− p
E[(X − VaRp(X))+].

Lemma 2.3. For any X ∈ L1 and p ∈ (0, 1),

(1− p)ESp(X) = E[XI{X>VaRp(X)}] + VaRp(X)(P(X ≤ VaRp(X))− p).

Proof. From Lemma 2.2,

(1− p)ESp(X) = (1− p)VaRp(X) + E[(X − VaRp(X))I{X>VaRp(X)}]

= E[XI{X>VaRp(X)}] + VaRp(X)(P(X ≤ VaRp(X))− p).

Remark 2.1. Lemma 2.2 yields a precise mathematical formulation of the vague statement

from practice that “ES captures tail-risk beyond VaR”; see BCBS (2012, p.3). Lemmas 2.2 and

2.3 are well known; see for instance Dhaene et al. (2006, Theorem 2.1).
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2.2 Reduction to L∞

In all proofs in Section 3, we show Theorem 1.1 only for X, Y ∈ L∞. This conclusion alone

is usually sufficient for a graduate course in a related field. For completeness, below we give a

brief argument showing that the case of L∞ directly implies the case of L0. When only risks in

L∞ are relevant, the instructor may skip the following argument.

Assume that (1.1) holds for all X, Y ∈ L∞.

(i) If E[(X)+] =∞, then ESp(X) =∞ and (1.1) holds trivially.

(ii) For X, Y ∈ L1 and bounded from below, without loss of generality we can assume that

X, Y ≥ 0 since ESp is translation-invariant. Let Xk = min{X, k}, Yk = min{Y, k} and

Zk = Xk + Yk for k = 1, 2, . . . . Hence, for all k = 1, 2, . . . , Xk, Yk, Zk ∈ L∞, implying

ESp(Zk) ≤ ESp(Xk) + ESp(Yk) ≤ ESp(X) + ESp(Y ). (2.1)

Note that Zk = min{X + Y,X + k, Y + k, 2k} ≥ min{X + Y, k}. Hence

ESp(X + Y ) ≥ ESp(Zk) =
1

1− p

∫ 1

p

VaRq(Zk)dq

≥ 1

1− p

∫ 1

p

VaRq(min{X + Y, k})dq

=
1

1− p

∫ 1

p

min{VaRq(X + Y ), k}dq

→ ESp(X + Y ) as k →∞,

where the convergence is justified by the Monotone Convergence Theorem. It follows that

ESp(Zk)→ ESp(X + Y ) as k →∞. Taking the limit as k →∞ in (2.1) we obtain (1.1).

(iii) For X, Y ∈ L0, write X̄ = max{X,VaRp(X)} and Ȳ = max{Y,VaRp(Y )}. It is obvious

that ESp(X̄) = ESp(X), ESp(Ȳ ) = ESp(Y ) and X + Y ≤ X̄ + Ȳ . By (i) and (ii), (1.1)

holds for all X, Y ∈ L0 bounded from below. Therefore

ESp(X + Y ) ≤ ESp(X̄ + Ȳ ) ≤ ESp(X̄) + ESp(Ȳ ) = ESp(X) + ESp(Y ).

3 Seven proofs of the subadditivity of ES

In the following, seven proofs are ordered by their (perceived or real) level of technical

difficulty. Each proof is self-contained and the reader does not need to follow the given order.
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The proofs may require some of the Lemmas 2.1-2.3. Proofs 5-7 further require some classic

results from probability or statistics. To the best of our knowledge, Proofs 1 and 4 are not

clearly given in the literature, whereas the others can be found, be it in slightly different forms.

3.1 A proof based on comonotonicity

This proof requires Lemma 2.1. In the following, denote by Bp the set of Bernoulli(1 − p)
random variables and write AX = I{UX≥p} ∈ Bp.

Lemma 3.1. E[XAX ] ≥ E[XB] for all B ∈ Bp.

Proof. Since E[AX − B] = 0, we have E[X(AX − B)] = E[(X −m)(AX − B)] for all m ∈ R.

Take m = F−1X (p). If F−1X (UX) > m, then UX > p, AX = 1 and E[(X −m)(AX − B)] ≥ 0; if

F−1X (UX) < m, then UX < p, AX = 0 and E[(X − m)(AX − B)] ≥ 0; if F−1X (UX) = m, then

E[(X −m)(AX −B)] = 0. In summary, E[X(AX −B)] = E[(X −m)(AX −B)] ≥ 0.

