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A Few Counter Examples Useful in Teaching Central Limit Theorems

Subhash C. BAGUI, Dulal K. BHAUMIK, and K. L. MEHRA

In probability theory, central limit theorems (CLTs), broadly
speaking, state that the distribution of the sum of a sequence
of random variables (r.v.’s), suitably normalized, converges to
a normal distribution as their number n increases indefinitely.
However, the preceding convergence in distribution holds only
under certain conditions, depending on the underlying proba-
bilistic nature of this sequence of r.v.’s. If some of the assumed
conditions are violated, the convergence may or may not hold, or
if it does, this convergence may be to a nonnormal distribution.
We shall illustrate this via a few counter examples. While teach-
ing CLTs at an advanced level, counter examples can serve as
useful tools for explaining the true nature of these CLTs and the
consequences when some of the assumptions made are violated.

KEY WORDS: Cauchy distribution; Laplace distribution; Lo-
gistic distribution; Sample mean; Sum of random variables;
Uniform distribution.

1. INTRODUCTION

There is not a single central limit theorem (CLT), but rather
an array of results concerned with sums of large numbers of
random variables that, properly normalized, have limiting nor-
mal distributions. These CLTs constitute an important class of
theorems in theory of probability and statistics. Their use in sta-
tistical applications is virtually endless: in devising large sample
confidence intervals, tests of hypotheses, and a variety of other
statistical techniques. At the beginning instructional level, CLTs
often get introduced in a simplistic manner with a broad asser-
tion that, for large n, the sample mean X̄n = n−1 ∑n

i=1 Xi, of
observations X1, X2, . . . , Xn in a random sample, behaves like
a normal r.v., without much elaboration as to the assumptions
under which this assertion holds. In applications also, CLTs are
sometimes used without checking the validity of the assump-
tions on which they stand, leading in many situations to possibly
erroneous statistical conclusions. It is usually at advanced teach-
ing levels that any serious attention is paid toward explaining
the assumptions fully. Although counter examples are used as
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direct evidence that a statement or a conjecture is false, they
also provide insight into the roles played by different assump-
tions and which among these need to be strengthened in order
to achieve a desired result. When discussing assumptions un-
der which a CLT may hold in an observational or experimental
setup, one may ask what might be the result if any of these as-
sumptions are violated. Would X̄n still converge in distribution,
possibly to a nonnormal r.v.? If so, what is the distribution of
the limiting r.v.? We examine these two questions with the help
of a few counter examples. There are a wide variety of CLTs
available in the literature; however, in this article we discuss
mainly those for sums and weighted sums of independent and
identically distributed (iid) r.v.’s.

2. PRELIMINARIES

First we state a CLT that is the simplest theorem of its type
dealing with sums of iid r.v.’s.

Theorem 2.1. Let {Xn : n ≥ 1} be a sequence of iid r.v.’s with
mean μ, − ∞ < μ < ∞, and variance σ 2, 0 < σ 2 < ∞, and
set Sn = ∑n

i=1 Xi , X̄n = [Sn/n] and

Zn = Sn − nμ

σ
√

n
=

√
n(X̄n − μ)

σ
. (2.1)

Then, Zn
d−→ Z ∼ N (0, 1), as n → ∞.

The notation
d−→ stands for “convergence in distribution,”

∼ stands for “distributed as” and N (0, 1) for a normal r.v.
with mean 0 and variance 1. In practice, the given theorem
entails that, for large n, the distribution of X̄n is approximately
normal with mean μ and variance σ 2/n. For Theorem 2.1, see
Elements of Large-Sample Theory (Lehmann 1999, p. 73). The
French mathematician De Moivre was the first to prove a CLT.
His work (De Moivre 1738) was extended by Laplace (1810)
to sums of independent bounded r.v.’s. Later Lindeberg (1922)
strengthened this CLT to unbounded r.v’s, assuming among
others simply finiteness of their variances. The following
Theorem 2.2 is a particular version of it.

Theorem 2.2. Let {Xni : 1 ≤ i ≤ n; n ≥ 1} be a triangular
array of r.v.’s that are iid within each row with a common
mean E(Xni) = μn, − ∞ < μn < ∞, and a common vari-
ance var(Xni) = σ 2

n , 0 < σ 2
n < ∞, for each n = 1, 2, . . . and

{cni : 1 ≤ i ≤ n; n ≥ 1} a triangular array of finite constants,
not all zeros within each row, n = 1, 2, . . . . Define

Zn = 1

Bn

(
n∑

i=1

cniXni − μn

n∑
i=1

cni

)
= 1

Bn

n∑
i=1

cni(Xni − μn),

(2.2)
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where B2
n = var(

∑n
i=1 cniXni) = σ 2

n

∑n
i=1 c2

ni . Then, Zn
d−→

Z ∼ N (0, 1), as n → ∞, provided that

max
1≤i≤n

[
c2
ni

/
n∑

i=1

c2
ni

]
→ 0, as n → ∞. (2.3)

The condition (2.3) shall be referred to in the sequel as the
“negligibility” condition. Also, note here that

E

(
n∑

i=1

cniXni

)
= μn

n∑
i=1

cni,

so that E(Zn) = 0 and var(Zn) = 1.