Theorem 1.1, Proof 1. We have that

ESp(X) =
1

1− p

∫ 1

p

F−1X (q)dq =
1

1− p
E
[
F−1X (UX)I{UX≥p}

]
=

1

1− p
E[XAX ].

From Lemma 3.1,

ESp(X) =
1

1− p
sup{E[XB] : B ∈ Bp}, X ∈ L∞. (3.1)

That is, ESp is the supremum of the additive maps X 7→ 1
1−pE[XB] over B ∈ Bp, and hence is

subadditive.

Remark 3.1. Lemma 3.1 is implied by the well-known fact that comonotonic random variables

(like X and AX) have the maximum correlation among random variables with the same marginal

distributions; see McNeil et al. (2005, Theorem 5.25(2)) and McNeil et al. (2015, Theorem

7.28(2)). Historically, this result dates back to Hoeffding (1940) and Fréchet (1951), and it is

now common knowledge in quantitative risk management at the graduate level; if it is taken for

granted, then Lemma 3.1 can be omitted and the proof can be further shortened. (3.1) gives a

special form of the coherence representation of ESp along the lines of Artzner et al. (1999); a

similar formulation is

ESp(X) = sup{E[X|A] : A ∈ F , P(A) ≥ 1− p}, X ∈ L∞;
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see for instance Denuit et al. (2005, Remark 2.4.8). This representation links ESp to stress

testing. Indeed note that in practice p is close to 1 so that 1 − p is typically very small. In

the case of Economic Capital, p = 0.9997 whereas for regulatory purposes p typically lies in the

range of 0.95 to 0.999.

The merits of Proof 1 include: It is by far the shortest proof; it reveals a coherence represen-

tation of ESp in (3.1), and it connects naturally to comonotonicity and the theory of copulas.

We would recommend Proof 1 in a course where the concepts of copulas, comonotonicity,

or the coherence representation of ES are points of interest.

3.2 A proof based on an optimization property of VaR and ES

This proof requires Lemma 2.2. It is based on a few extra lemmas but it requires no

additional knowledge of modern probability theory.

Lemma 3.2. For p ∈ (0, 1) and X ∈ L∞,

VaRp(X) ∈ argmin
t∈R

{
t+

1

1− p
E[(X − t)+]

}
. (3.2)

Proof. Let f : R→ R, t 7→ t+ 1
1−pE[(X − t)+], or equivalently,

f(t) = t+
1

1− p

∫ ∞
t

(x− t)dFX(x) = t+
1

1− p

∫ ∞
t

(1− FX(x))dx, t ∈ R,

where the last equality is due to integration by parts. Write t0 = VaRp(X). For t1 > t0, we

have

f(t1)− f(t0) = (t1 − t0)−
1

1− p

∫ t1

t0

(1− FX(x))dx.

From the definition of VaRp(X), we have that for x ∈ (t0, t1), FX(x) ≥ p and hence 1−FX(x) ≤
1− p. As a consequence,

f(t1)− f(t0) ≥ (t1 − t0)−
1

1− p
(1− p)(t1 − t0) = 0.

For t2 < t0, we have

f(t2)− f(t0) =
1

1− p

∫ t0

t2

(1− FX(x))dx− (t0 − t2).

From the definition of VaRp(X), we have that for x ∈ (t2, t0), FX(x) < p and hence 1−FX(x) >

1− p. As a consequence,

f(t2)− f(t0) >
1

1− p
(1− p)(t0 − t2)− (t0 − t2) = 0.

In summary, t0 ∈ argmint∈R f(t), that is, (3.2) holds.
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Lemma 3.3. For p ∈ (0, 1) and X ∈ L∞,

ESp(X) = min
t∈R

{
t+

1

1− p
E[(X − t)+]

}
.

Proof. This follows directly from Lemmas 2.2 and 3.2.

Theorem 1.1, Proof 2. Write t1 = VaRp(X) and t2 = VaRp(Y ). By Lemma 2.2, one has

ESp(X) + ESp(Y ) = t1 + t2 +
1

1− p
E[(X − t1)+] +

1

1− p
E[(Y − t2)+].

Note that (x+ y)+ ≤ (x)+ + (y)+ for all x, y ∈ R. Therefore, by writing t0 = t1 + t2,

ESp(X) + ESp(Y ) = t0 +
1

1− p
E[(X − t1)+ + (Y − t2)+]

≥ t0 +
1

1− p
E[(X + Y − t0)+]

≥ min
t∈R

{
t+

1

1− p
E[(X + Y − t)+]

}
= ESp(X + Y ),

where the last equality follows from Lemma 3.3.