The next Theorem 2.2a extends Theorem 2.2 to the case
when the triangular arrays {Xni : 1 ≤ i ≤ n; n ≥ 1} consist of
r.v.’s are independent within each row, not necessarily identi-
cally distributed, and satisfy an additional condition involving
(2 + δ)th (δ > 0) absolute moments of Xni’s:

Theorem 2.2a. Let {Xni : 1 ≤ i ≤ n; n ≥ 1} be a triangu-
lar array of r.v.’s that are independent within each row
with means E(Xni) = μni, − ∞ < μni < ∞, and variances
var(Xni) = σ 2

ni, 0 ≤ σ 2
ni < ∞, not all zeros within each row,

n = 1, 2, . . . and another triangular array {cni : 1 ≤ i ≤ n; n ≥
1} of constants, not all zeros within each row, n = 1, 2, . . .. Now
define

Zn = 1

Bn

(
n∑

i=1

cniXni −
n∑

i=1

cniμni

)

= 1

Bn

n∑
i=1

cni(Xni − μni), (2.2a)

where B2
n = var(

∑n
i=1 cniXni) = ∑n

i=1 c2
niσ

2
ni, and assume that

(
1/B2+δ

n

) n∑
i=1

|cni |2+δE|Xni − μni |2+δ = o(1), (2.3a)

where the notation ηn = o(ξn) stands for (ηn/ξn) → 0 as n →
∞. Then Zn

d−→ Z ∼ N (0, 1), as n → ∞.

Remark 2.1. Theorems 2.2 and 2.2a are only special cases
of a more general Lindeberg–Feller (LF) CLT for triangular ar-
rays {Yni : i = 1, 2, . . . , n; n ≥ 1} of r.v.’s that are independent
within each row. This general LF Theorem gives a sufficient
condition—referred to as the Lindeberg condition—which if
satisfied by the triangular array, yields the asymptotic normality
of the sum S ′

n = ∑n
i=1 Yni (see the Appendix; cf. Serfling 1980,

pp. 31–32). In the setup of Theorem 2.2, it is easily seen that the
“negligibility” condition (2.3) ensures for its defined triangular
array {Yni} (see the Appendix for definition) that this Lindeberg
condition is satisfied. Similarly, in the setup of Theorem 2.2a,
the same conclusion is ensured for its defined triangular array
{Yni} (see the Appendix for definition) by the assumed condi-
tion (2.3a) (Serfling 1980, Corollary 1.9.3, p. 32). Brief proofs
of these assertions are given in the Appendix.

Theorems of the type 2.2 or 2.2a are useful to statisticians
in many ways (Lehmann 1999, p. 102). For example, weighted
sums of independent r.v.’s commonly occur in statistical ap-
plications as efficient estimators of unknown parameters. To

check the asymptotic normality of such estimators, one can ap-
ply Theorem 2.2 or Theorem 2.2a, whichever is appropriate
for the estimator under consideration. This asymptotic normal-
ity would be useful in large sample testing and derivation of
large sample confidence intervals and other inferential proce-
dures for these parameters. Ahead we discuss two such esti-
mators: The first one (A) is that of the regression coefficient
β in the standard linear regression model covered by The-
orem 2.2 and the second (B) is that of the common mean
μ based on n independent observations—not necessarily identi-
cally distributed—with known finite variances, which is covered
by Theorem 2.2a.

(A) Application of Theorem 2.2: Estimation of a regression
coefficient. Consider the simple linear regression model

Yi = α + βxi + εi, (i = 1, 2, . . . , n), (2.4)

where ε1, . . . , εn are iid r.v.’s with mean 0 and variance σ 2,

(0 < σ 2 < ∞), xi’s are (known) constants and α and β un-
known parameters. The least squares estimator of β is given
by

β̂n =
n∑

i=1

Yi(xi − x̄n)

/
n∑

i=1

(xi − x̄n)2 =
n∑

i=1

cniYi,

where cni = (xi − x̄n)/
∑n

i=1 (xi − x̄n)2, 1 ≤ i ≤ n, Ȳn =∑n
i=1 Yi/n, and x̄n = ∑n

i=1 xi/n. Because E(Yi) ≡ μi =
α + βxi ,

∑n
i=1 cni = 0 and

∑n
i=1 cnixi = 1, it follows

that E(β̂n) = ∑n
i=1 cni(α + βxi) = β and var(β̂n) = σ 2(

∑n
i=1

c2
ni) = σ 2/

∑n
i=1 (xi − x̄n)2. Since, (Yi − μi), i = 1, 2, . . . ,

n are iid, by Theorem 2.2 we obtain

Zn = (β̂n − β)

/√
var(β̂n) =

n∑
i=1

cni(Yi − μi)

/
σ

√√√√ n∑
i=1

c2
ni

=
n∑

i=1

⎡
⎣(xi − x̄n)

/√√√√ n∑
i=1

(xi − x̄n)2

⎤
⎦

× [(Yi − μi)/σ ]
d−→ Z ∼ N (0, 1), (2.5)

as n → ∞, provided the “negligibility” condition (2.3) holds,
namely, that[

max
1≤i≤n

(xi − x̄n)2

/
n∑

i=1

(xi − x̄n)2

]

=
[

max
1≤i≤n

c2
ni

/
n∑

i=1

c2
ni

]
→ 0, (2.6)

as n → ∞. The condition (2.6) is satisfied, for example, if
xj = jλ for a constant −∞ < λ < ∞. �

(B) Application of Theorem 2.2a: Estimation of a com-
mon mean. Suppose that X1, X2, . . . , Xn are independent with
common mean E(Xi) = μ, − ∞ < μ < ∞, and (known) vari-
ances var (Xi) = σ 2

i , 0 < σ 2
i < ∞, i = 1, 2, . . . , n. Consider

the (unbiased) weighted linear estimator δn = ∑n
i=1 wniXi of

μ, where wni = (1/σ 2
i )/

∑n
i=1 (1/σ 2

i ), 1 ≤ i ≤ n. If Xi’s are
normally distributed, then δn is the maximum likelihood
estimator (MLE) of the common mean μ. In general, the
estimator δn is a (generalized) least squares estimator (LSE)
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of μ, for it minimizes 
 = ∑n
i=1 (1/σ 2

i )(Xi − μ)2, a weighted
sum of squares of distances of observations Xi , i = 1, 2, . . . , n,
from their common mean μ. The variance B2

n of δn is
B2

n = ∑n
i=1 w2

niσ
2
i = 1/

∑n
i=1 (1/σ 2

i ). Therefore, δn is consistent
for μ if

∑n
i=1 (1/σ 2

i ) → ∞, as n → ∞. For the asymptotic
normality of the estimator δn, we shall assume that