Remark 3.2. This proof is used in Denuit et al. (2005, Section 2.4.3) and Kaas et al. (2008,

Section 5.6). The optimization properties in Lemmas 3.2 and 3.3 were established in Acerbi and

Tasche (2002) and Rockafellar and Uryasev (2002). Based on these optimization properties, a

clear interpretation of VaRp being a cost-efficient threshold and ESp being the corresponding

minimal cost is given in Denuit et al. (2005) and Kaas et al. (2008). A straightforward geometric

proof of Lemma 3.3 can be found in Dhaene et al. (2008, Theorem 1). The main idea in Proof 2

is also used to show the subadditivity of the Haezendonck-Goovaerts risk measure; see Goovaerts

et al. (2004).

The merits of Proof 2 include: It is real analysis based without involving techniques from

modern probability theory; it reveals the important optimization properties of VaRp and ESp

in Lemmas 3.2 and 3.3, and it is easy to understand for undergraduate students.

We would recommend Proof 2 in a course where the target audience is at the undergraduate

level, or the optimization properties in Lemmas 3.2 and 3.3 are points of interest.
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3.3 A proof based on generalized indicator functions

This proof requires Lemma 2.3. We first need some basic results about generalized indicator

functions.

Lemma 3.4. For any X ∈ L∞ and p ∈ (0, 1), P(X < VaRp(X)) ≤ p ≤ P(X ≤ VaRp(X)).

Proof. By definition of VaRp, P(X ≤ VaRp(X)) ≥ p and P(X ≤ VaRp(X)− ε) < p for all ε > 0.

By taking ε ↓ 0 we obtain P(X < VaRp(X)) ≤ p.

In the following, for p ∈ (0, 1), X ∈ L∞ and x ∈ R, define a generalized indicator function

I
(p)
{X≥x} =

 I{X>x}, if P(X = x) = 0;

I{X>x} + P(X≤x)−p
P(X=x)

I{X=x}, if P(X = x) > 0.

Lemma 3.5. For p ∈ (0, 1), X ∈ L∞ and x ∈ R, the following hold:

(i) 0 ≤ I
(p)
{X≥VaRp(X)} ≤ 1;

(ii) E[I
(p)
{X≥VaRp(X)}] = 1− p;

(iii) E[XI
(p)
{X≥VaRp(X)}] = (1− p)ESp(X).

Proof. (i) It suffices to verify that 0 ≤ P(X ≤ VaRp(X)) − p ≤ P(X = VaRp(X)), which

directly follows from Lemma 3.4.

(ii) If P(X = VaRp(X)) = 0, then

E[I
(p)
{X>VaRp(X)}] = P(X > VaRp(X)) = 1− P(X ≤ VaRp(X)) ≤ 1− p.

On the other hand,

1− P(X ≤ VaRp(X)) = 1− P(X < VaRp(X)) ≥ 1− p,

hence E[I
(p)
{X≥VaRp(X)}] = 1− p.

If P(X = VaRp(X)) > 0, then

E[I
(p)
{X≥VaRp(X)}] = P(X > VaRp(X))+

1− P(X > VaRp(X))− p
P(X = VaRp(X))

P(X = VaRp(X)) = 1−p.
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(iii) If P(X = VaRp(X)) = 0, then by Lemma 2.3 and noting that P(X ≤ VaRp(X)) = p,

E[XI
(p)
{X≥VaRp(X)}] = E[XI{X>VaRp(X)}] = (1− p)ESp(X).

If P(X = VaRp(X)) > 0, then

E[XI
(p)
{X≥VaRp(X)}] = E[XI{X>VaRp(X)}] +

P(X ≤ VaRp(X))− p
P(X = VaRp(X))

E[XI{X=VaRp(X)}]

= E[XI{X>VaRp(X)}] + (P(X ≤ VaRp(X))− p)VaRp(X)

= (1− p)ESp(X).

Theorem 1.1, Proof 3. By Lemma 3.5(iii),

(1− p)(ESp(X) + ESp(Y )− ESp(X + Y ))

= E[XI
(p)
{X≥VaRp(X)}] + E[Y I

(p)
{Y≥VaRp(Y )}]− E[(X + Y )I

(p)
{X+Y≥VaRp(X+Y )}]

= E[X(I
(p)
{X≥VaRp(X)} − I

(p)
{X+Y≥VaRp(X+Y )})] + E[Y (I

(p)
{Y≥VaRp(Y )} − I

(p)
{X+Y≥VaRp(X+Y )})].