n∑
i=1

(
1
/
σ 2+δ

i

)
E |Zi |2+δ = o

⎛
⎝[

n∑
i=1

σ−2
i

](1+δ/2)
⎞
⎠, (2.7)

as n → ∞, where Zi = [(Xi − μ)/σi], i = 1, 2, . . . , n.
Setting cni = wniσi = [σ−1

i /(
∑n

i=1 σ−2
i )], i = 1, 2, . . . , n,

δn − μ = ∑n
i=1 wni(Xi − μ) = ∑n

i=1 cniZi , where Zi’s are
independent r.v.’s with means 0 and variances 1 but possibly
not identically distributed. We shall now apply Theorem 2.2a
to deduce the asymptotic normality of δn: First note that,
since, cni = [σ−1

i /(
∑n

i=1 σ−2
i )], i = 1, 2, . . . , n, the LHS of the

assumed condition (2.3a) in the present application equals(
n∑

i=1

σ−2
i

)(1+δ/2) n∑
i=1

c2+δ
ni E|Zi |2+δ

=
(

n∑
i=1

σ−2
i

)−(1+δ/2) n∑
i=1

σ
−(2+δ)
i E|Zi |2+δ = o(1),

as n → ∞, on account of assumption (2.7). Accordingly, by
Theorem 2.2a

Zn = (δn − μ)/
√

var(δn)

=
√√√√ n∑

i=1

(
σ−2

i

) n∑
i=1

wni (Xi − μ)
d−→ Z ∼ N (0, 1),

as n → ∞. This completes the proof of asymptotic normality
of δn. Also, note here that the assumption (2.7) clearly implies
(in the present setup) that (

∑n
i=1 σ−2

i ) must → ∞, as n → ∞.
Accordingly, (2.7) also ensures that B2

n → 0, as n → ∞, and
thereby the consistency of the of the estimator δn. �

Remark 2.2. The conditions (2.6) and (2.7) in applications
(A) and (B) are realistic conditions and can hold in practice, at
least approximately, in a variety of situations. We demonstrate
this in the Appendix with three illustrations I1, I2, and I3, the first
one pertaining to condition (2.6) and the next two to condition
(2.7).

3. COUNTER EXAMPLES

In this section, we consider five counter examples. The first
two are with respect to Theorem 2.1, a CLT for sums of iid r.v.’s,
the next two with respect to Theorem 2.2, a CLT for weighted
sums of triangular arrays of r.v.’s that are iid within each row,
and the last counter example is with respect to Theorem 2.2a
dealing with weighted sums of triangular arrays of r.v.’s that
are independent within each row but not necessarily identically
distributed.

Theorem 2.1 asserts that the proximity of X̄′
ns distribution

to that of a normal r.v. for large samples requires additional
assumptions beyond the observations being simply iid, namely,

the requirement of existence and finiteness of their means and
variances. One may ask the question as to what happens to the
large sample distribution of X̄n when these conditions do not
hold. We shall investigate this in the following two examples:

Example 3.1. Let Xi, i = 1, 2, . . . , n be iid observations
from a Cauchy C(μ, δ) distribution with density

fX(x) = δ

π

1

δ2 + (x − μ)2
, −∞ < x < ∞, (3.1)

where μ, −∞ < μ < ∞, and δ, δ > 0, are the location and
scale parameters, respectively. The Cauchy family (3.1) is an
important class of densities arising in many applied contexts
in Physics, Statistics, and other related disciplines. It is well
known that the mean of a Cauchy distribution does not exist
and its second moment is infinite. Therefore, Theorem 2.1 for
the asymptotic normality of X̄n does not apply. It turns out
that the distribution of X̄n remains the same as that of a single
observation X1 in this case, regardless of the value of n (see
the Appendix for a proof of this assertion). Hence, trivially,
X̄n converges in distribution to a C(μ, δ) r.v., instead of being
asymptotically normal.

Even more extreme examples exist in which means and vari-
ances do not exist, with tails of distributions so heavy that X̄n’s
are more variable than their respective single observations. An
example of such a distribution follows.

Example 3.2. Consider a random variable X with density

fX(x) = (1/
√

2πx3)e−1/(2x), x > 0. (3.2)

The mean and variance do not exist for this density. Here, in
fact, distributionally X = 1/Z2, where Z ∼ N (0, 1). The given
density is a special case of an inverse-gamma family of densities
(Johnson, Kotz, and Balakrishnan 1995, p. 401; Casella and
Berger 2002, p. 51) given, for parameters α > 0, β > 0, by

fX(x; α, β) = (βα/�(α))x−α−1e−(β/x), x > 0, (3.3)

with the shape and scale parameters α and β, respectively, each
set equal to 1

2 . (It is easy to see that if Y ∼ the gamma den-
sity gY (y; α, β) = (βα/�(α))xα−1e−βx , x > 0, then the density
(3.3), as the name inverse gamma suggests, is that of the r.v.
X = (1/Y ).) The mean and variance of density (3.3) are, re-
spectively, [β/(α − 1)] and [β2/(α − 1)2(α − 2)], which exist
only if α > 1 and α > 2, respectively. As for the density (3.2),
its mean and variance do not exist, as can be easily checked,
so that the conditions of Theorem 2.1 are not satisfied for this
example. It turns out that X̄n in this example has the same distri-
bution as that of nX1 for each n. (A sketch of the proof is given
in the Appendix.) Clearly then, X̄n is much more variable than
a single observation X1 and increases by an order of n, instead
of converging in distribution to a limiting r.v., that is, certainly
not to a normal r.v., as n → ∞.

It should be mentioned that the density (3.2) corresponds
to an important class of distributions in applications. It is the
distribution of first passage times in a one-dimensional Brow-
nian motion. It is also the limiting distribution of normalized
average [X̄n/n] of waiting times X1, X2, . . . , Xn of successive
returns to the origin in a symmetric random walk and is typical
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of limiting distributions, without expectation, of such waiting
time averages of recurrence of events in many physical and
economic processes (Feller 1968, p. 90, 246).

Theorem 2.2 for weighted sums requires the “negligibility”
condition (2.3) to be satisfied in order for Zn to converge
in distribution to a normal r.v., as n → ∞. The “negligibil-
ity” condition implies that no summand [cni(Xni − μn)/Bn] in
the sum Zn in (2.2) contributes excessively to the variance
of Zn. It is apparent that the “negligibility” condition (2.3)
rules out situations where Zn depends only on a negligible
proportion of the summands. This occurs, for example, (in
an extreme case, say) when cn1 = cn2 = · · · = cnk = 1, for
some fixed k, and cn,k+1 = · · · = cnn = 0. Under this setup,
max
1≤i≤n

{c2
ni/

∑n
i=1 c2

ni} = 1/k, which does not go to 0 as n → ∞.

So, the “negligibility” condition does not hold. On the other
hand, if cni = i, then

∑n
i=1 c2

ni = n(n+1)(2n+1)
6 , so that

max
1≤i≤n

[
c2
ni

/
n∑

i=1

c2
ni

]
= 6n2

n(n+1)(2n+1)
→ 0, as n → ∞.

(3.4)

Thus, in view of (3.4), the “negligibility” condition holds here.
Consequently, by Theorem 2.2 it follows that

Zn = 1

Bn

n∑
i=1

i(Xni − μn)
d−→ Z ∼ N (0, 1), as n → ∞.

In case the “negligibility” condition of Theorem 2.2 does not
hold, it may still occur that Zn converges to a limiting r.v., but
the distribution of the limiting r.v. will typically be nonnormal.
We shall illustrate this via two counter examples namely, Ex-
amples 3.3 and 3.4 where the “negligibility” condition is not
satisfied. In Examples 3.3 and 3.4 ahead, we have only simple
sequences {Xi : 1 ≤ i ≤ n; n ≥ 1} of iid r.v.’s with correspond-
ing simple sequences {ci : 1 ≤ i ≤ n; n ≥ 1} of weights, instead
of triangular arrays of iid (within each row) r.v.’s and their cor-
responding constant weights. Theorem 2.2, indeed, does cover
this simpler case.

In Example 3.3 ahead, the weighted sum Un equals the dec-
imal representation, up to n places, of a number chosen in the
unit interval (0, 1) randomly, that is, Un = 0.X1X2X3 · · ·Xn =∑n

i=1 (Xi/10i), with weights ci = 1/10i , 1 ≤ i ≤ n, which do
not satisfy the “negligibility” condition (2.3) of Theorem 2.2.
Its asymptotic normality, thus, cannot be concluded using this
theorem.

Example 3.3. Let X1, X2, . . . , Xn be n iid r.v.’s with

P (Xi = j ) = 1

10
for j = 0, 1, 2, . . . , 9.

Define Un = ∑n
i=1 (Xi/10i) = ∑n

i=1 ciXiwith ci = 1/10i .
Note that

∑n
i=1 c2

i = ∑n
i=1 (1/102i) = ∑n

i=1 ai = a(1 − an)/
(1 − a), where a = 1/102, which yields max

1≤i≤n
[c2

i /
∑n

i=1 c2
i ] =

(0.01)(99)
(1−(0.01)n) → 0.99, as n → ∞. Thus, the “negligibility” con-
dition (2.3) of Theorem 2.2 stands violated and the theorem
does not apply. The sequence {Un}, however, does converge

in distribution to a random variable. Intuitively, the limiting
distribution of Un should be U (0, 1) and, indeed, it turns out
to be so. To see this, note that the moment generating function
(m.g.f.) of X1 is given by

MX1 (t) = E(etX1 ) =
9∑

x=0

etx

(
1

10

)
= e10t − 1

10(et − 1)
,

so that the m.g.f. of Un is

MUn
(t) = E(etUn ) =

n∏
i=1

MX1

(
t

10i

)

=
n∏

i=1

(et/10i−1 − 1)

10(et/10i − 1)
= (et − 1)

10n(et/10n − 1)
· (3.5)

As n → ∞, 10n(et/10n − 1) = 10n(1 + t
10n + t2

2(10)2n + · · ·
−1) = t + t2

2(10)n + · · · → t . Therefore, from (3.5) we obtain

lim
n→∞ MUn

(t) = (et − 1)

t
=

∫ 1

0
etxdx = MU (t), (3.6)

the m.g.f. of U ∼ Uniform(0, 1) r.v. The Equation (3.6) is a cri-
terion for convergence in distribution (Rao 1966, p. 83; Casella

and Berger 2002, p. 66, 235) and implies that Un
d−→ U ∼

U (0, 1), as n → ∞. In this example, the weights do not satisfy
the “negligibility” condition of Theorem 2.2, however, Un does
converge in distribution to a limiting r.v. that has a nonnormal
distribution.

It would be instructive in the preceding context to
add that, since, E(Un) = 1

2 [1 − (0.1)n] → 1
2 and var(Un) =

σ 2
n (Un) = 1

12 [1 − (0.1)2n] → 1
12 , as n → ∞, 1

2 and 1
12 be-

ing, respectively, the mean E(U ) and var(U ) = σ 2(U ) of a
U (0, 1) r.v., the normalized Un and U r.v.’s, namely, U ∗

n =
(Un − E(Un))/σn(Un) and U ∗ = (U − E(U ))/σ (U ), respec-

tively, also satisfy U ∗
n

d−→ U ∗, as n → ∞. Thus, the normalized
Un converges in distribution to a normalized U (0, 1) r.v.