Let

M = (X − VaRp(X))(I
(p)
{X≥VaRp(X)} − I

(p)
{X+Y≥VaRp(X+Y )}). (3.3)

We will show that E[M ] is non-negative. Note that by Lemma 3.5(i), 0 ≤ I
(p)
{X+Y≥VaRp(X+Y )} ≤ 1.

If X > VaRp(X), then I
(p)
{X≥VaRp(X)} = 1 and M ≥ 0; if X < VaRp(X), then I

(p)
{X≥VaRp(X)} = 0

and M ≥ 0; if X = VaRp(X), then M = 0. In particular,

E[M ] = E[(X − VaRp(X))(I
(p)
{X≥VaRp(X)} − I

(p)
{X+Y≥VaRp(X+Y )})] ≥ 0.

By Lemma 3.5(ii),

E[VaRp(X)(I
(p)
{X≥VaRp(X)} − I

(p)
{X+Y≥VaRp(X+Y )})] = VaRp(X)((1− p)− (1− p)) = 0,

and we obtain

E[X(I
(p)
{X≥VaRp(X)} − I

(p)
{X+Y≥VaRp(X+Y )})] ≥ 0.

Similarly,

E[Y (I
(p)
{Y≥VaRp(Y )} − I

(p)
{X+Y≥VaRp(X+Y )})] ≥ 0.

Therefore, (1− p)(ESp(X) + ESp(Y )− ESp(X + Y )) ≥ 0.
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Remark 3.3. This proof is essentially due to Acerbi and Tasche (2002), with some modifica-

tions. Note that if a random variable X has a continuous distribution, then I
(p)
{X≥x} = I{X≥x}

almost surely. Therefore, in the case when X, Y and X + Y all have continuous distributions,

Lemmas 3.4 and 3.5 are not necessary and Proof 3 can be simplified. The proof in the case of

continuous distributions is used in the book McNeil et al. (2015, Section 2.3). Note that the

distribution of X + Y is not necessarily continuous even if the distributions of X and Y are

continuous.

The merit of Proof 3 is that it is based on standard real analysis without involving techniques

from more advanced probability theory, and hence it is accessible to undergraduate students.

An important aspect, also relevant for practice, is the special treatment of the case when the

loss random variable X has an atom at VaRp(X). In addition, the proof is fairly simple if only

the case of continuous distributions is of interest.

We would recommend Proof 3 in a course where the target audience is at the undergraduate

level, or the instructor intends only to teach the case of continuous distributions but not a

complete proof. Proof 3 shares some similar argument with Proof 1. Though it can be viewed

as elementary, it is technically more involved than Proof 1.

3.4 A proof based on discrete approximation

This proof requires Lemma 2.1. In the following, for n ∈ N, we say that a random variable

X is n-discrete if it takes values in a set of at most n points each with probability 1/n or a

multiple of 1/n. We say that a random vector (X, Y ) is n-discrete if it takes values in a set

of at most n vectors each with probability 1/n or a multiple of 1/n. Note that (X, Y ) being

n-discrete implies that X and Y are n-discrete but not vice-versa.

This proof contains two steps: we first show that Theorem 1.1 holds for an n-discrete

random vector, and then approximate a general random vector by n-discrete random vectors.

The second step involves convergence of random variables and it is more technical than the first

step.

Lemma 3.6. Suppose that a random vector (X, Y ) is n-discrete for a positive integer n. Then

for p ∈ (0, 1), ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

Proof. We consider three cases: (i) p is a multiple of 1/n; (ii) p is rational, and (iii) p is general.
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(i) Suppose that np ∈ N. Since (X, Y ) is n-discrete, we can divide the sample space Ω into a

partition Ω1, . . . ,Ωn, each with probability 1/n, such that for i = 1, . . . , n, (X, Y ) takes a

fixed value, denoted by (xi, yi), on Ωi. Note that for k = 1, . . . , n and q ∈ ((k−1)/n, k/n],

VaRq(X) = inf{x : P(X ≤ x) ≥ q} = x[n−k+1],

where x[i] is the i-th largest element in the multiset {x1, . . . , xn}. Write p = 1−m/n for

some m ∈ N. One can directly calculate ESp(X), which is the average of the largest m

elements in the multiset {x1, . . . , xn}, that is,

ESp(X) =
1

m

m∑
i=1

x[i] =
1

m
max{xi1 + · · ·+ xim : (i1, . . . , im) ∈ Anm},

where

Anm = {(i1, . . . , im) ∈ Nm : 1 ≤ i1 < · · · < im ≤ n}.

It follows that

mESp(X + Y )

= max{xi1 + · · ·+ xim + yi1 + · · ·+ yim : (i1, . . . , im) ∈ Anm}

≤ max{xi1 + · · ·+ xim + yj1 + · · ·+ yjm : (i1, . . . , im) ∈ Anm, (j1, . . . , jm) ∈ Anm}

= max{xi1 + · · ·+ xim : (i1, . . . , im) ∈ Anm}+ max{yj1 + · · ·+ yjm : (j1, . . . , jm) ∈ Anm}

= mESp(X) +mESp(Y ).

(ii) Suppose that p is a rational number. Write p = k/m for k,m ∈ N and k < m. Note

that p = (kn)/(mn) and (X, Y ) is also mn-discrete. Therefore, from (i), we have that

ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

(iii) For a general real number p, from the definition of ESp, it follows immediately that p 7→
ESp(X) is a continuous mapping. Therefore, we can find rational numbers p1, p2, . . . such

that pk → p as k →∞ and for k = 1, 2, . . . , ESpk(X + Y ) ≤ ESpk(X) + ESpk(Y ). Taking

a limit as k →∞ we obtain ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

Lemma 3.7. Suppose that X,X1, X2, · · · ∈ L∞ and Xk ↑ X in probability as k → ∞. Then

ESp(Xk) ↑ ESp(X) as k →∞.
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Proof. It suffices to note that VaRq(Xk) ↑ VaRq(X) for almost every q ∈ (0, 1), a basic property

of the quantile function; see Resnick (1987, Proposition 0.1) for a proof. As ESp is an integral

of VaRq, the Monotone Convergence Theorem implies ESp(Xk) ↑ ESp(X) as k →∞.

Lemma 3.8. Suppose that the random variables X and Y are n-discrete for a positive integer

n. Then for p ∈ (0, 1), ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

Proof. Without loss of generality we can assume X, Y ≥ 0 since they are both bounded, and

ESp is translation-invariant. Denote by {(x1, y1), . . . , (xm, ym)} the range of (X, Y ); obviously

m ≤ n2. Note that P((X, Y ) = (xi, yi)) may not be a rational number for some i = 1, . . . ,m and

hence Lemma 3.6 cannot be directly applied. Denote Ai = {(X, Y ) = (xi, yi)}, i = 1, . . . ,m.

Since our probability space is atomless, for i = 1, . . . ,m, we can find Bk
i ⊆ Ai, k = 1, 2, . . . ,

such that B1
i ⊆ B2

i ⊆ . . . , P(Bk
i ) ∈ Q, and P(Ai)− P(Bk

i ) < 1/k, where Q is the set of rational

numbers. Let

Xk =
m∑
i=1

XIBk
i
, Yk =

m∑
i=1

Y IBk
i
, k = 1, 2, . . . .

It is clear that Xk ↑ X and Yk ↑ Y in probability. Moreover, for each k ∈ N (Xk, Yk) is mk-

discrete for some mk ∈ N since the probability mass function of (Xk, Yk) takes values in Q. By

Lemma 3.6 and the monotonicity of ESp, we have

ESp(Xk + Yk) ≤ ESp(Xk) + ESp(Yk) ≤ ESp(X) + ESp(Y ).

Since Xk +Yk ↑ X +Y in probability as k →∞, by taking a limit in k →∞ and using Lemma

3.7, the above equation yields ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

Theorem 1.1, Proof 4. Let Xk = F−1X (Vk) and Yk = F−1Y (Wk) where Uk = b2kUXc/(2k) and

Wk = b2kUY c/(2k). It is obvious that Xk and Yk are 2k-discrete, and Xk ↑ X and Yk ↑ Y in

probability. Lemma 3.8 yields

ESp(Xk + Yk) ≤ ESp(Xk) + ESp(Yk) ≤ ESp(X) + ESp(Y ).