The following example is also quite interesting. In this ex-
ample, we consider a weighted sum of iid Laplace r.v.’s with
weights not satisfying the “negligibility” condition (2.3), so that
Theorem 2.2 is not applicable. However, this weighted sum does
converge in distribution, as n → ∞, but to a logistic r.v.:

Example 3.4. (Knight 2000). Let X1, X2, . . . , Xn be n iid
r.v.’s with common density

fX(x) = 1

2
e−|x|, −∞ < x < ∞. (3.7)

This is known as the “standard” Laplace density, a mem-
ber of the Laplace family of symmetric densitiesfμ,λ(x) =
(1/2λ)e−|x−μ|/λ, −∞ < x < ∞, with the location parameter μ,
−∞ < μ < ∞, and the scale parameter λ > 0, set equal to
0 and 1, respectively. It can be clearly seen that E(X1) = 0,
var(X1) = 2, and its m.g.f. evaluates to
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MX1 (t) = E[etX1 ] = 1

2

∫ ∞

−∞
etxe−|x|dx

= 1

2

1

(1 − t)
+ 1

2

1

(1 + t)
= 1

1 − t2
for |t | < 1. (3.8)

Now define

Ln =
n∑

k=1

(Xk/k) =
n∑

k=1

ckXk, with ck = 1/k. (3.9)

Since,
∑n

k=1 c2
k = ∑n

k=1 (1/k2), by Lemma A.1 in the Ap-
pendix, max

1≤i≤n
[c2

i /
∑n

i=1 c2
i ] → [1/

∑∞
i=1 (1/k2)] = 6

π2 , as n →
∞, so that the “negligibility” condition (2.3) for the weighted
sum Ln in (3.9) does not hold. Nevertheless, as n → ∞, Ln still
converges in distribution to a r.v. as we shall see ahead. Since,
Xi’s are iid, the m.g.f. of Ln in view of (3.8), is given by

MLn
(t) = E(etLn) =

n∏
k=1

MX1

(
t
/
k
) =

n∏
k=1

(
k2

k2 − t2

)
,

→
∞∏

k=1

(
k2

k2 − t2

)
= �(1 + t)�(1 − t) for |t | < 1,

(3.10)

as n → ∞, the last equality in (3.10) holding by virtue of
Lemma A.3 in the Appendix. In fact, the RHS expression of
(3.10) is the m.g.f. of the Logistic L(0, 1) density fL(x) =
ex/(1 + ex)2, −∞ < x < ∞. To see this note that in (3.11)
ahead, after making the substitution u = [ex/(1 + ex)] for the
variable of integration and then using the Beta integral, we have

ML(t) =
∫ ∞

−∞
etx ex

(1 + ex)2
dx =

∫ 1

0
ut (1 − u)−t du

= �(1 + t)�(1 − t)

�(2)
= �(1 + t) · �(1 − t), (3.11)

so that from (3.10) and (3.11), we obtain

MLn
(t) → �(1 + t) · �(1 − t) = ML(t), |t | < 1. (3.12)

Thus, we have Ln
d−→ L, as n → ∞ where the r.v. L ∼

L(0, 1) with density fL defined already. This density is that
of the “standard” Logistic distribution, a member of the logistic

family of symmetric densitiesfμ,λ(x) = 1
λ

· e( x−μ

λ
)/(1 + e( x−μ

λ
))

2
,

−∞ < x < ∞, with location and scale parameters μ, −∞ <

μ < ∞, and λ(> 0) set equal to 0 and 1, respectively. The mean
and variance of the “standard” logistic density are 0 and π2/3,
respectively (Hájek and Šidák 1967, p. 125). In this example,
the “negligibility” condition is again not satisfied, but the sum
Ln of (3.9) converges in distribution to a limiting r.v. with the
Logistic L(0, 1) distribution.

Here again, it would be instructive to add that, since,
E(Ln) = E(L) = 0 and var(Ln) = σ 2

n (Ln) = 2
∑n

k=1 (1/k2) →
π2/3 as n → ∞, π2/3 being the var(L) = σ 2(L) of the logis-
tic L(0, 1) distribution, the normalized Ln and L r.v.’s, namely,
L∗

n = Ln/σn(Ln) and L∗ = L/σ (L), respectively, also satisfy

L∗
n

d−→ L∗, as n → ∞.
Remark 3.1. For an iid sequence {Xn : n ≥ 1} of Laplace

r.v.’s with a nonzero finite mean E(X1) = μ, the same vari-

ance var(X1) = 2 and density fX(x) = 1
2e− 1

2 |x−μ|, −∞ < x <

∞, Ln without normalization does not converge in distri-
bution to a r.v., as n → ∞. To see this, first note that,
since,

∑n
k=1 (1/k) → ∞ as n → ∞, the mean E(Ln) =

μ
∑n

k=1 (1/k) → −∞ or + ∞, depending on whether μ < 0 or
> 0, and further that the m.g.f. of Ln (see (3.9)), namely,

MLn
(t)=E(etLn ) =

n∏
k=1

E
(
e(t/k)X1

)

= 1

2

n∏
k=1

∫
e(t/k)xe−|x−μ|dx = 1

2

n∏
k=1

∫
e(t/k)(y+μ)e−|y|dy

= etμ
∑n

k=1 (1/k)
n∏

k=1

(
k2

k2 − t2

)
→ 0 or + ∞, (3.13)

by (3.10), depending on whether μ < 0 or > 0. Thus, on ac-
count of (3.13), Ln does not converge in distribution to a proper
r.v.

However, if we set L′
n = [Ln − E(Ln)] = ∑n

k=1 (X′
k/k),

where X′
k = [Xk − E(Xk)], which ∼ Lap(0, 1), the standard

Laplace r.v. with density (3.7), then as in Example 3.4, L′
n con-

verges in distribution to a standard logistic L(0, 1) r.v., as
n → ∞.

The following Example 3.5 provides a counter example when
the conditions of existence and finiteness of means and variances
in Theorem 2.2a are violated.