As a consequence, with Lemma 3.7, we obtain ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

Remark 3.4. The instructor may choose only to show Lemma 3.6 by omitting the more com-

plicated second step of the proof. The result in Lemma 3.6 itself is often sufficient for students

to understand the subadditivity of ES.
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The merits of Proof 4 include: It is based on standard undergraduate level techniques

in probability theory such as discrete approximation and convergence theorems; it reveals an

intuitive explanation of ES being subadditive through discrete random variables, and it is easy

to understand for students with good combinatorial and analytical skills.

We would recommend Proof 4 in a course where discretization of distribution functions or

the continuity of risk measures is a point of interest, or the instructor intends to highlight

intuition in the discrete case but not give a complete proof.

3.5 A proof based on the law of large numbers for order statistics

In this section, for a sequence of random variables X1, X2, . . . , we denote by X[i,n] the i-th

largest value in {X1, . . . , Xn}, that is, the i-th order statistic up to the n-th observation.

Lemma 3.9. Let X1, X2, · · · ∈ L∞ be a sequence of iid random variables. Then

lim
n→∞

1

n(1− p)

nb1−pc∑
i=1

X[i,n] = ESp(X1) a.s. (3.4)

where bxc is the largest integer not larger than x ∈ R.

Proof. This lemma is implied by a classic result (strong law of large numbers) for linear combi-

nations of order statistics, originally proved in Van Zwet (1980, Theorem 2.1); see also Wellner

(1977, Theorem 3 and Corollary 2). Acerbi and Tasche (2002, Proposition 4.1 and Equations

(4.2)-(4.4)) gave some intuitive explanations of the proof.

Theorem 1.1, Proof 5. For any two positive integers m ≤ n, write

Anm = {(i1, . . . , im) ∈ Nm : 1 ≤ i1 < · · · < im ≤ n}.

For a sequence of random variables, X1, X2, . . . , note that

m∑
i=1

X[i,n] = max{Xi1 + · · ·+Xim : (i1, . . . , im) ∈ Anm}.

For any two random variables X, Y ∈ L∞, let (X1, Y1), (X2, Y2), . . . be a sequence of iid random

15



vectors, identically distributed as (X, Y ) and write Zi = Xi + Yi for i = 1, 2, . . . . Then

m∑
i=1

Z[i,n] = max{Zi1 + · · ·+ Zim : (i1, . . . , im) ∈ Anm}

= max{Xi1 + · · ·+Xim + Yi1 + · · ·+ Yim : (i1, . . . , im) ∈ Anm}

≤ max{Xi1 + · · ·+Xim + Yj1 + · · ·+ Yjm : (i1, . . . , im) ∈ Anm, (j1, . . . , jm) ∈ Anm}

= max{Xi1 + · · ·+Xim : (i1, . . . , im) ∈ Anm}+ max{Yj1 + · · ·+ Yjm : (j1, . . . , jm) ∈ Anm}

=
m∑
i=1

X[i,n] +
m∑
i=1

Y[i,n].

By setting m = nb1− pc, we have

1

n(1− p)

nb1−pc∑
i=1

Z[i,n] ≤
1

n(1− p)

nb1−pc∑
i=1

X[i,n] +
1

n(1− p)

nb1−pc∑
i=1

Y[i,n].

Taking n→∞, by Lemma 3.9, we obtain ESp(X + Y ) ≤ ESp(X) + ESp(Y ).

Remark 3.5. This proof is used in the book McNeil et al. (2005, Section 2.2.4); in the revised

version McNeil et al. (2015), two proofs are given (see Remarks 3.3 and 3.7). General results

in statistics related to Lemma 3.9 can be found in Huber and Ronchetti (2009, Section 3.3).

The merits of Proof 5 include: It requires the law of large numbers for order statistics

(Lemma 3.9 above), which gives also a natural non-parametric estimator of ESp(X) in (3.4); in

a context where statistical estimation of ESp is relevant, this proof would fit in naturally.

We would recommend Proof 5 in a course where statistical inference is a point of interest,

or the students have a solid statistical background. Proof 5 shares some similar argument with

Proof 4. Whereas in Proof 4 the discrete case can be solved fairly elementarily, the general case

needs a non-trivial probabilistic limit argument. For Proof 5, the general case can immediately

be treated by a more powerful limit theorem from the realm of the theory of linear combinations

of order statistics.