Example 3.5. Let {Xni : 1 ≤ i ≤ n, n ≥ 1} be a triangular
array of Cauchy r.v.’s that are independent within each row with
location and scale parameters, respectively, given by μni , −∞ ≤
μni ≤ ∞, and δni , 0 < δni < ∞, 1 ≤ i ≤ n, n = 1, 2, . . . and
let X̄n = [

∑n
i=1 Xni/n] denote the mean of their nth row. Since,

the moments of Cauchy r.v.’s either do not exist or are infinite,
it is clear that Theorem 2.2a is not applicable to conclude a
limiting distribution for X̄n, since, the conditions of this theorem
stand violated. The convergence in distribution, however, of
X̄n—normalized or not—does take place as we shall see. It is

shown in the Appendix that X̄n
d−→ X, a Cauchy C(μ, δ) r.v.,

provided μ̄n = [
∑n

i=1 μni/n] → μ, −∞ < μ < ∞, and δ̄n =
[
∑n

i=1 δni/n] → δ, 0 < δ < ∞, as n → ∞. Thus, in this case,

X̄n
d−→ to a nonnormal r.v. as n → ∞.

For further study of interesting counter examples in probabil-
ity theory and statistics, see Counter Examples in Probability
and Statistics (Romano and Siegel 1986) and Elements of Large-
Sample Theory (Lehmann 1999).

4. CONCLUDING REMARKS

In this article, we have presented a few interesting examples
that illustrate what may happen when the assumptions of CLTs
are violated. We showed via these examples that even with
the violation of assumptions—either that of the existence of
moments or of the “negligibility” condition—the convergence
in distribution of the (normalized) sum Zn in the given theorems
can still happen but typically not to a normal r.v. This answers
partially the question as to the consequences of violation of a
CLTs assumptions.
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Examples of this article can be used in graduate classes when
teaching CLTs. These examples will help students appreciate the
use of CLTs and also enhance their understanding of these theo-
rems. The students and teachers will find these counter examples
instructive and challenging as they are based on important re-
sults, lemmas, and theorems. Finally, this article may stimulate
some pedagogical interest in the area of CLTs.

APPENDIX

The following results were used at various stages in the pre-
sentation of counter examples in Section 3.

Lemma A.1.
∞∑

k=1

1

k2
= π2

6
·

The result may be found in the book Calculus A New Horizon
(Anton 1999, p. 643, 646).

Lemma A.2. The Euler limiting form of Gamma function is
given by

�(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
. (A.1)

The given Euler form of Gamma function can be found in the
book Handbook of Complex Variables (Krantz 1999, P. 156).

Lemma A.3. For any real |t | < 1,
∞∏

k=1

k2

(k2−t2) = �(1 −
t)�(1 + t).

Proof. We can express that

∞∏
k=1

k2

(k2 − t2)
= lim

n→∞

n∏
k=1

k2

(k2 − t2)
= lim

n→∞ nt

n∏
k=1

k

(k + t)

× lim
n→∞ n−t

n∏
k=1

k

(k − t)
· (A.2)

Also, in view of Lemma A.2, we have for the two products
on the right of (A.2) that

lim
n→∞ nt

n∏
k=1

k

(k + t)
= t lim

n→∞
n!nt

t(t + 1) · · · (t + n)

= t�(t) = �(1 + t),

lim
n→∞ n−t

n∏
k=1

k

(k − t)
= (−t) lim

n→∞
n!n−t

(−t)(−t + 1) · · · (−t + n)

= (−t)�(−t) = �(1 − t). (A.3)

The proof of the lemma now follows from Equations (A.2)
and (A.3). �

Ahead, we give the three illustrations I1, I2, and I3, referred
to in Remark 2.2. The first one pertains to the satisfaction of
condition (2.6) and the latter two to that of condition (2.7):

I1. Suppose that in Application (A), xj = λjκ + γ for j =
1, 2, . . . , n and some constants λ, γ (−∞ < λ, γ <

∞) and κ > 0. Then, using the result that
∑n

j=1 jκ ≈
[nκ+1/(κ + 1)] for large n (Feller 1968, p. 255), it can be
easily verified that [ max

1≤j≤n
(xj − x̄)2/

∑n
j=1 (xj − x̄)2] =

O(1/n), where the notation ηn = O(ξn) stands for
[|ηn/ξn|] ≤ M for some positive real number M , as
n → ∞. Thus, the required condition (2.6) is satisfied.

I2. Suppose for the sequence {Xj : 1 ≤ j ≤ n; n ≥ 1} in Ap-
plication (B) that (i) E|Zj |2+δ ≤ � for some finite � >

0 and that (ii) σ 2
j = λjξ for some constants λ and ξ sat-

isfying λ > 0 and (2/(2 + δ)) < ξ ≤ 1, with δ the same
as in (2.7). Then, since, for [(2 + δ)ξ/2] > 1 and ξ ≤
1, [

∑n
i=1 j−(ξ (2+δ)/2)] → a constant and [

∑n
j=1 j−ξ ] →

∞ as n → ∞, it follows that⎡
⎢⎣ n∑

j=1

σ
−(2+δ)
j E

∣∣Zj

∣∣2+δ

/⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠

1+δ/2
⎤
⎥⎦

≤ �

⎡
⎢⎣ n∑

j=1

j−[ξ (2+δ)/2]
/⎛

⎝ n∑
j=1

j−ξ

⎞
⎠

1+δ/2
⎤
⎥⎦ = o(1),

(2.8)

as n → ∞. The inequality (2.8) establishes (2.7) for the
sequence {Xj : 1 ≤ j ≤ n; n ≥ 1} in this illustration.