3.6 A proof based on convex order

For X, Y ∈ L1, we say that X is smaller than Y in convex order, denoted by X ≺cx Y , if

for all convex functions f ,

E[f(X)] ≤ E[f(Y )], (3.5)

whenever both sides of (3.5) are well-defined.
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Lemma 3.10. For two random variables X, Y ∈ L∞, if X ≺cx Y , then ESp(X) ≤ ESp(Y ) for

p ∈ (0, 1).

Proof. This is a classic result in convex order; see Shaked and Shanthikumar (2007, Theorem

3.A.5) for a proof. Indeed, the latter result states that, for any X, Y ∈ L1, X ≺cx Y if and only

if ESp(X) ≤ ESp(Y ) for all p ∈ (0, 1).

Lemma 3.11. For any two random variables X, Y ∈ L∞ and a U[0, 1]-distributed random

variable U , it holds that X + Y ≺cx F
−1
X (U) + F−1Y (U).

Proof. This is a classic result on comonotonicity; see for instance Dhaene et al. (2002, Theorem

7) or Rüschendorf (2013, Theorem 3.5) for a proof.

Lemma 3.12. For any two non-decreasing functions f , g and a random variable Z ∈ L∞, it

holds that ESp(f(Z) + g(Z)) = ESp(f(Z)) + ESp(g(Z)). That is, ESp is comonotonic additive.

Proof. This is another classic result on comonotonicity. First, note that for any non-decreasing

function h and a U[0, 1]-distributed random variable U , VaRp(h(U)) = h(p). Then

ESp(f(Z) + g(Z)) = ESp(f(F−1Z (UZ)) + g(F−1Z (UZ)))

=
1

1− p

∫ 1

p

(
f(F−1Z (u)) + g(F−1Z (u))

)
du

=
1

1− p

∫ 1

p

VaRu(f(Z))du+
1

1− p

∫ 1

p

VaRu(g(Z))du

= ESp(f(Z)) + ESp(g(Z)),

where the second-last equality comes from the fact that f(VaRu(Z)) = VaRu(f(Z)) for almost

every u ∈ [0, 1] since f is non-decreasing.

Theorem 1.1, Proof 6. We obtain ESp(X+Y ) ≤ ESp(F
−1
X (U)+F−1Y (U)) = ESp(X)+ESp(Y )

by combining Lemmas 3.10-3.12.

Remark 3.6. The idea of this proof is presented in Wang and Dhaene (1998) and is also used

in the review paper Dhaene et al. (2006). Lemma 3.10 dates back to Levy and Kroll (1978)

in the context of stochastic dominance. Lemma 3.11 was first shown in Meilijson and Nádas

(1979). The fact that ESp is comonotone additive is part of the properties of Choquet integrals,

and it can be found in Yaari (1987) and Denneberg (1994). The current form of Lemma 3.12 is

given in Kusuoka (2001, Proposition 20).
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The merit of Proof 6 is that it naturally connects to the concepts of convex order, comono-

tonicity and comonotonic additivity, all of which are important modern concepts in quantitative

risk management. This proof requires additional techniques in probability theory, and it may

not be suitable for an audience without the corresponding knowledge.

We would recommend Proof 6 in an advanced course where convex order, comonotonicity

and comonotonic additivity are points of interest or available as preliminaries.

3.7 A proof based on the coherence representation of ES

This proof requires Lemma 2.3 and knowledge on Radon-Nikodym derivatives of probability

measures. It is probably the most mathematically advanced among all proofs in this paper.

Lemma 3.13 (Neyman-Pearson Lemma). Let P and Q be two probability measures such that

φ = dP/dQ is finite. For any α ∈ (0, 1), let c = inf{x ∈ R : EQ[I{φ≤x}] ≥ 1 − α} and

ψ0 = I{φ>c} + κI{φ=c} where κ is a constant such that EQ[ψ0] = α. Then, for any ψ ∈ L∞,

0 ≤ ψ ≤ 1, EQ[ψ] ≤ α, one has

EP [ψ] ≤ EP [ψ0].

Proof. First, one can easily check the existence of κ. Note that by definition of c, EQ[I{φ≥c}] ≥ α

and EQ[I{φ>c}] ≤ α, and hence either κ ∈ [0, 1] or E[I{φ=c}] = 0.

For any ψ ∈ L∞, 0 ≤ ψ ≤ 1, EQ[ψ] ≤ α, by definition of ψ0, one has (ψ0 − ψ)(φ − c) ≥ 0

almost surely. Therefore,

0 ≤ EQ[(ψ0 − ψ)(φ− c)] = EP [ψ0 − ψ]− cEQ[ψ0 − ψ] ≤ EP [ψ0 − ψ].

Lemma 3.14. For p ∈ (0, 1), ESp has the representation

ESp(X) = sup
Q∈Qp

EQ[X], X ∈ L∞,

where Qp is the set of probability measures Q on (Ω,F) with Radon-Nikodym derivative dQ/dP ≤
1/(1− p).

Proof. Define a mapping ρ : L∞ → R by

ρ(X) = sup
Q∈Qp

EQ[X], X ∈ L∞.
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We aim to show that ESp = ρ. First, for X > 0, define a probability measure P such that

dP/dP = X/E[X]. Then for X ∈ L∞,

ρ(X) = sup

{
E
[

dQ

dP
X

]
: Q ∈ Qp

}
= sup

{
E[X]EP

[
dQ

dP

]
: Q ∈ Qp

}
= E[X] sup

{
EP [Z] : Z ∈ L1, 0 ≤ Z ≤ 1

1− p
, E[Z] = 1

}
=

E[X]

1− p
sup

{
EP [W ] : W ∈ L1, 0 ≤ W ≤ 1, E[W ] ≤ 1− p

}
By Lemma 3.13, the above supremum is attained by

W0 = I{X>VaRp(X)} + κI{X=VaRp(X)},

where κ ∈ [0, 1] is such that E[W0] = 1− p, that is κ = P(X≤VaRp(X))−p
P(X=VaRp(X))

if P(X = VaRp(X)) > 0,

and κ can take any value in [0, 1] if P(X = VaRp(X)) = 0. Therefore,

ρ(X) =
E[X]

1− p
E
[
X

E[X]
(I{X>VaRp(X)} + κI{X=VaRp(X)})

]
=

1

1− p
E[XI{X>VaRp(X)} +XκI{X=VaRp(X)}]

=
1

1− p
E[XI{X>VaRp(X)}] +

P(X ≤ VaRp(X))− p
1− p

VaRp(X)

From Lemma 2.3 we have ρ(X) = ESp(X). For arbitrary X ∈ L∞, ρ(X) = ESp(X) follows

from the above result by noting that both ρ and ESp are translation-invariant.

Theorem 1.1, Proof 7. ESp is the supremum of the additive maps X 7→ EQ[X] over Q ∈ Qp,
and hence is subadditive.

Remark 3.7. This proof is used in the book McNeil et al. (2015, Theorem 8.14). Lemma

3.13 is a general form of the Neyman-Pearson lemma for optimal simple tests; see Föllmer and

Schied (2011, Theorem A.31 and Remark A.32) and McNeil et al. (2015, Remark 8.15). Lemma

3.14 is found in classic literature on coherent risk measures; see for instance Föllmer and Schied

(2011, Theorem 4.52).

The merit of Proof 7 is that Lemma 3.14 reveals the coherence representation of ESp, a

fundamental property of ESp, connecting to the dual representation of coherent risk measures

in the most general form. This proof requires additional techniques in modern probability theory
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and statistics, and it may not suitable for an audience without the corresponding knowledge.

A further merit is that the link between the Neyman-Pearson lemma and mathematical finance

can also be found in the concept of quantile hedging in incomplete markets; see Föllmer and

Schied (2011, Section 8.1).

We would recommend Proof 7 in an advanced course where the axiomatic theory of coherent

risk measures is a point of interest. Proof 7 can be viewed as a more comprehensive and advanced

version of Proof 1.

4 Overall comments

From the seven different proofs we offer in this paper, it becomes clear that the subadditivity

question for ES is not a trivial one. It is both mathematically challenging as well as practically

relevant. Each proof has its own merit and suitable context. In summary, Proof 1 is the shortest

and it reveals a special form of the coherence representation of ES; Proofs 2 and 3 require

the least knowledge on probability theory, with Proof 2 being shorter and connected to an

optimization property of VaR and ES, and Proof 3 being convenient if only the case of continuous

distributions is of interest; Proof 4 explains intuitively the subadditivity of ES in discrete cases

and reveals a basic continuity of ES; Proofs 5, 6 and 7 require specialized knowledge and they

respectively reveal natural estimators of ES, its consistency with convex order, and the coherence

presentation of coherent risk measures. When teaching the subadditivity of ES in a course, the

instructor is advised to choose a proof which fits best the knowledge of the audience and the

content of the course.
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