I3. Suppose now instead that in Application (B), (i) the
sequence {Xj : 1 ≤ j ≤ n; n ≥ 1} of observations con-
sists of sample means {Ȳj : 1 ≤ j ≤ n; n ≥ 1} based
on independent iid samples of varying sizes kj , j =
1, 2, . . . , n, from the same population with mean μ,
−∞ < μ < ∞, variance σ 2, 0 < σ 2 < ∞ and a fi-
nite third absolute moment μ3. Then the common
mean of Xj ’s (= Ȳ ′

j s) is μ and the variances σ 2
j =

σ 2/kj , j = 1, 2, . . . , n. (ii) Suppose that for some con-
stants ν > 0 and η > 2, kj = (ν ∨ j [δ/(η(2+δ))]), where
(a ∨ b) = max(a, b), j = 1, 2, . . . , n. Under the pre-
ceding two assumptions, the condition (2.7) holds. To
see this, first observe that under (i), E|Xj − μ|2+δ ≤
[E|Xj − μ|3](2+δ)/3 ≤ (μ3 + μ2μ1 + μ3

1)(2+δ)/3 ≤ � for
some constant � > 0, where μk is kth order absolute mo-
ment about μ, k = 1, 2, 3. Thus, in view of assumptions
(i) and (ii), it follows that⎡
⎢⎣ n∑

j=1

(
σ−2

j

)2+δ
E

∣∣Xj − μ
∣∣2+δ

/⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠

1+δ/2
⎤
⎥⎦

≤ �

⎡
⎢⎣ n∑

j=1

k2+δ
j

/
σ 2+δ

⎛
⎝ n∑

j=1

kj

⎞
⎠

1+δ/2
⎤
⎥⎦

≤ �[(ν2+δ ∨ nδ/η)/nδ/2] ≤ [�/nδ[(η−2)/2η]] = o(1), (2.9)

as n → ∞, where we have used in (2.9) the inequal-
ities 1 ≤ kj ≤ k2+δ

j ≤ [η2+δ ∨ nδ/η] and η > 2, the last
inequality in (2.9) holding for sufficiently large n. Thus,
(2.9) establishes (2.7) in this case.
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Proof of Example 3.1. Let X1, X2, . . . , Xn be an iid sample
from a Cauchy C(μ, δ) distribution defined by the density
(3.1). We need to establish that X̄n =d X1 for each n, which
we shall show via the characteristic function route. As a first
step, we show that the characteristic function of a C(0, 1) r.v.
Z evaluates to

ϕZ(t) = E(eitZ) = 1

π

∫ ∞

−∞
eitx 1

1 + x2
dx = e−|t |,

−∞ < t < ∞. (A.4)

To see this evaluation, consider a r.v. Y with the “stan-
dard” Laplace density fY (y) = 1

2e−|y|, −∞ < y < ∞. Us-
ing the same steps as for calculating the m.g.f. (3.8),
we obtain ϕY (t) = 1

1+t2 , −∞ < t < ∞, which on account
of the Inversion Theorem (Rao 1966, p. 86; Feller 1971,
p. 509) yields 1

2π

∫ ∞
−∞ [e−ityϕY (t)]dt = fY (y), or equiva-

lently that 1
π

∫ ∞
−∞ [e−ity/(1 + t2)]dt = e−|y|, −∞ < y < ∞. By

changing the sign of the variable of integration t and then in-
terchanging the variables t and y, we arrive at the Equation
(A.4). Since a C(μ, δ) r.v. X can be expressed (distributionally)
as X =d δZ + μ, where Z is a C(0, 1) r.v., the characteristic
function of X, in view of (A.4), calculates to

ϕX(t) = E(eitX) = E
[
eit(δZ+μ)

] = eiμtϕZ(δt)

= eiμt−δ|t |, −∞ < t < ∞. (A.5)

We can now, using (A.5), derive the characteristic function of
X̄n as

ϕX̄n
(t) = E

(
eitX̄n

)=
n∏

k=1

E
(
ei t

n
Xk

)=
(
ϕX

(
t

n

))n

= (eiμ t
n
−δ| t

n
|)n

= eiμt−δ|t | = ϕX1 (t), −∞ < t < ∞. (A.6)

The Equation (A.6) and the Inversion Theorem together imply
the desired result X̄n =d X1. The proof is complete. �

Proof of Example 3.2. Let the density function (3.2)
and the corresponding distribution function be denoted
by f(1)(x) and F(1)(x), respectively. Now consider a more
general family of densities by taking X = γ 2/Z2, where
Z ∼ N (0, 1) with distribution function � and 0 < γ < ∞.
The corresponding distribution and the density func-
tions are given by F(γ )(x) = 2[1 − �(γ /

√
x)], x > 0 and

f(γ )(x) = (1/
√

2πx3)γ e−γ 2/2x , x > 0, respectively. (Note
from the inverse-gamma density definition (3.3) that the
density f(γ ) in this example is, in fact, a special case
of (3.3) with α = 1/2 and β = (γ 2/2).) It can be shown
that the preceding family is closed under convolutions, so
thatf(γ ) ∗ f(λ) = f(γ+λ). Accordingly, if X1, X2, . . . , Xn are
independent r.v.’s with density f(1)(x), x > 0, then the pre-
ceding equation coupled with an induction argument yields
that the density of Sn = ∑n

i=1 Xi is f(n)(x), x > 0; or equiv-
alently that P [(X̄n/n) ≤ x] = P [Sn ≤ n2x] = F(n)(n2x) =
2[1 − �(n/

√
n2x)] = 2[1 − �(1/

√
x)] = F(1)(x). The last

equation implies that X̄n =d nX1, so that as n → ∞, X̄n tends
to increase by an order of n (Feller 1971, p. 52; Romano and
Siegel 1986, pp. 59–60). �

Proof of Example 3.5. In distributional sense, each Xnj in the
rectangular array in this example can be expressed as (δnjXj +
μnj ), 1 ≤ j ≤ n, n = 1, 2, . . ., with X1, X2, . . . , Xn as iid
C(0, 1) r.v.’s. Since, as shown in the proof of Example 3.1,
the characteristic function of Xj a C(0, 1) r.v. is given by
ϕXj

(t) = e−|t |, −∞ < t < ∞, the characteristic function of
each Xnj evaluates to

ϕXnj
(t) = E{eitXnj } = eitμnj · ϕXj

(δnj t)

= eitμnj −δnj |t |,−∞ < t < ∞, (A.7)

so that from (A.7) we obtain the characteristic function of X̄n as

ϕX̄n
(t) =

n∏
j=1

eit(μnj

/
n)−|t |(δnj

/
n) = eitμ̄n−δ̄n|t | → eitμ−δ|t |,

−∞ < t < ∞, (A.8)

as n → ∞. The expression on the RHS of (A.8) is the charac-
teristic function of a C(μ, δ) r.v. The convergence (A.8), being
a criterion for convergence in distribution (Serfling 1980, p. 16;

Casella and Berger 2002, p. 84, 235), implies that X̄n
d→ X,

where X is a C(μ, δ). The proof is complete. �

Deduction of Theorems 2.2 and 2.2a from the LF
Theorem. First we state the LF Theorem. Let {Xni : 1 ≤ i ≤
n; n ≥ 1} be a triangular array of r.v.’s that are independent
within each row, n = 1, 2, . . . , with finite means E(Xni) =
μni and variances var(Xni) = σ 2

ni, i = 1, 2, . . . , n. Define Yni =
(Xni − μni)/Bn, where B2

n = var(
∑n

i=1 Xni) = ∑n
i=1 σ 2

ni , as-
suming that 0 < Bn < ∞, n = 1, 2, . . .. Then, as n → ∞, the
“uniform asymptotic negligibility” (UAN) condition for the ar-

ray {Yni : 1 ≤ i ≤ n; n ≥ 1}, namely, that Yni

p−→ 0, uniformly
in 1 ≤ i ≤ n (i.e., max

1≤i≤n
P [|Yni | ≥ ε] → 0 as n → ∞, for any

ε > 0, however small), and that

Zn =
n∑

i=1

Yni
d−→ Z ∼ N (0, 1), (A.9)

both together hold if and only if, for every ε > 0,

n∑
i=1

E
{
Y 2

ni · I[|Yni |≥ε]
} → 0, (A.10)

as n → ∞ (Lindeberg condition).

Deduction of Theorem 2.2. To see that under the setup of
Theorem 2.2, the Lindeberg condition (A.10) is satisfied, note
that in this case, upon setting Zni = (Xni − μn)/σn with mean
0 and variance 1, B2

n = var(
∑n

i=1 cniXni) = σ 2
n

∑n
i=1 c2

ni and

Yni = cniZni/

√∑n
i=1 c2

ni , 1 ≤ i ≤ n, so that for any ε > 0 and

ηn = max
1≤i≤n

|cni |/
√∑n

i=1 c2
ni ,

n∑
i=1

E
{
Y 2

niI[|Yni |≥ε]
} =

n∑
i=1

[
c2
ni

/
n∑

i=1

c2
ni

]

×E

{
Z2

niI[(|cniZni |/
∑n

i=1 c2
ni )≥ε]

}

≤ E
{
Z2

n1I[ηn|Zn1|≥ε]
} → 0, (A.11)
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since, ηn → 0, as n → ∞, on the account of the “negligibility”
condition (2.3) of Theorem 2.2. This establishes the required
Lindeberg condition (A.10) of the preceding LF Theorem and,
consequently, Theorem 2.2 follows.

It is worth mentioning that the “UAN” condition for the trian-
gular array {Yni : 1 ≤ i ≤ n, n ≥ 1} in Theorem 2.2—a conse-
quence of (A.11) and the “if” part of the LF Theorem—follows
directly also from the “negligibility” condition (2.3), since

max
1≤i≤n

P [|Yni | ≥ ε] ≤ max
1≤i≤n

{var(Yni)/ε
2}

= ε−2 max
1≤i≤n

{
c2
ni

/
n∑

i=1

c2
ni

}
= ε−2η2

n → 0,

as n → ∞. Thus, Yni

p−→ 0, as n → ∞, uniformly in 1 ≤
i ≤ n.

Remark A.1. In the deduction of Theorem 2.2, we have
shown that the “negligibility” condition (2.3) implies the Lin-
deberg condition (A.10), from which Theorem 2.2 follows
in view of the preceding LF Theorem. In fact, in Theorem
2.2 the “negligibility” condition is equivalent to the Linde-
berg condition. To see the reverse implication that (A.10)
also implies (2.3), note that for given ε > 0, however small,
[c2

ni/
∑n

i=1 c2
ni] = var(Yni) ≤ E[|Yni |2I[|Yni |≥ε]] + ε2, so that

max
1≤i≤n

[
c2
ni

/
n∑

i=1

c2
ni

]
≤

n∑
i=1

E[|Yni |2I[|Yni |≥ε]] + ε2, (A.12)

with the Lindeberg condition (A.10) implying the convergence
to zero, as n → ∞, of the first term on the RHS of (A.12). Since,
ε > 0 may be taken arbitrarily small, it follows from (A.12)
that max

1≤i≤n
[c2

ni/
∑n

i=1 c2
ni] → 0, as n → ∞. This establishes (2.3)

and, consequently, the equivalence of the “negligibility” and
Lindeberg conditions in Theorem 2.2.

Deduction of Theorem 2.2a. To the notation of Theo-
rem 2.2a add the notation Yni = [cni(Xni − μni)/Bn], where
B2

n = ∑n
i=1 c2

niσ
2
ni . Then the r.v. Zn of Equation (2.2a) and

condition (2.3a) of Theorem 2.2a reduce, respectively, to

Zn = ∑n
i=1 Yni and

∑n
i=1 |Yni |2+δ → 0, as n → ∞ for a δ > 0.

Theorem 2.2a now follows by the LF Theorem stated, on ac-
count of the last convergence, since,

∑n
i=1 E{Y 2

niI[|Yni |≥ε]} ≤
ε−δ

∑n
i=1 E|Yni |2+δ → 0, as n → ∞.

[Received July 2011. Revised October 2012.]
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